Егэ задачи по теме многогранники

в условии
в решении
в тексте к заданию
в атрибутах

Категория:

Атрибут:

Всего: 218    1–20 | 21–40 | 41–60 | 61–80 | 81–100 …

Добавить в вариант

Источник: Пробный ЕГЭ по математике, Санкт-Петербург, 04.03.2018. Вариант 1.


Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).


Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).


Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).


Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).


Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).


Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).


Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).


Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Источник: ЕГЭ по математике 10.06.2013. Вторая волна. Центр. Вариант 601.


Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).


Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).


Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).


Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).


Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).


Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).


Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).


Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).


Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).


Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).


Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

Всего: 218    1–20 | 21–40 | 41–60 | 61–80 | 81–100 …

0

Задачи для подготовки к ЕГЭ по теме: «Многогранники»

Задачи ЕГЭ по теме: «Призма»

1. Найдите пло­щадь поверхности пря­мой призмы, в ос­но­ва­нии которой лежит ромб с диагоналями, рав­ны­ми 6 и 8, и бо­ко­вым ребром, рав­ным 10.

2.  Найдите бо­ко­вое ребро пра­виль­ной четырехугольной призмы, если сто­ро­на ее ос­но­ва­ния равна 20, а пло­щадь поверхности равна 1760.

3.  В ос­но­ва­нии прямой приз­мы лежит ромб с диагоналями, рав­ны­ми 6 и 8. Пло­щадь ее по­верх­но­сти равна 248. Най­ди­те боковое ребро этой призмы.

4.  Ос­но­ва­ни­ем прямой тре­уголь­ной призмы слу­жит прямоугольный тре­уголь­ник с ка­те­та­ми 6 и 8. Пло­щадь ее по­верх­но­сти равна 288. Най­ди­те высоту призмы.

5.  Сторона ос­но­ва­ния пра­виль­ной тре­уголь­ной приз­мы ABCA1B1C1 равна 3, а вы­со­та этой приз­мы равна t1588158174aa.png Най­ди­те объём приз­мы ABCA1B1C1.

Задачи ЕГЭ по теме: «Пирамида»

1. Стороны основания правильной четырехугольной пирамиды равны 10, боковые ребра равны 13. Найдите площадь поверхности этой пирамиды.

2. Основанием пирамиды является прямоугольник со сторонами 3 и 4. Ее объем равен 16. Найдите высоту этой пирамиды.

3. Найдите объем правильной треугольной пирамиды, стороны основания которой равны 1, а высота равна t1588158174aj.png.

4. Найдите объем пирамиды, высота которой равна 6, а основание – прямоугольник со сторонами 3 и 4.

5. В правильной четырехугольной пирамиде высота равна 12, объем равен 200. Найдите боковое ребро этой пирамиды.

Опубликовано 29.04.20 в 14:06

Размер файла: 75.45 Кбайт

Дидактический материал

Задачи ЕГЭ по теме «Многогранники»

  1. В правильной четырёхугольной пирамиде MABCD с вершиной M стороны основания равны 1, а боковые рёбра равны 2. Точка N принадлежит ребру MC, причём MN: NC = 2:1. Найдите площадь сечения пирамиды плоскостью, проходящей через точки B и N параллельно прямой AC.

hello_html_75915f59.png

Решение

Отрезок NK параллелен AC (точка K принадлежит ребру MA).

Пусть NK пересекает MO в точке P(O — центр основания пирамиды), причём тогда точка P является точкой пересечения медиан треугольника MBD. Прямая BP пересекает ребро MD  в точке E.  Четырёхугольник  BNEK — искомое сечение.

Отрезок BE — медиана треугольника MBD, значит, ;

Поскольку прямая BD перпендикулярна плоскости MAC, диагонали  BE  и  NK четырёхугольника BNEK перпендикулярны, следовательно,  .

Ответ:  .

2. Площадь боковой поверхности правильной четырёхугольной пирамиды SABCD равна 108, а площадь полной поверхности этой пирамиды равна 144. Найдите площадь сечения, проходящего через вершину S этой пирамиды и через диагональ её основания.

hello_html_38613752.png

Решение

Площадь основания пирамиды равна 144 − 108 = 36, поэтому AB = 6. Площадь боковой грани равна  Пусть SM — высота грани SAB. Тогда  поэтому SM = 9. Пусть SH — высота пирамиды. Имеем  

Тогда 

Ответ: 36.

3. Точка E — середина ребра CC1 куба ABCDA1B1C1D1. Найдите площадь сечения куба плоскостью A1BE, если ребра куба равны 2.

Решение

hello_html_m1c6468ce.png

Прямая  пересекает прямую  в точке  Прямая  пересекает ребро   в его середине — точке .  — сечение куба плоскостью .

Равнобедренный треугольник  подобен треугольнику   и высота

Поскольку  — средняя линия треугольника  получаем:

Ответ: 4,5.

4. В правильной треугольной призме ABCA1B1C1 стороны основания равны 8, боковые рёбра равны . Изобразите сечение, проходящее через вершины AC и середину ребра A1B1. Найдите его площадь.

Решение

hello_html_6aefa66e.png

Обозначим через  и  средины ребер  и   соответственно.

По теореме о средней линии треугольника     так что прямые  и  лежат в одной плоскости. Сечение про которое спрашивается в условии, − это сечение призмы этой плоскостью. Оно представляет собой равнобокую трапецию Основания трапеции   по теореме Пифагора найдем боковую сторону:

Проведем в трапеции высоту . Отрезок  равен полуразности оснований трапеции:

Следовательно, высота трапеции  Зная её, находим площадь трапеции: 

Ответ: 30.

5. Дан куб     c ребром, равным 4. Пусть точка  лежит на стороне  так, что  Найдите расстояние от точки  до плоскости   , где  — середина  .

Решение

hello_html_e3d3d93.png

Введем декартову систему координат. В выбранной системе координат:  Уравнение плоскости  имеет вид:   Пусть  Найдем значения  при 

Искомое уравнение имеет вид:   или 

Расстояние  от точки  до указанной плоскости будем находить по формуле:

  ,где  — координаты точки 

.

Ответ:  .

  1. В основании прямой призмы  лежит прямоугольный равнобедренный треугольник  с прямым углом  и гипотенузой . Найти расстояние от точки   до прямой если точка  — середина ребра  , которое равно 

Решение

hello_html_4ba41f24.png

По теореме Пифагора имеем:  

Очевидно, что 

Для получения искомого расстояния воспользуемся методом площадей. Найдем площадь равнобедренного треугольника  Для этого вычислим высоту этого треугольника h, опущенную на основание 

.

 Это с одной стороны. Но с другой же стороны .

Следовательно, 

Ответ: 6.

  1. К диагонали  куба  провели перпендикуляры из середин ребер AB и AD. Найдите угол между этими перпендикулярами.

Решение

hello_html_m26e35afe.png

Пусть ребро куба равно  О — центр куба, точки К и N — середины рёбер AD и  соответственно.

Заметим, что A1N = NC =  , треугольник A1NC равнобедренный, его медиана NO является высотой, поэтому  — перпендикуляр к . Аналогично KO перпендикуляр к АС.

Найдём угол KON. Введем систему координат как показано на рисунке. В этой системе координат: 

Найдём угол между векторами из их скалярного произведения:

Следовательно, .

Ответ: 60°.

  1. Точки  — середины ребер  и  соответственно куба  . Найти угол между прямой  и плоскостью, проходящей через точку  перпендикулярно прямой .

Решение

hello_html_21c71c74.png

Координатно-векторный способ.

Пусть ребро куба равно 2.

Введем декартову систему координат, как показано на рис.

Найдем координаты необходимых точек:

Если  — искомый угол, то:

Элементарно-геометрический подход.

Угол между заданной плоскостью и ребром  будет равен углу между прямой , перпендикулярной к плоскости, и прямой PE, перпендикулярной к ребру 

Треугольник  — прямоугольный, к тому же равнобедренный. Следовательно, .

Ответ:  .

9. Площадь треугольника, образованного диагональным сечением правильной четырёхугольной пирамиды SABCD с вершиной S, вдвое больше площади её основания.

а) Постройте это сечение;

б) Найдите косинус плоского угла при вершине пирамиды.

Решение

hello_html_6defb882.png

а) Соединим точки B и D отрезком. Проведем плоскость через точки S, B и D, не лежащие на одной прямой. Сечение построено. Это — треугольник BSD. Но таких сечений будет два: можно было бы построить также сечение, проходящие через АС — диагональ основания. Поскольку диагонали квадрата (основания) равны, боковые ребра правильной пирамиды также равны, то получим два равных решения. Для нашего случая достаточно взять одно решение: треугольник BSD

б) Проведем высоту пирамиды SO, O — точка пересечения АС и BD.

Для удобства дальнейших вычислений пусть сторона квадрата ABCD будет равна .Тогда

В  по теореме косинусов будем иметь:

Ответ: 

  1. В треугольной пирамиде два ребра, исходящие из одной вершины, равны по  а все остальные ребра равны по 2. Найдите объем пирамиды.

Решение

hello_html_7f4b2d83.png

Пусть ребра пирамиды таковы, как показано на рисунке с точностью до обозначений вершин. (В основании пирамиды равносторонний треугольник со стороной 2). Пусть О — центр основания пирамиды.

Пусть K — середина отрезка AB. Проведем отрезки SK и CK.

Ясно, что 

Рассмотрим треугольник SKC. Он равнобедренный, поскольку SK = SC = 2. SO — высота этого треугольника. Очевидно, что этот же отрезок будет служить высотой заданной пирамиды, так как наклонные SA = SBBO = AO, поскольку KC — серединный перпендикуляр к отрезку AB. Значит, О — ортогональная проекция вершины пирамиды на плоскость (ABC).

.

Итак, .

Ответ:  .

Сегодня, 17:58

В закладки

Обсудить

Жалоба

Контрольная работа по теме «Многогранники»

10 класс. 2 варианта.

mn.docx
mn.pdf

1) Основание прямой призмы — прямоугольный треугольник с катетами 6 и 8 см. Найдите площадь боковой поверхности призмы, если ее наибольшая боковая грань — квадрат.

2) Боковое ребро правильной четырехугольной пирамиды равно 4 см и образует с плоскостью основания пирамиды угол 45°.
а) Найдите высоту пирамиды.
б) Найдите площадь боковой поверхности пирамиды.

3) Основание прямого параллелепипеда — ромб с диагоналями 10 и 24 см. Меньшая диагональ параллелепипеда образует с плоскостью основания угол 45°. Найдите площадь полной поверхности параллелепипеда.

07
Сен 2013

Категория: 02 Стереометрия

02. Составные многогранники. Площадь поверхности. Объем

2013-09-07
2022-09-11

Задача 1. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

pic

Решение: + показать


Задача 2. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Решение: + показать


Задача 3. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Решение: + показать


Задача 4.  Из единичного куба вырезана правильная четырехугольная призма со стороной основания 0,4 и боковым ребром 1. Найдите площадь поверхности оставшейся части куба.

311e2e2c481259de758d25b442f2ba60

Решение: + показать


Задача 5. Во сколько раз увеличится площадь поверхности октаэдра, если все его ребра увеличить в 6 раз?

рп

Решение: + показать


Задача 6. Площадь поверхности тетраэдра равна 1. Найдите площадь поверхности многогранника, вершинами которого являются середины сторон данного тетраэдра Видео*

pic-1

Решение: + показать


Задача 7.  Найдите объем пространственного креста, изображенного на рисунке и составленного из единичных кубов.

82173e2a373c19b17d150ef830c57ce7

Решение: + показать


Задача 8.  Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

pic-2

Решение: + показать


Задача 9.  Объем тетраэдра равен 1,5.  Найдите объем многогранника, вершинами которого являются середины сторон данного тетраэдра.

pic-1

Решение: + показать


Задача 10.  Найдите объем многогранника, вершинами которого являются точки A,;B,;C,;A_1,;C_1  правильной треугольной призмы ABCA_1B_1C_1, площадь основания которой равна 3, а боковое ребро равно 7.

xcvb

Решение: + показать


тестВы можете пройти тест “Cоставные многогранники”

Автор: egeMax |

комментариев 14

Прямоугольный параллелепипед

1. Два ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 2 и 6. Объем па­рал­ле­ле­пи­пе­да равен 48. Най­ди­те тре­тье ребро па­рал­ле­ле­пи­пе­да, вы­хо­дя­щее из той же вер­ши­ны.

За­да­ние 13 № 27079

По­яс­не­ние.

Объем пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да равен про­из­ве­де­нию его из­ме­ре­ний. По­это­му, если x — ис­ко­мое ребро, то 2  6  x = 48, от­ку­да x = 4.

Ответ: 4.

Ответ: 4

27079

4

2. Най­ди­те объем мно­го­гран­ни­ка, изоб­ра­жен­но­го на ри­сун­ке (все дву­гран­ные углы пря­мые).

За­да­ние 13 № 27191

По­яс­не­ние.

Объем дан­но­го мно­го­гран­ни­ка равен раз­но­сти объ­е­мов па­рал­ле­ле­пи­пе­дов со сто­ро­на­ми 5, 2, 4 и 1, 2, 2:

.

Ответ: 36.

Ответ: 36

27191

36

3. Объем па­рал­ле­ле­пи­пе­да равен 4,5. Най­ди­те объем тре­уголь­ной пи­ра­ми­ды .

За­да­ние 13 № 27209

По­яс­не­ние.

Ис­ко­мый объем равен раз­но­сти объ­е­мов па­рал­ле­ле­пи­пе­да со сто­ро­на­ми , и и че­ты­рех пи­ра­мид, ос­но­ва­ния ко­то­рых яв­ля­ют­ся гра­ня­ми дан­ной тре­уголь­ной пи­ра­ми­ды:

Ответ: 1,5.

Ответ: 1,5

27209

1,5

За­да­ние 13 № 245339

По­яс­не­ние.

Ос­но­ва­ни­ем пи­ра­ми­ды, объем ко­то­рой нужно найти, яв­ля­ет­ся по­ло­ви­на бо­ко­вой грани па­рел­ле­ле­пи­пе­да, а вы­со­той пи­ра­ми­ды яв­ля­ет­ся ребро па­рал­ле­ле­пи­пе­да . По­это­му

Ответ: 10.

Ответ: 10

245339

10

9. В бак, име­ю­щий форму пра­виль­ной четырёхуголь­ной приз­мы со сто­ро­ной ос­но­ва­ния, рав­ной 20 см, на­ли­та жид­кость. Для того чтобы из­ме­рить объём де­та­ли слож­ной формы, её пол­но­стью по­гру­жа­ют в эту жид­кость. Най­ди­те объём де­та­ли, если уро­вень жид­ко­сти в баке под­нял­ся на 20 см. Ответ дайте в ку­би­че­ских сан­ти­мет­рах.

За­да­ние 13 № 506456

По­яс­не­ние.

Объем вы­тес­нен­ной жид­ко­сти равен объ­е­му де­та­ли (закон Ар­хи­ме­да). Уро­вень жид­ко­сти под­нял­ся на h=20 см, сто­ро­на ос­но­ва­ния a=20 см, зна­чит вы­тес­нен­ный объем будет равен Най­ден­ный объём яв­ля­ет­ся объёмом де­та­ли.

Ответ: 8000.

Ответ: 8000

506456

8000

Источник: Апро­ба­ция ба­зо­во­го ЕГЭ по ма­те­ма­ти­ке, 13—17 октября: ва­ри­ант 166084.

10. Плос­кость, про­хо­дя­щая через три точки A, B и C, раз­би­ва­ет куб на два мно­го­гран­ни­ка. Сколь­ко гра­ней у мно­го­гран­ни­ка, у ко­то­ро­го боль­ше гра­ней?

За­да­ние 13 № 506659

По­яс­не­ние.

В се­че­нии по­лу­ча­ет­ся четырёхуголь­ник. У одной отсечённой фи­гу­ры 15 рёбер и 7 гра­ней, у вто­рой — 9 рёбер и 5 гра­ней. Сле­до­ва­тель­но, у ис­ко­мой фи­гу­ры 7 гра­ней.

Ответ: 7.

Ответ: 7

506659

7

Источник: Апро­ба­ция ба­зо­во­го ЕГЭ по ма­те­ма­ти­ке, 13—17 октября: ва­ри­ант 152742.

11. В бак, име­ю­щий форму пря­мой приз­мы, на­ли­то 12 л воды. После пол­но­го по­гру­же­ния в воду де­та­ли, уро­вень воды в баке под­нял­ся в 1,5 раза. Най­ди­те объём де­та­ли. Ответ дайте в ку­би­че­ских сан­ти­мет­рах, зная, что в одном литре 1000 ку­би­че­ских сан­ти­мет­ров.

6

В сосуд, име­ю­щий форму пра­виль­ной тре­уголь­ной приз­мы, на­ли­ли воду. Уро­вень воды до­сти­га­ет 80 см. На какой вы­со­те будет на­хо­дить­ся уро­вень воды, если ее пе­ре­лить в дру­гой такой же сосуд, у ко­то­ро­го сто­ро­на ос­но­ва­ния в 4 раза боль­ше, чем у пер­во­го? Ответ вы­ра­зи­те в см.

10. Через сред­нюю линию ос­но­ва­ния тре­уголь­ной приз­мы, объем ко­то­рой равен 32, про­ве­де­на плос­кость, па­рал­лель­ная бо­ко­во­му ребру. Най­ди­те объем от­се­чен­ной тре­уголь­ной приз­мы.

11

Через сред­нюю линию ос­но­ва­ния тре­уголь­ной приз­мы про­ве­де­на плос­кость, па­рал­лель­ная бо­ко­во­му ребру. Объем от­се­чен­ной тре­уголь­ной приз­мы равен 5. Най­ди­те объем ис­ход­ной приз­мы.

12. От тре­уголь­ной приз­мы, объем ко­то­рой равен 6, от­се­че­на тре­уголь­ная пи­ра­ми­да плос­ко­стью, про­хо­дя­щей через сто­ро­ну од­но­го ос­но­ва­ния и про­ти­во­по­лож­ную вер­ши­ну дру­го­го ос­но­ва­ния. Най­ди­те объем остав­шей­ся части.

17. Объем куба равен 12. Най­ди­те объем тре­уголь­ной приз­мы, от­се­ка­е­мой от него плос­ко­стью, про­хо­дя­щей через се­ре­ди­ны двух ребер, вы­хо­дя­щих из одной вер­ши­ны и па­рал­лель­ной тре­тье­му ребру, вы­хо­дя­ще­му из этой же вер­ши­ны.

За­да­ние 13 № 27183

18. Най­ди­те объем мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся точки пра­виль­ной тре­уголь­ной приз­мы, пло­щадь ос­но­ва­ния ко­то­рой равна 2, а бо­ко­вое ребро равно 3.

 21. Най­ди­те объем мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся точки пра­виль­ной ше­сти­уголь­ной приз­мы , пло­щадь ос­но­ва­ния ко­то­рой равна 4, а бо­ко­вое ребро равно 3.

22. Най­ди­те объем мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся точки пра­виль­ной ше­сти­уголь­ной приз­мы , пло­щадь ос­но­ва­ния ко­то­рой равна 6, а бо­ко­вое ребро равно 3.

23. Най­ди­те объем мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся точки пра­виль­ной ше­сти­уголь­ной приз­мы, пло­щадь ос­но­ва­ния ко­то­рой равна 6, а бо­ко­вое ребро равно 2.

24. Най­ди­те объем мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся точки пра­виль­ной ше­сти­уголь­ной приз­мы, пло­щадь ос­но­ва­ния ко­то­рой равна 6, а бо­ко­вое ребро равно 2.

1.

В пра­виль­ной тре­уголь­ной пи­ра­ми­де SABC с вер­ши­ной S бис­сек­три­сы тре­уголь­ни­ка ABC пе­ре­се­ка­ют­ся в точке O. Пло­щадь тре­уголь­ни­ка ABC равна 2; объем пи­ра­ми­ды равен 6. Най­ди­те длину от­рез­ка OS.

16. Объем па­рал­ле­ле­пи­пе­да равен 9. Най­ди­те объем тре­уголь­ной пи­ра­ми­ды.

17

Во сколь­ко раз уве­ли­чит­ся объем пра­виль­но­го тет­ра­эд­ра, если все его ребра уве­ли­чить в два раза?

18. Во сколь­ко раз уве­ли­чит­ся объем пи­ра­ми­ды, если ее вы­со­ту уве­ли­чить в че­ты­ре раза?

19. Объем тре­уголь­ной пи­ра­ми­ды , яв­ля­ю­щей­ся ча­стью пра­виль­ной ше­сти­уголь­ной пи­ра­ми­ды , равен 1. Най­ди­те объем ше­сти­уголь­ной пи­ра­ми­ды.

20. Объем пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды равен 12. Точка D – се­ре­ди­на ребра . Най­ди­те объем тре­уголь­ной пи­ра­ми­ды .

21. От тре­уголь­ной пи­ра­ми­ды, объем ко­то­рой равен 12, от­се­че­на тре­уголь­ная пи­ра­ми­да плос­ко­стью, про­хо­дя­щей через вер­ши­ну пи­ра­ми­ды и сред­нюю линию

    Помощь по заданию    Сообщить об ошибке

26

Объем па­рал­ле­ле­пи­пе­да равен 12. Най­ди­те объем тре­уголь­ной пи­ра­ми­ды .

27. Объем куба равен 12. Най­ди­те объем че­ты­рех­уголь­ной пи­ра­ми­ды, ос­но­ва­ни­ем ко­то­рой яв­ля­ет­ся грань куба, а вер­ши­ной — центр куба.

28. Най­ди­те объем па­рал­ле­ле­пи­пе­да , если объем тре­уголь­ной пи­ра­ми­ды равен 3.

36. Пи­ра­ми­да Сно­фру имеет форму пра­виль­ной четырёхуголь­ной пи­ра­ми­ды, сто­ро­на ос­но­ва­ния ко­то­рой равна 220 м, а вы­со­та — 104 м. Сто­ро­на ос­но­ва­ния точ­ной му­зей­ной копии этой пи­ра­ми­ды равна 44 см. Най­ди­те вы­со­ту му­зей­ной копии. Ответ дайте в сан­ти­мет­рах.

7. Три ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 4, 6, 9. Най­ди­те ребро рав­но­ве­ли­ко­го ему куба.

8. Два ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 2, 4. Диа­го­наль па­рал­ле­ле­пи­пе­да равна 6. Най­ди­те объем па­рал­ле­ле­пи­пе­да.

9. Два ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 2, 3. Объем па­рал­ле­ле­пи­пе­да равен 36. Най­ди­те его диа­го­наль.

30. В ос­но­ва­нии пря­мой приз­мы лежит пря­мо­уголь­ный тре­уголь­ник, один из ка­те­тов ко­то­ро­го равен 4, а ги­по­те­ну­за равна 5. Най­ди­те объём приз­мы, если её вы­со­та равна 3.

31. В ос­но­ва­нии пря­мой приз­мы лежит пря­мо­уголь­ный тре­уголь­ник, один из ка­те­тов ко­то­ро­го равен 4, а ги­по­те­ну­за равна 6. Най­ди­те объём приз­мы, если её вы­со­та равна 6.

32. В ос­но­ва­нии пря­мой приз­мы лежит пря­мо­уголь­ный тре­уголь­ник, один из ка­те­тов ко­то­ро­го равен 5, а ги­по­те­ну­за равна 5√2. Най­ди­те объём приз­мы, если её вы­со­та равна 4.

33. В ос­но­ва­нии пря­мой приз­мы лежит пря­мо­уголь­ный тре­уголь­ник, один из ка­те­тов ко­то­ро­го равен 2, а ги­по­те­ну­за равна √15. Най­ди­те объём приз­мы, если её вы­со­та равна 3.

Данное занятие может быть проведено после изучения формул объемов многогранников на уроках геометрии в 11-м классе или в рамках элективного курса по подготовке к ЕГЭ. Материал также доступен и учащимся 10-го класса (во 2-м полугодии).

Цели занятия:

  • показать примеры задач, аналогичных заданиям ЕГЭ по математике базового уровня и первой части профильного уровня;
  • повторить теоретический материал, связанный с площадями фигур, со свойствами многогранников;
  • отработка навыков самоконтроля;
  • отработка навыков сотрудничества между учащимися.

Оборудование:

  • оборудование для демонстрации презентации Microsoft PowerPoint (компьютер, проектор, экран или доска);
  • раздаточный материал (тексты задач с чертежами);
  • таблица квадратов натуральных чисел.

План занятия

  1. Организационный момент
  2. Устная работа
  3. Решение задач
  4. Работа в группах
  5. Подведение итогов

Ход занятия

Занятие сопровождается демонстрацией презентации.

1. Организационный момент

Cообщение целей занятия, деление класса на группы по 4 человека (можно объединить учащихся, сидящих за соседними партами).

2. Устная работа

Условия задач и правильные ответы демонстрируются на слайдах. Задачи решаются устно, ответы можно спросить у нескольких учащихся, один из них коротко рассказывает путь решения.

Задача 1. (Слайд №4) Площадь треугольника АВС равна 120. КМ – средняя линия, параллельная стороне АВ. Найти площадь четырехугольника АКМВ. (Ответ: 90)

Рисунок 1

Задача 2. (Слайды №5,6) Площадь правильного шестиугольника АВСДЕК равна 60, О – центр шестиугольника. Найти площади треугольника АОВ, треугольника  АВС, треугольника АВЕ, четырехугольника ВСДЕ. (Ответ: 10; 10; 20; 30)

Рисунок 2

Задача 3.лайд №7) Площадь грани прямоугольного параллелепипеда равна 15. Ребро, перпендикулярное этой грани, равно 6. Найти объем параллелепипеда. (Ответ: 90)

Рисунок 3

Задача 4. (Слайд №8) Во сколько раз увеличится объем куба, если его ребро увеличить в 5 раз? (Ответ:  125)

Рисунок 4

Задача 5. (Слайд №9) В правильной треугольной пирамиде МАВС О – точка пересечения медиан основания. Площадь треугольника АВС равна 5, а объем пирамиды – 35. Найти длину отрезка МО. (Ответ: 21)

Рисунок 5

Задача 6. (Слайд №10) Как изменится объем пятиугольной пирамиды, если её высоту увеличить в 4 раза? (Ответ: увеличится в 4 раза)

Рисунок 6

Задача 7. (Слайд №11) В сосуд, имеющий форму правильной треугольной призмы, налили воду. Уровень воды составил 20 см. На какой высоте будет находиться уровень воды, если ее перелить в другой сосуд такой же формы, у которого сторона основания в 2 раза больше, чем у первого? (Ответ: 5 см)

Рисунок 7

При подведении итогов устной работы необходимо обратить внимание на формулы для вычисления объемов призмы и пирамиды.

3. Решение задач

Чертежи заранее сделаны на доске, каждый ученик получает заготовку с чертежами (Приложение 1). Учащиеся у доски записывают краткие решения, сопровождая их устными пояснениями. Также можно использовать слайды №13, 14, 15.

Задача 8. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 6 и 3. Объем параллелепипеда равен 108. Найти его диагональ.

Рисунок 8

Задача 9. В сосуд, имеющий форму правильной треугольной призмы, налили 1000 см3 воды и погрузили в воду деталь. При этом  уровень воды поднялся с отметки 25 см до отметки 27 см. Найти объем детали. Ответ выразить в см3.

Рисунок 9

Задача 10. Объем треугольной пирамиды SABC равен 15. Плоскость проходит через сторону АВ основания этой пирамиды и пересекает противоположное боковое ребро в точке D, делящей ребро SC в отношении 1 : 2, считая от вершины S. Найти объем пирамиды DABC.

Рисунок 10

4. Работа в группах

Каждая группа получает набор задач (Приложение 2), к которым надо записать краткие решения. После истечения отведенного времени проверяются ответы, представители групп могут прокомментировать ход решения задач. В это время чертежи демонстрируются на слайдах №17, 18, 19. Для быстрой проверки можно использовать слайд №20. После этого листы с решениями сдаются учителю.

5. Подведение итогов

При подведении итогов следует обратить внимание на две основные формулы объемов и их частные случаи, а также на отношение объемов подобных тел (слайд 22).

Задача. (Слайд №23) Боковые ребра правильной треугольной пирамиды взаимно перпендикулярны и равны 6. Найти объем пирамиды. (Ответ: 36)

При решении этой задачи очень важно обратить внимание на метод решения. Если тетраэдр перевернуть, то задачу можно решить устно.

Задача. (Слайды №24, 25) Объем тетраэдра равен 12. Найти объем многогранника, вершинами которого являются середины сторон данного тетраэдра. (Ответ: 6)

6. Домашнее задание (Приложение 3)

Литература

  1. Ященко И. В. ЕГЭ: 4000 задач с ответами по математике. Все задания «Закрытый сегмент». Базовый и профильный уровни. – М: Издательство «Экзамен», 2020.
  2. Балаян Э. Н. Геометрия: задачи на готовых чертежах для подготовки к ЕГЭ: 10-11 классы. – Ростов н/Д: Феникс, 2018.
  3. Материалы сайта: https://math-ege.sdamgia.ru/

Список приложений

  • Приложение 1 – задачи для работы в классе
  • Приложение 2 – задачи для работы в группах
  • Приложение 3 – домашнее задание
  • Приложение 4 – ПРЕЗЕНТАЦИЯ

Понравилась статья? Поделить с друзьями:
  • Егэ задачи на фотоэффект с решениями егэ
  • Егэ задачи на кредиты теория
  • Егэ задачи на касательную
  • Егэ задачи на дифракцию света
  • Егэ задачи блока с по физике с решением