Есть ли функции в егэ по математике

В 2022 году в вариантах ЕГЭ Профильного уровня появилась задание №10 по теме «Графики функций». Можно считать его подготовительным для освоения задач с параметрами.

Как формулируется задание 10 ЕГЭ по математике? По графику функции, который дается в условии, вам нужно определить неизвестные параметры в ее формуле. Возможно — найти значение функции в некоторой точке или координаты точки пересечения графиков функций.

Чтобы выполнить это задание, надо знать, как выглядят и какими свойствами обладают графики элементарных функций. Надо уметь читать графики, то есть получать из них необходимую информацию. Например, определять формулу функции по ее графику.

Вот необходимая теория для решения задания №10 ЕГЭ.

Что такое функция

Чтение графика функции

Четные и нечетные функции

Периодическая функция

Обратная функция

5 типов элементарных функций и их графики

Преобразование графиков функций

Построение графиков функций

Да, теоретического материала здесь много. Но он необходим — и для решения задания 10 ЕГЭ, и для понимания темы «Задачи с параметрами», а также для дальнейшего изучения математики на первом курсе вуза.

Рекомендации:

Запоминай, как выглядят графики основных элементарных функций. Замечай особенности графиков, чтобы не перепутать параболу с синусоидой : -)

Проверь себя: какие действия нужно сделать с формулой функции, чтобы сдвинуть ее график по горизонтали или по вертикали, растянуть, перевернуть?

Разбирая решения задач, обращай внимание на то, как мы ищем точки пересечения графиков или неизвестные переменные в формуле функции. Такие элементы оформления встречаются также в задачах с параметрами.

Задание 10 в формате ЕГЭ-2021

Линейная функция

Необходимая теория

1. На рисунке изображён график функции fleft(xright)=kx+b. Найдите значение x, при котором fleft(xright)=-13,5.

Решение:

Найдем, чему равны k и b. График функции проходит через точки (3; 4) и (-1; -3). Подставив по очереди координаты этих точек в уравнение прямой y = kx + b, получим систему:

left{ begin{array}{c}3k+b=4 \-k+b=-3 end{array}right..

Вычтем из первого уравнения второе:

left{ begin{array}{c}4k=7 \-k+b=-3 end{array};right. left{ begin{array}{c}k=frac{7}{4} \b=-frac{5}{4} end{array}right. .

Уравнение прямой имеет вид:

displaystyle y=frac{7}{4}x-frac{5}{4}.

Найдем, при каком x значение функции равно -13,5.

displaystyle frac{7}{4}x-frac{5}{4}=-13,5;

7x-5=-54;

7x=-49;

x=-7.

Ответ: -7.

2. На рисунке изображены графики двух линейных функций. Найдите абсциссу точки пересечения графиков.

Решение:

Запишем формулы функций.

Одна из них проходит через точку (0; 1) и ее угловой коэффициент равен -1. Это линейная функция y=-x+1.

Другая проходит через точки (-1; -1) и (-2; 4). Подставим по очереди координаты этих точек в формулу линейной функции y=kx+b.

left{ begin{array}{c}-k+b=-1 \-2k+b=4 end{array}right. .

Вычтем из первого уравнения второе.

k=-5; тогда b=-6.

Прямая задается формулой: y=-5x-6.

Найдем абсциссу точки пересечения прямых. Эта точка лежит на обеих прямых, поэтому:

left{ begin{array}{c}y=-x+1 \y=-5x-6 end{array} ;right. begin{array}{c}-x+1=-5x-6 ; \x=-frac{7}{4}=-1,75. end{array}

Ответ: -1,75.

3. На рисунке изображены графики двух линейных функций. Найдите абсциссу точки пересечения графиков.

Решение:

Прямая, расположенная на рисунке ниже, задается формулой y=x+1, так как ее угловой коэффициент равен 1 и она проходит через точку (-3; -2).

Для прямой, расположенной выше, угловой коэффициент равен displaystyle frac{3}{2}=1,5.

Эта прямая проходит через точку (-2; 4), поэтому: 1,5cdot left(-2right)+b=4; b=7, эта прямая задается формулой y=1,5x+7.

Для точки пересечения прямых:

x+1=1,5x+7;

0,5x=-6;

x=-12.

Ответ: -12.

Квадратичная функция. Необходимая теория

4. На рисунке изображен график функции y=ax^2+bx+c. Найдите b.

Решение:

На рисунке — квадратичная парабола y={left(x-aright)}^2, полученная из графика функции y=x^2 сдвигом на 1 вправо, то есть a=1.

Получим: fleft(xright)={left(x-1right)}^2=x^2-2x+1;

b=-2.

Ответ: -2.

5. На рисунке изображен график функции y={left(x-cright)}^2. Найдите с.

Решение:

На рисунке изображена парабола, ветви которой направлены вверх, значит, коэффициент при x^2 положительный. График сдвинут относительно графика функции y=x^2 на 1 единицу вправо вдоль оси Ох. Формула функции имеет вид y={left(x-1right)}^2.

Значит, с = 1.

Ответ: 1

6. На рисунке изображён график функции fleft(xright)=2x^2+bx+c. Найдите fleft(-5right).

Решение:

График функции y=2x^2+bx+c проходит через точки с координатами (1; 1) и (-2; -2). Подставляя координаты этих точек в формулу функции, получим:

left{ begin{array}{c}2+b+c=1 \2cdot 4-2b+c=-2 end{array}right. .

left{ begin{array}{c}b+c=-1 \-2b+c=-10 end{array};right. отсюда b=3, c=-4.

Формула функции имеет вид:

fleft(xright)=2x^2+3x-4;

fleft(-5right)=2cdot 25-3cdot 5-4=31.

Ответ: 31.

7. На рисунке изображены графики функций fleft(xright)=5x+9 и gleft(xright)=ax^2+bx+c, которые пересекаются в точках А и В. Найдите абсциссу точки В.

Решение:

Найдем a, b и c в формуле функции gleft(xright)=ax^2+bx+c. График этой функции пересекает ось ординат в точке (0; -3), поэтому c=-3.

График функции g(x) проходит через точки (-1; -3) и (2; 3). Подставим по очереди координаты этих точек в формулу функции:

left{ begin{array}{c}a-b-3=-3 \4a+2b-3=3 end{array};right. отсюда a=b=1;

gleft(xright)=x^2+x-3;

Найдем абсциссу точки B. Для точек A и B: fleft(xright)=g(x)

5x+9=x^2+x-3;

x^2-4x-12=0.

x=-2 (это абсцисса точки A) или x=6 (это абсцисса точки B).

Ответ: 6.

Степенные функции. Необходимая теория

8. На рисунке изображены графики функций displaystyle fleft(xright)=frac{k}{x} и gleft(xright)=ax+b, которые пересекаются в точках А и В. Найдите абсциссу точки В.

Решение:

График функции displaystyle y=frac{k}{x} проходит через точку (2; 1); значит, displaystyle frac{k}{2}=1;

displaystyle k=2, ; fleft(xright)=frac{2}{x}.

График функции gleft(xright)=ax+b проходит через точки (2; 1) и (1; -4), a=5 — угловой коэффициент прямой; (находим как тангенс угла наклона прямой и положительному направлению оси X); тогда 5cdot 2+b=1; b=-9.

Для точек A и B имеем: fleft(xright)=gleft(xright);

displaystyle frac{2}{x}=5x-9;

5x^2-9x-2=0.

Отсюда x=2 (абсцисса точки A) или x=-0,2 (абсцисса точки B).

Ответ: -0,2.

9. На рисунке изображён график функции fleft(xright)=ksqrt{x}. Найдите f (6,76).

Решение:

Функция задана формулой:

y=ksqrt{x}. Ее график проходит через точку (4; 5); значит, kcdot sqrt{4}=5; k=2,5;

fleft(xright)=2,5sqrt{x}. Тогда fleft(6,76right)=2,5cdot sqrt{6,76}=2,5cdot 2,6=6,5.

Ответ: 6,5.

10. На рисунке изображен график функции fleft(xright)=sqrt{ax}. Найдите fleft(-25right).

Решение:

График функции на рисунке симметричен графику функции y=sqrt{x} относительно оси Y. Он проходит через точку (-1; 1). Значит, формула изображенной на рисунке функции: y=sqrt{-x}, а = — 1. Тогда fleft(-25right)=sqrt{25} = 5.

Ответ: 5.

Показательная функция. Необходимая теория

11. На рисунке изображён график функции fleft(xright)=a^{x+b}. Найдите fleft(-7right).

Решение:

График функции проходит через точки (-3; 1) и (1; 4). Подставив по очереди координаты этих точек в формулу функции fleft(xright)=a^{x+b}, получим:

left{ begin{array}{c}a^{-3+b}=1 \a^{1+b}=4 end{array}.right.

Поделим второе уравнение на первое:

a^{1+b+3-b}=4; ; a^4=4;; a=sqrt{2}.

Подставим во второе уравнение:

displaystyle {sqrt{2}}^{1+b}=4;; 2^{frac{1+b}{2}}=2^2;; 1+b=4;; b=3.

displaystyle fleft(xright)={left(sqrt{2}right)}^{x+3};; fleft(-7right)={left(sqrt{2}right)}^{-7+3}={left(sqrt{2}right)}^{-4}=frac{1}{4}=0,25.

Ответ: 0,25.

12. На рисунке изображен график функции y=acdot 4^x. Найдите a.

Решение:

График функции y=acdot 4^x проходит через точку left(0;2right). Это значит, что yleft(0right)=2;

acdot 4^0=2; a=2, формула функции имеет вид: y=2cdot 4^x.

Ответ: 2.

Логарифмическая функция. Необходимая теория

13. На рисунке изображён график функции fleft(xright)={{log}_a left(x+bright)}. Найдите fleft(11right).

Решение:

График функции y={{log}_a left(x+bright) } проходит через точки (-3; 1) и (-1; 2). Подставим по очереди эти точки в формулу функции.

left{ begin{array}{c}{{log}_a left(-3+bright)=1  } \{{log}_a left(-1+bright) }=2 end{array}.right.

Отсюда: left{ begin{array}{c}b-3=a \b-1=a^2 end{array}.right.

Вычтем из второго уравнения первое:

a^2-a=2; a^2-a-2=0;

a=2 или a=-1 — не подходит, так как a textgreater 0 (как основание логарифма).

Тогда b=a+3=5; fleft(xright)={{log}_2 left(x+5right) };

fleft(11right)={{log}_2 16=4.}

Ответ: 4.

14. На рисунке изображен график функции fleft(xright)=a{{log}_5 x }-c.

Найдите f(0,2).

Решение:

График логарифмической функции на рисунке проходит через точки left(1;-2right) и left(5;3right). Подставив по очереди координаты этих точек в формулу функции, получим систему уравнений:

left{ begin{array}{c}a{{log}_5 1 }-c=-2 \a{{log}_5 5 }-c=3 end{array};right.

left{ begin{array}{c}-c=-2 \a-c=3 end{array};right.

left{ begin{array}{c}c=2 \a=5 end{array}.right.

Формула функции: fleft(xright)=5{{log}_5 x }-2.

Найдем displaystyle fleft(0,2right)=fleft(frac{1}{5}right) :

displaystyle 5cdot {{log}_5 frac{1}{5} }-2=-5-2=-7.

Ответ: -7.

Тригонометрические функции. Необходимая теория

15. На рисунке изображён график функции fleft(xright)=a{sin x }+b. Найдите b.

Решение:

График функции y=a{sin x+b } сдвинут на 1,5 вверх; fleft(0right)=1,5. Значит, b=1,5. Амплитуда a=2 (наибольшее отклонение от среднего значения).

Это график функции fleft(xright)=2{sin x }+1,5. Он получен из графика функции y={sin x } растяжением в 2 раза по вертикали и сдвигом вверх на 1,5.

Ответ: b=1,5.

16. На рисунке изображён график функции

fleft(xright)=a tgx+b.

Найдите a.

Решение:

На рисунке — график функции fleft(xright)=a tgx+b. Так как fleft(0right)=-1,5,  b=-1,5.

График функции проходит через точку A displaystyle (frac{pi}{4}; ; frac{1}{2}). Подставим b = - 1,5 и координаты точки А в формулу функции.

displaystyle a  tg frac{pi}{4}-1,5=frac{1}{2}.

Так как displaystyle tg frac{pi}{4}=1, получим: a = 2.

Ответ: 2.

17. На рисунке изображен график периодической функции у = f(x). Найдите значение выражения f (21)- f (-9).

Решение:

Функция, график которой изображен на рисунке, не только периодическая, но и нечетная, и если yleft(1right)=2,5, то yleft(-1right)=-2,5.

Пользуясь периодичностью функции fleft(xright) , период которой T = 4, получим:

fleft(21right)=fleft(1+4cdot 5right)=fleft(1right)=2,5;

fleft(-9right)=fleft(-1-4cdot 2right)=fleft(-1right)=-2,5;

fleft(21right)-fleft(-9right)=2,5-left(-2,5right)=5.

Ответ: 5.

Друзья, мы надеемся, что на уроках математики в школе вы решаете такие задачи. Для углубленного изучения темы «Функции и графики» (задание 10 ЕГЭ по математике), а также задач с параметрами и других тем ЕГЭ — рекомендуем Онлайн-курс для подготовки к ЕГЭ на 100 баллов.

Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Задание 10 ЕГЭ по математике. Графики функций» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
09.03.2023

Функции ЕГЭ по математике

08.11.2013

Материал для подготовки к ЕГЭ по математике на тему: «Функции».

Содержание темы:

3.  ФУНКЦИИ
3.1.  Основные понятия и определения
3.2.  Графики элементарных функций
3.3.  Преобразования графиков функций 
3.4.  Изображения некоторых множеств точек на плоскости
Тест для проверки теоретических знаний
Примеры
Задачи для самостоятельного решения
Контрольный тест 

Рекомендуем использовать этот материал при тщательной подготовке к сдаче ЕГЭ на высокий балл.

В теме содержатся теория и практические задания различного уровня сложности.

Смотреть в PDF:

Или прямо сейчас: Скачайте в pdf файле.

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания,
берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта
готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием
сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом
администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта
и представлены на сайте исключительно для ознакомления. Авторские права на материалы
принадлежат их законным авторам. Частичное или полное копирование материалов сайта без
письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой
зрения авторов.

Комбинированные задачи

Версия для печати и копирования в MS Word

Гиперболы

Версия для печати и копирования в MS Word

1

Источник: А. Ларин: Тренировочный вариант № 110.


2

На рисунке изображён график функции f левая круглая скобка x правая круглая скобка =dfrackx плюс a. Найдите, при каком значении x значение функции равно 0,8.


3


4


5


6


7


8


9


10


11


12


13


14


15


16


17


18


19


20

На рисунке изображён график функции вида f левая круглая скобка x правая круглая скобка = дробь: числитель: ax плюс b, знаменатель: x плюс c конец дроби , где числа a, b и c  — целые. Найдите a.


21

На рисунке изображён график функции вида f левая круглая скобка x правая круглая скобка = дробь: числитель: ax плюс b, знаменатель: x плюс c конец дроби , где числа a, b и c  — целые. Найдите c.


22

На рисунке изображён график функции вида f левая круглая скобка x правая круглая скобка = дробь: числитель: ax плюс b, знаменатель: x плюс c конец дроби , где числа a, b и c  — целые. Найдите a.


23

На рисунке изображён график функции вида f левая круглая скобка x правая круглая скобка = дробь: числитель: ax плюс b, знаменатель: x плюс c конец дроби , где числа a, b и c  — целые. Найдите a.


24

На рисунке изображён график функции вида f левая круглая скобка x правая круглая скобка = дробь: числитель: ax плюс b, знаменатель: x плюс c конец дроби , где числа a, b и c  — целые. Найдите a.


25

На рисунке изображён график функции вида f левая круглая скобка x правая круглая скобка = дробь: числитель: ax плюс b, знаменатель: x плюс c конец дроби , где числа a, b и c  — целые. Найдите c.


26

На рисунке изображён график функции вида f левая круглая скобка x правая круглая скобка = дробь: числитель: ax плюс b, знаменатель: x плюс c конец дроби , где числа a, b и c  — целые. Найдите c.


27

На рисунке изображён график функции вида f левая круглая скобка x правая круглая скобка = дробь: числитель: ax плюс b, знаменатель: x плюс c конец дроби , где числа a, b и c  — целые. Найдите b.


28

На рисунке изображён график функции вида f левая круглая скобка x правая круглая скобка = дробь: числитель: ax плюс b, знаменатель: x плюс c конец дроби , где числа a, b и c  — целые. Найдите b.


29

На рисунке изображён график функции вида f левая круглая скобка x правая круглая скобка = дробь: числитель: ax плюс b, знаменатель: x плюс c конец дроби , где числа a, b и c  — целые. Найдите b.


30


31


32


33

Кусочно-линейная функция

Версия для печати и копирования в MS Word

1


2


3


4


5


6


7


8


9


10


11


12


13

Параболы

Версия для печати и копирования в MS Word

1


2


3


4


5


6


7


8


9


10


11


12


13


14


15


16


17


18


19


20


21


22


23


24


25


26


27


28


29


30


31

На рисунке изображён график функции вида f левая круглая скобка x правая круглая скобка =ax в квадрате плюс bx плюс c, где числа a, b и c  — целые. Найдите абсциссу вершины параболы.


32

На рисунке изображён график функции f левая круглая скобка x правая круглая скобка =2x в квадрате плюс bx плюс c. Найдите значение f(−6).


33

На рисунке изображён график фуıкции вида f левая круглая скобка x правая круглая скобка =left|a x в квадрате плюс b x плюс c|, где a, b и c  — целые числа. Найдите значение f(4).

Источник: Пробный вариант ЕГЭ по математике 03.12.22 Москва.

Тригонометрические функции

Версия для печати и копирования в MS Word

1

На рисунке изображён график функции f левая круглая скобка x правая круглая скобка =a косинус x плюс b. Найдите a.


2

На рисунке изображён график функции f левая круглая скобка x правая круглая скобка =a косинус x плюс b. Найдите b.


3

На рисунке изображён график функции f левая круглая скобка x правая круглая скобка =a тангенс x плюс b. Найдите a.


4

На рисунке изображён график функции f левая круглая скобка x правая круглая скобка =a тангенс x плюс b. Найдите b.


5

На рисунке изображён график функции f левая круглая скобка x правая круглая скобка =a синус x плюс b. Найдите a.


6

На рисунке изображён график функции f левая круглая скобка x правая круглая скобка =a синус x плюс b. Найдите b.


7

На рисунке изображён график функции вида f левая круглая скобка x правая круглая скобка =a косинус левая круглая скобка b Пи x плюс c правая круглая скобка плюс d, где числа a, b, c и d  — целые. Найдите f левая круглая скобка дробь: числитель: 100, знаменатель: 3 конец дроби правая круглая скобка .


8


9

Линейные функции

Версия для печати и копирования в MS Word

1


2


3

На рисунке изображены графики двух линейных функций. Найдите абсциссу точки пересечения графиков.


4

На рисунке изображены графики двух линейных функций. Найдите абсциссу точки пересечения графиков.


5

На рисунке изображены графики двух линейных функций. Найдите абсциссу точки пересечения графиков.

Показательные и логарифмические функции

Версия для печати и копирования в MS Word

В ЕГЭ 2022 года добавили новую задачу на графики функций. Для решения этой задачи нужно сначала определить формулу функции, а затем вычислить ответ на вопрос задачи. И если вычисление ответа по известной формуле обычно не составляет труда, то вот определение самой формулы часто ставит школьников в тупик. Поэтому мы разберем три разных подхода к этому вопросу.

Замечание. Про то как определяется формула у прямой и параболы я написала в этой и этой статьях. Поэтому здесь в примерах я буду использовать другие функции – дробные, иррациональные, показательные и логарифмические, но все три описанных здесь способа работают и для линейных, и для квадратичных функций в том числе.

1 способ – находим формулу по точкам

Этот способ подходит вообще для любой девятой задачи, но занимает достаточно много времени и требует хорошего навыка решения систем уравнений.

Давайте разберем алгоритм на примере конкретной 9-ой задачи ЕГЭ:

задача с гиперболой

Алгоритм:

1. Находим 2 точки с целыми координатами. Обычно они выделены жирно, но если это не так, то не проблема найти их самому.
Пример:

находим две точки с целыми координатами

2. Подставляем эти координаты в «полуфабрикат» функции. Вместо (f(x))– координату игрек, вместо (x) – икс. Получается система.

составляем уравнения

3. Решаем эту систему и получаем готовую формулу.

решаем систему

4. Готово, функция найдена, можно переходить ко второму этапу – вычислению (f(-8)). Если вы вдруг не знаете, что это значит – в конце статьи я рассматриваю этот момент более подробно.

отвечаем на вопрос задачи

Давайте посмотрим метод еще раз на примере с логарифмической функцией.
Пример:

Пример с логарифмической функцией

2 способ – преобразование графиков функций

Этот способ сильно быстрее первого, но требует больше знаний. Для использования преобразований функций нужно знать, как выглядят функции без изменения и как преобразования их меняют. Наиболее удобно использовать этот способ для иррациональной функции ((y=sqrt{x}) ) и функции обратной пропорциональности ((y=frac{1}{x})).

Вот как выглядит применение этого способа:

преобразование графиков функций

Для использования этого способа надо знать, как выглядят изначальные функции:

Виды функций

И понимать, как меняются функции от преобразований:

Преобразование графиков функций

примеры преобразований функций

Преобразование показательной функции Преобразование гипербол

Часто даже по «полуфабрикату» функции понятно, какие преобразования сделали с функцией:

как по формуле определить какие были преобразования с функцией

Пример:

пример с функцией обратной пропорциональности

3 способ – гибридный

Идеально подходит для логарифмических и показательных функций, так как обычно у таких функций неизвестно основание и с помощью преобразований его не найти. С другой стороны, независимо от оснований любая показательная функция должна проходить через точку ((0;1)), а любая логарифмическая — через точку ((1;0)).

показательная и логарифмическая функция

По смещению этих точек легко понять, как именно двигали функцию, но только если ее не растягивали, а лишь перемещали вверх-вниз, влево-вправо (как обычно и бывает в задачах на ЕГЭ).

Основание же лучше находить уже следующим действием, используя подстановку координат точки в «полуфабрикат» функции.

пример с логарифмической функцией

пример с логарифмической функцией

Как отвечать на вопросы в задаче, когда уже определили функцию

— Если просят найти (f)(любое число), то нужно это число подставить в готовую функцию вместо икса.
Пример:

что значит найти f от числа

— Если просят найти «при каком значении x значение функции равно *любому числу*», то надо решить уравнение, в одной части которого будет функция, а в другой — то самое число. Аналогично надо поступить, если просят «найти корень уравнения (f(x)=) *любое число*».
Пример:

найдите, при каком значении x значение функции равно 8

— Если просят найти абсциссу точки пересечения – надо приравнять 2 функции и решить получившееся уравнение. Корень уравнения и будет искомой абсциссой. Аналогично надо делать в задачах, где даны две точки пересечения (A)(*любое число*;*другое число*) и (B(x_0;y_0)) и просят найти (x_0).
Пример:

найдите точку пересечения функций

— Если просят найти ординату точки пересечения – надо приравнять 2 функции, найти иксы и подставить подходящий икс в любую функцию. Точно также решаем если просят найти (y_0) точки пересечения двух функций.
Пример:

найдите ординату точки пересечения

— Иногда просят найти просто какой-либо из коэффициентов функции. Тогда надо просто восстановить функцию и записать в ответ то, о чем спросили:
Пример:

найдите k


Графики функций


В задании №13 ЕГЭ по математике базового уровня придется продемонстрировать умения и знания одного из понятий поведения функции: производных в точке или скоростей возрастания или убывания. Теория к этому заданию будет добавлена чуть позже, но это не помешает нам подробно разобрать несколько типовых вариантов.


Разбор типовых вариантов заданий №14 ЕГЭ по математике базового уровня


Вариант 14МБ1

[su_note note_color=”#defae6″]

На графике изображена зависимость температуры от времени в процессе разогрева двигателя легкового автомобиля. На горизонтальной оси отмечено время в минутах, прошедшее с момента запуска двигателя; на вертикальной оси – температура двигателя в градусах Цельсия.

Пользуясь графиком, поставьте в соответствие каждому интервалу времени характеристику процесса разогрева двигателя на этом интервале.

ИНТЕРВАЛЫ ВРЕМЕНИ:

А) 0 – 1 мин.

Б) 1 – 3 мин.

В) 3 – 6 мин.

Г) 8 – 10 мин.

ХАРАКТЕРИСТИКИ:

  1. самый медленный рост температуры
  2. температура падала
  3. температура находилась в пределах от 40°С до 80°С
  4. температура не превышала 30°С.

В таблице под каждой буквой укажите соответствующий номер.

[/su_note]

Алгоритм выполнения:
  1. Выбрать интервал времени, на котором температура падала.
  2. Приложить линейку к 30°С и определить интервал времени, на котором температура была ниже 30°С.
  3. С помощью карандаша и линейки найдем на каком интервале времени температура находилась в пределах от 40°С до 80°С.
  4. Методом исключения выберем недостающий вариант ответа.
Решение:

Выберем интервал времени, на котором температура падала. Этот участок видно не вооруженным глазом, он начинается в 8 мин от момента запуска двигателя.

Г – 2

Приложим линейку к 30°С и определить интервал времени, на котором температура была ниже 30°С.

Ниже линейки окажется участок, соответствующий интервалу времени 0 – 1 мин.

А – 4

С помощью карандаша и линейки найдем на каком интервале времени температура находилась в пределах от 40°С до 80°С.

Опустим из точек, соответствующих 40°С и 80°С перпендикуляры на график, а из полученных точек опустим перпендикуляры на ось времени.

Видим, что этому температурному интервалу соответствует интервал времени 3 – 6,5 мин. То есть из приведенных в условии 3 – 6 мин.

В – 3

Методом исключения выберем недостающий вариант ответа.

Б – 1

Ответ:

А – 4

Б – 1

В – 3

Г – 2


Вариант 14МБ2

[su_note note_color=”#defae6″]

Установите соответствие между графиками функций и графиками их производных.

[/su_note]

Алгоритм выполнения для каждой из функций:
  1. Определить промежутки возрастания и убывания функций.
  2. Определить точки максимума и точки минимума функций.
  3. Сделать выводы, поставить в соответствие предложенные графики.
Решение:

Проанализируем график функции А. Если Функция возрастает, то производная положительна и наоборот. Производная функции равна нулю в точках экстремума.

Точка экстремума – это точка, в которой достигается максимальное или минимальное значение функции.

Сначала функция А возрастает, т.е. производная положительна. Этому соответствуют графики производных 2 и 3. В точке максимума функции x=-2, то есть в данной точке производная должна быть равна нулю. Этому условию соответствует график под номером 3.

А – 3

Проанализируем график функции Б.

Сначала функция Б убывает, т.е. производная отрицательна. Этому соответствуют графики производных 1 и 4. Точка максимума функции x=-2, то есть в данной точке производная должна быть равна нулю. Этому условию соответствует график под номером 4.

Б – 4

Проанализируем график функции В.

Сначала функция В возрастает, т.е. производная положительна. Этому соответствуют графики производных 2 и 3. Точка максимума функции x = 1, то есть в данной точке производная должна быть равна нулю. Этому условию соответствует график под номером 2.

В – 2

Методом исключения можем определить, что графику функции Г соответствует график производной под номером 1.

Г – 1

А – 3

Б – 4

В – 2

Г – 1

Ответ: 3421.


Вариант 14МБ3

[su_note note_color=”#defae6″]

Установите соответствие между графиками функций и графиками их производных.

[/su_note]

Алгоритм выполнения для каждой из функций:
  1. Определить промежутки возрастания и убывания функций.
  2. Определить точки максимума и точки минимума функций.
  3. Сделать выводы, поставить в соответствие предложенные графики.
Решение:

Проанализируем график функции А.

Если функция возрастает, то производная положительна и наоборот. Производная функции равна нулю в точках экстремума.

Точка экстремума – это точка, в которой достигается максимальное или минимальное значение функции.

Сначала функция А возрастает, т.е. производная положительна. Этому соответствуют графики производных 3 и 4. В точке максимума функции x=0, то есть в данной точке производная должна быть равна нулю. Этому условию соответствует график под номером 4.

А – 4

Проанализируем график функции Б.

Сначала функция Б убывает, т.е. производная отрицательна. Этому соответствуют графики производных 1 и 2. Точка минимума функции x=-1, то есть в данной точке производная должна быть равна нулю. Этому условию соответствует график под номером 2.

Б – 2

Проанализируем график функции В.

Сначала функция В убывает, т.е. производная отрицательна. Этому соответствуют графики производных 1 и 2. Точка минимума функции x = 0, то есть в данной точке производная должна быть равна нулю. Этому условию соответствует график под номером 1.

В – 1

Методом исключения можем определить, что графику функции Г соответствует график производной под номером 3.

Г – 3

А – 4

Б – 2

В – 1

Г – 3

Ответ: 4213.


Вариант 14МБ4

[su_note note_color=”#defae6″]

На рисунке изображен график функции и касательные, проведённые к нему в точках с абсциссами А, В, С и D. В правом столбце указаны значения производной в точках А, В, С и D. Пользуясь графиком, поставьте в соответствие каждой точке значение производной функции в ней.

ЕГЭ по математике задание №14

ТОЧКИ
А
В
С
D

ЗНАЧЕНИЯ ПРОИЗВОДНОЙ
1) –4
2) 3
3) 2/3
4) -1/2

[/su_note]

Вспомним, что означает производная, а именно ее значение в точке – значение функции производной в точке равно тангенсу угла наклона (коэффициенту) касательной.

В ответах у нас есть два положительных, и два отрицательных варианта. Как мы помним, если коэффициент прямой (графика y = kx+ b) положительный – то прямая возрастает, если же он отрицательный – то прямая убывает.

Возрастающих прямых у нас две – в точке A и D. Теперь вспомним, что же означает значение коэффициента k?

Коэффициент k показывает, насколько быстро возрастает или убывает функция (на самом деле коэффициент k сам является производной функции y = kx+ b).

Поэтому k = 2/3 соответствует более пологой прямой – D, а  k = 3 – A.

Аналогично и в случае с отрицательными значениями: точке B соответствует более крутая прямая с k = – 4, а точке С – -1/2.


Вариант 14МБ5

[su_note note_color=”#defae6″]

На рисунке точками показаны объемы месячных продаж обогревателей в магазине бытовой техники. По горизонтали указываются месяцы, по вертикали – количество проданных обогревателей. Для наглядности точки соединены линией.

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.44434Рисунки к Базе №141_1.jpg

Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов времени характеристику продаж обогревателей.

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.45073Рисунки к Базе №141_2.jpg

[/su_note]

Алгоритм выполнения

Анализируем части графика, соответствующие разным временам года. Формулируем ситуации, отображенные на графике. Находим для них наиболее подходящие варианты ответов.

Решение:

Зимой кол-во продаж превысило 120 шт./мес., причем оно все время увеличивалось. Эта ситуация соответствует варианту ответа №3. Т.е. получаем: А–3.

Весной продажи постепенно упали со 120 обогревателей за месяц до 50. Наиболее приближенным к этой формулировке является вариант №2. Имеем: Б–2.

Летом кол-во продаж не менялась и была минимальной. 2-я часть этой формулировки не отражена в ответах, а для первой подходит только №4. Отсюда имеем: В–4.

Осенью продажи росли, однако их кол-во ни в одном из месяцев не превысило 100 штук. Эта ситуация описана в варианте №1. Получаем: Г–1.


Вариант 14МБ6

[su_note note_color=”#defae6″]

На графике изображена зависимость скорости движения рейсового автобуса от времени. На вертикальной оси отмечена скорость автобуса в км/ч, на горизонтальной – время в минутах, прошедшее с начала движения автобуса.

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.46178Рисунки к Базе №142_1.jpg

Пользуясь графиком, поставьте в соответствие каждому интервалу времени характеристику движения автобуса на этом интервале.

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.46762Рисунки к Базе №142_2.jpg

[/su_note]

Алгоритм выполнения
  1. Определяем цену деления на горизонтальной и на вертикальной шкале.
  2. Анализируем по очереди предложенные утверждения 1–4 из правой колонки («Характеристики»). Сопоставляем их с временными интервалами из левой колонки таблицы, находим пары «буква–число» для ответа.
Решение:

Цена деления горизонтальной шкалы составляет 1 с, вертикальной – 20 км/ч.

Далее анализируем характеристики, данные в правой колонке таблицы.

  1. Когда автобус делает остановку, его скорость равна 0. Нулевую скорость в течение 2 минут подряд автобус имел только с 9-й по 11-ю минуту. Это время попадает в интервал 8–12 мин. Значит, имеем пару для ответа: Б–1.
  2. Скорость 20 км/ч и больше автобус имел в течение нескольких временных промежутков. Причем вариант А здесь не подходит, т.к., к примеру, на 7-й минуте скорость составляла 60 км/ч, вариант Б – потому что он уже применен, вариант Г – потому что в начале и конце промежутка автобус имел нулевую скорость. В данном случае подходит вариант В (12–16 мин); на этом промежутке автобус начинает движение со скоростью 40 км/ч, далее ускоряется до 100 км/м и потом постепенно снижает скорость до 20 км/ч. Итак, имеем: В–2.
  3. Здесь установлено ограничение для скорости. При этом варианты Б и В мы не рассматриваем. Оставшиеся же интервалы А и Г подходят оба. Поэтому правильно будет рассмотреть сначала 4-й вариант, а потом снова вернуться в 3-му.
  4. Из двух оставшихся интервалов для характеристики №4 подходит только 4–8 мин, поскольку на этом промежутке остановка была (на 6-й минуте). На промежутке 18–22 мин остановок не было. Получаем: А–4. Отсюда следует, что для характеристики №3 нужно взять интервал Г, т.е. получается пара Г–3.

Вариант 14МБ7

[su_note note_color=”#defae6″]

На рисунке точками показан прирост населения Китая в период с 2004 по 2013 год. По горизонтали указывается год, по вертикали – прирост населения в процентах (увеличение численности населения относительно прошлого года). Для наглядности точки соединены линией.

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.47723Рисунки к Базе №143_1.jpg

Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов времени характеристику прироста населения Китая в этот период.

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.48321Рисунки к Базе №143_2.jpg

[/su_note]

Алгоритм выполнения
  1. Определяем цену деления вертикальной шкалы рисунка. Находится она как разница пары соседних значений шкалы, деленная на 2 (т.к. между двумя соседними значениями имеется 2 деления).
  2. Анализируем последовательно приведенные в условии характеристики 1–4 (левая табличная колонка). Сопоставляем каждую из них с конкретным периодом времени (правая табличная колонка).
Решение:

Цена деления вертикальной шкалы составляет 0,01%.

  1. Падение прироста непрерывно продолжалось с 2004 по 2010 год. В 2010–2011 годах прирост был стабильно минимальным, и начиная с 2012 года оно начал увеличиваться. Т.е. остановка прироста произошла в 2010 году. Этот год находится в периоде 2009–2011 гг. Соответственно, имеем: В–1.
  2. Наибольшим падением прироста следует считать самую «круто» падающую линию графика на рисунке. Она приходится на период 2006–2007 гг. и составляет 0,04%, за год (0,59–0,56=0,04% в 2006 г. и 0,56–0,52=0,04% в 2007 г.). Отсюда получаем: А–2.
  3. Указанный в характеристике №3 прирост начался с 2007 года, продолжился в 2008 г. и завершился в 2009 году. Это соответствует периоду времени Б, т.е. имеем: Б–3.
  4. Прирост населения начал увеличиваться после 2011 г., т.е. в 2012–2013 гг. Поэтому получаем: Г–4.

Вариант 14МБ8

[su_note note_color=”#defae6″]

На рисунке изображены график функции и касательные, проведенные к нему в точках с абсциссами А,В,С и D.

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.49416Рисунки к Базе №144_1.jpg

В правом столбце указаны значения производной функции в точках А, В, С и D. Пользуясь графиком, поставьте в соответствие каждой точке значение производной функции в ней.

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.561Рисунки к Базе №144_2.jpg

[/su_note]

Алгоритм выполнения
  1. Рассматриваем пару касательных, имеющих острый угол с положит.направлением оси абсцисс. Сравниваем их, находим соответствие среди пары соответствующих значений производных.
  2. Рассматриваем пару касательных, образующих с положит.направлением оси абсцисс тупой угол. Сравниваем их по модулю, определяем соответствие их значениям производных среди двух оставшихся в правой колонке.
Решение:

Острый угол с положит.направлением оси абсцисс образуют производные в т.В и т.С. Эти производные имеют положит.значения. Поэтому выбирать тут следует между значениями №№1 и 3. Применяя правило о том, что если угол меньше 450, то производная меньше 1, а если больше, то больше 1, делаем вывод: в т.В производная по модулю больше 1, в т.С – меньше 1. Это означает, что можно составить пары для ответа: В–3 и С–1.

Производные в т.А и т.D образуют с положит.направлением оси абсцисс тупой угол. И тут применяем то же правило, немного перефразировав его: чем больше касательная в точке «прижата» к линии оси абсцисс (к отрицат. ее направлению), тем больше она по модулю. Тогда получаем: производная в т.А по модулю меньше, чем производная в т.D. Отсюда имеем пары для ответа: А–2 и D–4.


Вариант 14МБ9

[su_note note_color=”#defae6″]

На рисунке точками показана среднесуточная температура воздуха в Москве в январе 2011 года. По горизонтали указываются числа месяца, по вертикали – температура в градусах Цельсия. Для наглядности точки соединены линией.

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.1907Рисунки к Базе №145_1.jpg

Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов времени характеристику изменения температуры.

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.2478Рисунки к Базе №145_2.jpg

[/su_note]

Алгоритм выполнения

Анализируем последовательно характеристики 1–4 (правая колонка), используя график на рисунке. Ставим каждой из них в соответствие конкретный временной период (левая колонка).

Решение:
  1. Рост температуры наблюдался только в конце периода 22–28 января. Здесь 27 и 28 числа она повышалась соответственно на 1 и на 2 градуса. В конце периода 1–7 января температура была стабильной (–10 градусов), в конце 8–14 и 15–21 января понижалась (с –1 до –2 и с –11 до –12 градусов соответственно). Поэтому получаем: Г–1.
  2. Поскольку каждый временной период охватывает 7 дней, то анализировать нужно температуру, начиная с 4-го дня каждого периода. Неизменной в течение 3–4 дней температура была только с 4 по 7 января. Поэтому получаем ответ: А–2.
  3. Месячный минимум температуры наблюдался 17 января. Это число входит в период 15–21 января. Отсюда имеем пару: В–3.
  4. Температурный максимум пришелся 10 января и составил +1 градус. Эта дата попадает в период 8–14 января. Значит, имеем: Б–4.

Вариант 14МБ10

[su_note note_color=”#defae6″]

На рисунке изображен график функции y=f(x) и отмечены точки А, В, С и D на оси Ох..

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.3245Рисунки к Базе №146_1.jpg

Пользуясь графиком, поставьте в соответствие каждой точке характеристики функции и ее производной

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.5218Рисунки к Базе №146_2.jpg

[/su_note]

Алгоритм выполнения
  1. Значение функции в точке положительно, если эта точка расположена выше оси Ох.
  2. Производная в точке больше нуля, если касательная к этой точке образует острый угол с положительным направлением оси Ох.
Решение:

Точка А. Она находится ниже оси Ох, значит значение функции в ней отрицательно. Если провести в ней касательную, то угол между нею и положит.направлением Ох составит около 900, т.е. образует острый угол. Значит, в данном случае подходит характеристика №3. Т.е. имеем: А–3.

Точка Б. Она находится над осью Ох, т.е. точка имеет положит.значение функции. Касательная в этой точке будет довольно близко «прилегать» к оси абсцисс, образуя тупой угол (немногим меньше 1800) с положительным ее направлением. Соответственно, производная в этой точке отрицательна. Т.о., здесь подходит характеристика 1. Получаем ответ: В–1.

Точка С. Точка расположена ниже оси Ох, касательная в ней образует большой тупой угол с положит.направлением оси абсцисс. Т.е. в т.С значение и функции, и производной отрицательно, что соответствует характеристике №2. Ответ: С–2.

Точка D. Точка находится выше оси Ох, а касательная в ней образует с положит.направлением оси острый угол. Это говорит о том, что как значение функции, так и значение производной здесь больше нуля. Ответ: D–4.


Вариант 14МБ11

[su_note note_color=”#defae6″]

На рисунке точками показаны объемы месячных продаж холодильников в магазине бытовой техники. По горизонтали указываются месяцы, по вертикали – количество проданных холодильников. Для наглядности точки соединены линией.

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.6278Рисунки к Базе №147_1.jpg

Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов времени характеристику продаж холодильников.

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.6821Рисунки к Базе №147_2.jpg

[/su_note]

Алгоритм выполнения
  1. При необходимости найти кол-во холодильников за тот или иной период нужно определять их сумму за три месяца.
  2. Анализировать следует характеристики 1–4 (правая колонка), находя для каждой из них соответствие в виде временного периода (левая колонка).
Решение:

Анализируем характеристики:

  1. Меньше всего холодильников продано в начале и в конце года. Поэтому рассмотрим периоды январь–март и октябрь–декабрь. В январе–марте было продано примерно 250+250+300=800 холодильников, в октябре–декабре – примерно 350+200+100=650. Значит, здесь подходит все-таки последний период. Ответ: Г–1.
  2. Длительный рост продаж наблюдался с апреля по июль. Это время охватывает полностью период апрель–июнь и захватывает начало следующего. Поэтому получаем: Б–2.
  3. Тут тоже требуется найти сумму проданных единиц за целые периоды. Для 1-го и последнего периода она уже найдена (см.п.1). Считаем для 2-го и 3-го, получаем: 300+400+600=1300 – в апреле–июне, примерно 650+600+550=1800 – в июле–сентябре. К требуемым 800 холодильникам максимально приближен объем продаж в январе–марте. Поэтому имеем: А–3.
  4. Одинаковое падение объема продаж означает, что разница между кол-вом проданных холодильников должна быть одинаковой. Падение продаж наблюдалось, начиная с конца июля. В августе падение составило 650–600=50 штук, в сентябре – 600–550=50 штук. Далее, в октябре, разница составила уже 550–350=200 холодильников, в ноябре 350–200=150, в декабре 200–100=100. Т.о., подходит в данном случаем период июль–сентябрь. Ответ: В–4.

Вариант 14МБ12

[su_note note_color=”#defae6″]

На рисунке точками показан годовой объем добычи угля в России открытым способом в период с 2001 по 2010 год. По горизонтали указывается год, по вертикали – объем добычи угля в миллионах тонн. Для наглядности точки соединены линиями.

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.7951Рисунки к Базе №148_1.jpg

Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов характеристику добычи угля в этот период.

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.8524Рисунки к Базе №148_2.jpg

[/su_note]

Алгоритм выполнения
  1. Точки, которые не приходятся на точные значения шкалы вертикальной оси, определяем приблизительно.
  2. Анализируем по очереди приведенные (в правом столбце) характеристики, используя данный график. Определяем соответствие каждой из них конкретного временного периода.

Решение:

Анализируем характеристики:
  1. Объем добычи меньше 190 млн т приходился на период с 2001 года по 2005 год. Затем спад добычи зафиксирован в 2009 году, но один год не составляет периода. 2001–2005 годы полностью попадают в период А (2002–2004 гг.). Поэтому получаем ответ: А–1.
  2. Такая формулировка «объем… сначала уменьшался, а затем начал расти» соответствует 2 периодам – 2002–2003 гг. и 2009–2010 гг. Но т.к. первый из этих периодов уже взят в качестве ответа, то правильно здесь использовать пару Г–2.
  3. Ситуация, описанная в 3-й характеристике, наиболее точно отображена в периоде 2006–2008 гг. Именно в это время добыча сначала понемногу увеличивалась (примерно с 190 млн т до 210), а потом резко возросла до 250 млн т. Т.е. подходящий ответ здесь: 2006–2008 гг. и, соответственно, имеем: В–3.
  4. Медленный рост следует искать в период, когда линия графика имеет наиболее пологий вид. Это: 2004–2006 год, что соответствует периоду Б, т.е. получаем: Б–4.

Вариант 14МБ13

[su_note note_color=”#defae6″]

На графике изображена зависимость температуры от времени в процессе разогрева двигателя легкового автомобиля. На горизонтальной оси отмечено время в минутах, прошедшее с момента запуска двигателя, на вертикальной оси – температура двигателя в градусах Цельсия.

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.9308Рисунки к Базе №149_1.jpg

Пользуясь графиком, поставьте в соответствие каждому интервалу времени характеристику температуры.

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.10469Рисунки к Базе №149_2.jpg

[/su_note]

Алгоритм выполнения

Анализируем сначала очередную характеристику, а затем сопоставляем ее с конкретным временным интервалом.

Решение:
  1. Выше 600 температура была с 4-й по 7-ю минуту. Поэтому здесь нужно взять интервал 4–6 мин. Получаем: В–1.
  2. Температура падала только после 7-й минуты. Соответственно, тут подходит интервал 7–9 мин. Ответ: Г–2.
  3. Самый быстрый рост температуры происходил там, где график имеет наиболее «крутой» вертикальный подъем. Это имеет место только в 1-ю минуту нагревания. Т.е. подходящим интервалом является 0–1 мин. Ответ: А–3.
  4. В пределах 40–50 0С температура имела место, начиная со 2-й по 3-ю минуту. Значит, нужно выбрать интервал 2–3мин. Ответ: Б–4.

Вариант 14МБ14

[su_note note_color=”#defae6″]

На графике изображена зависимость частоты пульса гимнаста от времени в течение и после его выступления в вольных упражнениях. На горизонтальной оси отмечено время (в минутах), прошедшее с начала выступления гимнаста, на вертикальной оси – частота пульса (в ударах в минуту).

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.11094Рисунки к Базе №1410_1.jpg

Пользуясь графиком, поставьте в соответствие каждому интервалу времени характеристику пульса гимнаста на этом интервале.

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.11625Рисунки к Базе №1410_2.jpg

[/su_note]

Алгоритм выполнения
  1. Для анализа характеристики нужно использовать только 1-ю половину графика.
  2. Для точек графика, которые не попадают в «узлы» сетки рисунка (т.е. для которых невозможно определить точные значения), нужно определять значения приблизительно.
  3. Величина роста пульса связана с пологостью (или, напротив, крутизной) линии графика. Это означает, что чем большее изменение значения функции происходит за тот или иной (но обязательно одинаковый) промежуток времени, тем больше величина роста.
Решение:

Анализируем предложенные характеристики:

  1. Если частота пульса сначала падала, а затем росла, то на графике это должно выразиться в «прогибе» линии графика вниз. Такая кривизна наблюдается только в течение 3–4 минуты. Значит, получаем ответ: Г–1.
  2. Самый большой «подъем» линии на 1-й половине графика имеет место с 1-й по 2-ю минуту. Отсюда получаем: Б–2.
  3. Частота пульса падала, начиная со 2-й минуты. В течение 3–4 минут тоже наблюдалось падение, однако оно потом перешло в рост. Поэтому правильным здесь следует считать интервал В. Т.о., ответ: В–3.
  4. Единственный интервал, на котором частота не превысила 100 ударов, – 0–1 мин. Отсюда имеем ответ: А–4.

Даниил Романович | Просмотров: 21.2k

Понравилась статья? Поделить с друзьями:
  • Есть ли у русского языка будущее сочинение
  • Есть ли егэ в колледже после 9 класса
  • Есть ли у печорина идеал сочинение
  • Есть ли егэ в европе
  • Есть ли егэ в вечерней школе