Егэ кольца ньютона

Грибник ушел от дороги далеко в лес и заблудился. Компаса у него не было, погода была облачная, солнца не видно, а без ориентации по сторонам света найти дорогу к своему автомобилю было невозможно. В кармане у него были противобликовые автомобильные очки, покрытые поляроидной плёнкой. Он вышел на поляну, достал очки и стал их поворачивать вокруг оптической оси очковых стекол, глядя сквозь них на небо в разных направлениях. Оказалось, что в одном из направлений интенсивность света, прошедшего через очки от облачного неба, сильно меняется, а в другом, перпендикулярном первому, не меняется. Помог ли грибнику этот факт сориентироваться?

Объясните, основываясь на известных физических законах и закономерностях, смысл его действий и укажите направление на Солнце.

Справка: поляроидная пленка имеет выделенное направление и пропускает только проекцию вектора напряжённости электромагнитного поля vecE в световой волне на это направление.

Интерференция света.

  • Волновой цуг.

  • Зеркала Френеля.

  • Интерференция в тонких плёнках

  • Кольца Ньютона.

  • Просветление оптики.

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ:  интерференция света.

В предыдущей теме Интерференция волн мы разобрались с интерференцией волн, излучённых двумя одинаковыми когерентными точечными источниками. Теперь давайте включим электрическую лампочку, а затем — такую же вторую рядом с ней. Как вы хорошо знаете по опыту, освещённость окружающего пространства равномерно возрастёт, и никакой интерференционной картины вокруг лампочек не возникнет. Почему же?

Оказывается, что две лампочки, пусть и совершенно одинаковые, всегда будут некогерентными источниками света. А вот чтобы понять, почему лампочки некогерентны, надо немного поговорить об излучении света атомами.

к оглавлению ▴

Волновой цуг.

Откуда вообще берётся свет? Видимый свет излучается атомами различных тел. Механизм излучения света относится квантовой физике, но для понимания оптических интерференционных явлений знать хотя бы в общих чертах, как атомы излучают свет, надо обязательно. Поэтому обсудим вкратце этот вопрос.

Обычным состоянием атома, в котором он может пребывать неограниченно долго, является основное, или невозбуждённое состояние. Когда атом находится в основном состоянии, электроны, окружающие ядро атома, максимально заполняют ближайшие к ядру орбиты. Потенциальная энергия взаимодействия электронов с ядром принимает своё минимальное значение, и говорят, соответственно, что
в основном состоянии атом обладает наименьшей энергией.

Но атом обладает способностью поглощать энергию. Под действием внешних факторов — например, в результате соударений с другими атомами или поглощения света — атом может перейти в возбуждённое состояние. Это значит, что какой-либо электрон покидает «насиженное место» на своей основной орбите и переходит на орбиту, расположенную дальше от ядра. Потенциальная энергия взаимодействия электрона с ядром при этом возрастает; соответственно, в возбуждённом состоянии энергия атома больше, чем в основном. Величина Delta W, на которую энергия возбуждённого состояния превышает энергию основного состояния, в точности равна энергии, поглощённой атомом.

Опыт показывает, однако, что в возбуждённом состоянии атом долго не пробудет и в итоге вернётся в основное состояние. В процессе этого перехода энергия атома уменьшится и снова примет своё минимально возможное значение. Куда же при этом денется энергия — Delta W?

Атом вернёт поглощённую энергию Delta W в виде излучения. В результате перехода из возбуждённого состояния в основное атом излучает электромагнитный импульс — так называемый волновой цуг (рис. 1).

Рис. 1. Излучение атомом волнового цуга

Длительность цуга tau порядка 10^{-8} c; соответственно, длина цуга ctauapprox 3 м. Частота цуга может находиться в видимом диапазоне, и тогда цуг будет регистрироваться человеческим глазом.

Итак, свет — это поток цугов, излучённых атомами. Так, атомы спирали лампочки при прохождения электрического тока совершают интенсивное тепловое движение и сталкиваются друг с другом, переходя в возбуждённое состояние; затем, возвращаясь в основное состояние,они испускают цуги видимого света. Вот почему лампочка горит!

Ну а теперь самое главное. Из возбуждённого состояния в основное атом переходит в случайный, непредсказуемый момент времени. Это означает, что моменты испускания цугов различными атомами никак не согласованы между собой!

Цуги, образующие свет, даже если и обладают одной частотой, имеют совершенно произвольные начальные фазы и потому являются некогерентными. Вот почему от двух одинаковых лампочек не получается устойчивой интерференционной картины: излучаемые ими пучки света состоят из некогерентных цугов и не могут интерферировать друг с другом.

Как же тогда быть? Можно ли вообще наблюдать интерференцию света? Оказывается, можно! Замечательная идея, позволяющая «обхитрить» некогерентные цуги и добиться необходимой когерентности, состоит в том, чтобы использовать изображения одного и того же источника. Они-то будут когерентными! Давайте посмотрим, как работает эта идея, на примере одного из первых классических интерференционных опытов — зеркал Френеля.

к оглавлению ▴

Зеркала Френеля.

На рис. 2 изображена схема этого эксперимента. Два плоских зеркала OA и OB образуют почти развёрнутый угол и создают два близко расположенных изображения S_{1} и S_{2} точечного источника света S. Вдали расположен экран; ширма закрывает экран от прямых лучей источника. На экран, таким образом, попадают лишь лучи, отражённые от зеркал.

Рис. 2. Интерференционный опыт с зеркалами Френеля

Световые лучи, как всегда, изображены зелёным цветом. Направления лучей мы уже не указываем, чтобы не загромождать рисунок. К тому же, у вас позади геометрическая оптика, так что вы легко поймёте ход лучей и без указания их направления :-)

Лучи, отражённые зеркалом OA, образуют пучок MAOE, который как бы исходит из мнимого изображения S_{1} источника S. Аналогично, лучи, отражённые зеркалом OB, образуют пучок FOBN, как бы исходящий из мнимого изображения S_{2}.

Эти пучки оказываются когерентными, поскольку когерентны мнимые источники S_{1} и S_{2}. Действительно, эти источники суть изображения одного и того же источника S, поэтому их частоты совпадают и сдвиг фаз между ними равен нулю. Следовательно, в области MCODN, где перекрываются пучки, можно наблюдать устойчивую интерференционную картину! Фактически, в каждой точке данной области в каждый момент времени накладывается сам на себя один и тот же цуг — с одним и тем же, фиксированным для данной точки сдвигом фаз, определяемым разностью хода от источников S_{1} и S_{2}.

Теперь мы видим, что данная ситуация совершенно аналогична задаче об интерференции волн двух когерентных точечных источников, разобранной в конце предыдущего листка. В частности, ширина интерференционных полос, наблюдаемых в опыте с зеркалами Френеля, равна lambda L/a, где a=S_{1}S_{2} и L — расстояние от прямой S_{1}S_{2} до экрана. Величины a и L несложно найти геометрически.

к оглавлению ▴

Интерференция в тонких плёнках

Глядя на переливающийся различными цветами мыльный пузырь, на радужные отблески масляных или бензиновых пятен на поверхности воды, вы, оказывается, наблюдаете не что иное, как интерференцию света!

Давайте посмотрим на рис. 3. На поверхность тонкой прозрачной плёнки падает световой луч AO.

Рис. 3. Интерференция в тонкой плёнке

Падающий луч расщепляется на два луча: отражённый луч OF и преломлённый луч OB. После вторичного отражения и преломления из плёнки выходит второй луч CF, параллельный отражённому лучу.

Оба луча фокусируются собирающей линзой в точке F. Это может быть самая обычная линза (при наблюдении интерференционной картины на экране) или оптическая система нормального глаза (при непосредственном разглядывании).

Обе волны OF и CF, будучи частями одной и той же волны AO, являются когерентными. Действительно, в точке F сходятся две копии одного цуга с некоторым фиксированным сдвигом фаз между собой; этот сдвиг фаз обеспечивается разностью хода между волнами OF и OBCF. Поэтому волны OF и CF интерферируют друг с другом, давая картину чередующихся максимумов и минимумов в окружающем пространстве.

Предположим, что плёнка освещается белым светом. Как вы знаете, белый свет является смесью волн с различными частотами; эти частоты отвечают цветам от красного до фиолетового. Пусть, например, разность хода между волнами OF и OBCF равна целому числу длин волн красного света. Тогда красная составляющая белого света усилит сама себя, и отражённый плёнкой свет нам будет казаться красным.

При небольшом изменении угла падения (или толщины плёнки) изменится и разность хода. Поэтому, если поверхность плёнки является неровной (или если мы посмотрим чуть с другого направления), то новая разность хода может стать равна целому числу длин волн, например, зелёного света. Теперь произойдёт усиление зелёной составляющей белого света, и отражённый от плёнки свет мы увидим зелёным.

Всё это мы наблюдаем, рассматривая мыльный пузырь. Перемещение его поверхности приводит к постоянному изменению разности хода для данного ракурса. Происходит усиление то одного цвета, то другого, и в результате пузырь переливается цветами радуги.

к оглавлению ▴

Кольца Ньютона.

Возьмём плоско-выпуклую линзу с достаточно большим радиусом сферической поверхности и положим её выпуклостью вниз на стеклянную пластину. Если глядеть сверху, то сквозь линзу можно увидеть интерференционную картину в виде концентрических колец (рис. 4)

Рис. 4. Кольца Ньютона в красном свете

Это кольца Ньютона; они изучались Ньютоном при освещении как белым, так и монохроматическим светом. Происхождение колец Ньютона вполне аналогично интерференции в тонких плёнках (рис. 5).

Рис. 5. Происхождение колец Ньютона

Падающий луч расщепляется на два луча 1 и 2, отражённых соответственно от сферической поверхности линзы и от пластины; между этими лучами возникает разность хода, и они интерферируют между собой. Все три луча, изображённые на рисунке, в реальности почти сливаются друг с другом из-за малой кривизны поверхности линзы.

Вычислим радиусы светлых колец Ньютона. Пусть точка падения луча на сферическую поверхность находится на расстоянии y от пластины (рис. 6).

Рис. 6. К расчёту радиусов колец

Пусть R — радиус кривизны сферической поверхности линзы, r — расстояние от точки
падения до оси симметрии линзы. Имеем:

r^{2}=R^{2}-(R-y)^{2}=2Ry-y^{2}.

Поскольку воздушная прослойка очень тонка (yll R), величиной y^{2} можно пренебречь по сравнению с 2Ry:

r^{2}=2Ry.

Отсюда

y=frac{displaystyle r^{displaystyle 2}}{displaystyle 2R}.

Как видно из рис. 5, путь второго луча превышает путь первого луча примерно на 2y. Однако разность хода будет больше, чем 2y, поскольку вмешивается один важный эффект.

На рис. 7 слева показано отражение на границе воздух-стекло. Обратите внимание: фаза отражённой волны отличается на pi от фазы падающей волны. Оказывается, это общий факт:при отражении от оптически более плотной среды (то есть от среды с большим показателем преломления) происходит изменение фазы колебаний на pi , что равносильно сдвигу отражённой волны относительно падающей на половину длины волны.

Рис. 7. Отражение со сдвигом на полволны и без него

Справа на рис. 7 показано отражение на границе стекло-воздух. Изменения фазы нет! И это общий факт:при отражении от оптически менее плотной среды фазы отражённой и падающей волн совпадают.

Возвращаясь теперь к рис. 5 и 6, мы видим, что луч 2 не только проходит дополнительный путь 2y, но и сдвигается на полволны при отражении на границе воздух-пластина. Луч 1 не испытывает такого сдвига, поскольку отражается на границе линза-воздух. Поэтому разность хода d между лучами 1 и 2 оказывается больше, чем 2y, на половину длины волны:

d=2y+frac{displaystyle lambda }{displaystyle d}=frac{displaystyle r^{2}}{displaystyle R}+frac{displaystyle lambda }{displaystyle 2}.

Светлые кольца будут в местах интерференционных максимумов, когда разность хода равна целому числу длин волн. Имеем:

frac{displaystyle r^{2}}{displaystyle R}+frac{displaystyle lambda }{displaystyle 2}=n lambda (n=1,2,3,...).

Отсюда получаем радиусы светлых колец:

displaystyle r_{displaystyle n}=sqrt{(displaystyle n-frac{displaystyle 1}{displaystyle 2})lambda R} (n=1,2,3,...).

Как видим, радиус растёт с увеличением номера кольца. Кроме того, радиус кольца с заданным порядковым номером возрастает при переходе от фиолетового цвета к красному (поскольку увеличивается длина волны).

Радиусы тёмных колец вычисляются аналогично — надо только разность хода d приравнять к нечётному числу длин полуволн. Проделайте это самостоятельно и получите выражение:

displaystyle r_{displaystyle n}=sqrt{nlambda R} (n=1,2,3,...).

Радиусы тёмных колец увеличиваются пропорционально квадратному корню из номера кольца. Тёмное кольцо в центре картины — это интерференционный минимум, который возникает из-за полуволнового сдвига второго луча при отражении от стеклянной пластины. Здесь y= 0, и поэтому разность хода равна lambda /2

к оглавлению ▴

Просветление оптики.

Пожалуй, самым широким на сегодняшний день применением интерференции света служит просветление оптики. Расскажем вкратце, что это такое.

Свет, падающий на линзу, частично отражается назад; доля отражённого света обычно составляет несколько процентов. Объективы современной оптической техники представляют собой системы линз (числом до нескольких десятков). В результате отражений на поверхности каждой линзы происходит значительное ослабление света: в сумме на отражениях может теряться до 90% световой энергии. Освещённость изображений предметов, даваемых такой оптической системой, будет чрезвычайно низкой.

Как уменьшить потери на отражение? Для этого на поверхность линзы наносят интерференционное покрытие в виде тонкой плёнки (рис. 8).

Рис. 8. Просветление оптики

Толщина покрытия подбирается так, чтобы отражённые волны 1 и 2 были сдвинуты на полволны и, интерферируя, погасили друг друга. Тогда не будет потерь на отражение, и вся световая энергия пройдёт через линзу. Изображение получится более ярким — оптика «просветляется».

Толщина интерференционного покрытия зависит, разумеется, от длины волны, и добиться полного гашения отражённых волн во всём видимом диапазоне не получается. Покрытие обычно подбирается так, чтобы при отражении гасилась средняя, жёлто-зелёная часть видимого спектра (в которой лежит максимум интенсивности солнечного излучения). Поэтому в отражённых лучах доминируют крайние части спектра — красная и фиолетовая; их смесью, например, является хорошо известный вам сиреневый отблеск объектива фотоаппарата.

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Интерференция света.» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
09.03.2023

Кольца Ньютона

Главная /Физика ЕГЭ /Кольца Ньютона

Чтобы получить доступ к бесплатным материалам, пожалуйста зарегистрируйтесь.

Извините, у Вас нет прав просматривать контент!

Регистрация
Войти

Обложка видео

Понравилась статья? Поделить с друзьями:
  • Егэ когда пишут после какого класса
  • Егэ когда пишем
  • Егэ когда пересдача по химии
  • Егэ когда леонардо да винчи сидел над чертежами летательной машины
  • Егэ когда ввели в украине