Экономические задачи в егэ по математике исследовательская работа

Муниципальное
общеобразовательное  учреждение средняя общеобразовательная школа №7 города
Стерлитамак Республики Башкортостан

Учебно-исследовательская
работа «Задачи «экономического» содержания на ЕГЭ по математике »

                                                         Обучающийся:
Петров Эдуард, 11 класс

                                                         Руководитель:
Дурцева Татьяна Ивановна,               

                                                         учитель      
математики.

2017-18 учебный год.

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ…………………………………………………………………………3

ГЛАВА 1. Простые проценты и задачи. 
Сложные проценты и задачи……4-7

ГЛАВА 2. Основные подходы к решению нового типа задач ЕГЭ по
математике – задач с «экономическим содержанием
»…
………………………………….7-11

Заключение……………………………………………………………………..11-12

Список
использованных источников и литературы……………………………12

Приложение.
Банк заданий «эконономического» типа задач по годам…….13-16

 Введение.

Актуальность

В
процессе подготовки к  ЕГЭ по математике я выяснил, что не все темы мне по
силу. В частности, вызывает определенные трудности задание №17 из профильного
экзамена. 
К тому же  я понимаю, что
современная жизнь делает задачи на проценты актуальными, так как сфера
практического приложения процентных расчетов расширяется. Вопросы инфляции,
повышение цен, снижение покупательской способности, платежи, налоги, прибыли,
кредиты, начисление зарплаты, депозитные счета в Сбербанке касаются каждого
человека в нашем обществе. Планирование семейного бюджета невозможны без умения
производить несложные процентные вычисления.

 Мне нравятся слова известного мыслителя  Д.Пойа, “Чтобы
научиться решать задачи, надо их решать” Предлагаемый в работе материал 
демонстрирует   умение применять  экономические задачи к решению повседневных
бытовых проблем каждого человека, вопросов рыночной экономики и задач
технологии производства.

      Цель:
обобщение, углубление и систематизация знаний по теме «Проценты», решение
экономических задач на сложные и простые проценты.

  Для
решения данной цели я поставил перед собой  ряд задач:

-Изучить
теоретический материал по выбранной теме.

-Вывести формулы начисления простых и
сложных процентов.

       -Подобрать задачи из сборников по
подготовке к ЕГЭ и олимпиадам, решаемые по формулам простых и сложных
процентов.

-Научиться
решать задачи с процентами разных видов сложности.

        
Объект исследования – простые и сложные проценты,
задачи на банковские проценты.

            Предмет исследования
методы решения задач с применением формул  простых и сложных процентов,
включённые в ЕГЭ.  

 Материалы: пособия
по подготовке к олимпиадам и ЕГЭ.

Методы
исследования

– поиск необходимой информации в сети Интернет, теоретический анализ и синтез
научной и учебной литературы, сравнение, систематизация информации, обобщение
вывод, подбор и решение задач.

Глава1.

Простой и сложный проценты.

Экономическое
значение понятия.  Процент это плата за использование средств (ссуда, кредит),
предо­ставляемых одним лицом (кредитором) другому лицу (заемщику). Величина
суммы оплаты долга определяется как процент (в математическом смысле) от суммы
долга.

Все знают, как вычисляют
проценты. По определению величина М составляет
r
процентов от другой величины
N, если

Значит r
процентов от любой величины М определяется дробью

Например,
если какая-нибудь величина М увеличивается на
r процентов,
результат такого увеличения будет

Аналогично
при уменьшении величины М на
r процентов

    Представьте себе, что
некоторая сумма денег Р, называемая начальным вкладом, помещается в банк. Спрашивается, какова будет
сумма денег
S,
называемая будущей
стоимостью вклада, через n лет,
если годовая процентная ставка составляет
r
процентов. Ответ зависит от того, с каким
процентом мы имеем дело — простым или сложным. В случае
простого
процента на начальный вклад ежегодно начисляется сумма, равная

 так что сумма вклада через n лет
составит

   
Простые проценты используются преимущественно при краткосрочных финансовых
операциях.

Задачи.

1.100 тысяч рублей выданы в кредит на полгода по ставке: а)
3% в месяц; б) 14% годовых. Найти сумму погашения кредита.

Решение.

P
= 100 тыс.руб.

а) 
r = 3% ,   n
= 6 месяцев. 

S
= 1009 ∙0,03∙ 6 = 118 тыс.руб

б) 
r = 14% годовых, n
= 0,5 года.

S
= 100 ∙0,14 ∙0,5 = 107 тыс.руб.

2.
Проценты по ссуде в 50 тысяч рублей составляют 1875 руб.  Какова годовая
процентная ставка?

Решение.

P = 50 тыс.
руб.,
I  = 1875
руб.,  
n =

        

3. Банк выплачивает 4800 рублей каждые
полгода по вкладу, исходя из 10% годовых. Какова величина вклада?

Решение.

P  = 4800
руб.,
r = 10%
годовых, 
n = 0,5
года.

4. За какой срок вклад в 70 тыс.рублей
увеличится вдвое при ставке 10% годовых?

Решение.

 P = 70
тыс.руб.,
r = 10%
годовых,
S = 70∙ 2
= 140 тыс.руб.

5.Инвестор может купить
квартиру за 60000долларов наличными или заплатив 6400долларов через год.  У
инвестора в банке не менее 60000 долларов и банк платит 6% годовых,  какая
альтернатива предпочтительнее?

Решение.

Вывод:
оплата наличными предпочтительнее.

Если
же при расчетах используются сложные проценты, т.е. «процент от процента», то
после первого года будущая стоимость составит

На
второй год проценты будут исчисляться уже от этой суммы и величина вклада
составит

Значит, через n лет
стоимость вклада достигнет величины

Это и
есть основная формула для вычисления сложных процентов. Расчеты по этой
формуле становятся простыми, если имеется калькулятор с
клавишей , позволяющий
вычислить
значение показательной функции.

Задачи

1.100
тысяч рублей инвестированы в банк на полгода по ставке: а) 10% в месяц; б) 10%
годовых. Найти сложные проценты на эту сумму к концу срока.

Решение

а) r
= 10% в месяц,
n = 6 месяцев.

    – P = 100(1 +
0.1)6 – 100 = 77.1561 тыс.руб

 б)  r
= 10% годовых, 
n = 0,5 года.

 Подставляя
в формулу получим  4,88089 тыс.руб.

2.Кредит
в размере 80 тысяч рублей выдан под сложные проценты по ставке 8% годовых на 3
года. Вычислить наращенную сумму к концу срока.

Решение

 S  = 80(1 + 0,08)3 = 100,77696 тыс.руб.

3.Определить
сумму инвестирования под сложные проценты при ставке 12% годовых, если через 2
года наращенная сумму составила 62720 руб

Решение

S = 80
тыс.руб.,
r = 12%
годовых,
n = 2 года.

 = 50000
руб.

                                                          Глава2.

Основные подходы к решению нового типа задач ЕГЭ по
математике – задач
с «экономическим
содержанием
»

Рассмотрим основные подходы к решению нового типа задач ЕГЭ
по математике – задач с «экономическим содержанием
».

I.                  
Решение
задач по формуле.

Мы знаем, что
если число А увеличить на р %, станет А(1+).Если
число А уменьшить на р %, станет А(1-.)

1.     Цена товара А руб. была повышена на 25%.  На сколько
процентов надо теперь ее снизить, чтобы получить первоначальную цену товара.

Решение:
Цена товара после повышения стала А(1+).
Допустим надо снизить на р %, тогда цена товара после снижения станет
А(1+)(1-) и
получим первоначальную цену товара: А(1+)(1-) = А. Откуда получим ответ: 20%

2.Банк под определенный процент принял некоторую
сумму. Через год четверть накопленной суммы была снята со счета.
Но банк увеличил процент годовых на 40%. К концу следующего года накопленая
сумма в 1,44 раза превысила первоначальный вклад. Каков процент
новых годовых?

Решение:
Положим в банк А рублей под р% годовых. Через год сумма
на счету станет равной 
А(1+)рублей. Сняв четверть данной суммы, получим   А(1+). Теперь на эту сумму начисляют новый процент  А(1+)(1+), который стал 1,44А. Решив данное
уравнение, получим ответ р=20%, тогда новый процент равен 60%.

3.Фермер получил кредит в банке под определённый процент
годовых. Через год фермер в счёт погашения кредита вернул в банк 3/4 от всей
суммы, которую он был должен
банку к этому времени, а ещё через год счёт полного погашения кредита он внёс в банк сумму, на 21%
превышающую величину полученного кредита. Каков процент годовых по кредиту в
данном банке?

Решение: Допустим фермер получил А рублей под р% годовых. Через год долг
будет
А(1+)руб. Т.к. фермер вернул долга, то осталось  А(1+). После 2-го года долг вырос на р% и стал А(1+)А(1+)= А(1+)2 .Теперь, чтобы погасить
долг, фермер внес сумму на 21%
большую, т.е. А(1+) и погасил кредит, т.е
 А(1+)2
А(1+)=0.
Решив данное уравнение, получим р=120%.

II. Некоторые задачи лучше решать в общем виде,
не подставляя первоначальные данные, так как можно запутаться в вычислениях.

4. В банк помещена сумма 3900 тысяч
рублей под 50% годовых. В конце каждого из первых
четырех лет хранения после вычисления процентов вкладчик дополнительно вносил на счет одну и ту
же фиксированную сумму. К концу
пятого года после начисления процентов оказалось, что размер вклада увеличился
по сравнению с первоначальным на 725%.  Какую сумму вкладчик ежегодно
добавлял к вкладу?

Решение: пусть первоначальный
вклад составил 
А рублей и вкладчик ежегодно добавлял х рублей. К началу 2-года величина вклада
составила А (1+)= 1,5А рублей;

К началу 3-года величина вклада составила (1,5А +х)1,5+х рублей;
К началу 4-года величина вклада
составила ((1,5А +х)
1,5+х)1,5+х  рублей;
К началу 5-года величина вклада
составила (((1,5А +х)
1,5+х)1,5+х)1,5+х    рублей;
К концу 5-года величина вклада  составила((((1,5А +х)1,5+х)1,5+х)1,5+х)1,5 рублей. По условию задачи размер
вклада увеличился по сравнению с первоначальным на 725% , т.е стал А(1+).

Раскрыв
скобки, получим следующее выражение:

()5А+()4х+()3х+()2х+()х=А=А

х=А

Отсюда,
подставив вместо А=3900 тысяч, получим  х=210000.

III.Применение
свойства степеней

5.За время хранения вклада в банке  проценты по нему начислялись ежемесячно
сначала в размере 
mimetex, затем mimetex, потом frac%7b1%7d%7b9%7d%25и, наконец, mimetex в месяц. Известно,
что под действием каждой новой процентной ставки вклад 

находился целое число месяцев, а по
истечении срока хранения  первоначальная
сумма вклада увеличилась на 
frac%7b1%7d%7b6%7d%25. Определите срок хранения вклада.

Решение: Пусть первоначальная
сумма вклада будет А рублей
то через месяц эта сумма станет А(1+ )руб. Если ставку не менять, то сумма
увеличится опять на 5% и станет А(1+ )2 и т.д. Пусть  первая
ставка продержалась k,
вторая — m, третья — n, последняя — t месяцев
.

Тогда  сумма увеличилась в А(1+ )к(1+ )m(1+ )n(1+ )t  раз. И по истечении срока хранения 
первоначальная сумма стала А (1+)

А(1+ )к(1+ )m(1+ )n(1+ )t= Применяя свойства
степеней, получим
 2 -3.3-1.50.72

приравнять показатели при одинаковых основаниях и
решить систему:

Откуда k=m=1. n=3, t=2. Тогда срок хранения
вклада  1+1+3+2=7 месяцев.

IV. Решение задач с помощью математического
анализа

6.В январе 2000 года
ставка по депозитам в банке «Возрождение» составляла х % годовых, тогда как в
январе 2001 года — y % годовых, причем известно, что x+y=30%. В январе 2000
года вкладчик открыл счет в банке «Возрождение», положив на него некоторую
сумму. В январе 2001 года, по прошествии года с того момента, вкладчик снял со
счета пятую часть этой суммы. Укажите значение x при котором сумма на счету
вкладчика в январе 2002 года станет максимально возможной.

Решение:Пусть в январе 2000 года вкладчик
открыл счет в банке на сумму
 А руб. Тогда через год при х % годовых на счету окажется сумма А
(1 +
) руб.

Далее
вкладчик снимает со счета пятую часть первоначальной суммы. То есть на счету
оказывается  сумма . В банке меняется процентная
ставка и составляет теперь  у %, т.е (30-х)%. Тогда еще через год у
вкладчика на счету окажется  Нас интересует значение х, при котором значение  
f(x)
=
 будет
максимальным. Исследуем данную функцию методами математического анализа.

f/(x)=0  при

или 
Максимальное значение функция
f(x) примет в точке х0  (вершина параболы), то есть в
точке  =25.

po

Ответ:
25%.

V.
Задачи на сравнение.

7.В конце августа 2001 года администрация Приморского края
располагала некой суммой денег, которую предполагалось направить на пополнение
нефтяных запасов края. Надеясь на изменение конъюнктуры рынка, руководство
края, отсрочив закупку нефти, положила эту сумму 1 сентября 2001 года в банк.
Далее известно, что сумма вклада в банке увеличивалась первого числа каждого
месяца на 26% по отношению к сумме на первое число предыдущего месяца, а цена
баррели сырой нефти убывала на 10% ежемесячно. На сколько процентов больше (от
первоначального объема закупок) руководство края смогло пополнить нефтяные
запасы края, сняв 1 ноября 2001 года всю сумму, полученную из банка вместе с
процентами, и направив ее на закупку нефти?

Решение:

1 сентября

руководство края положило А рублей под 26% в месяц

цена баррели сырой нефти уменьшается на 10%
ежемесячно

1 октября

сумма составит А(1+)
руб

Вложенная сумма уменьшится  и станет А(1-)руб

1 ноября

А(1+) 2 руб.

станет А(1-)2
руб

Тогда сумма увеличится в  =1,96
, т.е. на 96%

Ответ: на 96%.

Заключение

Таким образом, понимание процентов и умение
производить процентные расчеты в настоящее время необходимы каждому человеку.
Проценты затрагивают финансовую, демографическую, экономическую,
социологическую и другие стороны нашей жизни. Их знание помогает в развитии
практических способностей, а также умение решать экономические задачи. В
настоящее время одной из важной составляющей знаний современного человека –
знание банковских процентов.
Вопросы инфляции, повышение цен, снижение
покупательской способности, платежи, налоги, прибыли, кредиты, начисление
зарплаты, депозитные счета в Сбербанке касаются каждого человека в нашем
общества. Планирование семейного бюджета невозможны без умения производить
несложные процентные вычисления. Изучение
банковских процентов может способствовать развитию таких навыков как
экономичность, расчетливость.

В случае возникновения кредитных обязательств, я
смогу рассчитать все платежи для уплаты банку вне зависимости от того какую
процентную ставку предлагает банк (простые или сложные проценты), смогу
рассчитать штрафные санкции в случае просрочки платежа.
Задачи с
экономическим содержанием являются практическими задачами. А их решение,
бесспорно, способствует более качественному усвоению содержания курса
математики средней школы, позволяет осуществлять перенос полученных знаний и
умений в экономику, что в свою очередь, активизирует интерес к задачам
прикладного характера и изучению математики в целом. Такие задачи позволяют
наиболее полно реализовывать прикладную направленность в обучении и
способствуют более качественному усвоению самого учебного материала и
формированию умения решать задачи данного типа

В целом работа по данной теме для меня оказалась
полезной, а также она принесла мне необходимые знания финансовой математики в
сфере банковских процентов. Я считаю,  цели, поставленные в работе,  были
достигнуты. Изучив специальную литературу, посвящённую простым и сложным
процентам, я расширил свои математические навыки и получил дополнительные
теоретические знания по теме «Проценты», научился самостоятельно решать задачи
на простые и сложные проценты, узнал историю возникновения процентов и банков,
а также о влиянии процентов на жизнь человека. Тем самым я подготовился к
решению задач на простые и сложные проценты, которые содержатся в материалах
ЕГЭ.

                                                
Список литературы

1.Сборники заданий к ГИА и ЕГЭ
2015- 2017.

2. Интернет-ресурсы:

 1.http://lib.repetitors.eu/matematika  

  2.http://mathprosto.ru/percent/percent3.html

  3.  http://www.edu.ru-//www.edu.ru                                            

                                                      
 Приложение

 Задачи из открытого банка заданий ЕГЭ

Задача 1. Одной машинистке
на перепечатку рукописи требуется на 12 ч больше, чем другой. Если 25% рукописи
перепечатает первая машинистка, а затем к ней присоединится вторая машинистка,
то на перепечатку рукописи им понадобиться 35 ч, считая от момента начала
работы первой машинистки. За сколько часов могла бы перепечатать рукопись
каждая машинистка, работая отдельно?

Решение: Пусть на
перепечатку рукописи первой машинистке требуется  ч, тогда второй потребуется  ч. На
перепечатку 25% рукописи первая машинистка затратит  ч. Выясним теперь, сколько времени потребуется двум
машинисткам на перепечатку оставшихся 75% рукописи. Первая машинистка перепечатывает
за один час  часть рукописи, вторая –  часть
рукописи, а вместе за час они перепечатывают  часть
рукописи. На перепечатку  рукописи им потребуется ч,
т.е.  ч. Отсюда получаем уравнение:

Решив это уравнение, найдем, что оно имеет
два корня:  и .

Второй корень не соответствует условию
задачи.

Ответ: первой машинистке на перепечатку
рукописи требуется 60 ч, а второй – 48 ч.

Задача 2. Положив в банк
деньги, вкладчик получил через год прибыль в 240 тысяч рублей. Однако он не
стал забирать деньги из банка, а, добавив к ним еще 60 тысяч, снова оставил
деньги на год. В результате спустя еще год он получил в банке 1 миллион 100
тысяч рублей. Какая сумма была положена в банк первоначально и какой процент
прибыли в год давал банк?

 Решение: Допустим, что первоначальный
вклад составляет  тысяч рублей. Тогда
процент прибыли за год равен . Сумма
вклада, положенного в банк через год, составила  тысяч
рублей, т.е.  тысяч рублей. Этот вклад принес
доход, равный  тысячам рублей. Всего
вкладчик получил 1100 тысяч рублей.

Получаем уравнение:

Решив его, найдем, что это уравнение имеет
два корня: ,  Выполнив
расчеты, можно убедиться, что оба корня соответствуют условию задачи.

Ответ: задача имеет два решения: вкладчик
вложил первоначально 200 тысяч рублей и получил доход 120% в год или вкладчик
вложил первоначально 360 тысяч рублей и получил доход  в год.

Задача 3. Имелось два
слитка меди. Процент содержания меди в первом слитке был на 40 меньше, чем
процент содержания меди во втором. После того как оба слитка сплавили, получили
слиток, содержащий 36% меди. Найдите процентное содержание меди в первом и во
втором слитках, если в первом слитке было 6
кг меди, а во втором – 12 кг.

Решение: Обозначим за  массу первого слитка в кг, за  массу второго слитка в кг, получим
систему уравнений:

В результате получим: х=30, у=20.

Ответ: 30
кг, 20 кг

Задача 4. Для определения
оптимального режима снижения цен социологи предложили фирме с 1 января снижать
цену на один и тот же товар в двух магазинах двумя способами. В одном магазине
– в начале каждого месяца (начиная с февраля) на 10%, в другом – через каждые
два месяца, в начале третьего (начиная с марта) на одно и то же число
процентов, причем такое, чтобы через полгода (1 июля) цены снова стали
одинаковыми. На сколько процентов надо снижать цену товара через каждые два
месяца во втором магазине?

Решение: Пусть  руб. — стоимость товара,  — число процентов. Тогда,

I магазин

       Февраль

        Март    

        ……………………………………

        Июль   

II магазин

        Март    

        Май      

        Июль    

По условию задачи через полгода (1 июля)
цены снова стали одинаковые, составляем уравнение:

Ответ: на 21%.

Задача 5. В соответствии с
договором фирма с целью компенсации потерь от инфляции была обязана в начале
каждого квартала повышать сотруднику зарплату на 3%. Однако в связи с
финансовыми затруднениями она смогла повышать ему зарплату только раз в полгода
(в начале следующего полугодия). На сколько процентов фирма должна повышать
зарплату каждые полгода, чтобы 1 января следующего года зарплата сотрудника
была равна той зарплате, которую он получил бы при режиме повышения,
предусмотренной договором.

Решение: Пусть  руб. — зарплата,  — процент повышения зарплаты. Тогда,

По плану:  I квартал         руб.

        ……………………………

       IV
квартал      руб.

Фактически

        I
полугодие    руб.

        II
полугодие   руб.

По условию задачи зарплата сотрудника была
равна той зарплате, которую он получил бы при режиме повышения,
предусмотренного договором, составляем уравнение:

Ответ: на 6,09 %.

Задача 6. На заводе было
введено рационализаторское предложение. В результате время, необходимое для
изготовления рабочими некоторой детали, уменьшилось на 20%. На сколько
процентов возросла производительность труда этого рабочего?

Решение: Пусть  — производительность труда, а  — весь объем работы. Тогда работа будет
выполнена за время . В результате роста
производительности труда время на изготовление детали стало равно , соответственно производительность , или .
Соответственно рост производительности труда составил:

Ответ: 25%

Задача 7. Из жителей
города одни говорят только на украинском, другие – только на русском, третьи –
на обоих языках. По-украински говорят 85% всех жителей, а по-русски – 75%.
Сколько процентов всех жителей этого города говорят на обоих языках?

Решение:

100%-85%=15% — не
говорят на украинском;

100%-75%=25% — не
говорят на русском;

100%-15%-25%=60% —
говорят на обоих языках.

Ответ: 60%

Тезисы к
учебно-иссл                                                                                                                                                                                                                                                               
                                                                                                                                                                                                едовательской
работе «Задачи с «экономическим» содержанием на ЕГЭ по математике» .

Сведения об авторе: Петров Эдуард, обучающийся 11 класса МОБУ СОШ с. Ишпарсово
муниципального района Стерлитамакский район Республики Башкортостан.

 Сведения о научном руководителе: Кузнецова Людмила
Валерьевна, учитель физики и математики МОБУ СОШ с. Ишпарсово муниципального
района Стерлитамакский район Республики Башкортостан.

Обоснование актуальности: необходимость    умения
решать  экономические задачи на ЕГЭ и умение применять ихк решению повседневных
бытовых проблем каждого человека.

Тема
работы
:Задачи «экономического» характера на ЕГЭ по математике.      Цель:
обобщение, углубление и систематизация знаний по теме «Проценты», решение
экономических задач на сложные и простые проценты.

  Для
решения данной цели я поставил перед собой  ряд задач:

-Изучить
теоретический материал по выбранной теме.

-Вывести формулы начисления простых и
сложных процентов.

       -Подобрать задачи из сборников по
подготовке к ЕГЭ и олимпиадам, решаемые по формулам простых и сложных
процентов.

-Научиться
решать задачи с процентами разных видов сложности.      Объект исследования
– простые и сложные проценты, задачи на банковские проценты.

Основная
часть:

здесь исследуются следующие вопросы: простой и сложный проценты с примерами
решения задач, методы решения задач с «экономическим» содержанием из ЕГЭ.

Вывод: Цели, поставленные в работе,  были достигнуты. Изучив
специальную литературу, посвящённую простым и сложным процентам, я расширил
свои математические навыки и получил дополнительные теоретические знания по
теме «Проценты», научился самостоятельно решать задачи на простые и сложные
проценты, узнал историю возникновения процентов и банков, а также о влиянии
процентов на жизнь человека. Тем самым я подготовился к решению задач на
простые и сложные проценты, которые содержатся в материалах ЕГЭ.

Заявка
на участие на «Менделеевских чтениях»

Фамилия

Имя,
отчество

Петров
Эдуард Константинович

Класс

11
класс

Школа

МОБУ
СОШ с. Ишпарсово

Название
работы

Задачи
с «экономическим» содержанием на ЕГЭ по математике

Заявляемая
секция

Математика

Фамилия

имя,
отчество руководителя

Кузнецова

Людмила
Валерьевна

Место
работы, должность

Учитель
математики МОБУ СОШ с. Ишпарсово

Электронная
почта

mila-kuznetsova-1958@mail.ru

Автор работы: 

Оганесян Сусанна Гагиковна

Руководитель проекта: 

Поликарпова Галина Павловна

Учреждение: 

ГБОУ СОШ лицей №150 Калининского района Санкт-Петербурга

В процессе работы над индивидуальным исследовательским проектом по математике на тему «Экономическая задача в ЕГЭ по математике» автором была поставлена цель, создать методическое пособие к декабрю 2019 года, содержащее много разных типов экономических задач и необходимых теоретических знаний, позволяющих ученикам научиться решать 17 задачу из ЕГЭ по профильной математике, что приведет к успешным результатам сдачи экзамена.

Подробнее о работе:

В ученическом проекте по математике «Экономическая задача в ЕГЭ по математике» автором был изучен принцип работы банков, рассмотрены правила осуществления банковских вкладов и получения кредитов. В работе рассматриваются примеры решения экономических задач на вклады и на кредиты, а также производственно-бытовых задач. В работе предложены экономические задачи для самоподготовки к ЕГЭ.

Учебная исследовательская работа по математике на тему «Экономическая задача в ЕГЭ по математике» будет интересна учащимся 10 и 11 класса, рассматривает теоретическую базу финансовой и математической грамотности. В работе представлен разбор основных типов задач с примерами их решений, автор анализирует ошибки, часто совершаемые учениками при решении экономических задач.

В работе автор приводит информацию, найденную в различных исторических, научных, энциклопедических источниках, и примеры решения текстовой задачи социально-экономической тематики. Это задача на применение математических методов для решения содержательных задач из различных областей науки и практики и интерпретацию результата с учётом реальных ограничений. Автор разрабатывает методические рекомендации, в которых содержится необходимый теоретический материал, примеры решения финансовых задач разных типов, задания для самопроверки, разбор наиболее сложных задач, которые были на ЕГЭ прошлых годов.

Оглавление

Введение
1. Принцип работы банков.
1.1. Вклады.
1.2. Кредиты.
2. Примеры решения экономических задач.
2.1. Задача на вклады.
2.2. Задачи на кредиты.
2.3. Производственно-бытовые задачи.
3. Экономические задачи для самоподготовки.
Заключение
Литература

Введение

Новым типом задач повышенного уровня сложности, впервые введённым в структуру Единого государственного экзамена в 2015 году, является текстовая задача социально-экономической тематики. Это задача на применение математических методов для решения содержательных задач из различных областей науки и практики и интерпретацию результата с учётом реальных ограничений.

Использование подобных задач предполагает проверку следующих умений учащихся:

  • переходить от текста задачи к построению соответствующей математической модели степенями с натуральным показателем обращаться с процентами;
  • обращаться с целыми числами, то есть уметь использовать при решении задач элементы теории делимости целых чисел;
  • производить действия со сложными процентами и долями.

Как показывает анализ содержания подобных задач, сюжеты, описанные в них, являются некоторыми текстовыми упрощениями, моделями реально возникающих в окружающей жизни ситуации. Кроме того, сами сюжеты условно можно разделить на два типа, использующие соответственно дискретные модели (проценты, погашения кредитов и так далее) и непрерывные модели (различные производства, протяжённый во времени объема продукции и так далее).

За правильное выполнение задания выставляются три балла. Пособие поможет обучающимся сдать Единый государственный экзамен по математике на высокий балл, а также послужит учителям для организации имя эффективной подготовки школьников.

Цель проекта: создать методическое пособие к декабрю 2019 года, содержащее много разных типов экономических задач и необходимых теоретических знаний, позволяющих ученикам научиться решать 17 задачу из ЕГЭ по профильной математике, что приведет к успешным результатам.

Задачи проекта:

  • Изучить теоретическую базу финансовой и математической грамотности
  • Разобрать основные типы задач с примерами решений
  • Проанализировать ошибки совершаемые учениками
  • Создать продукт

Вопросы проекта:

  • Какие темы по математике следует повторить ученикам для успешного решения экономических задач?
  • Какие типы экономических задач вызывают наибольшую трудность у учеников?
  • Как повысить процент учащихся, которые успешно справляются с решением экономических задач?

Актуальность: решение экономических задач очень полезно, так как жизнь современного человека тесно связана с финансовыми операциями

В соответствии с указом «О национальных целях и стратегических задачах развития Российской Федерации на период до 2024 года» получение качественного образования необходимо ученикам, чтобы быть конкурентоспособными в будущем на рынке труда, а также для обеспечения вхождения России в число 10 ведущих стран мира по качеству среднего образования приближается ЕГЭ, а большинство школьников еще не приступили к решению экономической задачи за решение этого задания на экзамене можно получить 3 первичных балла, что говорит о важности выполнения этого задания несмотря на то, что экономическая задача большинству школьников кажется несложной, в ней ученики чаще всего совершают ошибки.

Продукт проекта: методические рекомендации.

Новым типом задач повышенного уровня сложности, впервые введённым в структуру Единого государственного экзамена в 2015 году, является текстовая задача социально-экономической тематики. Это задача на применение математических методов для решения содержательных задач из различных областей науки и практики и интерпретацию результата с учётом реальных ограничений.

Методические рекомендации будут содержать необходимый теоретический материал, примеры решения финансовых задач разных типов, задания для самопроверки, разбор наиболее сложных задач, которые были на ЕГЭ прошлых годов. Пособие поможет обучающимся сдать Единый государственный экзамен по математике на высокий балл, а также послужит учителям для организации ими эффективной подготовки школьников.

Аналоговый анализ:
Недостатки других методических пособи

  • наличие только типовых заданий,
  • слабая теоретическая база,
  • краткое пояснение к задачам.

Достоинства моего продукта:

  • комплексный подход к решению задач,
  • решение самых разнообразных заданий,
  • грамотно составленная теоретическая база,
  • представление подробных решений задач,

Этапы работы над проектом:

Название этапа Дата Содержание работы Отметка о выполнении Коррективы
Подготовительный сентябрь 2018 года Выбор темы, формы представления проекта, типа проекта, формулирование проблемы, цели, задач Выполнено Проблема должна быть более точной и лаконичной. Цель проекта следует расширить, сформулировать более глобально
Организационный Октябрь 2018 года Составление аннотации и актуальности работы Выполнено Указать актуальность проекта как для себя лично, так и более масштабно (например, значение для государства)
Аналитический ноябрь 2018 года Поиск статистики Выполнено Следует вставить ссылку на статистику
Аналитический декабрь 2018 года Аналоговый анализ Выполнено Помимо достоинств моего продукта следует также указать недостатки других аналогичных работ
Практический Январь-сентябрь 2019 года Работа над исследовательской частью (составление решения разных типов задач) Частично В решении задач лучше объяснять значение некоторых математических символов, не часто использующихся на курсе базовой математики
Практический Август-сентябрь 2019 года Работа над дизайном методички Частично Дизайн должен быть современным, но не слишком броским, чтобы не отвлекать внимание читателей

Принцип работы банков

Итак, 17 задача бывает банковской, то есть на вклады и кредиты, и производственно-бытовой. Второй тип задач интуитивно понятен большинству школьников и требует просто много практики. Для банковских же задач изложим немного теории.

Смоделируем ситуацию. Есть предприимчивый Андрей, который решает открыть банк, имея 100 рублей. Он объявляет, что будет выдавать кредиты под 20 % годовых. Это означает, что если Андрей даст кому-нибудь некую сумму на год, то через год он получит на 20 % больше денег. К Андрею приходит первый клиент, который хочет взять 100 рублей.

Он их получает, и Андрей целый год сидит и ждет, пока пройдет год и он получит уже 120 рублей. Но проблема в том, что прошел целый год, а у Андрея всего 120 рублей, хотя было 100. Разница небольшая. Значит, Андрею нужно действовать по-другому. Тогда он объявляет, что будет принимать вклады и процентная ставка будет составлять 10 % годовых.

Получается, если кто-то вложит в банк некую сумму, то через год получит в 1,1 раз больше денег от банка (на 10 % больше изначальной суммы). К Андрею приходит некий богач и вкладывает в банк 10 000 рублей. Через год банк должен вернуть богачу 11 000. Это достаточно проблематично, так как у Андрея нет 11 000 рублей.

Есть только 10 000 + 120=10120 рублей. С другой стороны целый год деньги богача будут в распоряжении банка, а значит, можно будет выдавать кредиты, увеличивая имеющиеся деньги. Таким образом, при удачном стечении обстоятельств Андрей получит от заемщиков через год сумму, превышающую 11000 рублей. Богач получает деньги от вклада, заемщики возвращают взятые суммы с процентами, а Андрей в плюсе и счастлив.

Вклады

В случае банковского вклада банк выступает в роли заёмщика (получает деньги, обязуясь их вернуть, а вкладчик в роли кредитора (предоставляет деньги).При внесении вкладчиком банка денег отношения между вкладчиком и банком закрепляются договором, в котором банк, принявший поступившую от вкладчика денежную сумму, обязуется возвратить ему сумму вклада и выплатить на неё проценты на условиях и в порядке, предусмотренных договором. Как правило, вкладчик имеет возможность распоряжаться начисленными процентами.

Кредиты

Кредит-это финансовая сделка, в результате которой кредитор (банк или другой финансовое учреждение) предоставляет на определенный срок деньги заемщику. За пользование деньгами заемщик кроме погашения основного долга (называемого в финансовой литературе телом кредита) выплачивает кредитору также проценты.

Разделение повышающих платежей на две части — погашение долга (тела кредита) и погашение процентных денег — принципиально важно, поскольку от этого зависят выплачиваемые налоги. Разберем и сравним две важные схема выплаты кредитов: дифференцированными и аннуитетными платежами. При дифференцированной схеме каждой платёж состоит из двух частей. Первая часть — основной платёж, его размер не изменяется на всём сроке кредитования.

Скажем, если в кредит взяли 1 млн рублей на 5 месяцев, а платежи ежемесячные, то тело кредита делится на пять равных частей по 200000 руб. — это и будет ежемесячный основной платеж. Вторую часть платежа составляют проценты на текущую часть долга. Долг постепенно уменьшается, потому и платежи в счет процентов тоже уменьшаются.

Первый платёж самый большой, последний — самый маленький. На практике платежи обычно ежемесячные, а банки учитывают каждый день кредитования: важно, сколько дней в месяце, високосный год или нет. А в экзаменационных задачах обычно упрощённая схема: за каждый платежный период проценты начисляются один раз.

Иначе говоря, если проценты начисляются ежегодно, то и выплаты по кредиту раз в год. Если проценты начисляются ежемесячно, то и выплаты ежемесячные. При аннуитетных платежах сумма кредита и сумма процентов за всё время пользования кредитом суммируются и делятся на число платежей, все платежи получаются равными.

Примеры решения экономических задач можно посмотреть в полном тексте проекта, прикрепленном внизу этой странице в формате *doc

Задачи для самоподготовки

1)

В июле 2016 года планируется взять кредит в банке на три года в размере S млн рублей, где S — целое число. Условия его возврата таковы:

  • каждый январь долг увеличивается на 25% по сравнению с концом предыдущего года;
  • с февраля по июнь каждого года необходимо выплатить одним платежом часть долга;
  • в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей.
Месяц и год Июль 2016 Июль 2017 Июль 2018 Июль 2019
Долг (в млн рублей) S 0,7S 0,4S 0

Найдите наименьшее значение S, при котором каждая из выплат будет больше 5 млн рублей.

2) Взяли кредит в банке на сумму 250 000 рублей под r% процентов годовых и выплатили за 2 года платежами 150 000 рублей в первый год и 180 000 рублей — во второй.

Найдите r.

3) В июле 2020 года планируется взять кредит на некоторую сумму. Условия возврата таковы:

  • в январе каждого года долг увеличивается на 30% по сравнению с предыдущим годом;
  • с февраля по июнь нужно выплатить часть долга одним платежом.

Определите, на какую сумму взяли кредита банке, если известно, что кредит был выплачен тремя равными платежами (за 3 года) и общая сумма выплат на 78 030 рублей больше суммы взятого кредита.

4) Георгий взял кредит в банке на сумму 804 000 рублей. Схема выплата кредита такова: в конце каждого года банк увеличивает на 10 процентов оставшуюся сумму долга, а затем Георгий переводит в банк свой очередной платеж. Известно, что Георгий погасил кредит за три года, причем каждый его следующий платеж был ровно вдвое меньше предыдущего. Какую сумму Георгий заплатил в третий раз? Ответ дайте в рублях.

5) 15-го декабря планируется взять кредит в банке на 26 месяцев. Условия возврата таковы:

  • 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца;
  • со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
  • 15-го числа каждого месяца с 1-го по 25-й долг должен быть на 20 тысяч рублей меньше долга на 15-е число предыдущего месяца;
  • к 15-му числу 26-го месяца кредит должен быть полностью погашен.
  • Какой долг будет 15-го числа 25-го месяца, если общая сумма выплат после полного погашения кредита составит 1407 тысяч рублей?
    • 6) В июле планируется взять кредит в банке на сумму 9 млн рублей на некоторый срок (целое число лет). Условия его возврата таковы::

      • каждый январь долг возрастает на 10% по сравнению с концом предыдущего года;
      • с февраля по июнь каждого года необходимо выплатить часть долга;
      • в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года.
      • Чему будет равна общая сумма выплат после полного погашения кредита, если наибольший годовой платёж составит 1,5 млн рублей?

      7) 15-го января был выдан полугодовой кредит на развитие бизнеса. В таблице представлен график его погашения.

      Дата 15.01 15.02 15.03 15.04 15.05 15.06 15.07
      Долг (в процентах от кредита) 100% 90% 80% 70% 60% 50% 0%

      В конце каждого месяца, начиная с января, текущий долг увеличивался на 5%, а выплаты по погашению кредита происходили в первой половине каждого месяца, начиная с февраля. На сколько процентов общая сумма выплат при таких условиях больше суммы самого кредита?

      8)15-го января был выдан полугодовой кредит на развитие бизнеса. В таблице представлен график его погашения.

      Дата 15.01 15.02 15.03 15.04 15.05 15.06 15.07
      Долг (в процентах от кредита) 100% 90% 80% 70% 60% 50% 0%

      В конце каждого месяца, начиная с января, текущий долг увеличивался на 5%, а выплаты по погашению кредита происходили в первой половине каждого месяца, начиная с февраля. На сколько процентов общая сумма выплат при таких условиях больше суммы самого кредита?

      9 )Три сестры пришли на рынок и продавали поштучно цыплят. Первая принесла 16 цыплят, вторая — 25, третья — 30 цыпленка. Каждая из них часть товара продала утром, а часть — вечером. Утренняя цена одного цыпленка была у всех сестер одинаковая, и вечерняя цена тоже одинаковая, но более низкая (положительная). К вечеру весь товар был распродан, и дневная выручка (за утро и вечер) у всех сестер оказалась одинаковой: 7 руб 75 коп. Найдите общую утреннюю выручку (в рублях).

      10) В банк был положен вклад под 10% годовых. Через год, после начисления процентов, вкладчик снял со счета 2000 рублей, а еще через год снова внес 2000 рублей. Вследствие этих действий через три года со времени открытия вклада вкладчик получил сумму меньше запланированной (если бы не было промежуточных операций со вкладом). На сколько рублей меньше запланированной суммы он получил?

      Ответы:

      1) 11
      2) 20
      3) 119700
      4) 133100
      5) 400 000
      6) 16,2
      7) 22,5
      8) 14
      9) 11
      10) 220

      Заключение

      Представленные в данной работе теория и решения задач позволят ученикам успешно справиться с экономической задачей в ЕГЭ, так как не дают им готовые модели, а предлагают методы и средства для самостоятельного составления математических моделей в задачах, что способствует развитию интеллекта школьников. Ведь решение экономических задач нужно не только для сдачи экзамена, а также для повышения финансовой грамотности молодёжи.

      Даже достаточно сложные задачи на ЕГЭ можно подать школьникам в доступной и красочной форме. Главное – подавать информацию кратко, структурировано, но с другой стороны стараться охватить как можно более разнообразные типы задач. Именно этот редкий баланс я пыталась соблюдать при разработке своей методички.

      Список использованной литературы

      1. Софья Колесникова: ЕГЭ. Математика. Экономические задачи
      2. ЕГЭ 2019. Математика. Профильный уровень. Типовые тестовые задания. 36 вариантов заданий. Под редакцией И.В.Ященко.
      3. С.А. Шестаков: ЕГЭ 2018. Математика. Задачи с экономическим содержанием. Задача 17 (профильный уровень).
      4. Прокофьев, Корянов: ЕГЭ. Математика. 10-11 классы. Социально-экономические задачи. Задание 17.
      5. Дремов, Дерезин, Кривенко: ЕГЭ. Математика. Задача с экономическим содержанием.

      Если страница Вам понравилась, поделитесь в социальных сетях:

Научно-образовательный форум школьников Республики Мордовия

Лицей федерального государственного бюджетного образовательного учреждения высшего образования «Национальный исследовательский Мордовский государственный университет им. Н.П. Огарёва»

ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА

ГОТОВИМСЯ К ЕГЭ. ЭКОНОМИЧЕСКИЕ ЗАДАЧИ В ПРОФИЛЬНОЙ МАТЕМАТИКЕ

Секция: Математический калейдоскоп

Автор работы:

Душутина К. A.

10 класс Лицей МГУ им. Н. П. Огарева

Руководитель работы:

Кубанцева А. В.

учитель математики Лицей МГУ им Н. П. Огарева

Саранск

2021

СОДЕРЖАНИЕ

ВВЕДЕНИЕ        3

1 ТЕОРЕТИЧЕСКАЯ ЧАСТЬ        5

1.1        Содержательный смысл определения экономической науки        5

1.2        Взаимосвязь двух наук: экономики и математики        5

1.3        Основные определения и понятия        6

1.3.1        Понятие процента и процентной ставки        7

1.3.2        Понятие арифметической и геометрической прогрессий        8

1.3.3        Понятия фиксированных, аннуитетных и дифференцируемых платежей        10

2        ПРАКТИЧЕСКАЯ ЧАСТЬ        12

2.1        Типы экономических задач и способы их решения        12

2.1.1        Кредиты        12

2.1.2        Вклады        21

2.1.3        Задачи на оптимальный выбор        23

2.1.4        Нестандартные задачи        24

ЗАКЛЮЧЕНИЕ        26

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ        27

ВВЕДЕНИЕ

Современная экономическая обстановка актуализирует проблему экономического воспитания подрастающего поколения. Экономические знания современной молодежи носят сугубо теоретический характер, оторванный от реальной действительности. Причем все больше осознается необходимость в формировании экономической грамотности у старшеклассников, тех, кто стоит на пороге самостоятельной жизни и которым в ближайшем будущем предстоит занять активную позицию в обществе. От экономической грамотности выпускников школы во многом будет зависеть их успешная адаптация к социально – экономическим условиям общества. Проблема обучения старшеклассников решению задач с экономическим содержанием складывается из нескольких составляющих: наличие в таких задачах большого количества терминов, неизвестных учащимся; старшеклассники плохо ориентируются в материале, изученном в 5-9 классах и необходимом для решения задач с экономическим содержанием: темы процентов, арифметической, геометрической прогрессий вызывают затруднения.

Задачи о вкладах и кредитовании, а также задачи оптимизации производства товаров и услуг сравнительно недавно включены во вторую часть ЕГЭ по математике профильного уровня и вызывают значительные затруднения у большинства выпускников.

Актуальность данной темы обусловлена тем, что в курсе математики, изучаемой в школе, решению задач с экономическим содержанием не уделено достаточно времени. Жизнь настоятельно требует, чтобы выпускник имел развитое экономическое мышление и был готов к жизни в условиях рыночных отношений. Однако основные практические навыки и умения у большинства учеников сформированы на уровне, не удовлетворяющем требованиям подготовки к ЕГЭ и повседневной жизни.

Гипотеза исследования  в современном мире необходимы знания об экономике и в этом может помочь математика.

Объект исследования  процесс подготовки к единому государственному экзамену по математике профильного уровня.

Предмет исследования – экономические задачи №17, встречающиеся в ЕГЭ по математике профильного уровня.

Цель исследования – исследование методов решения задач с экономическим содержанием.

Для достижения поставленной цели необходимо решить следующие задачи:

1. Изучить теоретико-методологические основы экономики.

2. Провести классификацию и систематизацию типов экономических задач, включенных во вторую часть ЕГЭ по математике профильного уровня, и методов их решений.

Методы исследования – теоретический анализ и синтез научной и учебной литературы по теме исследования, сравнение, систематизация информации, обобщение, вывод, подбор и решение задач.

Научная новизна работы заключается в обобщении, систематизация, анализе экономических задач, входящих в ЕГЭ по математике профильного уровня.

Практическое значимость  возможность использования обобщенных данных при подготовке выпускников к сдаче единого государственного экзамена по математике профильного уровня, отработке решения задач экономического содержания.

1 ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

  1. Содержательный смысл определения экономической науки

У всякой науки свой предмет, т.е. своя главная тема исследований. В центре внимания экономической теории – хозяйственная деятельность людей, которая осуществляется при определенных условиях, в определенной обстановке, экономической среде. [2]. В зависимости от условий, обстановки и экономической среды, термин «экономика» имеет различные определения. Приведем одно из определений экономики (экономической теории) как науки:

Экономика – это наука, изучающая типичные мотивы и модели поведения людей в процессах производства, обмена и потребления жизненных благ. [6].

Другими словами, экономика – наука об оптимальном, т.е. наилучшем в конкретных условиях, использовании ограниченных ресурсов [8].

  1. Взаимосвязь двух наук: экономики и математики

Математика настолько практична, что немногое из окружающего мира может без нее функционировать. От банков и магазинов, бирж и страховых компаний до штрихкодов, прослушивания дисков и разговоров по мобильному телефону – все это и многое другое работает благодаря процессорам и математическим моделям, задача которых – постоянное выполнение математических операций.

Особенности математики, как отличительной области знаний, которые делают ее неповторимой, заключаются в следующем:

  • недопустимость расхождения в определении правил и создании математических формул;
  • математические формулы составляются из ряда аксиом, на основе строгих условий;  
  • возможность владеть теми или иными понятиями, не раскрывая их смысла.

Именно благодаря всем вышеперечисленным особенностям математический аппарат является многофункциональным аналитическим инструментом для всех отраслей знаний. [4].

Экономика представляет собой науку, которая изучает объективные причины и условия ведения в обществе хозяйственной деятельности. В этой связи экономике изначально были присущи различные количественные характеристики, исследование и описание которых потребовало использование большого числа математических методов. Экономические объекты, процессы и явления изучаются математически формализованным образом. Роль математики в экономике заключается в том, что ее язык позволяет сформулировать содержательные и проверяемые гипотезы о многих сложных экономических явлениях. Причем большая часть этих явлений вообще не может быть изучена без привлечения математического аппарата. В частности, его использование привело к созданию математических моделей, в которых нашли отражение некоторые теоретические экономические взаимосвязи.

На сегодняшний день обширное использование математического аппарата в своих исследованиях способствует достижению наибольших успехов в разных областях. Поэтому применение математики на практике позволяет достичь более значительных результатов в изучении явлений природы и общества.

  1. Основные определения и понятия

Решение финансовых задач основывается на использовании различных математических моделей: уравнений, неравенств, их систем с привлечением процентов, арифметической и геометрической прогрессий, производной. Прежде чем рассмотреть способы решения экономических задач, целесообразно привести основные определения, понятия, таблицы и формулы.

  1. Понятие процента и процентной ставки

Процентом называют одну сотую часть числа. С точки зрения экономики, процент – это абсолютная часть дохода, получаемая в результате финансовой операции за определенный период времени при наращении.

При решении экономических задач часто используется определение процентной ставки за определенный период времени – величины, характеризующей относительное изменение денежной суммы F за этот период:

где – абсолютная величина изменения суммы F.

Определенная таким образом процентная ставка измеряется в процентах (%). Если относительное изменение денежной суммы не умножать на 100, то ставка будет измеряться в долях единицы (дробях).

Отрезок времени, к которому приурочена процентная ставка, называют периодом начисления. В качестве такого периода принимают год, полугодие, квартал, месяц или даже день. Чаще всего на практике имеют дело с годовыми ставками.

В зависимости от того, какая из сумм дана и какую нужно найти, выделяют два направления финансовых расчетов: наращение и дисконтирование.

Наращение – определение величины итоговой стоимости по заданной текущей стоимости. Дисконтирование – определение текущей стоимости по ожидаемой итоговой сумме в будущем. [3].

Различают простые и сложные процентные ставки, или проценты.

Для начисления простых процентов применяют постоянную базу начисления. В этом случае начисленные за весь срок проценты I составят:

 где P – первоначальная денежная сумма, n – период начисления процентов, i – ставка наращения процентов в виде десятичной дроби.

Наращенная сумма представляет собой сумму первоначальной денежной суммы и наращенных процентов:

Когда за базу принимается сумма, полученная на предыдущем этапе наращения (дисконтирования), используют сложные процентные ставки. В этом случае база начисления последовательно изменяется, то есть проценты начисляются на проценты.

В конце первого года проценты будут равны величине I = Р * i, а наращенная сумма составит S = Р + Р * i = Р * (1 + i). К концу второго года она достигнет величины Р * (1 + i) + Р * (1 + i) * i = Р * (1 + i)2 и т.д. В конце n-го года наращенная сумма будет равна:

где P – первоначальная денежная сумма, n – период начисления процентов, i – ставка наращения процентов в виде десятичной дроби.

Проценты за этот срок составят:

.

  1. Понятие арифметической и геометрической прогрессий

Арифметическая прогрессия – это числовая последовательность, в которой каждый член равен предыдущему, сложенному с одним и тем же числом. Это число называется разностью арифметической прогрессии и обозначается d. [7].

 

Очевидно, что арифметическая прогрессия представляется возрастающей последовательностью, если d > 0, и убывающей, если d < 0.

Формула n-ого члена арифметической прогрессии:

Формула суммы первых n членов арифметической прогрессии:

Каждый член арифметической прогрессии, кроме первого (и последнего – в случае конечной прогрессии), равен среднему арифметическому предыдущего и последующего членов. Верно и обратное: если последовательность (an) такова, что для любого n > 1 выполняется равенство:

 

то (аn) – арифметическая прогрессия. [5].

Числовую последовательность, все члены которой отличны от нуля и каждый член которой, начиная со второго, получается из предыдущего члена умножением его на одно и то же число q, называют геометрической прогрессией. При этом число q называют знаменателем прогрессии. [1].

Формула n-ого члена геометрической прогрессии:

Формула суммы первых n членов арифметической прогрессии:

Квадрат каждого члена геометрической прогрессии, первого (и последнего – в случае конечной последовательности), равен произведению предшествующего и последующего членов. Верно и обратное: если последовательность (bn) такова, что для любого n > 1 выполняется равенство:

 то (bn) – геометрическая прогрессия. [1].

  1. Понятия фиксированных, аннуитетных и дифференцируемых платежей

Фиксированные платежи – платежи, которые четко оговариваются в условии задачи. Аннуитетный платеж – это платеж, который устанавливается в равной сумме через равные промежутки времени. Месячный аннуитетный платеж находится по формуле:

где X – месячный платеж, S – сумма кредита, P – 1/12 процентной ставки, N – количество месяцев.

Дифференцируемый платеж – это платеж, который представляет собой неравные ежемесячные транши, пропорционально уменьшающиеся в течение срока кредитования. Если при аннуитетной схеме неизменным является сам аннуитетный платеж, то при дифференцируемой – не меняется именно взнос, идущий на погашение тела кредита. Рассчитывается он по формуле:

где St – сумма, которая идет на погашение тела кредита, S – сумма кредита, N – количество месяцев. Для расчёта доли процентов в дифференцированных платежах пользуются следующей формулой:

где In – сумма, которая идёт на погашение процентов по кредиту в данный расчётный период, Sn — остаток задолженности по кредиту, P – годовая процентная ставка. Зная долю тела кредита и долю процентов, мы можем рассчитать дифференцированный платёж, используя формулу:

где X — размер дифференцированного платежа по кредиту, St – сумма, которая идёт на погашение тела кредита, In – сумма уплачиваемых процентов. [3].

  1. ПРАКТИЧЕСКАЯ ЧАСТЬ

Экономические задачи были введены в задания ЕГЭ по математике профильного уровня (№17) в 2015 году. По своей сложности задачи с экономическим содержанием находятся на одном уровне с заданиями, содержащие параметры и теорию чисел.

Низкий процент успешной сдачи решения задания №17 (за 2015 – 2020 годы – 2, 5) объясняется как трудностью самих задач, так и их отсутствием в школьном курсе математики.

Основными ошибками, которыми допускали учащиеся при решении задач финансовой математики, являются:

  • неверное составление модели;
  • вычислительными, или арифметические;
  • прекращение решения на промежуточном шаге, то есть без доведения ответа до числового значения;
  • решение методом перебора без обоснования единственности;
  • решение без вывода формул. В ряде случаев трактуется как неумение строить математическую модель.

С целью подготовки учащихся к успешной ЕГЭ имеет смысл подробно рассмотреть типы экономических задач и методы их решения.

  1. Типы экономических задач и способы их решения

Условно выделяют несколько типов задач экономического содержания.

Далее приведем подробные разборы примеров задания №17 каждого типа.

  1. Кредиты

ПРИМЕР №1 (Подтип 1: Нахождение количества лет (месяцев) выплаты кредита). 1 января 2015 года Павел Витальевич взял в банке 1 млн рублей в кредит. Схема выплаты кредита следующая: 1 числа каждого следующего месяца банк начисляет 1 процент на оставшуюся сумму долга (то есть увеличивает долг на 1%), затем Павел Витальевич переводит в банк платёж. На какое минимальное количество месяцев Павел Витальевич может взять кредит, чтобы ежемесячные выплаты были не более 125 тыс. рублей? [10].

РЕШЕНИЕ:

СПОСОБ №1. Сначала найдем минимальное количество месяцев, за которое Павел Витальевич сможет погасить основную сумму долга, если его ежемесячный платеж будет составлять 125 тыс. рублей: 1 000 000 : 125 000 = 8 (месяцев).

Но банк ежемесячно начисляет 1% на оставшуюся сумму долга. Тем самым получаем, что общая сумма долга будет превышать 1 млн рублей.

Составим таблицу, наглядно показывающую схему кредита, и найдем № месяца, когда задолженность будет меньше, чем ежемесячная выплата:

Месяц, №

Задолженность в начале месяца, руб.

Задолженность после погашения, руб.

1

1 000 000 + 1% = 1 010 000

1 010  000 – 125 000 = 885 000

2

885 000 + 1% =893 850

893 850 – 125 000 = 768 850

3

768 850 + 1% = 776 538, 5

776 538, 5 – 125 000 = 651 538,5

4

651 538,5 + 1% = 658 054

658 054 – 125 000 = 533 054

5

533 054 + 1% = 538 385

538 385 – 125 000 = 413 385

6

413 385 + 1% = 417 519

417 519 – 125 000 = 292 519

7

292 519 + 1% = 295 445

295 445 – 125 000 = 170 445

8

170 445 + 1% = 172 150

172 150 – 125 000 = 47 150

9

47 150 + 1% = 47 622

0

СПОСОБ №2. За 8 месяцев Павел Витальевич сможет оплатить за кредит не более, чем 125 000 * 8 = 1 000 000 рублей, но с учетом начисляемых процентов общая сумма долга будет превышать 1 млн рублей.

За 9 месяцев банк начислит не более, чем 9 сумм процентов за первый месяц (максимально начисленные проценты будут составлять 10 000 рублей), то есть 10 000 * 9 = 90 000, что составляет меньше, чем ежемесячный платеж. Таким образом, Павел Витальевич полностью погасит кредит за 9 месяцев.

ОТВЕТ: на 9 месяцев.

ПРИМЕР №2 (Подтип 1: Нахождение количества лет (месяцев) выплаты кредита). В июле планируется взять кредит в банке на сумму 5 млн рублей на некоторый срок. Условия его возврата таковы:

  • каждый январь долг возрастает на 15% по сравнению с концом предыдущего года;
  • с февраля по июнь каждого года необходимо выплатить часть долга;
  • в июле каждого года долг должен быть на одну и ту же величину меньше долга на июль предыдущего года.

На какой минимальный срок следует брать кредит, чтобы наибольший годовой платёж по кредиту не превысил 1, 4 млн руб.? [11].

РЕШЕНИЕ: Чтобы найти минимальное количество лет, надо обозначить размер максимального первого платежа – 1,4 млн рублей.

Дата

Долг до выплаты, млн руб.

Выплата, млн руб.

Долг после выплаты, млн руб.

Июль 0-ого года

5

Январь 1-ого года

5 + 15% = 5,75

Февраль 1-ого года

1,4

5,75 — 1,4 = 4,35

Июль 1-ого года

4,35 (разница 0,65)

Июль 2-ого года

4,35 – 0,65 = 3,7

Июль 3-его года

3, 7 – 0,65 = 3,05

Июль 4-ого года

3,05 – 0,65 = 2,4

Июль 5-ого года

2,4 – 0,65 = 1,75

Июль 6-ого года

1,75 – 0,65 = 1,1

Июль 7-ого года

1,1 – 0,65 = 0,45

Июль 8-ого года

0

Мы можем найти оставшуюся сумму долга на июль данного года, найдя фиксированную разницу между 1-ым и 2-ым годами выплаты кредита. Как только, оставшаяся сумма долга будет меньше, чем разница, кредит будет считаться полностью оплаченным в этот год.

ОТВЕТ: 8 лет.

ПРИМЕР №3 (Подтип 2: Вычисление процентной ставки по кредиту). В июле 2019 планируется взять кредит в банке на сумму 100 000 рублей. Условия его возврата таковы:

  • каждый январь долг возрастает на r% по сравнению с концом предыдущего года;
  • с февраля по июнь каждого года необходимо выплатить часть долга.

Найдите число r, если известно, что кредит был полностью погашен за два года, причём в первый год было переведено 52 500 рублей, а во второй год – 67 500 рублей? [11].

РЕШЕНИЕ: Пусть банк начисляет r процентов, умножая сумму долгу на x = (1 + ). Составим схему погашения кредита:

Дата

Долг до выплаты, тыс. руб.

Выплата, тыс. руб.

Долг после выплаты, тыс. руб.

1.7.2019

100

1.1.2020

100x

1.2.2020

52,5

1.7.2020

100x – 52,5

1.1.2021

(100x – 52,5) * x = 100x2 – 52,5x

1.2.2021

67,5

1.7.2021

100x2 – 52, 5x – 67,5 = 0

Решив квадратное уравнение: 100x2 – 52, 5x – 67,5 = 0, получаем, что x1= = — 0,6 (не подходит, т. к. процентная ставка не может быть отрицательным числом) и x2 = 1, 125. Отсюда получаем: x = 1 +  = 1, 125; r = 12, 5.

ОТВЕТ: 12,5

ПРИМЕР №4 (Подтип 3: Нахождение суммы кредита). Планируется выдать льготный кредит на целое число миллионов рублей на пять лет. В середине каждого года действия кредита долг заёмщика возрастает на 20 % по сравнению с началом года. В конце 1-го, 2-го и 3-го годов заёмщик выплачивает только проценты по кредиту, оставляя долг неизменно равным первоначальному. В конце 4-го и 5-го годов заёмщик выплачивает одинаковые суммы, погашая весь долг полностью. Найдите наименьший размер кредита, при котором общая сумма выплат заёмщика превысит 10 млн. [10].

РЕШЕНИЕ:

СПОСОБ №1. Обозначим за S полную сумму кредита. Составим схему погашения кредита:

Дата

Долг до выплаты, млн руб.

Выплата, млн руб.

Долг после выплаты, млн руб.

Начало 1/2/3-ого годов

S

Середина 1/2/3-ого годов

S + 20%=1,2S

Конец 1/2/3-ого годов

0,2S

S

Начало 4-ого года

S

Середина 4-ого года

S + 20%=1,2S

Конец 4-ого года

X

1,2S — X

Начало 5-ого года

1,2S — X

Середина 5-ого года

(1,2S– X)+20% =1,44S-1,2X

Конец 5-ого года

X

1,44S — 1,2X – X = 0

Решаем уравнение 1,44S — 1,2X – X = 0. Получаем, что X = .

Общая сумма выплат составляет 0,6S + 2X = 0,6S + S = S. По условию: S > 10 млн. Получаем, что S > 5, 24 (Минимальное целочисленное решение неравенства – S = 6).

СПОСОБ №2. Обозначим за S полную сумму кредита. Каждый год заёмщик выплачивает по 0,2S млн. Всего 0,6S за три года.

Рассмотрим погашение кредита за следующие два года. В середине 4-го года долг возрастёт до 1,2S млн. Обозначим через X размер выплаты в конце 4-го и 5-го годов. После выплаты в конце 4-го года долг равен (1,2S — X), а в середине 5-го года он равен 1,2(1,2S — X). В конце 5-го года весь долг должен быть погашен. Отсюда следует, что последняя выплата равна 1,2(1,2S- X), а по условию равна X. Получаем, что X = S.

Общая сумма выплат составляет 0,6S + 2X = 0,6S + S = S. По условию, S > 10 млн. Получаем: S > 5, 24 (Минимальное целочисленное решение неравенства – S = 6).

ОТВЕТ: 6 млн рублей.

ПРИМЕР №5 (Подтип 4: Нахождение ежегодного (ежемесячного) транша). 31 декабря 2014 года Дмитрий взял в банке 4 290 000 рублей в кредит под 14,5% годовых. Схема выплаты кредита следующая – 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 14,5%), затем Дмитрий переводит в банк X рублей. Какой должна быть сумма X, чтобы Дмитрий выплатил долг двумя равными платежами (то есть за два года)? [10].

РЕШЕНИЕ: Составим схему погашения кредита:

Дата

Долг до выплаты, руб.

Выплата, руб.

Долг после выплаты, руб.

31.12.2014

4 290 000

31.12. 2015

4 290 000 + 14,5% = 4 912 050

X

4 912 050 — X

31.12. 2016

(4 912 050 – X) + 14,5% =     5 624 298 – 1,145X

X

5 624 298 – 2,145X = 0

Решаем уравнение 5 624 298 – 2,145X = 0. Получаем, что X = 2 622 050.

ОТВЕТ: 2 622 050 рублей.

ПРИМЕР №6 (Подтип 4: Нахождение ежегодного (ежемесячного) транша). Клиент взял в банке кредит 18000 рублей на год под 18 %. Он должен погашать кредит, внося в банк ежемесячно одинаковую сумму денег, с тем чтобы через год выплатить всю сумму, взятую в кредит, вместе с процентами. Сколько рублей он должен вносить в банк ежемесячно? [10].

РЕШЕНИЕ: Через год банк начисляет 18% годовых, то есть долг увеличивается в 1,18 раз. Получится, что клиент должен банку 18 000 * 1,18 = 21 240 рублей. Соответственно ежемесячная выплата составит:

 21 240 / 12 = 1 770 рублей.

ОТВЕТ: 1 770 рублей.

ПРИМЕР №7 (Подтип 5: Нахождение разницы). 31 декабря 2014 года Тимофей взял в банке 7 007 000 рублей в кредит под 20% годовых. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 20%), затем Тимофей переводит в банк платёж. Весь долг Тимофей выплатил за 3 равных платежа. На сколько рублей меньше он бы отдал банку, если бы смог выплатить долг за 2 равных платежа? [10].

РЕШЕНИЕ: Построим схему выплаты кредита:

Дата

Долг до выплаты, руб.

Выплата, руб.

Долг после выплаты, руб.

31.12.2014

7 007 000

31.12.2015

7 007 000 + 20% = 8 408 400

X

8 408 400 – X

31.12.2016

(8 408 400 – X) + 20% = 10 090 080 – 1,2X

X

10 090 080 – 2,2X

31.12.2017

(10 090 080 – 2,2X) + 20% = 12 108 096 – 2,64X

X

12 108 096 – 3,64X

Схема №1 (3 равных платежа). Последним платежом Тимофей полностью погасит кредит. Решим уравнение 12 108 096 – 3,64X1 = 0. Получаем, что X1 = 3 326 400.

Схема №2 (2 равных платежа). Решим уравнение 10 090 080 – 2,2X2 = 0. Получаем, что X2 = 4 586 400.

Находим разницу: 3X1 – 2X2 = 9 979 200 – 9 172 800 = 806 400 рублей.

ОТВЕТ: на 806 400 рублей.

ПРИМЕР №8 (Подтип 6: Задачи, связанные с известным остатком). В январе 2020 года планируется взять кредит в банке на три года в размере 800 тыс. рублей. Условия его возврата таковы:

  • каждый ноябрь долг увеличивается на 20% по сравнению с концом предыдущего года;
  • в декабре каждого года необходимо выплатить одним платежом часть долга;
  • в январе каждого года долг (в тыс. рублей) должен соответствовать следующей таблице:

Месяц и год

Январь 2020

Январь 2021

Январь 2022

Январь 2023

Долг, тыс. руб.

800

600

300

0

Сколько тыс. рублей нужно заплатить по кредиту в декабре 2021 года? [11].

РЕШЕНИЕ:

СПОСОБ №1. Составим схему погашения кредита:

Дата

Долг до выплаты, тыс. руб.

Выплата, тыс. руб.

Долг после выплаты, тыс. руб.

Январь 2020

800

Ноябрь 2020

800 + 20% = 960

Декабря 2020

X1 = 960 – 600 = 360

Январь 2021

960 – X1 = 600

Ноябрь 2021

600 + 20% = 720

Декабрь 2021

X2 =720 – 300 = 420

Январь 2022

720 – X2 = 300

Ноябрь 2022

300 + 20% = 360

Декабрь 2022

X3 = 360

Январь 2023

360 – X3 = 0

По таблице видим, что в декабре 2021 года клиент должен будет заплатить банку 420 тыс. рублей.

СПОСОБ №2. В ноябре 2021 года долг в размере 600 тыс. руб., который остался в 2021 году, увеличится на 20% и будет составлять 600 *1,2 = 720 тыс. руб. В январе 2022 года долг должен стать равным 300 тысячам рублей, так что в декабре 2021 года должно быть выплачено 720 – 300 = 420 тыс. руб.

ОТВЕТ: 420 руб. тыс.

ПРИМЕР №9 (Подтип 7: Задачи, связанные с дифференцированными платежами). 15 января планируется взять кредит в банке на 9 месяцев. Условия его возврата таковы:

— 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца.

Известно, что на пятый месяц кредитования нужно выплатить 57,5 тыс. рублей. Какую сумму нужно вернуть банку в течение всего срока кредитования? [11].

РЕШЕНИЕ: Обозначим за S размер кредита, взятого в банке 15 января. 1-го февраля он уже вырастет на 3% и будет составлять 1,03S. После этого происходит выплата так, чтобы долг менялся каждый месяц на одну и ту же величину, то есть выплата в первый месяц составит: . Составим схему выплаты кредита:

Дата

Долг до выплаты, тыс. руб.

Выплата, тыс. руб.

Долг после выплаты, тыс. руб.

15.01

S

01.02

1,03S

14.02

15.02

1.03

14.03

15.03

15.04

15.05

15.06

=57,5

Решим уравнение: . Получаем, что S = 450 тыс. руб.

Рассчитаем всю сумму, выплаченную банку за 9 месяцев:

. Подставим S = 450. Получаем:

ОТВЕТ: 517,5 тыс. руб.

ПРИМЕР №10 (Подтип 7: Задачи, связанные с дифференцированными платежами). Алексей взял кредит в банке на срок 12 месяцев. По договору Алексей должен вернуть кредит ежемесячными платежами. В конце каждого месяца к оставшейся сумме долга добавляется r % этой суммы и своим ежемесячным платежом Алексей погашает эти добавленные проценты и уменьшает сумму долга. Ежемесячные платежи подбираются так, чтобы долг уменьшался на одну и ту же величину каждый месяц (на практике такая схема называется «схемой с дифференцированными платежами»). Известно, что общая сумма, выплаченная Алексеем банку за весь срок кредитования, оказалась на 13 % больше, чем сумма, взятая им в кредит. Найдите r. [9]

РЕШЕНИЕ: Обозначим за S полную сумму кредита. По условию долг должен уменьшатся до нуля равномерно. Составим геометрическую прогрессию: S; ; …; ; ; 0.

К концу каждого месяца долг увеличивается на r%, то есть умножается на коэффициент k, равный : S; ; …; ; ; 0.

Отсюда следует, что ежемесячные выплаты должны быть представлены в следующем виде:  ; ; …; ; ; 0.

Всего следует заплатить: .

Общая сумма выплат оказалась на 13% больше суммы, взятой в кредит. Получаем: ; k =  = 1,02; r = 2%.

ОТВЕТ: 2%.

  1. Вклады

ПРИМЕР №11. В банк был положен вклад под 10% годовых. Через год, после начисления процентов, вкладчик снял со счета 2000 рублей, а еще через год (опять после начисления процентов) снова внес 2000 рублей. Вследствие этих действий через три года со времени открытия вклада вкладчик получил сумму меньше запланированной (если бы не было промежуточных операций со вкладом). На сколько рублей меньше запланированной суммы он получил? [10].

РЕШЕНИЕ: Обозначим за S общую сумму вклада. Составим схему начисления процентов по вкладу:

Год, №

Реальная сумма, руб.

Запланированная сумма, руб.

0

S

S

1

1,1S

1,1S

2

1,1(1,1S – 2000)

1,1 * 1,1S

3

1,1(1,1(1,1S – 2000) + 2000) = 1,1 * (1,21S – 200) = 1, 331S -220

1,1 * 1,1 * 1,1S = 1, 331S

Найдем разницу:

 1,1(1,1(1,1S – 2000) + 2000) — 1,1 * 1,1 * 1,1S = 1, 331S – 220 – 1,331S = — 220. Таким образом, вкладчик получил на 220 рублей меньше запланированной суммы.

ОТВЕТ: на 220 рублей.

ПРИМЕР №12. По бизнес-плану предполагается изначально вложить в четырёхлетний проект 10 млн рублей. По итогам каждого года планируется прирост вложенных средств на 15% по сравнению с началом года. Начисленные проценты остаются вложенными в проект. Кроме этого, сразу после начислений процентов нужны дополнительные вложения: по целому числу n млн рублей в первый и второй годы, а также по целому числу m млн рублей в третий и четвёртый годы.

Найдите наименьшие значения n и m, при которых первоначальные вложения за два года как минимум удвоятся, а за четыре года как минимум утроятся. [11].

РЕШЕНИЕ: Составим схему увеличения вклада:

Год

Сумма вклада

Год

Сумма вклада

0

10

3

((1,15 * 10 + 4) * 1,15 +4) *1,15 + m =

21,825 * 1, 15 + m = 25,099 + m

1

1,15 * 10 + n

4

(25,099 + m) * 1, 15 + m

2

(1,15 * 10 + n) * 1,15 + n

В условии задачи сказано, что за два года первоначальные вложения как минимум удвоятся, значит, можно составить неравенство:

(1,15 * 10 + n) * 1,15 + n ≥ 20. Получаем, что n ≥ 3,5. (Минимальное целочисленное решение n = 4).

За четыре года первоначальные вложения утроятся. Составим неравенство: (25,099 + m) * 1, 15 + m ≥ 30. Получаем, что m ≥ 0,528. (Минимальное целочисленное решение m = 1).

ОТВЕТ: 4 и 1 млн рублей.

  1. Задачи на оптимальный выбор

ПРИМЕР №13. В январе 2000 года ставка по депозитам в банке «Возрождение» составляла х% годовых, тогда как в январе 2001 года она составила у% годовых, причем известно, что x + y = 30. В январе 2000 года вкладчик открыл счет в банке «Возрождение», положив на него некоторую сумму. В январе 2001 года, по прошествии года с того момента, вкладчик снял со счета пятую часть этой суммы. Укажите значение х при котором сумма на счету вкладчика в январе 2002 года станет максимально возможной. [10].

РЕШЕНИЕ: Обозначим за S сумму вклада, которую положили в банк в январе 2000 года. В январе 2001 года вклад будет уже составлять S(1+0,01x), но вкладчик снял 0,2S. Поэтому на январь 2021 на вклад приходится: S(1+0,01x) – 0,2S = 0,8S +0,01Sx. В январе 2002 года вклад увеличится на y%, то есть умножится на (1 + 0,01y) = (1 + 0,01(30 – x), и будет составлять (0,8S +0,01Sx) * (1 + 0,01(30 — x)) = — 0,0001Sx2 + 0,005Sx + 1, 04S.

Функция f(x) = — 0,0001Sx2 + 0,005Sx + 1, 04S является убывающей. Найдем ее максимальное значение x0 =   = 25.

ОТВЕТ: 25.

  1. Нестандартные задачи

ПРИМЕР №14. В одной стране в обращении находилось 1 000 000 долларов, 20% из которых были фальшивыми. Некая криминальная структура стала ввозить в страну по 100 000 долларов в месяц, 10% из которых были фальшивыми. В это же время другая структура стала вывозить из страны 50 000 долларов ежемесячно, из которых 30% оказались фальшивыми. Через сколько месяцев содержание фальшивых долларов в стране составит 5% от общего количества долларов? [10].

РЕШЕНИЕ: Найдем ежемесячное увеличение валютной массы, находящейся в обращении: 100 – 50 = 50 тыс. долларов. Через n месяцев в стране будет – (1 000 + 50n) тыс. долларов.

Ежемесячно количество фальшивых купюр уменьшается на 50 * 0,3 – 100 * 0, 1 = 5 тыс. долларов. Изначально их было 1 000 000 * 0, 2 = 200 000. Тогда, через n месяцев их будет – (200 – 5n) тыс. долларов, что составляет 5% от общего количества долларов. Получаем: (1 000 + 50n) * 0, 05 = 200 – 5n.

n = 20.

ОТВЕТ: через 20 месяцев.

ПРИМЕР №15. При рытье колодца глубиной свыше 10 м за первый метр заплатили 1000 руб., а за каждый следующий на 500 руб. больше, чем за предыдущий. Сверх того, за весь колодец дополнительно было уплачено 10 000 руб. Средняя стоимость 1 м оказалась равной 6250 руб. Определите глубину колодца. [10].

РЕШЕНИЕ: Обозначим за Х м глубину колодца. Тогда, часть выплат, зависящая от глубины колодца, представляет собой арифметическую прогрессию, где a1 = 1000, а d = 500. Последний член прогрессии имеет вид: 1000 + 500(X –1).

Найдем сумму всех выплат по формуле суммы n – членов арифметической прогрессии: .

Поскольку сверх этого было выплачено еще 10 000 руб., а средняя стоимость 1 м при этом составила 6250 руб., то имеет место уравнение вида: 250X2 + 750X + 10 000 = 6250X. Решим, получаем: Х1 = 2 (не подходит, т. к. Х> 10 м) и Х2 = 20.

ОТВЕТ: 20 м.

ЗАКЛЮЧЕНИЕ

В результате проведенной работы по классификации и систематизации типов задач финансовой математики, включенных во вторую часть ЕГЭ по математике профильного уровня, и методов их решений были получены следующие выводы и результаты:

1. Было дано определение экономики как науки, изучающей типичные мотивы и модели поведения людей в процессах производства, обмена и потребления жизненных благ, а также установлена ее связь с математикой, заключающаяся в построении теоретических моделей математическим методом при анализе экономических явлений и процессов.

2. Были выделены четыре типа, один из которых содержит в себе семь подтипов, экономических задач ЕГЭ по математике профильного уровня и приведены различные способы их решений.

В ходе исследования было замечено, что наиболее наглядным и понятным методом решения задач с экономических содержанием оказался табличный метод. Именно этот способ решения рекомендуется использовать учащимся для построения точной теоретической модели экономической задачи.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

  1. Алимов, Ш. А. Алгебра: учебник для учащихся 9 кл. средней школы / Ш.А. Алимов. – М.: Просвещение, 2012. – 287 с.
  2. Ермаков, С. Л. Экономика: учебное пособие (Бакалавриат) / С.Л. Ермаков, С.В. Устинов, Ю.Н. Юденков. – Москва: КНОРУС, 2020. – 270 с.
  3. Копнова, Е. Д. Финансовая математика: учебник и практикум для бакалавриата и магистратуры / Е. Д. Копнова. — М.: Издательство Юрайт, 2016. — 413 с.
  4. Лагошина Ю.С. Взаимосвязь математики с экономическими отраслями / Ю.С. Лагошина // Международный студенческий научный вестник. – 2017. – № 4 – С. 4.
  5. Мордкович, А.Г. Алгебра: Учебник. 9 класс / А.Г. Мордкович, П.В. Семенов. – М.: Мнемозина, 2010. – 224 с.
  6. Носова, С.С. Основы экономики: учебник (Среднее профессиональное образование) /С. С. Носова. – Москва: КНОРУС, 2020. – 312 с.
  7. Пичурин Л.Ф. За страницами учебника алгебры: Кн. Для учащихся 7-9 кл. средн. Шк. / Л.Ф. Пичурин. – М.: Просвещение, 1990. – 224 с.
  8. Шимко, П. Д. Основы экономики: учебник (Среднее профессиональное образование) / П.Д. Шимко. – Москва: КНОРУС, 2021. – 292 с.
  9.  fipi.ru: сайт. – 2009. – URL: https://fipi.ru/
  10.  ege.sdamgia.ru: образовательный портал: сайт. – 2011. —  URL: https://ege.sdamgia.ru/ 
  11.  yandex.ru/tutor: образовательный портал: сайт. – 2018. – URL: https://yandex.ru/tutor/

Автор: Фролов Глеб Романович

Место работы/учебы (аффилиация): ГБОУ «Брянский городской лицей №1 имени А.С.Пушкина», 10 класс

Актуальность исследовательской работы определяется  необходимостью уметь решать экономические задачи при сдаче ЕГЭ. Решение  экономических задач очень полезно, так как жизнь  современного человека тесно связана с финансовыми операциями.

Проблема заключается в отсутствии навыков применения математических и экономических знаний на практике в расчетах платежей банковских кредитов и прочих операций, а также неумение и боязнь решать экономические задачи на ЕГЭ.

Предмет исследования: различные подходы к решению  задач о кредитах, в зависимости от условия задачи.

Гипотеза: в современном мире необходимы знания об экономике и в этом может помочь математика.

Цель исследования – исследование методов решения задач с экономическим содержанием.

Задачи  исследования:

  • изучить теоретический материал по выбранной теме;
  • научиться решать задачи с процентами разных видов сложности;
  • разобрать основные типы задач с примерами решений;
  • создать таблицы для различных видов платежей;
  • показать на примерах поиск решения реальной практической задачи (кредит с разными видами платежей – аннуитетные, фиксированные и дифференцированные);
  • провести анкетирование среди обучающихся 11-х профильных классов с целью выяснения трудностей, которые возникают у них при решении экономической задачи №17.

 Экономические задачи в ЕГЭ и в моей будущей профессии Работу выполнила: Бутенко Ксения Александровна ученица 10б класса МБОУ «Гимназия» Научный руководитель: Гребенникова Ирина Сергеевна учитель математики

Экономические задачи в ЕГЭ и в моей будущей профессии

Работу выполнила:

Бутенко Ксения Александровна

ученица 10б класса

МБОУ «Гимназия»

Научный руководитель:

Гребенникова Ирина Сергеевна

учитель математики

Актуальность : Сегодня огромное количество людей вкладывают свои средства в банки под определённые проценты и берут кредиты. Но не все знают как проходят банковские процессы, хотя понимать это важно. Так как от этого очень зависит сохранность денежных средств. Оказывается, все базовые понятия по вкладам и кредитам изучаются именно в школе. К тому же, полученная информация являются неотъемлемой частью ЕГЭ по профильной математике, раздел экономические задачи . Ну и конечно, эти знания в дальнейшем пригодятся будущим экономистам, особенно в сфере банковского дела , с которым и связана моя дальнейшая профессия.

Актуальность :

Сегодня огромное количество людей вкладывают свои средства в банки под определённые проценты и берут кредиты. Но не все знают как проходят банковские процессы, хотя понимать это важно. Так как от этого очень зависит сохранность денежных средств. Оказывается, все базовые понятия по вкладам и кредитам изучаются именно в школе. К тому же, полученная информация являются неотъемлемой частью ЕГЭ по профильной математике, раздел экономические задачи . Ну и конечно, эти знания в дальнейшем пригодятся будущим экономистам, особенно в сфере банковского дела , с которым и связана моя дальнейшая профессия.

 Гипотеза:   Экономические задачи из ЕГЭ используют в профессии экономистов

Гипотеза:

Экономические задачи из ЕГЭ используют в профессии экономистов

 Цель проекта: Исследовать экономические задачи в ЕГЭ и показать важность и необходимость их использования в профессии экономиста

Цель проекта:

Исследовать экономические задачи в ЕГЭ и показать важность и необходимость их использования в профессии экономиста

   Задачи: проанализировать литературу по теме «Банковские задачи в математике»; Познакомиться с банковскими процентами и формулами для их вычисления; показать применение полученных знаний при решении задач практической направленности,    подготовиться к ЕГЭ по математике;  показать применение полученных знаний при решении задач практической направленности,    подготовиться к ЕГЭ по математике;  Составить краткий буклет-«шпаркаглку» по решению типовых экономических задач Составить краткий буклет-«шпаркаглку» по решению типовых экономических задач Составить краткий буклет-«шпаркаглку» по решению типовых экономических задач Составить краткий буклет-«шпаркаглку» по решению типовых экономических задач Составить краткий буклет-«шпаркаглку» по решению типовых экономических задач

Задачи:

  • проанализировать литературу по теме «Банковские задачи в математике»;
  • Познакомиться с банковскими процентами и формулами для их вычисления;
  • показать применение полученных знаний при решении задач практической направленности, подготовиться к ЕГЭ по математике;
  • показать применение полученных знаний при решении задач практической направленности, подготовиться к ЕГЭ по математике;
  • Составить краткий буклет-«шпаркаглку» по решению типовых экономических задач
  • Составить краткий буклет-«шпаркаглку» по решению типовых экономических задач
  • Составить краткий буклет-«шпаркаглку» по решению типовых экономических задач
  • Составить краткий буклет-«шпаркаглку» по решению типовых экономических задач
  • Составить краткий буклет-«шпаркаглку» по решению типовых экономических задач

Методы исследования: Анкетирование Анализ и синтез различных источников информации Самостоятельное решение экономических задач Самостоятельное составление задач Проведение исследования, как выгодно делать вклады Работа в программах Microsoft Word, Publisher, PowerPoint

Методы исследования:

  • Анкетирование
  • Анализ и синтез различных источников информации
  • Самостоятельное решение экономических задач
  • Самостоятельное составление задач
  • Проведение исследования, как выгодно делать вклады
  • Работа в программах Microsoft Word, Publisher, PowerPoint

Вне слайда будет говориться об опросе в классе.

Вне слайда будет говориться об опросе в классе.

 Три главных правила работы с процентами Что бы найти процент от числа, нужно это число умножить на процент, представленный в виде дроби Что бы найти число по его части, нужно эту часть поделить на процент, представленный в виде дроби Что бы найти, сколько процентов одно число составляет от другого, нужно первое число поделить на второе и умножить результат на 100%

Три главных правила работы с процентами

Что бы найти процент от числа, нужно это число умножить на процент, представленный в виде дроби

Что бы найти число по его части, нужно эту часть поделить на процент, представленный в виде дроби

Что бы найти, сколько процентов одно число составляет от другого, нужно первое число поделить на второе и умножить результат на 100%

Виды экономических задач Непрерывные модели: Дискретные модели: Использование свойств функций Кредиты Применение производной Вклады

Виды экономических задач

Непрерывные модели:

Дискретные модели:

Использование свойств функций

Кредиты

Применение производной

Вклады

Раздел: вклады Введем обозначения:  - первоначальная сумма вклада p - процент от числа n – количество лет S – окончательная сумма Формула сложного процента:  Если дан процент годововой, через определенные промежутки времени (1, 3 или 6 месяцев) d – количество дней (если сказано в задаче) y – количество дней в году ( 365 или 366, если год високосный) 9

Раздел: вклады

Введем обозначения:

— первоначальная сумма вклада

p — процент от числа

n – количество лет

S – окончательная сумма

Формула сложного процента:

Если дан процент годововой, через определенные промежутки времени (1, 3 или 6 месяцев)

  • d – количество дней (если сказано в задаче)
  • y – количество дней в году ( 365 или 366, если год високосный)

9

Рассмотрим простейшую задачу: Пусть S- полученная сумма, тогда: Дано: вклад в первом банке - 2 500 000 под 24%, через 2 месяца положили полученную сумму в другой банк под 12% годовых на 2 месяца. Какая сумма будет на счёте по истечению срока в втором банке? На сколько процентов уменьшился первоначальный вклад от полученной суммы? Первый способ нахождения разницы в процентах: ∆ S=2 653 280,1 -2 500 000= 153 280,1 № 3Альберт Игоревич поместил в банк 2 500 000 на 2 месяца, под 24 % годовых с учетом капитализации процентов, то есть по истечении каждого месяца к его вкладу добавляются деньги, начисленные в качестве процентов. Позже он закрывает вклад, и вырученные деньги перекладывает в другой банк на 2 месяца под 12% годовыхтакже с учетом капитализации процентов. Какая сумма будет на счёте у Альберта Игоревича по истечению срока в втором банке?На сколько процентов уменьшился первоначальный вкладот полученной суммы? Второй способ: 106,1-100=6,1% Ответ: 6,1% 9

Рассмотрим простейшую задачу:

Пусть S- полученная сумма, тогда:

Дано: вклад в первом банке — 2 500 000 под 24%, через 2 месяца положили полученную сумму в другой банк под 12% годовых на 2 месяца. Какая сумма будет на счёте по истечению срока в втором банке? На сколько процентов уменьшился первоначальный вклад от полученной суммы?

Первый способ нахождения разницы в процентах:

∆ S=2 653 280,1 -2 500 000= 153 280,1

№ 3Альберт Игоревич поместил в банк 2 500 000 на 2 месяца, под 24 % годовых с учетом капитализации процентов, то есть по истечении каждого месяца к его вкладу добавляются деньги, начисленные в качестве процентов. Позже он закрывает вклад, и вырученные деньги перекладывает в другой банк на 2 месяца под 12% годовыхтакже с учетом капитализации процентов. Какая сумма будет на счёте у Альберта Игоревича по истечению срока в втором банке?На сколько процентов уменьшился первоначальный вкладот полученной суммы?

Второй способ:

106,1-100=6,1%

Ответ: 6,1%

9

 Раздел: кредиты Дифференциальная (или регрессивная) схема Аннуитетная схема Схемы погашения кредитов

Раздел: кредиты

Дифференциальная (или регрессивная) схема

Аннуитетная схема

Схемы погашения кредитов

 Дифференциальная Схема Особенности схемы: Ежемесячная сумма погашения постоянная К ежемесячной выплате прибавляются проценты на остаток долга Ежемесячные выплаты разные Метод расчета платежей - арифметическая прогрессия В первый месяц платеж рассчитывается на всю величину

Дифференциальная Схема

Особенности схемы:

  • Ежемесячная сумма погашения постоянная
  • К ежемесячной выплате прибавляются проценты на остаток долга
  • Ежемесячные выплаты разные
  • Метод расчета платежей — арифметическая прогрессия
  • В первый месяц платеж рассчитывается на всю величину

Рассмотрим на примере:     Дано: кредит - 10 млн. под 20 %годовых на n лет, выплатили 18 млн рублей. Найти n-? Решение: остаток долга представляет собой арифметическую прогрессию На остатке долга начисляется 20%(умножается на 0,2)   Общая сумма:   По условию ; следовательно  Схема погашения – регрессивная (то есть в конце каждого месяца заёмщик выплачивает процент на оставшуюся часть долга и 1/m часть основного долга)

Рассмотрим на примере:

Дано: кредит — 10 млн. под 20 %годовых на n лет, выплатили 18 млн рублей. Найти n-?

Решение: остаток долга представляет собой арифметическую прогрессию

На остатке долга начисляется 20%(умножается на 0,2)

Общая сумма:

По условию ; следовательно

Схема погашения – регрессивная (то есть в конце каждого месяца заёмщик выплачивает процент на оставшуюся часть долга и 1/m часть основного долга)

 Аннуитетная схема Особенности схемы: Сумма ежемесячного или ежегодного платежа фиксируется на весь срок кредитования. Проценты начисляются на остаток долга Ежемесячные выплаты одинаковы В первый год или месяц проценты начисляются «вперед», то есть перед погашением суммы ежемесячного или ежегодного платежа

Аннуитетная схема

Особенности схемы:

  • Сумма ежемесячного или ежегодного платежа фиксируется на весь срок кредитования.
  • Проценты начисляются на остаток долга
  • Ежемесячные выплаты одинаковы
  • В первый год или месяц проценты начисляются «вперед», то есть перед погашением суммы ежемесячного или ежегодного платежа

Рассмотрим на примере: Дано: Пусть кредит в размере S рублей выдают на n лет, под p% годовых; и пусть x- ежегодный платеж по кредиту, тогда полная выплата составит: X=n×x Найти X, если n=2 Решение: q=1+0,01p – ежегодное начисление p% на остаток долга, тогда после первой выплаты: ; После второй: Кредит был выдан на два когда следовательно в конце второго года   Схема аннуитетная

Рассмотрим на примере:

Дано: Пусть кредит в размере S рублей выдают на n лет, под p% годовых; и пусть x- ежегодный платеж по кредиту, тогда полная выплата составит: X=n×x

Найти X, если n=2

Решение: q=1+0,01p – ежегодное начисление p% на остаток долга, тогда после первой выплаты: ;

После второй:

Кредит был выдан на два когда следовательно в конце второго года

Схема аннуитетная

 Результаты исследования  Ход решения экономических задач в профессиональной деятельности, не отличатся от того чему нас учат в школе. Так же стало понятно, что очень важно изучать это в школе и в ВУЗЕ, так как в будущей профессии эти знания пригодятся. Задачи из ЕГЭ (раздел банковское дело) встречаются в профессиональной деятельности, и играют там далеко не последнюю роль.

Результаты исследования

  • Ход решения экономических задач в профессиональной деятельности, не отличатся от того чему нас учат в школе.
  • Так же стало понятно, что очень важно изучать это в школе и в ВУЗЕ, так как в будущей профессии эти знания пригодятся.
  • Задачи из ЕГЭ (раздел банковское дело) встречаются в профессиональной деятельности, и играют там далеко не последнюю роль.

Тут читаю заключение

Тут читаю заключение

Финансовая математика (задачи ЕГЭ)

  • Авторы
  • Руководители
  • Файлы работы
  • Наградные документы

Зырянов Д.А. 1


1Забайкальский краевой лицей-интернат

Ульзутуева С.А. 1


1Забайкальский краевой лицей-интернат


Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

Введение

В нашем современном обществе огромную роль играет экономика. Она требует от человека глубоких знаний и умений при работе с массивными числовыми потоками информации. Проценты, вклады, кредиты стали неотъемлемой частью нашей жизни. Подтверждением этому служит то, к примеру, что понятие «процент» широко используется как в реальной жизни, так и в различных областях науки.  Без процентов невозможно обойтись ни в финансовом анализе, ни в жизни. Чтобы начислить зарплату работнику необходимо знать процент налоговых отчислений; мы интересуемся размером процентных начислений на сумму вклада, чтобы открыть депозитный счет в банке; чтобы знать приблизительный рост цен в будущем году, мы интересуемся процентом инфляции.

Для того, чтобы развить навыки экономической грамотности, её основы закладываются в школе. Но, особое внимание экономическим задачам уделяется на Едином Государственном Экзамене, где данные задачи представлены в задании №17. Одними из особенностей данных задач является их нестандартность и повышенная сложность решения. Умение эффективно решать задачи на сложные и простые проценты, понимание различия дифференцированных и аннуитетных платежей, а также владение основными теоретическими знаниями в экономике, способствуют правильному решению задач в области экономики на ЕГЭ. Решение многих задач школьного курса, нестандартных задач, практических задач помогает разобраться в новых экономических веяниях жизни.

Исследование данной темы очень важно по нескольким причинам.

Во-первых, я, являюсь учеником старшей школы на физико-математическом профиле, и успешная сдача ЕГЭ для меня приоритетна, что подразумевает под собой умение эффективно решать все типы заданий, в том числе и те, которые связаны с экономикой.

Во-вторых, решение финансовых задач очень полезно, так как вся жизнь современного человека тесно связана с экономическими операциями. Большинство людей в мире совершают банковские операции, вклады, берут кредиты, поэтому рассмотрение данного вопроса поможет не допустить финансовых ошибок в жизни с моей стороны.

Цель проекта: Изучить способы решения экономических задач. Сформировать схемы задач на кредиты и вклады по финансовой математике, показать приемы быстрого счета.

Достижение поставленной цели будет реализовано с помощью решения таких задач как:

Проанализировать научную литературу по данной теме.

Систематизировать все задачи по способам решений.

Разработать наглядные схемы по решению данного вида задач.

Подобрать несколько задач по данным схемам

На основе рассмотренных задач подготовить и создать памятку для учеников по решению данных задач.

Предмет исследования: Способы решения экономических задач ЕГЭ на проценты и вклады.

Объект исследования: Экономические задачи на ЕГЭ.

Целевая аудитория: Ученики 10-11 классов.

Методы:

Теоретический: изучение литературных и Интернет источников, анализ данных, систематизация материала,

Практическая значимость: с помощью составленных схем для учеников старшей школы можно повысить их уровень знания в области задач, связанных с расчётами кредитов, вкладов, подготовку к решению задания № 17, а также увеличить шансы выпускников на хорошую сдачу Единого Государственного Экзамена.

Основная часть

Теоретическая часть

Арифметическая и геометрическая прогрессии

Для того, чтобы начинать разбираться в задании № 17, нужно повторить как арифметическую, так и геометрическую прогрессии, так как они напрямую используются при финансовых расчетах в экономике и применяются в данном задании.

Арифметическая прогрессия

Арифметической называется последовательность, каждый член которой, начиная со второго, равен сумме предыдущего члена и некоторого фиксированного числа d: , где n принадлежит множеству натуральных чисел;

Фиксированным числом d называется разность арифметическом прогрессии;

Формула n-ого члена арифметической прогрессии: ;

Сумма первых n членов в арифметической прогрессии вычисляется по формуле: ;

В арифметической прогрессии каждый ее член, начиная со второго, является средним арифметическим соседних ему членов: .

Геометрическая прогрессия

Геометрической называется последовательность, каждый член которой, начиная со второго, равен произведению предыдущего члена и некоторого фиксированного числа q:, где n принадлежит множеству натуральных чисел;

Фиксированным числом q называется знаменатель геометрической прогрессии;

Формула n-ого члена геометрической прогрессии: ;

Квадрат каждого члена геометрической прогрессии, начиная со второго, равен произведению соседних: ;

Формула суммы первых n членов геометрической прогрессии можно вычислить по формуле: .

Проценты

В математике, в том числе экономических задачах, мы часто сталкиваемся с понятием «процент». Под этим термином подразумевается сотая часть числа. 1%=0,01 А, где А- некоторое число. В данном задании ученикам встречаются несколько видов задач на проценты. Итак, разберемся с методом решения некоторых из них.

I тип задач — нахождение q% от некоторого числа А.

— Число А умножаем на 0,01*q, и получаем искомое число;

II тип задач — нахождение некоторого числа А по его q%, где q%=B.

— Число B делим на 0,01*q, и получаем искомое число;

III тип задач — сколько процентов составляет число А от числа В.

— Делим число А на число В и умножаем на 100%;

IV тип задач — Вычислить число B, если число A меньше него на q%.

B = A(1+q/100)

V тип задач — Вычислить число B, если число A больше него на q%.

B = A(1-q/100)

Разберем несколько типовых задач на проценты.

Найти 15% от 80: 80*0,15=12;

Найти A, если 47%равны 94: 94/0,47=200;

Сколько % составляет 78 от 300:78/300*100%=0,26%

Для того, чтобы рационализировать расчеты, важно помнить, что проценты имеют свойство обратимости. То есть q% от числа А равны p% от числа A. К примеру, 10% от 50 равны 50% от 10 (10% от 50 = 5, 50% от 10 = 5).

Вклады: Простые и сложные проценты

Современная экономическая система определяет два способа начисления доходов на вклады: простые и сложные проценты.

Для начала работы с вкладами и процентами, нужно дать определение вкладам, а также процентам: сложным и простым.

Банковский вкладом (или банковским депозитом) называется сумма денег, переданная лицом кредитному учреждению (банку) с целью получения дохода в виде процентов, образующихся в ходе финансовых операций с вкладом.

Простые проценты — метод начисления доходов на вклад, при котором размер вклада увеличивается на одну и ту же сумму, равную определенному количеству процентов от исходного. За один расчетный период, как правило, принимается один год. Если A — исходное количество денег, q процентов годовых – процентная ставка, то по истечении k лет клиент получит сумму .

Формула для нахождения же простого процента напоминает формулу k-того члена арифметической прогрессии c разностью Разность умножается на k, а не на k-1 по той же причине, что будет показана и для сложных процентов.

Теперь следует обратиться к вкладам и второму методу начисления доходов: сложным процентам.

Сложные проценты — это способ начисления процентов, при котором происходит начисление как на исходную сумму, так и на уже начисленные проценты, то есть на прирост. Более полно понять это определение поможет следующий пример.

Пусть клиент положил на счет сумму A0на n периодов, ив конце каждого периода на имеющуюся на счете сумму начисляется q%.Тогда через 1 период на счете окажется сумма

В конце второго периода имеющаяся сумма снова увеличится на q%, то есть

Аналогично в конце третьего периода на счете окажется сумма

Несложно заметить, что появляется определённая закономерность. Выведем общую формулу количества денег на счете клиента по истечении nпрошедших периодов:

Формула, которую мы получили, напоминает формулу нахождения n-ного члена геометрической прогрессии, с той лишь разницей, что знаменатель прогрессии в нашем случае в степени n, а не n-1. Это можно объяснить тем, что сумму, лежащую в самом начале, мы обозначили за , а не за .

Обобщая выше сказанное, необходимо отметить тот неоспоримый факт о том, что начисление сложных процентов на сумму вклада более выгодно клиенту, так как в этом случае сумма вклада будет расти в геометрической прогрессии. Банку же, в свою очередь, более выгодно начисление простых процентов на сумму счёта клиента, так как она будет увеличиваться только лишь в арифметической прогрессии. Все это можно проследить на нижеуказанном рисунке (см. приложение 1).

Кредиты: Аннуитетные и дифференцированные платежи

В современном мире в экономике немаловажную роль играют кредиты. Под определением «кредит» подразумевают заем в банке определенной суммы денег с возвращением долга, а также начисленных на него процентов. В зависимости от способа начисления процентов, выплаты по кредитам осуществляются дифференцированными, либо аннуитетными платежами. В каждом из этих случаев начисление процентов всегда происходит на остаток от долга, то есть методом сложных процентов.

Аннуитетный платеж — способ выплаты по кредиту, при котором сумма выплат делится на равные части (столько, сколько планируется платежей), а сумма одной выплаты состоит из остатка по кредиту и процентов, начисленных на остаток долга. При таком способе погашения основной долг, являющийся телом кредита, при первых платежах практически не погашается, а выплачиваются только проценты.

Дифференцированный платеж — способ выплаты по кредиту, при котором сумма долга клиента делится на равные части (столько, сколько планируется платежей для его выплаты), к каждой из которых прибавляются проценты, начисленные на оставшуюся сумму долга. При этом с каждым разом сумма выплаты уменьшается, а в последний раз клиент платит наименьшую сумму.

Более понятно разъяснить суть разницы двух видов платежей поможет следующий рисунок (см. приложение 2).

Дифференцированные платежи более выгодны клиенту, так как переплата в этом случае для намного меньше, чем в случае выбора клиентом аннуитетной схемы. Но при этом стоит учитывать то, что первые платежи могут оказаться слишком большими для клиента. Кроме того, сумму каждого следующего дифференцированного платежа необходимо отслеживать. Все это делает аннуитетную схему выплат более удобной как для клиента, так и более выгодной для банков, а потому и наиболее популярной.

После того, как мы познакомились с определениями кредита, а также двух типов платежей, разберем схемы решения задач на кредиты:

Пусть A — сумма кредита, x — очередная выплата n — количество платёжных периодов, q — процент по кредиту, начисляемый банком. В нашем случае коэффициент показывает то, во сколько раз увеличивается сумма долга после начисления по нему процентов.

Выплата кредита равными платежами (аннуитетные платежи)

Схема погашения кредита:

Преобразуем выражение:

Применим формулу суммы геометрической прогрессии и получим:

=0.

Схема с дифференцированными платежами (равномерное уменьшение суммы долга по кредиту)

Схема погашения для n платёжных периодов:

1-я выплата:

2-я выплата:

n-я выплата:

Посчитаем сумму всех выплат:

Теперь применяем формулу суммы для арифметической прогрессии. Тогда общая сумма выплат равна:

В данном случае Z— величина переплаты,

Практическая часть

Примеры решения задач на аннуитетный платёж

Вклад планируется открыть на четыре года. Первоначальный вклад составляет целое число миллионов рублей. В конце каждого года вклад увеличивается на 10% по сравнению с его размером в начале года, а, кроме этого, в начале третьего и четвёртого годов вклад ежегодно пополняется на 2 млн рублей. Найдите наибольший размер первоначального вклада, при котором через четыре года вклад будет меньше 15 млн рублей.

Решение

Пусть S— первоначальная сумма вклада, а по условию q=10%, k=1,1.

Расчёты, для удобства следует проводить в миллионах рублей: по ранее представленной формуле для аннуитетных платежей получаем:

;

;

;

, следовательно, S=7 миллионов рублей.

Ответ:7 миллионов рублей.

31 декабря 2020 года Максим взял в банке 6 902 000 рублей в кредит под 12,5% годовых. Схема выплат кредита следующая — 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга, то есть увеличивает долг на 12,5%, затем Максим переводит в банк X рублей. Какой должна быть сумма x, чтобы Максим выплатил долг четырьмя равными платежами, то есть за четыре года?

Решение

Данная задача также решается с помощью формулы аннуитетных платежей, так как по условию сказано, что долг выплачивается равными платежами.

Пусть S=6902 тыс. рублей;

Применим формулу геометрической прогрессии:

следовательно,

.

Ответ: 2296350 рублей.

Ольга хочет взять в кредит 100 000 рублей под 10% годовых. Погашение кредита происходит раз в год равными суммами, кроме, может быть, последней, после начисления процентов. На какое минимальное количество лет Ольга может взять кредит, чтобы ежегодные выплаты были не более 24 000 рублей?

Решение

Пусть Оля берет кредит на n лет. Если же последняя выплата по кредиту будет меньше предыдущих, то погасится все тело кредита. Но возьмём, к примеру, что последняя выплата будет всё же равна предыдущим, тогда долг клиента не только погасится полностью, но и станет отрицательным

(на карте останутся некоторые средства). Для удобства будем вести расчёты в тысячах рублей.

.

Тогда следует для такого случая записать неравенство по формуле для расчетов аннуитетного платежа:

Так как в скобках- сумма n членов геометрической прогрессии, то тогда данная сумма равна ;

Тогда: ;

Домножим обе части неравенства на (k-1) и подставим числовые значения:

получаем .

Переведем, округляя до сотых, данную дробь в десятичную и получаем, что ,71.

Теперь, для того, чтобы вычислить значение n, нам необходимо воспользоваться биномом Ньютона, следовательно, и треугольником Паскаля (см. приложение 3).

Выражение есть бином Ньютона и расписывается следующим образом: .

Нам необходимо найти минимальное значение n. Распишем же 1,1 так, чтобы воспользоваться треугольником Паскаля:

Возьмём n=5, тогда ;

Возьмём n=6,тогда .

Следовательно, .

Ответ:6 лет.

Примеры решения задач на дифференцированный платёж

Жанна взяла в банке в кредит 1,8 млн рублей на срок 24 месяца. По договору Жанна должна возвращать банку часть денег в конце каждого месяца. Каждый месяц общая сумма долга возрастает на 1 %, а затем уменьшается на сумму, уплаченную Жанной банку в конце месяца. Суммы, выплачиваемые Жанной, подбираются так, чтобы сумма долга уменьшалась равномерно, то есть на одну и ту же величину каждый месяц. Какую сумму Жанна вернёт банку в течение первого года кредитования?

Решение

Пусть S— первоначальная сумма долга, при этом, .

Для начала нарисуем схему начисления процентов и выплат. Заметим некоторые закономерности:

S … 0

Начисление 1-ая 2-ая посл.

процентов выплата выплата выплата

Sk

Как обычно, коэффициент показывает то, во сколько раз увеличивается сумма долга после начисления по нему процентов.

Сумма долга уменьшается равными долями, равномерно. Каждая доля равна

.

Тогда первая выплата *S;

Вторая выплата ;

Последняя выплата в году равна .

Посчитаем общую сумму всех выплат в течение первого года:

.

Видим, что в первой скобке находится сумма 12 членов арифметической прогрессии, в которой , . Пусть эта сумма равна .

Видим, что во второй скобке аналогично находится сумма 12 членов арифметической прогрессии, в которой , . Пусть эта сумма равна .

Тогда общая сумма выплат за 1 год:

Ответ:1066500 рублей.

Алексей взял кредит в банке на срок 17 месяцев. По договору Алексей должен вернуть кредит ежемесячными платежами. В конце каждого месяца к оставшейся сумме долга добавляется q % этой суммы и своим ежемесячным платежом Алексей погашает эти добавленные проценты и уменьшает сумму долга. Ежемесячные платежи подбираются так, чтобы долг уменьшался на одну и ту же величину каждый месяц (на практике такая схема называется «схемой с дифференцированными платежами»). Известно, что общая сумма, выплаченная Алексеем банку за весь срок кредитования, оказалась на 27 % больше, чем сумма, взятая им в кредит. Найдите q.

Решение

Применим формулу для задач с дифференцированными процентами, выведенной в теоретической части.

Пусть на n платежных периодов в кредит взята сумма S, но при этом имеем то, что платежи подобраны таким образом, что сумма долга уменьшается равномерно. Тогда величина переплаты F и полная сумма выплат G за все время выплаты кредита представлены формулами:

; .

Применяя формулу к данной задаче, получаем (величина переплаты)

.

Ответ: q=3.

В июле 2016 года планируется взять кредит в банке на четыре года в размере S млн рублей, где S — целое число. Условия его возврата таковы:

— каждый январь долг увеличивается на 15% по сравнению с концом предыдущего года;

— с февраля по июнь каждого года необходимо выплатить часть долга;

— в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей.

Месяц и год

Июль 2016

Июль 2017

Июль 2018

Июль 2019

Июль 2020

Долг (в млн рублей)

S

0,8S

0,5S

0,1S

0

Решение

В данной задаче .

Составим схему выплат для дифференцированных платежей:

Год 2016 2017 2018 2019 2020

Июль S 0

1-ая 2-ая 3-я 4-ая

процентов выплата Х1 выплата Х2 выплата Х3 выплата Х4

ЯнварьkS

Общая сумма X выплат:

.

По условию S— целое число, а . Для удобства произведем расчеты в миллионах рублей.

, значит

Ответ: 29 млн. рублей

Заключение

Цели исследования достигнуты. В данной работе были показаны основные методы решения задач на кредиты, вклады. Тема исследования остается актуальной по причине того, что все рассматриваемые задачи взяты из материалов по подготовке к ЕГЭ по математике «Профиль».

Исследование и рассмотрение задания №17 ЕГЭ показало, что отличное знание теоретического аспекта темы, умение оперировать этими знаниями, позволяют решать задачи повышенной сложности из Единого Государственного Экзамена по теме «Экономические задачи» ученикам старшей школы.

Также, для успешного решения таких задач, необходимо отработать аппарат стандартных вычислений, так как все экономические задачи направлены на серьёзные вычисления. Экономические задачи – это не просто задачи из математики, это часть нашей жизни в современном мире. Умение их решать будет полезно в будущем, как для проверки банковских операций при оформлении кредитов или вкладов, так и в простых жизненных ситуациях, что поможет не совершать мелких и фатальных ошибок.

Составленные схемы по решению задач (см. приложение 4) помогут разобраться и справиться с заданием, посвященным экономике в ЕГЭ, как старшеклассникам, сдающим экзамен в этом году, так и ученикам девятых и десятых классов.

Библиографический список

https://ru.wikipedia.org/wiki/Аннуитет;

https://ru.wikipedia.org/wiki/Дифференцированный_платёж;

https://math-ege.sdamgia.ru/test?theme=293;

https://math-ege.sdamgia.ru/test?theme=292.

Математика: задания высокой и повышенной сложности/ A. Г. Малкова — Изд. 2-е — Ростов н/Д: Феникс, 2019. — 221, с.: ил. — (ЕГЭ. Высший балл).

Приложения

Приложение 1

Приложение 2

Приложение 3

Треугольник Паскаля

Приложение 4

Общие схемы решения задач ЕГЭ задания №17

(аннуитетные и дифференцированные платежи)

A — сумма кредита;

x — очередная выплата;

n — количество платёжных периодов;

q — процент по кредиту, начисляемый банком;

коэффициент показывает то, во сколько раз увеличивается сумма долга после начисления по нему процентов.

Схема выплат кредита равными платежами (аннуитетные платежи)

=0.

Схема с дифференцированными платежами (равномерное уменьшение суммы долга по кредиту)

V— величина переплаты,

Просмотров работы: 1062

Секция: Математика

Краснодарский край, г. Сочи

МОБУ СОШ № 13,

ОБЩАЯ СХЕМА РЕШЕНИЯ

ЭКОНОМИЧЕСКИХ ЗАДАЧ

Научный руководитель: Ильина Зоя Николаевна, учитель математики МОБУ СОШ №13

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ………………………………………………………………………………….….3

ГЛАВА 1. ИСТОРИЯ ВОЗНИКНОВЕНИЯ ПРОЦЕНТА.…… …………… …..….…….…5

ГЛАВА 2. ПРОЦЕНТЫ В МАТЕМАТИКЕ…………………..……….………..……………6

2.1.Определение процента ………………………………………………….…………6

2.2.Проценты и дроби..…………………………………………………….…….……6

2.3.Три основные задачи на дроби..…………………………………….……………8

ГЛАВА 3.СХЕМА РЕШЕНИЯ ТЕКСТОВЫХ ЗАДАЧ. …………………………….…….…9

3.1.Задача на смеси…………………………………………………..……………… 9

3.2.Задача на работу………………………………………………………..…………9

3.3.Задача на движение……………………………………………………….………10

ГЛАВА 4. РАСЧЕТ БАНКОВСКИХ КРЕДИТОВ. ВЫВОД ФОРМУЛ……………………12

Вывод формул для решения задач на равные размеры выплат.………………12

Решение задач на сокращение остатка на одну долю от целого……………….18

Общая схема решения задач……………………………………………………..25

ГЛАВА 5: ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ…….…………………….28

ЗАКЛЮЧЕНИЕ………………………………………………………………………………….31

ЛИТЕРАТУРА……………………………………………………………………………….…34

ВВЕДЕНИЕ

В связи с преобразованием России из системы централизованного планирования в экономику рыночной ориентации экономические знания стали необходимыми как в профессиональной сфере, так и в повседневной жизни. Сегодня жизнь настоятельно требует, чтобы выпускник имел развитое экономическое мышление и был готов к жизни в условиях рыночных отношений.

Эффективному постижению азов экономики поможет решение задач, в содержании которых идет речь о процентах. Решение многих задач школьного курса, нестандартных задач, практических задач помогает разобраться в новых экономических веяниях жизни.

Понятие «проценты» буквально вошло в нашу жизнь. Сами проценты не дают экономического развития, но их знание помогает в развитии практических способностей, а также умение решать экономические задачи. Обдуманное изучение процентов может способствовать развитию таких навыков как экономичность, расчетливость.

. Учащихся при подходе к итоговой аттестации в 9-х и 11-х классах сталкиваются с проблемой решения задач на проценты, а они есть в ЕГЭ. На данный момент я являюсь ученицей 11 класса. Как и многим другим учащимся, мне предстоит сдать ЕГЭ. Ещё с 10 класса я была ознакомлена с заданиями данного экзамена. Среди них оказались задачи экономической направленности повышенного уровня сложности, которые в курсе старшей общеобразовательной школы не рассматриваются. Для меня стал актуален вопрос: каким образом подойти к решению таких задач?

Проблема: практические задачи задания № 17 сложны для обучающихся отсутствием унифицированных формул в курсе математики школьной программы.

Гипотеза: существует множество видов «экономических» задач на проценты и способов их решения, но их можно объединить по типам для облегчения усвоения материала.

Работа посвящена исследованию экономических задач и выводу единой схемы для их решения.

Данная работа может представлять интерес для всех, кто сталкивается с математическими расчетами. Кроме того, при решении задачи удалось вывести общую схему решения задач, которую можно будет применять в последующих жизненных ситуациях.

Цель:

научиться понимать и использовать информацию, представленную в процентах;

обобщить методы решения задач с экономическим содержанием повышенного уровня сложности;

сформировать навыки перевода реальных предметных ситуаций в различные математические модели;

облегчить работу по подбору задач экономического содержания

Задачи:

изучить теоретические аспекты решения «экономических» задач;

познакомиться с видами «экономических» задач из сборников для подготовки к ЕГЭ 2015, 2016, 2017, 2018 гг. и открытого банка задач по математике;

углубить знания по теме проценты;

рассмотреть различные способы решения задач;

выявить структуру экономических задач на проценты;

провести анализ решений;

обобщить и систематизировать способы решения задач.

Объект исследования:

«Экономические» задачи на проценты повышенного уровня сложности.

Предмет исследования:

Методы решения задач на проценты повышенного уровня сложности.

Методы:

поисковый метод с использованием научной и учебной литературы, интернета;

исследовательский метод при определении видов задач, их решения различными способами;

практический метод решения задач;

анализ полученных в ходе исследования данных.

ГЛАВА 1. ИСТОРИЯ ВОЗНИКНОВЕНИЯ ПРОЦЕНТА

Процент[1] (лат. per cent «на сотню; сотая») – сотая часть числа, обозначаемся знаком «%». Используют как обозначение соотношения доли чего-либо к целому.

В Древнем Риме, задолго до существования десятичной системы счисления, вычисления часто производились с помощью дробей, которые были кратны 1/100. При деноминации валюты в средние века вычисления со знаменателем 100 стали более привычными, а с конца XV века до начала XVI века данный метод расчёта стал повсеместно использоваться, судя по содержанию изученных материалов, содержащих арифметические вычисления. Впервые опубликовал таблицы для расчета процентов в 1584 г. Симон Стевин — инженер из города Брюгге (Нидерланды). Стевин известен замечательным разнообразием научных открытий, в том числе — особой записи десятичных дробей. Долгое время под процентами понимались исключительно прибыль или убыток на каждые 100 рублей. Они применялись только в торговых и денежных сделках. Затем область их применения расширилась, проценты встречаются в хозяйственных и финансовых расчетах, статистике, науке и технике. Во многих из этих материалов данный метод применялся для расчёта прибыли и убытка, процентных ставок, а также в правиле трёх, которое широко применялось индийскими математиками. В XVII веке данная форма вычислений стала стандартом для представления процентных ставок в сотых долях.

В России понятие процента впервые ввёл Пётр I. Но считается, что подобные вычисления начали применяться в Смутное время, как результат первой в мировой истории привязки чеканных монет 1 к 100, когда рубль сначала состоял из 10 гривенников, а позже из 100 копеек

Наибольшую популярность проценты приобрели в банковской сфере. Прообразом современных банковских учреждений стали банки, которые основались в Венеции с 1171 года. В России такие банки появились в 1774 году. Эти банки давали деньги в долг королям, купцам, ремесленникам, они финансировали дальние путешествия, строительство крупных сооружений и т.п. Как и менялы в древности, банки брали плату за пользование предоставленными деньгами. Эта плата традиционно выражается в виде процентов к величине, выданной в долг сумме денег.

ГЛАВА 2. ПРОЦЕНТЫ В МАТЕМАТИКЕ

2.1.Определение процента

Процент — одна сотая часть величины или числа. Обозначается символом “%”.

В некоторых вопросах иногда применяют и более мелкие, тысячные доли, так называемые “промилле” ( от латинского pro mille – “с тысячи” ), обозначаемые ‰, по аналогии процентов.

Проценты -это “международный язык”: в бизнесе, в банковской системе, на производстве, в сельском хозяйстве, в быту.

В школьном курсе математики мы знакомимся с процентами в 5 классе, и уже практически с ними не расстаемся.

2.2.Проценты и дроби

С процентами мы сталкиваемся при изучении дробных чисел. Так, чтобы перевести проценты в дробь, надо разделить число на 100. Например: 2% = 2:100 = 0,02.

Чтобы перевести дробь в проценты, нужно дробь умножить на 100 и добавить знак %. Например: 0,14 = 0,14*100% = 14%.

Итак, проценты тесно связаны с обыкновенными и десятичными дробями. Поэтому стоит запомнить несколько простых равенств. В повседневной жизни нужно знать о числовой связи дробей и процентов. Так, половина — 50%, четверть — 25%, три четверти — 75%, одна пятая — 20%, а три пятых — 60%.

Знание наизусть соотношений из таблицы внизу облегчит решение многих задач.

t1582536692aa.jpg

Действия с процентами.
Проценты можно складывать и вычитать только с самими процентами. Проценты складываются и вычитаются друг с другом как обычные числа.

Например: 
1% + 37% − 25% = 38% − 25% = 13%
70% − (42% + 3%) = 70% − 45% = 25%

В повседневной жизни полезно знать разные формы выражения одного и того же изменения величин, сформулированных без процентов и с помощью процентов.

Например, увеличить в 2 раза, значит увеличить на 100%. Разберёмся, почему это так.

Пусть x – это 100%.

t1582536692ab.jpg

Тогда, увеличив x в 2 раза, получим 2x

t1582536692ac.jpg

Сравним полученные результаты.

t1582536692ad.jpg

Получилось, что общее количество процентов равно 200%. Увеличить в 2 раза означает увеличить на 100% и наоборот.

Рассуждая таким же образом, можно доказать, что увеличить на 50%, значит увеличить в 1,5 раза.

Уменьшение числа также может быть выражено в процентах.
Пусть x — 100%.
Известно, что x уменьшилось на 80%. Найдём, во сколько раз уменьшилось x.
Вначале найдём, сколько процентов от x осталось.
100% − 80% = 20% 
20% осталось от x. Обозначим остаток x за y.

Составим пропорцию.
По числовому коэффициенту определяем, во сколько раз уменьшился x.

x / y = 100% / 20%

x / y = 5

x = 5y

Таким образом, мы установили, что уменьшить на 80%, значит уменьшить в 5 раз.

Поняв связь между процентами и “разами”, без труда можно понять, о чём так часто говорят в новостях и в газетах, приводя различные статические данные. Некоторые, наиболее часто употребляемые фразы, желательно просто запомнить, чтобы всегда точно понимать, о чём идёт речь. Список таких фраз представлен ниже.

Значение фраз “увеличить и уменьшить на … процентов”

Увеличить на 50%, значит увеличить в 1,5 раза.
на 100% → в 2 раза
на 150% → в 2,5 раза
на 200% → в 3 раза 
на 300% → в 4 раза

Уменьшить на 80%, значит уменьшить в 5 раз.
на 75% → в 4 раза
на 50% → в 2 раза
на 25% → в ≈ 1,33 раза
на 20% → в 1,25 раза

2.3.Три основные задачи на проценты.

Различают три типа задач на проценты:

1. Нахождение процента от числа.

Чтобы найти процент от числа, надо проценты перевезти в дробь, а затем число умножить на эту дробь.

Задача: Предприятие изготовило за квартал 500 насосов, из которых 60 % имели высшую категорию качества. Сколько насосов высшей категории качества изготовило предприятие?

Решение:

60 % = 0,6 

500 * 0,6 = 300 (насосов высшей категории качества).
Ответ: 300 насосов .

2. Нахождение числа по его части.

Чтобы найти число по его проценту, надо проценты перевести в дробь. Затем число поделить на эту дробь.

Задача: Ученик прочитал 138 страниц, что составляет 23 % числа всех страниц в книге. Сколько страниц в книге?

Решение:

23%=0,23

138 : 0, 23 = 600(страниц в книге)
Ответ: 600 (стр.) — общее количество страниц в книге.

3. Нахождение процентного отношения двух чисел

1) Найти отношение двух чисел
2) Умножить это отношение на 100 и приписать знак %

Задача. Из винтовки было сделано 50 выстрелов, при этом в цель попало 45 пуль. Сколько процентов пуль попала в цель?

Решение:
1)
t1582536692ae.gif(попало в цель) 
2)
t1582536692af.gif

Ответ: 90

ГЛАВА 3. СХЕМА РЕШЕНИЯ ТЕКСТОВЫХ ЗАДАЧ.

Не случайно были упомянуты текстовые задачи ЕГЭ по математике под № 11, т.к. решая их, я имею уже сформировавшуюся схему и алгоритм решения. Рассмотрим следующие задачи.

3.1.Задача на смеси. [2]

Смешали 4 л 15-процентного водного раствора некоторого вещества с 6 л 25-процентного водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?

Решение:

Концентрация

m раствора

m вещества

1 раствор

15% = 0,15

0,15*4л = 0,6л

2 раствор

25% = 0,25

0,25*6л = 1,5л

3 раствор

?

4л+6л = 10л

0,6л+1,5л = 2,1л

Концентрация(3р-ра) = t1582536692ag.gif = 0, 21 *100% = 21%

Ответ: 21%

Заметим. Что при решении задачи мы не вышли за пределы таблицы.

3.2.Задача на работу. [2]

Первая труба пропускает на 5 л воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает первая труба, если бак объёмом 500 л она заполняет на 5 мин дольше, чем вторая труба?

Решение: Пусть х л/мин пропускает первая труба, тогда занесем данные в таблицу:

Р (производительность)

t (время)

А (работа)

1 труба

Х л/мин

t1582536692ah.gifмин

500 л

2 труба

Х + 5 л/мин

t1582536692ai.gifмин

500 л

Так как первая труба, бак объёмом 500 л заполняет на 5 мин дольше, чем вторая труба составим и решим уравнение.

t1582536692ah.gif t1582536692ai.gif = 5

500(х+5) – 500х = 5х(х+5)

500х + 2500 – 500х = 5х2 + 25х

— 5х2 – 25х + 2500 = 0

х2 + 5х – 500 = 0

По теореме Виета:

х1 = 20

х2 = -25 – не удовлетворяет условию задачи

Ответ: 20 л/мин

3.3.Задача на движение. [2]

Из двух городов, расстояние между которыми равно 390 км, навстречу друг другу одновременно выехали два автомобиля. Найдите скорость первого автомобиля, если скорость второго равна 60 км/ч и автомобили встретились через 3 ч после выезда.

Решение: Пусть х км/ч-скорость первого автомобиля, тогда занесем данные в таблицу

U (скорость)

T (время)

S (путь)

1 автомобиль

х км/ч

Встретились

390 км

2 автомобиль

60 км/ч

через 3 часа

390 км

U сближения = 60+х км/ч,

Так как автомобили встретились через 3 часа, составим и решим уравнение.

t1582536692aj.gif= 3

180+3х = 390

3х = 210

х = 70

Ответ: 70 км/ч

Проанализируем решения задач. Все таблицы составлены таким образом, что элементы третьего столбика мы получаем умножением элементов первого и второго столбиков. Элементы первого столбика путем деления элементов третьего столбика на второй, а элементы второго столбика путем деления элементов первого столбика на первый.

При этом в третьем столбике записываем в задачах на смеси и сплавы « m вещества», в задачах на движение «S (путь)», в задачах на работу «А (работа)».

Именно так записываем по той причине, что элементы трех столбиков во всех задачах связаны между собой формулами.

В задачах на смеси: t1582536692ak.gif

t1582536692al.gif

t1582536692am.gif

В задачах на работу: t1582536692an.gif

В задачах на движение: t1582536692ao.gif

Все три типа задач решаем по одной схеме.

ГЛАВА 4. РАСЧЕТ БАНКОВСКИХ КРЕДИТОВ. ВЫВОД ФОРМУЛ.

В этом разделе будут рассмотрены задачи на вычисления связанные с кредитованием, а именно нахождение: процентной ставки, суммы долга, суммы переплаты, ежегодных (ежемесячных, еженедельных т.д.) выплат, количество лет. Данные подсчеты экономически целесообразны в связи с тем, что каждый человек при заключении договора определяет наиболее выгодные для себя условия.

Такие задания классифицируются на простые, решения которых ограничиваются одной формулой, и сложные решение которых требует составления систем, решение неравенств и т.д.

Для многих задач данного типа удобно использовать формулы, выведение которых представлено ниже.

Рассмотрим основные элементы, которые встречаются в задачах, и дадим им характеристику:

 S – сумма, которую берут в кредит

 r – годовая/месячная ставка

 k – число, показывающее во сколько раз увеличивается сума S перед банком (k = 1+0,01*r)

 x — выплата

 n – количество лет/месяцев, за которое необходимо выплатить кредит

 F – сумма, которую в итоге придется вернуть банк

P – переплата, равная F — S

4.1. Вывод формул для решения задач на равные размеры выплат.

Первая формула на нахождение суммы долга, обычно в задачах условия кредитования следующие: в банке берется кредит и увеличивается на r процентов, затем вносится выплата, и сумма оставшегося долга увеличивается на r процентов, и так через n лет происходит погашение кредита.

Задача1. [6] В июле планируется взять кредит на сумму 6 409 000 рублей. Условия его возврата таковы:

 — каждый январь долг возрастает на 12,5% по сравнению с концом предыдущего года;

 — с февраля по июнь каждого года необходимо выплатить некоторую часть долга.

Сколько рублей нужно платить ежегодно, чтобы кредит был полностью погашен двумя равными платежами (то есть за два года)?

Решение.

Составим краткую запись:

S = 6 409 000 рублей

r = 12, 5% k = 1+0,01r = 1,125 = t1582536692ap.gif

х = ? рублей

n = 2 года

t1582536692aq.pngПроиллюстрируем процесс кредитования на спирали:

Заметим, что кредитование похоже на цикл, в котором можно выделить три этапа: долг перед банком, выплата, остаток. Перенесем все данные в таблицу.

Перенесем данные в таблицу:

Долг (S*k)

Выплата

Остаток

Sk

x

Sk-x

k(Sk-x)

x

k(Sk-x)-x

Долг (S*k)

Выплата

Остаток

6 409 000 *t1582536692ap.gif

x

6 409 000 *t1582536692ap.gif-x

t1582536692ap.gif* (6 409 000 *t1582536692ap.gifx)

x

t1582536692ap.gif* (6 409 000 *t1582536692ap.gifx) — x

Составим уравнение, где последний остаток равен нулю, чтобы узнать размер выплаты

t1582536692ap.gif* (6 409 000 *t1582536692ap.gifx) – x = 0

6 409 000 * t1582536692ar.gif t1582536692ap.gifх – х = 0

t1582536692as.gifх = — t1582536692at.gif

x = t1582536692at.gif*t1582536692au.gif

x = 3 817 125 (рублей)

Ответ: 3 817 125 рублей

Рассмотрим вторую задачу такого же типа.

Задача 2. [6] В июле планируется взять кредит в банке на некоторую сумму. Условия его возврата таковы:

— каждый январь долг возрастает на 20% по сравнению с концом предыдущего года;

— с февраля по июнь каждого года необходимо выплатить часть долга, равную 2,16 млн рублей

Сколько млн рублей было взято в банке, если известно, что он был полностью погашен тремя равными платежами (то есть за три года)?

Решение.

Так же запишем краткую запись:

S = ? млн рублей

r = 20%

k = 1, 2

x = 2, 16 млн рублей

n = 3 года

Долг (Sk)

Выплата

Остаток

Sk

x

Sk-x

k(Sk-x)

x

k(Sk-x)-x

k(k(Sk-x)-x)

x

k(k(Sk-x)-x)-x

Раскроем скобки

Долг (Sk)

Выплата

Остаток

Sk

x

Sk-x

Sk2-kx

x

Sk2-kx — x

Sk3-k2x — kx

x

Sk3-k2x — kx — x

Sk3-k2x — kx – x = 0

Sk3 =k2x + kx + x

Sk3 = х (k2+ k + 1) (сделаем замену числа k)

S*1, 23 =х (1,22+ 1,2 + 1) (сделаем замену числа х)

S = t1582536692av.gif

S = t1582536692aw.gif

S = 4, 55 (млн рублей)

Ответ: 4,55 млн рублей

Заметим, что обе задачи решаем по одной схеме. Различия в том, что в первой задаче ищем размер выплат, а во второй задаче – сумму, взятую в кредит. В обеих задачах приходим к одной формуле.

Задача 1. k(Skx)-x=0(последний остаток равен 0) , отсюда

t1582536692ax.gif

t1582536692ay.gif

С этого момента можем получить две формулы.

1. t1582536692az.gif 2. t1582536692ba.gif

Задача 2. t1582536692bb.gif (последний остаток равен 0) , отсюда

t1582536692bc.gif

t1582536692bd.gif

С этого момента можем получить две формулы.

1. t1582536692be.gif 2. t1582536692bf.gif

Задача 3. [5] 31 декабря 2014 года Алексей взял в банке 9 282 рублей в кредит под 10% годовых. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 10%), затем Алексей переводит в банк X рублей. Какой должна быть сумма X, чтобы Алексей выплатил долг четырьмя равными платежами (то есть за четыре года)

Решение. Снова нарисуем спираль.

t1582536692bg.png
 

Решение.

Краткая запись:

S = 9 282 000 млн

r = 10% (годовые)

k = 1+0,01r = 1 + 0,01*10 =1,1

n = 4 года

х =? рублей

Долг(S*k)

Выплата

Остаток

Sk

х

Sk — x

k(kS-x)

x

K(kS-x) — x

k(k(kS-x) — x)

x

K(K(kS-x) — x) — x

K(K(K(kS-x) — x) — x)

x

K(K(K(kS-x) — x) — x) — x

Раскроем скобки

Долг(S*k)

Выплата

Остаток

Sk

х

Sk — x

k2S-kx

x

k2S-kx — x

k3S-k2x— kx

x

k3S-k2x — kx — x

k4S-k3x – k2x — kx

x

k4S-k3x — k2x — kx-x

*Примечание: на основании этой таблицы, можно вывести формулу

KnS – kn-1x – kn-2x – kn-3x — …. — kx –x = 0

Составим уравнение, где последний остаток равен нулю.

k4S-k3x — k2x — kx-x = 0 (подставим вместо k число t1582536692bh.gif )

(t1582536692bh.gif)4S = x((t1582536692bh.gif)3 + (t1582536692bh.gif)2 + t1582536692bh.gif + 1)

(t1582536692bh.gif)4S = x (t1582536692bi.gif+ t1582536692bj.gif + t1582536692bh.gif + 1)

(t1582536692bh.gif)4S = x t1582536692bk.gif

114*S÷104 = 4641x÷103

4641x*104 = 114S*103

x = 114S*103 ÷ 4641*104 (заменим S на 9 282 000)

12

x = 14 641 * 9 282 000 ÷ 4641

x = 2 928 200

Ответ: 2 928 200 рублей

Второй способ решения задачи.

Назовем эти задачи А) Задачи на равный размер выплат.

Зная, что мы долг должны погасить четырьмя равными платежами запишем формулу

последнего остатка k4S-k3x — k2x — kx-x = 0. Отсюда выведем

k4S=k3x + k2x + kx+x .

t1582536692bl.gif; Если бы мы искали S, то получили бы формулу t1582536692bm.gif;

На основании решений задач 1, 2, 3 запишем формулы

t1582536692bn.gif; t1582536692bo.gif;

Решение задач на сокращение остатка на одну долю от целого.

Следующий тип задач назовем тип Б) Задачи на сокращение остатка на одну долю от целого

Пример решения задачи типа Б:

Задача 4. [5] 15 января планируется взять кредит в банке на 24 месяца. Условия его возврата таковы:

— 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца;

— со 2-го числа пло14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца.

t1582536692bp.pngИзвестно, что в течение первого года кредитования нужно вернуть банке 466,5 тыс. рублей. Какую сумму планируется взять в кредит?

Решение.

Краткая запись:

S =? рублей

r = 3%

k = 1+0,01*3 = 1,03

Сумма x за 12 месяцев = 466,5 тыс. рублей

n = 24 месяца

С каждым месяцем долг будешь уменьшаться в t1582536692bq.gif, t1582536692br.gif…. t1582536692bs.gif ,t1582536692bt.gif, 0

Долг (S*k)

Выплата

Остаток

Sk

Skt1582536692bu.gifS= S(k-1)+t1582536692bv.gifS

t1582536692bu.gifS

t1582536692bu.gifSk

t1582536692bu.gifSk —t1582536692bw.gifS = t1582536692bu.gif S(k-1)+t1582536692bv.gifS

t1582536692bw.gifS

t1582536692bw.gifSk

t1582536692bw.gifSk —t1582536692bx.gifS = t1582536692bw.gif S(k-1)+t1582536692bv.gifS

t1582536692bx.gifS

t1582536692bx.gifSk

t1582536692bx.gifSk — t1582536692by.gifS =t1582536692bx.gifS(k-1)+t1582536692bv.gifS

t1582536692by.gifS

t1582536692by.gifSk

t1582536692by.gifSk —t1582536692bz.gifS =t1582536692by.gifS(k-1)+t1582536692bv.gifS

t1582536692bz.gifS

t1582536692bz.gifSk

t1582536692bz.gifSk —t1582536692ca.gifS = t1582536692bz.gifS(k-1)+t1582536692bv.gifS

t1582536692ca.gifS

t1582536692ca.gifSk

t1582536692ca.gifSk t1582536692cb.gifS = t1582536692ca.gifS(k-1)+t1582536692bv.gifS

t1582536692cb.gifS

t1582536692cb.gifSk

t1582536692cb.gifSk t1582536692cc.gifS = t1582536692cb.gifS(k-1)+t1582536692bv.gifS

t1582536692cc.gifS

t1582536692cc.gifSk

t1582536692cc.gifSk t1582536692cd.gifS = t1582536692cc.gifS(k-1)+t1582536692bv.gifS

t1582536692cd.gifS

t1582536692cd.gifSk

t1582536692cd.gifSk t1582536692ce.gifS= t1582536692cd.gifS(k-1)+t1582536692bv.gifS

t1582536692ce.gifS

t1582536692ce.gifSk

t1582536692ce.gifSk t1582536692cf.gifS =t1582536692ce.gifS(k-1)+t1582536692bv.gifS

t1582536692cf.gifS

t1582536692cf.gifSk

t1582536692cf.gifSk t1582536692cg.gifS = t1582536692cf.gifS(k-1)+t1582536692bv.gifS

t1582536692cg.gifS

Составим уравнение, где сумма всех выплат будет равняться всем выплатам за год кредитования. Найдем сумму кредита.

S(k-1)*(1 + t1582536692bu.gif+ t1582536692bw.gif+t1582536692bx.gif+t1582536692by.gif+t1582536692bz.gif+t1582536692ca.gif+t1582536692cb.gif+t1582536692cc.gif+t1582536692cd.gif+t1582536692ce.gif+t1582536692cf.gif) + t1582536692cg.gifS = 466 500

S(k-1)*t1582536692ch.gif + t1582536692cg.gifS = 466 500 (заменим число k на 1,03)

S(1,03-1)*t1582536692ch.gif + t1582536692cg.gifS = 466 500

S*(0,03*t1582536692ch.gif + t1582536692cg.gif) = 466 500

t1582536692ci.gif= 466 500

S = t1582536692cj.gif

S = 600 000 (рублей)

Ответ: 600 000 рублей

Запишем общую формулу для решения данной задачи.

t1582536692ck.gif-сумма выплат

Применим ее для решения следующей задачи.

Задача 5. [3] 15-го января планируется взять кредит в банке на 19 месяцев. Условия его возврата таковы:

— 1-го числа каждого месяца долг возрастает на r% по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.

Известно, что общая сумма выплат после полного погашения кредита на 30% больше суммы, взятой в кредит. Найдите r.

Решение.

t1582536692cl.gif.

Подставим в формулу наши данные, получим

t1582536692cm.gif

Сгруппируем t1582536692cn.gif t1582536692co.gif;t1582536692cp.gif;t1582536692cq.gif;t1582536692cr.gif;t1582536692cs.gif;t1582536692ct.gif

t1582536692cu.gif;t1582536692cv.gif;t1582536692cw.gif.

Получим 9 пар по 1. Поэтому

t1582536692cx.gif.

t1582536692cy.gif

t1582536692cz.gifОтвет: 3%

Задача 6. [4] В июле планируется взять кредит на сумму 18 млн. рублей на некоторый срок(целое число лет). Условия его возврата таковы:

-каждый январь долг возрастает на 10 % по сравнению с концом предыдущего года;

-с февраля по июнь каждого года необходимо выплатить часть долга;

-в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года.

На сколько лет планируется взять кредит , если известно, что общая сумма после выплат после его погашения составит 27 млн. рублей.

Решение. Снова обратимся к той же формуле

t1582536692da.gif

F-сумма выплаченная банку, P-переплата

t1582536692db.gif

t1582536692dc.gif

t1582536692dd.gif

t1582536692de.gif

Подставив в эту формулу найдем

t1582536692df.gif

t1582536692dg.gif

t1582536692dh.gif

t1582536692di.gif

Ответ: 9 лет.

Рассмотрим ещё несколько задач.

Задача 7.[5] 15-ого января Аркадий планирует взять кредит в банке на шесть месяцев в размере 1 млн рублей. Условия его возврата следующие:

— 1-ого числа каждого месяца долг увеличивается на r процентов по сравнению с концом предыдущего месяца, где r — целое число;

— выплата должно производиться один раз в месяц со 2-ого по 14-е число каждого месяца;

— 15-ого числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей.

Дата

15.01

15.02

15.03

15.04

15.05

15.06

15.07

Долг (в млн рублей)

1

0,8

0,6

0,5

0,4

0,3

0

Найдите наименьшее значение r, при котором Аркадию в общей сумме придется выплатить больше 1,5 млн рублей.

15

Долг (S*k)

Выплата

Остаток

1 k

K-0,8

0,8

0,8k

0,8k – 0,6

0,6

0,6k

0,6k – 0,5

0,5

0,5k

0,5k – 0,4

0,4

0,4k

0,4k – 0,3

0,3

0,3k

0,3k — 0

0

Теперь составим неравенство, где сумма всех выплат будет строго больше 1,5 млн:

k – 0,8 + 0,8k — 0,6 + 0,6k – 0,5 + 0,5k – 0,4 + 0,4k – 0,3 + 0,3k – 0 > 1,5

3,6k – 2,6 > 1,5

3,6k > 4,1

3,6(1+0,01r) > 4,1

3,6 + 0,036r > 4,1

0,036r > 0,5

r >t1582536692dj.gif

r>t1582536692dk.gif

r > 13,8(3) => r = 14

Ответ: 14%

Задача 8. .[4] В июле 2020 года планируется взять кредит на некоторую сумму. Условия возврата таковы:

— в январе каждого года долг увеличивается на 30% по сравнению с предыдущим годом

— с февраля по июнь нужно выплатить часть долга одним платежом.

Определите, на какую сумму взяли кредит в танке, если известно, что кредит был выплачен тремя равными платежами (за 3 года) и общая сумма выплат на 156 060 рублей больше суммы взятого кредита.

Краткая запись:

S = ? рублей

r = 30%

k = 1, 3 = t1582536692dl.gif

x = ? рублей (равные платежи)

n = 3 года

F = S+ 156 060 рублей

Сумма (S*k)

Выплата

Остаток

Sk

x

Sk-x

Sk2-kx

х

Sk2-kx — x

Sk3-k2x — kx

x

Sk3-k2x — kx — x

Составим уравнением с последним остатком, чтобы определить размер суммы S:

Sk3-k2x — kx – x = 0

Sk3 = k2x + kx + x

Sk3 = х (k2 + k +1)

Sk3 = x((t1582536692dl.gif)2+t1582536692dl.gif+ 1)

Sk3 = x (t1582536692dm.gif + t1582536692dl.gif+ t1582536692dn.gif)

Sk3 = t1582536692do.gif

Sk3 * 100 = 399*х

S = t1582536692dp.gif

Определим размер выплаты:

3х = t1582536692dp.gif+ 156 060

6591х = 3990*х + 342 863 820

2601х = 342 863 820

х = 131 820

Возвращаясь к уравнению из пункта 1, найдем теперь размер суммы S:

S = t1582536692dp.gif

S = t1582536692dq.gif

S = 3990 * 60

S = 239 400 (рублей)

Общая схема решения экономических задач.

Решив и проанализировав задачи, я пришла к заключению, что большая часть задач сводится к таблице такого вида:

Долг (Сумма*k)

Выплата(Долг-Остаток)

Остаток (Долг- Выплата)

Для понимания задачи всегда можно нарисовать спираль.

Таким образом, в ходе своего исследования я заметила:

I. что большинство экономических задач можно условно разделить на два типа:

А) равный размер выплат Б) сокращение остатка на одну долю от целого.

II. имеет общую схему решения:

1.Нарисовать процесс «движения» денег в виде спирали

2. Занести данные в таблицу

3. Составить выражения для всех столбиков таблицы

4. Составить уравнение или неравенство

5. В ходе решения уравнения появится формула, с помощью которой будет найдено неизвестное

Формулы экономических задач,

которые получены в ходе моего исследования

А) равный размер выплат

Основная идея для решения этих задач уравнение для последнего остатка:

KnS – kn-1x – kn-2x – kn-3x — …. — kx –x = 0

Из этого уравнения выводим формулы для S и X.

t1582536692dr.gif; t1582536692ds.gif;

Б) сокращение остатка на одну долю от целого.

Закономерность изменения выплата при её разном значении:

1.S(k-1)+t1582536692bt.gifS; t1582536692bq.gif*S(k-1)+t1582536692bt.gifS;t1582536692br.gif*S(k-1)+t1582536692bt.gifS; … t1582536692bs.gif*S(k-1)+t1582536692bt.gifS;t1582536692bt.gif*S(k-1)+t1582536692bt.gifS

t1582536692dt.gifсумма выплат

Формула переплаты:

t1582536692de.gif(где P = F – S)

ГЛАВА 5. ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Задача 1: .[4] В июле 2016 года планируется взять кредит в банке на три года в размере S млн рублей, где S – целое число. Условия его возврата таковы:

— каждый январь долг увеличивается на 30% по сравнению с концом предыдущего года;

— с февраля по июль необходимо выплатить одним платежом часть долга;

— в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей.

Месяц и год

Июль 2016

Июль 2017

Июль 2018

Июль 2019

Долг (млн рублей)

S

0,6S

0,3S

0

Найдите набольшее значение S, при котором каждая из выплат будет меньше 5 млн рублей. Ответ: 7 млн рублей

Задача 2: .[4] В июле планируется взять кредит в банке на сумму 4,5 млн рублей на срок 9 лет Условия его возврата таковы:

— каждый январь долг возрастает на r% по сравнению с концом предыдущего года;

— с февраля по июнь каждого года необходимо выплатить часть долга;

— в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года.

Найдите r, если известно, что наибольший годовой платёж по кредиту составит не более 1,4 млн рублей, а наименьший — не менее 0,6 млн. Ответ: 20%

Задача 3. .[4] В июле планируется взять кредит в банке на сумму 9 млн рублей на некоторый срок (целое число лет). Условия его возврата таковы:

— каждый январь долг возрастает на 10% по сравнению с концом предыдущего года;

— с февраля по июль каждого года необходимо выплатить часть долга;

— в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года.

Чему будет равна общая сумма выплат после полного погашения кредита, если наименьший годовой платеж составит 1,5 млн рублей? Ответ: 16,2 млн рублей

Задача 4. .[4] В июле планируется взять кредит в банке на сумму 16 млн рублей на некоторый срок (целое число лет). Условия его возврата таковы:

— каждый январь долг возрастает на 25% по сравнению с концом предыдущего года;

— с февраля по июнь каждого года необходимо выплатить часть долга;

— в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года.

На сколько лет планируется взять кредит, если известно, что общая сумма выплат после его полного погашения составит 38 млн рублей? Ответ: 10 лет

Задача 5. .[2] 15-го января планируется взять кредит в банке на 19 месяцев. Условия его возврата таковы:

— 1-го числа каждого месяца долг возрастает на r% по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.

Известно, что общая сумма выплат после полного погашения кредита на 30% больше суммы, взятой в кредит. Найдите r. Ответ: 3%

Задача 6. .[2] В июле планируется взять кредит в банке на сумму 5 млн рублей на некоторый срок (целое число лет). Условия его возврата таковы:

— каждый январь долг возрастает на 20% по сравнению с концом предыдущего года;

— с февраля по июнь каждого года необходимо выплатить часть долга;

— в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года.

На сколько лет был взят кредит, если общая сумма выплат после полного погашения кредита составила 7,5 млн рублей? Ответ: 4года

Задача 7 .[6] В июле планируется взять кредит в банке на сумму 100 000 рублей. Условия его возврата таковы:

— каждый январь долг возрастает на r% по сравнению с концом предыдущего года;

— с февраля по июнь каждого года необходимо выплатить часть долга.

Найдите число r, если известно, что кредит был полностью погашен за два года, причем в первый год было переведено 55 000 рублей, а во второй год – 69 000 рублей. Ответ: 15%

Задача 8. [6] В июле планируется взять кредит в банке на сумму 100 000 рублей. Условия его возврата таковы:

— каждый январь долг возрастает на r% по сравнению с концом предыдущего года;

— с февраля по июнь каждого года необходимо выплатить часть долга.

Найдите число r, если известно, что кредит был полностью погашен за два года, причем в первый год было переведено 66 000 рублей, а во второй год – 58 000 рублей. Ответ: 16%

Задача 9. [6] 15 июля планируется взять кредит на сумму 800 000 рублей. Условия его возврата таковы:

— 31-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить некоторую часть долга.

На какое минимальное количество месяцев можно взять кредит при условии того, чтобы ежемесячные выплаты были не более 200 000 рублей? Ответ: 5 месяцев

Задача 10. [6] В июле планируется взять кредит в банке на сумму 8 млн рублей. Условия его возврата таковы:

— каждый январь долг возрастает на 25% по сравнению с концом предыдущего года;

— с февраля по июнь каждого года необходимо выплатить часть долга;

— в июле каждого года долг должен быть на одну и ту же величину меньше долга на июль предыдущего года.

На какой минимальный срок следует брать кредит, чтобы наибольший годовой платёж по кредиту не превысил 3,6 млн рублей? Ответ: 5 лет

ЗАКЛЮЧЕНИЕ

Практические задачи задания № 17 сложны для обучающихся отсутствием унифицированных формул в курсе математики школьной программы. Я предположила, что существует множество видов «экономических» задач на проценты и способов их решения, но их можно объединить по типам для облегчения усвоения материала, а также можно самостоятельно вывеси формулы для их решения. С этой целью я занялась исследованием экономических задач. Я изучила теоретические аспекты решения экономических задач и научилась понимать и использовать информацию, представленную в процентах. Познакомилась с видами «экономических» задач из сборников для подготовки к ЕГЭ 2015, 2016, 2017, 2018 гг. и открытого банка задач по математике. Углубила знания по теме проценты. Рассмотрела различные способы решения задач. Выявила структуру экономических задач на проценты. Провела анализ решений. Обобщила и систематизировала способы решения задач. Составила единую схему решения и вывела формулы для решения этих задач. Собрала материал для самостоятельной работы, чем облегчила работу тем, кто будет готовиться к экзаменам по данной методичке.

Решив и проанализировав задачи, я пришла к заключению, что большая часть задач сводится к таблице такого вида:

Долг (Сумма*k)

Выплата(Долг-Остаток)

Остаток (Долг- Выплата)

Для понимания задачи всегда можно нарисовать спираль.

Таким образом, в ходе своего исследования я заметила:

I. что большинство экономических задач можно условно разделить на два типа:

А) равный размер выплат Б) сокращение остатка на одну долю от целого.

II. имеет общую схему решения:

1.Нарисовать процесс «движения» денег в виде спирали

2. Занести данные в таблицу

3. Составить выражения для всех столбиков таблицы

4. Составить уравнение или неравенство

5. В ходе решения уравнения появится формула, с помощью которой будет найдено неизвестное

Формулы экономических задач,

которые получены в ходе моего исследования

А) равный размер выплат

Основная идея для решения этих задач уравнение для последнего остатка:

KnS – kn-1x – kn-2x – kn-3x — …. — kx –x = 0

Из этого уравнения выводим формулы для S и X.

t1582536692dr.gif; t1582536692ds.gif;

Б) сокращение остатка на одну долю от целого.

Закономерность изменения выплата при её разном значении:

1.S(k-1)+t1582536692bt.gifS; t1582536692bq.gif*S(k-1)+t1582536692bt.gifS;t1582536692br.gif*S(k-1)+t1582536692bt.gifS; … t1582536692bs.gif*S(k-1)+t1582536692bt.gifS;t1582536692bt.gif*S(k-1)+t1582536692bt.gifS

t1582536692dt.gifсумма выплат

Формула переплаты:

t1582536692de.gif(где P = F – S)

Так гипотеза, сформулированная нами в начале исследования, подтвердилась.

Проведение данного исследования позволило получить практический материал для обучения математике, который также лег в основу моего личностного развития, как выпускника 2017/2018 учебного года и способствовало продуктивному началу подготовке к сдаче экзамена.

В дальнейшем планируется использование созданного материала на уроках математики в старших классах школы и расширение спектра экономических задач.

Таким образом, понимание процентов, кредитования, крайне полезно и важно, ведь это не только помогает решить задачи профильного уровня ЕГЭ по математике, но и в целом даёт базовое понятие о банковских процессах, что в будущей жизни, несомненно, поможет.

В целом работа по данной теме для меня оказалась плодотворной, а также она может представлять интерес для всех, кто сталкивается с математическими расчетами. Кроме того, при исследовании удалось вывести общую схему решения задач, которую можно будет применять в последующих жизненных ситуациях.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ:

Интернет-источники:

1.Web –Википедия «Процент» https://ru.wikipedia.org/wiki /%D0%9F%D1%80%D0%BE%D1%86%D0%B5%D0%BD%D1%82

2.РЕШУ ЕГЭ Образовательный портал для подготовки к экзаменам/ https://math-ege.sdamgia.ru/?redir=1

3.Самообразование. Главная > 2017: ЕГЭ, ОГЭ Предметы > ЕГЭ 2017. Математика. И.В. Ященко. 36 вариантов. Профильный уровень / http://self-edu.ru/ege2017_36.php

Литературные источники:

4.И.В.Ященко «ЕГЭ-2018 МАТЕМАТИКА ПРОФИЛЬНЫЙ УРОВЕНЬ» — М., Национальное образование, 2018г.

5. И.В.Ященко «ЕГЭ-2017 МАТЕМАТИКА ПРОФИЛЬНЫЙ УРОВЕНЬ» -М. , Национальное образование , 2017г.

6.А.В. Семенов, И.В.Ященко «КАК ПОЛУЧИТЬ МАКСИМАЛЬНЫЙ БАЛЛ НА ЕГЭ МАТЕМАТИКА »-М., Интеллект -центр , 2015г.

7.А. Г. Малкова «МАТЕМАТИКА АВТОРСКИЙ КУРС ПОДГОТОВКИ К ЕГЭ»_ Ростов – на- Дону, Феникс, 2017г.

Понравилась статья? Поделить с друзьями:
  • Экономические задания егэ математика профиль
  • Экономические графики по обществознанию по егэ
  • Экономические вопросы егэ
  • Экономические блага это егэ
  • Экономические блага термин егэ