Есть ли интегралы в егэ 2021

ЕГЭ по математике профильного уровня — один из самых сложных экзаменов. Планируете сдавать его, но не знаете, с чего начать? Этот экзамен не покажется вам таким трудным, если вы узнаете про него побольше и грамотно подготовитесь. В этой статье обсудим, что нужно знать про ЕГЭ по математике 2023, из каких разделов он состоит и как к нему подготовиться.

егэ по математике 2023

Профильный ЕГЭ по математике: что нужно знать к 2023 году?

Какие темы важно знать для ЕГЭ по математике 2023?

В математике, как и в любом предмете, есть опорные темы. Если вы их выучите, будет легче справиться с экзаменом.

Формулы тригонометрии

Очень важно знать формулы тригонометрии и уметь применять их. Хорошая новость: в справочных материалах можно найти несколько тригонометрических формул.

егэ по математике 2021

Но формул гораздо больше. Я советую не зубрить их, а научиться выводить: приходить к формулам шаг за шагом, опираясь на тождества. Кстати, мы учим выводить формулы на курсах подготовки к ЕГЭ: это полезно, чтобы оказаться на экзамене во всеоружии и ничего не перепутать.

Квадратные уравнения

Эти уравнения мы учимся решать еще в 7 классе. Они встречаются в ЕГЭ по математике постоянно: и как самостоятельные задания, и внутри более сложных уравнений или неравенств. Квадратные уравнения могут встретиться в математических моделях № 9 и № 15, в задачах на геометрию и стереометрию, в задании № 17 с параметром.

Самое главное — хорошо знать универсальные методы решения. Первый — через формулу дискриминанта, второй — через теорему Виета, которая может сэкономить время на экзамене.

Треугольники

Эта замечательная тема, которую проходят в 7 классе — основа основ всей геометрии. Она нужна и для решения стереометрии, и для простейших планиметрических задач. Еще треугольники необходимы, чтобы освоить огромное количество теорем. Выучите все, что с ними связано! Особое внимание обратите на прямоугольные треугольники, которые встречаются чаще остальных — тогда геометрические задачи сразу станут проще.

Проценты

Самая нелюбимая тема моих учеников после тригонометрии, которую необходимо хорошо знать. Проценты нужны для реальной математики — это № 9 (с кратким ответом) и № 15 (с развернутым ответом). Понимание этой темы может принести вам 3 первичных балла.

План успешной подготовки к ЕГЭ по математике 2023

Если вы хотите получить больше 80 баллов на ЕГЭ, нужно идеально решать часть с кратким ответом, а также справляться с большинством заданий с развернутым ответом.

Чтобы постепенно прорабатывать материал, воспользуйтесь кодификатором. В нем обратите внимание на таблицу 2, а именно на блоки:

  • Алгебра
  • Уравнения и неравенства
  • Элементы комбинаторики, статистики и теории вероятностей
  • Функции
  • Начала математического анализа
  • Геометрия

Ориентируйтесь на указанную последовательность, но геометрию изучайте параллельно с остальными блоками — на нее нужно больше времени.

Самое главное — ни в коем случае не ограничивайтесь теорией. Ее у вас не спросят на экзамене, а вот задания решать придется. Поэтому тренируйте практические навыки: актуальные задания вы сможете найти в открытом банке заданий на сайте ФИПИ или в нашем тренажере «Решутест».

Как решать часть с кратким ответом

Ни в коем случае не пренебрегайте частью с кратким ответом! Иначе будет обидно: например, вы наберете за экономическую задачу № 15 полные 2 балла, но потеряете их в двух заданиях первой части. Это актуально для всех ЕГЭ: подробнее о том, как идеально справляться с первой частью экзамена, читайте здесь.

Еще одно заблуждение: «часть с кратким ответом простая, к ней можно не готовиться». Даже в первой части иногда встречаются такие задания, которые ученики даже не решают, потому что не готовились к ним.

Как я уже говорила, часть с кратким ответом содержит 11 заданий. Начинать подготовку необходимо именно с заданий базового уровня сложности, потому что это та основа, на которую потом накладывается более сложная теория.

Что касается задач повышенного уровня сложности, то среди каждого номера есть лайфхаки, например, в этой статье я уже рассказывала про № 11, в котором нужно работать с производной.

Задания с развернутым ответом: немного статистики

Многие думают, что эта часть ЕГЭ по математике очень сложная. Поэтому ребята, которые не рассчитывают на высокие баллы, даже не приступают к ней. И очень зря! С помощью этих заданий можно заработать дополнительные баллы и побороться за высокое место в рейтинге.

Сейчас будет немного статистики. В среднем около 35% учеников получают полные 2 балла за решение № 12, а вот неравенство № 14 дается хуже, только около 12% с ним справляются на полный балл. Геометрия даётся ещё хуже: стереометрию № 13 полностью решают 2% выпускников, планиметрию (№ 16) менее 5%. А вот с экономической задачей (№ 15) справляются около 20%, а это целых 2 балла! Что касается № 17 и 18, то они даются ещё хуже, но на то они и самые сложные, хотя 1 балл за № 18 по статистике получают около 25% сдающих — там нужно просто привести пример.

Особенности уровней ЕГЭ по математике

В 2015 году ЕГЭ по математике разделили на базовый и профильный уровни. Это упростило жизнь выпускникам, которые не планируют поступать на специальности, связанные с математикой. Если ЕГЭ по математике нужен только для получения аттестата, можно сдать его облегченную версию, оставив время и силы для профильных экзаменов.

Базовый уровень ЕГЭ по математике

Как устроен базовый ЕГЭ по математике? Экзамен идет 180 минут, он состоит из 21 задания, за каждое из которых можно получить 1 балл. Этот экзамен единственный, который переводится не в 100-бальную систему, а в оценки.

егэ по математике 2023

Шкала перевода оценок для базового уровня ЕГЭ по математике 2023, ФИПИ

В ЕГЭ по математике базового уровня 6 тематических блоков:

егэ по математике 2023

Тематические блоки, ЕГЭ по математике 2023, базовый уровень

Также обратите внимание, что базовый ЕГЭ по математике не поменялся с точки зрения наполнения, изменился лишь порядок заданий. Вот что пишут ФИПИ:

егэ по математике 2023

ФИПИ о ЕГЭ по математике 2023

Подробнее про базовый ЕГЭ по математике, включая разбор всех заданий, читайте здесь, а мы перейдём к профильному.

Профильный уровень ЕГЭ по математике

Данный экзамен, как и остальные ЕГЭ, переводится в 100-бальную систему:

егэ по математике 2023

Шкала переводов для профильного уровня ЕГЭ по математике 2023, ФИПИ

Экзамен состоит из двух частей: Часть 1 с кратким ответом, а Часть 2 — с развернутым. Длится он 235 минут. Всего есть 18 заданий, которые разделены на 3 блока: алгебра, геометрия и реальная математика. Максимальное количество первичных баллов — 31.

База, профиль — неважно, к какому именно уровню вы готовитесь. В любом случае надо не только правильно решить каждое задание, но и оформить его так, чтобы проверяющие ни к чему не придрались. Нарисовать и описать график, расписать решение уравнения или задачи… И это не все: нужно еще и внести ответы в бланк без ошибок. И все это — за ограниченный период времени! Так можно перенервничать и запороть даже самую простую задачку. А на ЕГЭ — каждый балл на счету.

Поэтому на своих занятиях я сразу показываю своим ученикам, как правильно оформлять каждое задание в ЕГЭ по математике. Мы разбираем все критерии и учимся правильно отвечать на вопросы. А еще я всегда помогаю ученикам закрыть пробелы в знаниях и объясняю сложные темы столько раз, сколько нужно. И куда же без лайфхаков? Всегда рассказываю лучший способ решения типичных заданий. Так что мои ученики приходят на экзамены подготовленными и не нервничают, когда видят задачу. Хотите также? Приходите ко мне на курсы подготовки к ЕГЭ по математике — научу!

Структура ЕГЭ по математике 2023

Часть 1:

  • Приносит 11 баллов, то есть 35% всего экзамена
  • 11 заданий с кратким ответом

Часть 2:

  • Приносит 20 баллов, то есть 65% всего экзамена
  • 7 заданий с развернутым ответом

Внимание! Вся нумерация заданий в статье соответствует ЕГЭ 2023 года.

В заданиях с кратким ответом нужно лишь записать верное число в бланк. Заданий с развернутым ответом 7, в них нужно подробно расписать решение, которое должно соответствовать критериям оценивания.

ЕГЭ — стандартизированный экзамен, поэтому каждое задание всегда соответствует определенной теме.

Темы заданий с кратким ответом, ЕГЭ по математике 2023, профиль

Обратите внимание, что по сравнению с 2022 годом, в части 1 изменился только порядок заданий. Сами сотрудники ФИПИ говорят следующее:

егэ по математике 2023

ФИПИ о ЕГЭ по математике 2023
егэ по математике 2023
Темы заданий с развернутым ответом, ЕГЭ по математике 2023, профиль

Задания с кратким ответом принесут вам до 11 первичных баллов (64 вторичных). Если не понимаете, что это за баллы и откуда они берутся, почитайте эту статью. Самая популярная цель на ЕГЭ по математике — набрать 80 баллов, для этого раньше было необходимо 19 первичных баллов. Ранее многие ученики пользовались рабочей стратегией — решить всю часть с кратким ответом, а также № 12, 14 и 15. Если хорошо разбирались в геометрии, выбирали № 13 и 16 — или использовали их как запасные задания. Сейчас стратегия должна быть другая, так как № 13 (стереометрия) стал стоить дороже — 3 балла вместо 2, а № 15 (экономическая задача) — подешевел с 3 баллов до 2. Изменилась также шкала перевода баллов, поэтому подумайте, какими заданиями вы сможете набрать необходимое количество первичных баллов.

Разделы ЕГЭ по математике

  • Алгебра и начала анализа — 8 заданий, 13 первичных баллов
  • Геометрия — 4 задания, 8 первичных баллов
  • Реальная математика — 6 заданий, 10 первичных баллов

Какие задания входят в ЕГЭ по математике?

Здесь вам на помощь приходят документы с официального сайта ФИПИ: кодификатор, демоверсия и спецификация.

  • Кодификатор — это краткий перечень всех блоков и тем, которые включены в экзамен.

    Сейчас кодификатор общий для обоих уровней экзамена, как базового, так и профильного. Он снова представляет собой единый документ, так что не запутаетесь.

  • Демоверсия — типовой вариант ЕГЭ. Он показывает уровень экзамена и ориентировочную сложность заданий.
  • Спецификация — это документ, описывающий структуру экзамена и разбалловку.

Что в итоге

Теперь вы знаете больше про ЕГЭ по математике 2023. Вы познакомились со структурой и поняли, на что стоит обращать внимание при подготовке. А еще узнали, что первую часть обязательно решать на максимум, а вторая не такая страшная, как кажется. Но наверняка у вас еще осталась куча вопросов: по оформлению и конкретному решению каких-то заданий точно.

Обо всем этом я подробно рассказываю своим ученикам во время подготовки к ЕГЭ по математике. Мы изучаем все непонятные темы, а потом прорешиваем много однотипных заданий — так легче запоминается формат. Еще мы всегда проводим пробные экзамены, чтобы выявить слабые места. Я анализирую ошибки каждого ученика и индивидуально разбираю их с ними. Благодаря этому мои выпускники гарантированно сдают ЕГЭ на 80+. Если вы хотите оказаться среди них — записывайтесь на курсы!

Интегралы на ЕГЭ. Первообразные элементарных функций

Вы в школе уже прошли интегралы? Поняли эту тему?:)

А вы знали, что в ЕГЭ тоже могут попасться интегралы? Да-да, открываем кодификатор и видим: 

4.3 Первообразная и интеграл

– 4.3.1 Первообразные элементарных функций

– 4.3.2 Примеры применения интеграла в физике и геометрии)

Но не волнуйтесь. В школьной программе интегралы – не сложные. Это не проблема, это скорее возможность получить легкие баллы!!!

И это значит, что пора смотреть наше видео.

Интегралы на ЕГЭ. Первообразные элементарных функций

В этом видео мы расскажем вам, какие типы задач на интегралы и первообразную могут быть в ЕГЭ, и научим их решать.

И да, в институте без знания производной и интегралов делать нечего. Совсем. Там не будет времени разбираться с ней, так что лучше займитесь ей сейчас.

Важно: перед этим уроком повторите производную! 

Ведь проходить интегралы без производной – это как вычислять арксинус, не зная, что такое синус:)

Наши курсы по подготовке к ЕГЭ по математике, информатике и физике

Алексей Шевчук – ведущий мини-групп

математика, информатика, физика

+7 (905) 541-39-06 – WhatsApp/Телеграм для записи

alexei.shevchuk@youclever.org – email для записи

  • тысячи учеников, поступивших в лучшие ВУЗы страны
  • автор понятного всем учебника по математике ЮКлэва (с сотнями благодарных отзывов);
  • закончил МФТИ, преподавал на малом физтехе;
  • репетиторский стаж – c 2003 года;
  • в 2021 году сдал ЕГЭ (математика 100 баллов, физика 100 баллов, информатика 98 баллов – как обычно дурацкая ошибка:);
  • отзыв на Профи.ру: “Рейтинг: 4,87 из 5. Очень хвалят. Такую отметку получают опытные специалисты с лучшими отзывами”.

Что думаете об интегралах на ЕГЭ?

Попадутся или нет на экзамене?

Насколько сложно понять и научиться решать задачи именно для вас?

Будете ли вы учить эту тему перед ЕГЭ.

Напишите нам в комментариях прямо сейчас.


Образовательный портал для подготовки к экзаменам

Математика профильного уровня

Математика профильного уровня

Сайты, меню, вход, новости

Каталог заданий.
Первообразная


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

На рисунке изображён график функции y  =  F(x)  — одной из первообразных функции f(x), определённой на интервале (−3; 5). Найдите количество решений уравнения f(x)  =  0 на отрезке [−2; 4].

Источник: Пробный экзамен по математике. Санкт-Петербург 2013. Вариант 2.


2

На рисунке изображён график некоторой функции y=f левая круглая скобка x правая круглая скобка (два луча с общей начальной точкой). Пользуясь рисунком, вычислите F(8) − F(2), где F(x)  — одна из первообразных функции f(x).

Источник: Пробный экзамен по математике. Санкт-Петербург 2013. Вариант 1., Пробный экзамен по математике Санкт-Петербург 2014. Вариант 1.


3

На рисунке изображён график функции y = f(x). Функция F левая круглая скобка x правая круглая скобка =x в кубе плюс 30x в квадрате плюс 302x минус дробь: числитель: 15, знаменатель: 8 конец дроби   — одна из первообразных функции y = f(x). Найдите площадь закрашенной фигуры.


4

На рисунке изображён график некоторой функции y = f(x). Функция F левая круглая скобка x правая круглая скобка = минус x в кубе минус 27x в квадрате минус 240x минус 8  — одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.


Пройти тестирование по этим заданиям

Первообразные

Первообразная: `F'(x)=f(x)`      
Неопределённый интеграл: `intf(x)dx=F(x)+C`    
Определённый интеграл (формула Ньютона-Лейбница): `int_a^bf(x)dx=F(b)-F(a)`

Таблица первообразных

`f(x)` `F(x)` `f(x)` `F(x)`
`a` `ax`      
`x^n` `x^(n+1)/(n+1)`   `1/x` `lnx`
`e^x` `e^x`   `a^x` `a^x/lna`
`sinx` `-cosx`   `cosx` `sinx`
`1/cos^2x` `text(tg)x`   `1/sin^2x` `-text(ctg)x`
`1/(x^2+a^2)` `1/atext(arctg)x/a`   `1/(x^2-a^2)` `1/(2a)ln|(x-a)/(x+a)|`
`1/sqrt(a^2-x^2)` `text(arcsin)x/a`   `1/sqrt(x^2+a)` `ln|x+sqrt(x^2+a)|`

Все формулы для профильного ЕГЭ-2022 по математике

Все формулы для базового ЕГЭ-2022 по математике

В (12) задании ЕГЭ предлагается решить уравнение и выбрать корни, принадлежащие заданному промежутку. За это задание можно получить (2) балла.

Пример:

a) реши уравнение (x2+4x−2)(43x+1+82x−1−11)=0.

б) Найди все корни этого уравнения, принадлежащие отрезку [−0,5; 0,5].

Алгоритм выполнения задания

1. Определи вид уравнения, выбери метод решения.

2. Реши уравнение, используя соответствующие виду уравнения свойства и правила. Все найденные корни должны принадлежать области определения уравнения.

3. Выбери корни уравнения, принадлежащие указанному промежутку. Обоснуй выбор корней.

4. Запиши все шаги решения на чистовик разборчиво и кратко.

5. Запиши ответ по обоим пунктам.

Если ход решения верный и обоснованно получены верные ответы в обоих пунктах, то решение оценивается в (2) балла. Если верна последовательность всех шагов решения, но допущена описка или вычислительная ошибка, и в результате получены неверные ответы, можно получить (1) балл.

Как решить задание из примера

1. (x2+4x−2)(43x+1+82x−1−11)=0.

Уравнение является распадающимся, x∈ℝ. Произведение равно нулю, когда хотя бы один из множителей равен нулю:

x2+4x−2=0,(1)43x+1+82x−1−11=0.(2)

Нам нужны формулы степеней:

amn=amn;am+n=aman.

2. Решим каждое уравнение отдельно. Уравнение ((1)) является квадратным. Найдём его корни через дискриминант:

x1=−2−6;x2=−2+6.

Уравнение ((2)) является показательным. Приведём степени к одинаковому основанию:

22(3x+1)+23(2x−1)−11=0;

26x+2+26x−3−11=0.

Преобразуем степени, чтобы показатели тоже были равными:

26x−3+5+26x−3−11=0;

25⋅26x−3+26x−3−11=0;

33⋅26x−3=11;

26x−3=13;

6x−3=log213;

6x−3=log21−log23;

6x−3=−log23;

6x=3−log23;

x=12−log236.

Итак, уравнение имеет три корня −2−6, −2+6 и 12−log236.

3. Отберём корни уравнения, принадлежащие отрезку [−0,5; 0,5].

4<6<9;2<6<3;−5<−2−6<−4.

Корень −2−6 не принадлежит отрезку [−0,5; 0,5].

5,76<6<6,25;2,4<6<2,5;0,4<−2&plus;6<0,5.

Корень −2&plus;6 принадлежит отрезку [−0,5; 0,5].

log22<log23<log24;1<log23<2;−2<−log23<−1;−13<−log236<−16;−0,5<16<12−log236<13<0,5.

Корень 12−log236 принадлежит отрезку [−0,5; 0,5].

4. Перепишем шаги решения в чистовик.

5. Запишем ответ.

Ответ: а) −2−6; −2&plus;6; 12−log236; б) −2&plus;6; 12−log236.

Первообразная

1. На рисунке изображён график функции  — одной из первообразных функции , определённой на интервале . Найдите количество решений уравнения  на отрезке .

2. На рисунке изображён график некоторой функции . Пользуясь рисунком, вычислите  , где   — одна из первообразных функции  .

3. На рисунке изображён график функции  . Функция   — одна из первообразных функции  . Найдите площадь закрашенной фигуры.

4. На рисунке изображён график некоторой функции  . Функция   — одна из первообразных функции  . Найдите площадь закрашенной фигуры.

5. На рисунке изображён график функции  , одной из первообразных некоторой функции  , определённой на интервале   Пользуясь рисунком, определите количество решений уравнения   на отрезке  

6.  На рисунке изображён график функции  , одной из первообразных некоторой функции  , определённой на интервале   Пользуясь рисунком, определите количество решений уравнения   на отрезке  

7. На рисунке изображён график функции  , одной из первообразных некоторой функции  , определённой на интервале   Пользуясь рисунком, определите количество решений уравнения   на отрезке  

8. На рисунке изображён график функции  , одной из первообразных некоторой функции  , определённой на интервале   Пользуясь рисунком, определите количество решений уравнения   на отрезке  

9. На рисунке изображён график функции  , одной из первообразных некоторой функции  , определённой на интервале   Пользуясь рисунком, определите количество решений уравнения   на отрезке  

10. На рисунке изображён график функции  , одной из первообразных некоторой функции  , определённой на интервале   Пользуясь рисунком, определите количество решений уравнения   на отрезке  

11. На рисунке изображён график функции  , одной из первообразных некоторой функции  , определённой на интервале   Пользуясь рисунком, определите количество решений уравнения   на отрезке  

12. . На рисунке изображён график некоторой функции . Пользуясь рисунком, вычислите  , где   — одна из первообразных функции  .

13. На рисунке изображён график некоторой функции . Пользуясь рисунком, вычислите  , где   — одна из первообразных функции  .

14. . На рисунке изображён график некоторой функции . Пользуясь рисунком, вычислите  , где   — одна из первообразных функции  .

15. На рисунке изображён график функции  . Функция   — одна из первообразных функции  . Найдите площадь закрашенной фигуры.

16. На рисунке изображён график функции  .

Функция   — одна из первообразных функции  . Найдите площадь закрашенной фигуры.

17. На рисунке изображён график функции  . Функция   — одна из первообразных функции  . Найдите площадь закрашенной фигуры.

18. На рисунке изображён график функции  . Функция   — одна из первообразных функции  . Найдите площадь закрашенной фигуры.

19. На рисунке изображён график функции  . Функция   — одна из первообразных функции  . Найдите площадь закрашенной фигуры.

20. На рисунке изображён график функции  . Функция   — одна из первообразных функции  . Найдите площадь закрашенной фигуры.

21. На рисунке изображён график функции  . Функция   — одна из первообразных функции  . Найдите площадь закрашенной фигуры.

22. На рисунке изображен график некоторой функции .  Пользуясь рисунком, вычислите определенный интеграл  

23. На рисунке изображён график функции  — одной из первообразных функции  , определённой на интервале Найдите количество решений уравнения  на отрезке .

24. На рисунке изображён график функции  — одной из первообразных функции  , определённой на интервале . Найдите количество решений уравнения  на отрезке .

Решу ЕГЭ 2022 математика, профильный уровень, задания, ответы

Ну что, давайте вместе решать ЕГЭ 2022 года по математике! А что бы выпускные экзамены удалось вам решить легко на 5 баллов, тогда нужно немного подготовиться к ним! Здесь можно бесплатно скачать демоверсии заданий и вопросов с ответами, которые будут на едином государственном экзамене в школе для учеников 11 класса. Все варианты для решения ЕГЭ были взяты с официального сайта ФИПИ. После домашнего изучения КИМ и тестовых вариантов, вы смело сможете сказать себе, что я РЕШУ ЕГЭ!

Официальный сайт. Единый Государственный Экзамен. Открытый банк заданий ЕГЭ-22. ФИПИ ШКОЛЕ. ФГОС. ОРКСЭ. МЦКО. Школа России. 21 век. ГДЗ. Решебник. Перспектива. Школа 2100. Планета знаний. Россия. Беларусь.

Скачать бесплатно новые задания, тесты, тренировочные варианты, ответы и решения Решу ЕГЭ-2022

Демонстрационный вариант реальных заданий контрольных измерительных материалов единого государственного экзамена 2022 года по Математике. Профильный уровень . Формат PDF
Скачать бесплатно

Кодификатор элементов содержания по Математике. База для составления контрольных измерительных материалов для проведения единого государственного экзамена
Скачать бесплатно

Кодификатор требований к уровню подготовки выпускников образовательных организаций для проведения единого государственного экзамена по математике
Скачать бесплатно

Спецификация контрольных измерительных материалов для проведения в 2022 году единого государственного экзамена по Математике Профиль.
Скачать бесплатно

Правильные ответы и решения заданий ЕГЭ-2022
Скачать бесплатно

С вопросами,мнением об экзаменах обращайтесь через форму для письма, рисунок конверта кликабелен.

отправить письмо математичке

И, пожалуйста, напишите об ошибке, если обнаружите таковую в моих решениях.

Узнайте, как можно поддержать сайт и помочь его развитию.

Внимание: в обсуждаемом варианте еще могут быть изменения.

Предлагаемый вариант профильного ЕГЭ по математике в следующем году заметно отличается от вариантов прошлых лет, как в части заданий с кратким ответом, так и в части заданий с развёрнутым ответом.

Основные отличия варианта 2022 от ЕГЭ 2021:

  1. Из варианта удалены первые три задания по темам: простейшие текстовые задачи, задания на анализ статистических графиков и диаграмм, задачи по геометрии на клетчатой бумаге.
  2. В первую часть добавлены задания на график функции, на решение обратных задач теории вероятностей, на комплексные числа. Последние два задания вызывают вопросы у педагогов и еще подлежат общественно-профессиональному обсуждению.
  3. Соответственно изменён порядок следования оставшихся заданий первой части. К некоторым заданиям добавлены иные образцы формулировок задачи, у некоторых число образцов уменьшено. При этом сохранилось правило – задания 1–7 имеют базовый уровень сложности.
  4. Во второй части изменения менее явные.

  5. Задание на решение уравнений (13) представлено без второго пункта — выбор корней, принадлежащих заданному отрезку.
  6. Задание на решение неравенств (15) стало многоплановым. Оно состоит из трёх пунктов и включает независимое решение неравенства и уравнения, а затем решение системы, состоящей из тех же выражений.
  7. Прежние задания 16 (планиметрия) и 17 (экономическая задача) поменялись номерами, что больше соответствует структуре варианта
    – задания 8–16 имеют повышенный уровень сложности; задания 17, 18 и 19 относятся к высокому уровню сложности.
  8. На мой взгляд, экономическая задача, действительно, существенно проще, чем предлагаемые в этом разделе задачи по планиметрии.

Интерактивные страницы с Демо-версиями для экзамена 2022 будут обновляться осенью, когда окончательно утвердят контрольно-измерительные материалы ЕГЭ по математике. Здесь рассматриваются только предлагаемые новые задания и их решения.

Задания, которых не было в прошлом году

Задание 3.

задание ЕГЭ на коэффициенты параболы

Задача.
На рисунке изображён график функции вида (f(x)= ax^2 + bx + c,) где числа (a, b; и ;c) — целые. Найдите значение (f(-12)).

решение задания ЕГЭ ЕГЭ на коэффициенты параболы

Решение.

Формула функции – квадратный трёхчлен, график функции – парабола. Требуется определить значение функции в точке, которая не видна на графике, поэтому нужно воспользоваться формулой. Для этого сначала нужно определить неизвестные коэффициенты квадратного трёхчлена.

Три неизвестных коэффициента можно найти путём решения системы трёх линейных уравнений. Чтобы составить такую систему уравнений, берём на графике три «удобные» точки и подставляем их координаты в формулу функции.
Точки «удобны», если их координаты хорошо считываются, например, находятся в узлах сетки, или мы о них что-то знаем из теории. Для параболы очень хорошими точками являются вершина и точка пересечения с осью ординат. К сожалению, последняя на заданном участке графика также не видна.
На рисунке показаны выбранные мною точки, которые задают следующие соотношения
[x_в=-4;Rightarrow;-frac{b}{2a} = -4; f(-3)=-2; Rightarrow;a(-3)^2 + b(-3) + c = -2; f(-2)=1;Rightarrow;a(-2)^2 + b(-2) + c = 1.]
Получили ситему уравнений [ begin{cases} -dfrac{b}{2a} = -4, 9a -3b + c = -2, 4a -2b + c = 1. end{cases}]
Решаем её [begin{cases} b = 8a,9a -24a + c = -2,4a -16a + c = 1; end{cases};
begin{cases} b = 8a,c = 15a-2,c = 12a+1; end{cases}; begin{cases} b = 8a, = 3a-3,c = 12a+1; end{cases};
begin{cases} b = 8,a = 1,c = 13. end{cases}]
Таким образом, уравнение функции имеет вид (f(x)= x^2 + 8x + 13), чтобы найти её значение в заданной точке, подставляем −12 в формулу [f(-12)= (-12)^2 + 8cdot(-12) +13 = 144-96+13 = 61.]

Замечание: Внимательные пользователи заметили, что полезность точки «Вершина параболы» в представленном решении использована не на все сто процентов. Постарайтесь вспомнить, что еще вы знаете о вершине параболы, и подумать о том, как сократить объём вычислений. Затем перейдите по ссылке, чтобы посмотреть второй вариант решения этой задачи.

Ответ:

Задание 7с.

Дополнительный образец формулировки задания на геометрический смысл производной.

задание ЕГЭ на геометрический смысл произволной

Задача.
На рисунке изображён график (y = f'(x)) — производной функции (f(x)),
определённой на интервале (−9;12). В какой точке отрезка [−8;11] функция (f(x)) принимает наибольшее значение?

Решение.

Задачу лучше решать, делая отметки на чертеже.

решение задания ЕГЭ на оценку по клеточкам

Выделим на чертеже отрезок, на котором требуется найти искомое значение. Наибольшее значение непрерывной функции может быть достигнуто в одной из крайних точек отрезка, либо в одной из точек максимума функции внутри отрезка.

Крайние точки отрезка x = −8 и x = 11.
Внутренние точки отрезка, в которых функция имеет экстремальные значения, совпадают с точками, в которых её производная равна нулю. Эти точки также отмечаем на чертеже (здесь красными кружками).

Чтобы определиться, в каких точках экстремум является максимумом, нам нужно определить знак производной в окрестности каждой из этих точек. Знаки производной хорошо видны по её графику. Делаем соответствующие отметки на интервалах. Интервалу, где производная положительна соответствует интервал возрастания функции, интервалу, где производная отрицательна соответствует интервал убывания функции. Отмечаем свои наблюдения стрелочками. Обратите внимание, стрелочки относятся не к тому графику, который мы видим на чертеже, не к графику производной, а к графику исходной функции. Максимум функции может быть только в тех точках, левее которых функция возрастала, а правее стала убывать. Таким образом, кандидаты на ответ – точки максимума внутри отрезка: x = −7, x = 0, x = 7, x = 10.

Вернёмся к крайним точкам. Точка x = −8 находится на участке возрастания функции, поэтому во внутренних точках отрезка, расположенных правее её, значения функции будут больше. Точка x = 11 находится на участке убывания функции, и соответственно во внутренних точках отрезка, расположенных левее её, значения функции будут больше. Т.е. в крайних точках отрезка, наибольшего значения функция не достигает.

Итак, наибольшее значение функции может быть в одной из четырёх точек, но для однозначного ответа (ведь у нас I-я часть ЕГЭ) требуется выбрать одну из них. Для этого нужно вспомнить, что функция связана со своей производной через первообразную (неопределённый интеграл) (f(x) = int{f'(x)}dx + C), а она, в свою очередь, связана с площадью под кривой через определённый интеграл. Например, площадь под кривой на отрезке [2;7], отмеченную на рисунке светлозелёным цветом, можно вычислить по формуле (S = intlimits_2^7{f'(x)}dx = f(7) — f(2).)
Оценивая по клеточкам площади криволинейных трапеций между кривой и осью абсцисс на интервалах между точками экстремумов, мы можем прикинуть сколько единиц «теряет» функция на этом интервале, если участок отмечен знаком минус, и сколько «приобретает» там, где участок отмечен знаком «+».
Предположим, что наибольшее значение функции f(−7). Далее прибавляем и вычитаем примерные значения площадей, двигаясь к следующим точкам предполагаемого ответа слева направо. Как видно из рисунка, покрашенный участок имеет наибольшую площадь и соответственно добавит к значению функции больше, чем остальные, тем более, что часть из них с плюсом, другая с минусом, и они друг друга компенсируют. Таким образом, наибольшее значение функции будет достигнуто в точке x = 7.

Ответ:

Всё понятно? Остались ли у вас вопросы по этому заданию? А у меня остался вопрос к разработчикам из ФИПИ:
ПОЧЕМУ ЭТА ЗАДАЧА ОТНОСИТСЯ К БАЗОВОМУ УРОВНЮ СЛОЖНОСТИ?
Если я ошибаюсь, и есть решение проще представленного, напишите мне об этом на почту. (Жми конвертик!)

Задание 10.

Следующие задания, в которых требуется определить вероятность некого события при условии, что другое связанное с ним событие уже произошло, и мы об этом знаем, в теории вероятностей решаются с использованием теоремы Байеса (или формулы Байеса). Не уверена, что все школьники знают, а тем более понимают эту теорему, поэтому привожу альтернативные способы решения этих задач. Такие более «школьные» способы существуют для случаев, когда взаимосвязанных событий, упоминаемых в условии задачи немного.

Задача.
Симметричную игральную кость бросили три раза. Известно, что в сумме
выпало 6 очков. Какова вероятность события «хотя бы раз выпало три очка»?

Решение.

Постараемся решить, используя лишь классическое определение вероятности (P =dfrac{m}{n},) где (n -) общее число исходов, (m -) число исходов, благоприятствующих запрашиваемому событию.
Для этого рассмотрим, из каких трёх слагаемых может состоять число 6.

1) 6 = 1+2+3;
2) 6 = 2+2+2;
3) 6 = 4+1+1.

При трёхкратном бросании игральной кости вариант 1 может реализоваться 6-ю способами, т.к. очки могут выпадать в любом порядке: перестановки из 3-ёх элементов 3! = 6.
Вариант 2 может реализоваться только одним способом.
Вариант 3 реализуется 3-мя способами: 4 очка могут выпасть при первом, или при втором, или при третьем бросании.
Итого (n = 6+1+3 = 10.)

В первом варианте тройка присутствует по одному разу в каждом из 6-ти способов. Во втором и третьем вариантах тройки вообще нет.
Итого (m = 6.) [P =frac{m}{n} = frac{6}{10} = 0,6.]

Ответ: 0,6

Задача.
В городе 48% взрослого населения мужчины. Пенсионеры составляют 12,6% взрослого населения, причем доля пенсионеров среди женщин равна 15%. Для проведения исследования социологи случайным образом выбрали взрослого мужчину, проживающего в этом городе. Найдите вероятность события «выбранный мужчина является пенсионером».

Решение.

Эту задачу постараемся решить, используя лишь И/ИЛИ-правила (правила умножения/сложения вероятностей).

От долей населения в процентах перейдём к соответствующим вероятностям в десятичных дробях. (Это можно сделать, опираясь на такое доказа если в городе живёт N взрослых человек и 48% из них мужчины, то мужчин в городе живёт (dfrac{Ncdot48}{100},) тогда вероятность встретить взрослого мужчину составляет (dfrac{Ncdot48}{100cdot N} = dfrac{48}{100} = 0,48).)

Неизвестную вероятность события «выбранный мужчина является пенсионером» обозначим x. А находить будем вероятность другого, более общего события «выбранный взрослый житель города является пенсионером». Это событие можно записать так:

«Житель города является пенсионером, если он мужчина И при этом пенсионер ИЛИ она женщина И при этом пенсионер».

Учитывая независимость и несовместимость событий (один человек не может быть одновременно женщиной и мужчиной, быть и не быть персионером), к «И» применяем правило умножения вероятностей, к «ИЛИ» — правило сложения вероятностей. Получим формулу для вероятностей

P(П) = P(М)·P(МП) + P(Ж)·P(ЖП).

В этой формуле введены такие обозначения

  • Событие П — «Житель города является пенсионером». Вероятность этого события P(П) = 0,126 находим в условии задачи (пенсионеры составляют 12,6% взрослого населения).
  • Событие М — «Этот житель города является мужчиной». Вероятность этого события P(М) = 0,48 находим в условии задачи.
  • Событие МП — «Выбранный мужчина является пенсионером». Вероятность этого события мы приняли за x
  • Событие Ж — «Этот житель города является женщиной». Вероятность этого события P(Ж) = 1 − 0,48 = 0,52, так как оно противоположно событию «житель города мужчина».
  • Событие ЖП — «Выбранная женщина является пенсионеркой». Вероятность этого события P(ЖП) = 0,15 находим в условии задачи (доля пенсионеров среди женщин равна 15%).

Получаем уравнение 0,126 = 0,48·x + 0,52·0,15,
из которого находим 0,48x = 0,126 − 0,52·0,15 = 0,048;
x = 0,048/0,48 = 0,1.

Ответ: 0,1.

Задание 11.

Задание по теме «Комплексные числа» вызывает больше всего вопросов у школьников и учителей, так как эта тема слабо представлена в действующих учебниках. Тем не менее, рассмотрим решение задачи из перспективного демонстрационного варианта.

Задача.
Про комплексное число (z) известно, что (|z — 4 — 7i| = | z + 4 — i|). Найдите наименьшее значение (|z|).

Решение.

Пусть (z = a+ib), тогда [|z| = sqrt{a^2+b^2}; z-4 — 7i = (a-4) +(b-7)i; ;; |z-4 — 7i| = sqrt{(a-4)^2 +(b-7)^2};
z+4 — i = (a+4) +(b-1)i; ;; |z+4 — i| = sqrt{(a+4)^2 +(b-1)^2};
|z — 4 — 7i| = | z + 4 — i| ;; Leftrightarrow ;; sqrt{(a-4)^2 +(b-7)^2} = sqrt{(a+4)^2 +(b-1)^2}.]
Из последнего равенства следует ((a-4)^2 +(b-7)^2 = (a+4)^2 +(b-1)^2.)
Преобразуем это уравнение, чтобы выразить одну из неизвестных переменных через другую
[(a-4)^2 — (a+4)^2 = (b-1)^2 — (b-7)^2 ; (a-4 -a-4)(a-4 +a+4) = (b-1-b+7)(b-1+b-7); -8cdot2a = 6cdot(2b-8);
a = -frac{3(b-4)}{4}.] Теперь можем записать (|z|) как функцию одной переменной [|z| = sqrt{a^2+b^2} = sqrt{left( -frac{3(b-4)}{4} right)^2+b^2} = sqrt{frac{9(b-4)^2 + 16b^2}{16}.} ]
Теперь видно, что наименьшее значение (|z|) будет достигнуто при таких значениях (b), при которых выражение (9(b-4)^2 + 16b^2) минимально. Ищем минимум этого выражения через производную.
[(9(b-4)^2 + 16b^2)’ = 9cdot2(b-4)+16cdot2b = 18b — 72 + 32b = 0; 50b = 72; ;; b = 1,44; |z| = sqrt{frac{9(b-4)^2 + 16b^2}{16} } = sqrt{frac{9(1,44-4)^2 + 16(1,44)^2}{16}} = 2,4.]

Ответ: 2,4

Моё мнение по этому заданию – требует существенных затрат времени на вычисление и проверку. Для I-ой части с учётом того, что нужно решить ещё 8 больших заданий, это может оказаться проблемой многих школьников. Если есть более простые подходы, напишите мне о них. (Жми на конвертик!)

Спасибо посетителям сайта, которые откликнулись и присылают мне свои варианты решения. Чтобы ознакомиться с вариантом геометрического решения этой задачи перейдите по ссылке.

Что касается первой части в целом, то, на мой взгляд, она стала сложнее, трудозатратнее, требует больше времени на выполнение. Действительно базовый уровень ушел.

Задание 15.

Примеры решения заданий второй части представлены непосредственно в демонстрационном варианте. Но для неравенств и их систем имеет большое значение прорисовка множеств на числовой оси, поэтому привожу здесь решение этого задания с рисунками. Другие типы неравенств можно найти здесь по ссылкам на этот номер.

Задача.
а) Решите неравенство [ log_{11}{(8x^2+7)} — log_{11}{(x^2+x+1)} ge log_{11}{left(frac{x}{x+5} + 7right)}.]
б) Решите уравнение [ sqrt{x^2+28x+196}+sqrt{x^2 +8x+16} =10.]
в) Решите систему [begin{cases} log_{11}{(8x^2+7)} — log_{11}{(x^2+x+1)} ge log_{11}{left(dfrac{x}{x+5} +7right)},sqrt{x^2+28x+196}+sqrt{x^2 +8x+16} =10.end{cases}]

Решение.

a) Решаем систему неравенств [begin{cases}8x^2+7>0; ;;(1)x^2+x+1>0; ;;(2)dfrac{x}{x+5}+7>0; ;;(3)
log_{11}{dfrac{8x^2+7}{x^2+x+1}} ge log_{11}{(dfrac{x}{x+5} +7)}, ;;(4)end{cases}]
где первые 3 неравенства следуют из ограниченности области определения логарифма, т.е. это ОДЗ выражения, а 4-е неравенство уже частично преобразованно с использованием свойства разности логарифмов с одинаковым основанием.

(1) (8x^2+7>0 ; Leftrightarrow ; x in (-infty;infty),) т.к. состоит из положительных слагаемых;

(2) (x^2+x+1>0; ; Leftrightarrow ; x in (-infty;infty),) т.к. дискриминант квадратного трёхчлена (D = 1^2-4cdot1cdot1 < 0) и ветви соответствующей параболы направлены вверх, т.е. у графика нет отрицательной части;

(3) Решаем методом интервалов [ frac{x}{x+5}+ ^{frac{x+5}}7>0; frac{8x+35}{x+5}>0;]

интервалы неравенства

[ x in (-infty;-5)cup(-frac{35}{8};+infty).]

(4) Так как основание логарифма 11>1, то переходим от логарифмического наравенства к рациональному («отбраcываем логарифм») с сохранением знака неравенства [frac{8x^2+7}{x^2+x+1} ge frac{x}{x+5} +7].
Преобразуем и также решаем методом интервалов
[frac{8x^2+7}{x^2+x+1} — frac{x}{x+5}-7 ge 0; frac{(8x^2+7)(x+5) -x(x^2+x+1) -7(x^2+x+1)(x+5)}{(x^2+x+1)(x+5)} ge 0;
frac{-3x^2-36x}{(x^2+x+1)(x+5)} ge 0; frac{-3x(x+12)}{(x^2+x+1)(x+5)} ge 0;]

интервалы неравенства

[ x in (-infty;-12]cup(-5;0].]

Чтобы завершить решение системы пересекаем все полученные множества. Фактически, это потребуется только для пунктов (3) и (4), потому что в (1) и (2) вся числовая ось.

интервалы неравенства

Итак, ответ на задание пункта a) виден из рисунка

Ответ a) ( x in ( — infty ; — 12];left( — dfrac{35} {8};0 right]. ).

б) Квадратный корень имеет ограниченную область определения, поэтому иррациональное уравнение надо начинать решать с ОДЗ, т.е. с анализа подкоренных выражений. В данном случае замечаем, что оба квадратных трёхчлена образуют полные квадраты, поэтому область допустимых значений выражения (x in R).
Преобразуем уравнение [sqrt{x^2+28x+196}+sqrt{x^2 +8x+16} =10, sqrt{x^2+2cdot14cdot{x} + 14^2}+sqrt{x^2 +2cdot4cdot{x} + 4^2} =10, sqrt{(x+14)^2}+sqrt{(x+4)^2} =10, |x+14|+|x+4| =10.]
Уравнение свелось к сумме модулей по определению арифметического квадратного корня. Нужно определить знаки постоянства подмодульных выражений, чтобы упростить уравнение дальше.[|x+14|+|x+4| ; Leftrightarrow ;; left[ begin{array} {l}
-(x+14)-(x+4),text{ при } x le -14; (x+14)-(x+4),text{ при } -14 < x < -4; (x+14)+(x+4),text{ при } x ge -4. end{array} right.] Таким образом, наше уравнение будет равносильно совокупности
[ left[ begin{array} {l} -2x-18 = 10,text{ при } x le -14; 10 = 10,text{ при } -14 < x < -4; 2x+18 = 10,text{ при } x ge -4.end{array} right.] Корни первого и третьего уравнений (x= -14) и (x = -4) являются границами интервала, на котором уравнение выродилось в тождество. Таким образом, оно верно для всех точек отрезка [−14;−4].

Ответ б) ( x in [-14;-4]).

в) Чтобы решить систему, представленную в последнем пункте задания достаточно пересечь множества из предыдущих двух ответов.

общее решение системы неравенств

Как видно из рисунка, решением этой системы будут промежутки [−14;−12] и (left( -dfrac{35}{8};-4 right].)

Ответ в) ( x in [-14;-12]cup left( — dfrac{35}{8};-4 right]).

Вывод по варианту в целом: изменения делают вариант более интересным и насыщенным, но распределение заданий не соответствует заявленному уровню сложности, а главное, все представленные новые задания времяёмкие.

Задание 1

Найдите корень уравнения $$9^{2x+5}=3,24cdot 5^{2x+5}$$

Ответ: -1,5

Задание 2

На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Вписанная окружность», равна 0,25. Вероятность того, что это вопрос по теме «Площадь», равна 0,3. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Ответ: 0,55

Задание 3

В тупоугольном треугольнике АВС известно, что АС=ВС, высота АН равна 3, $$CH=sqrt{7}$$. Найдите синус угла АСВ.

Ответ: 0,75

Задание 4

Найдите значение выражения $$frac{4cos 121^{circ}}{cos 59^{circ}}$$

Ответ: -4

Задание 5

Цилиндр вписан в правильную шестиугольную призму. Радиус основания цилиндра равен $$sqrt{3}$$, а высота равна 2. Найдите площадь боковой поверхности призмы.

Ответ: 24

Задание 6

На рисунке изображён график y=f(x). На оси абсцисс отмечены точки -2, -1, 1, 4. В какой из этих точек значение производной наибольшее? В ответе укажите эту точку.

Решу Егэ Математика Профиль 2022

Ответ: 4

Задание 7

При температуре 0°C рельс имеет длину l=15 м. При возрастании температуры происходит тепловое расширение рельса, и его длина, выраженная в метрах, меняется по закону $$l(t_{0})=l_{0}(1+alphacdot t^{circ})$$, где $$alpha=1,2cdot 10^{-5}$$(оС)-1 — коэффициент теплового расширения, t° — температура (в градусах Цельсия). При какой температуре рельс удлинится на 7,2 мм? Ответ дайте в градусах Цельсия.

Ответ: 40

Задание 8

Велосипедист выехал с постоянной скоростью из города А в город В, расстояние между которыми равно 135 км. На следующий день он отправился обратно со скоростью на 9 км/ч больше прежней. По дороге он сделал остановку на 4 часа. В результате он затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из А в В. Ответ дайте в км/ч.

Ответ: 13,5

Задание 9

На рисунке изображён график функции $$f(x)=ax^{2}+bx+c$$. Найдите $$f(-9)$$.

Решу Егэ Математика Профиль 2022

Ответ: -23

Задание 10

Две фабрики выпускают одинаковые стёкла для автомобильных фар. Первая фабрика выпускает 25% этих стёкол, вторая — 75%. Первая фабрика выпускает 5 % бракованных стёкол, а вторая — 1 %. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

Ответ: 0,02

Задание 11

Найдите точку минимума функции $$y=frac{4}{3}xsqrt{x}-5x+4$$

Ответ: 6,25

Задание 12

а) Решите уравнение $$2cos^{3}(x-pi)=sin (frac{3pi}{2}+x)$$

б) Найдите все корни этого уравнения, принадлежащие отрезку $$[frac{9pi}{2};frac{11pi}{2}]$$

Ответ: а)$$frac{pi}{2}+pi k;frac{pi}{4}+frac{pi n}{2}$$ б)$$frac{9pi}{2};frac{19pi}{4};frac{21pi}{4};frac{11pi}{2}$$

Задание 13

В правильной четырёхугольной пирамиде SABCD сторона основания AD равна 10, высота SH равна 12. Точка К — середина бокового ребра SD. Плоскость АКB пересекает боковое ребро SC в точке Р.

а) Докажите, что площадь четырёхугольника CDKP составляет $$frac{3}{4}$$ треугольника SCD.

б) Найдите объём пирамиды ACDKP.

Ответ: 150

Задание 14

Решите неравенство $$(25^{x}-4cdot 5^{x})+8cdot 5^{x}<2cdot 25^{x}+15$$

Ответ: $$(-infty;0);(log_{5}3;1)$$

Задание 15

В июле 2023 года планируется взять кредит на 10 лет на некоторую сумму. Условия возврата таковы:

— каждый январь с 2024 по 2028 год долг возрастает на 18 % по сравнению с концом предыдущего года;

— каждый январь с 2029 по 2033 год долг возрастает на 16 % по сравнению с концом предыдущего года;

— с февраля по июнь необходимо выплатить часть долга;

— в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года;

— к июлю 2033 года кредит должен быть полностью погашен.

Найдите сумму, которую планируется взять в кредит, если общая сумма выплат по кредиту должна составить 1470 тыс. рублей.

Ответ: 750 тыс. руб.

Задание 16

Точки А, В, С, D и Е лежат на окружности в указанном порядке, причём ВС=CD=DE, а AC $$perp$$ BE. Точка К — пересечение прямых BE и AD.

а) Докажите, что прямая СЕ делит отрезок KD пополам.

б) Найдите площадь треугольника АВК, если AD=4, $$DC=sqrt{3}$$ .

Ответ: $$frac{25sqrt{39}}{64}$$

Задание 17

Найдите все значения а, при каждом из которых уравнение $$|x^{2}-a^{2}|=|x+a|sqrt{x^{2}-5ax+4a}$$ имеет ровно два различных корня

Ответ: $$a<-2;-2<a<-frac{2}{3};a>0$$

Задание 18

На доске написаны три различных натуральных числа. Второе число равно сумме цифр первого, а третье равно сумме цифр второго.

а) Может ли сумма этих чисел быть равна 3456?

б) Может ли сумма этих чисел быть равна 2345?

в) В тройке чисел первое число трёхзначное, а третье равно 5. Сколько существует таких троек?

Ответ: а) да б) нет в) 85

Первообразной для функции $f(x)$ называется такая функция $F(x)$, для которой выполняется равенство: $F'(x)=f(x)$

Таблица первообразных

Первообразная нуля равна $С$

Функция Первообразная
$f(x)=k$ $F(x)=kx+C$
$f(x)=x^m, m≠-1$ $F(x)={x^{m+1}}/{m+1}+C$
$f(x)={1}/{x}$ $F(x)=ln|x|+C$
$f(x)=e^x$ $F(x)=e^x+C$
$f(x)=a^x$ $F(x)={a^x}/{lna}+C$
$f(x)=sinx$ $F(x)-cosx+C$
$f(x)=cosx$ $F(x)=sinx+C$
$f(x)={1}/{sin^2x}$ $F(x)=-ctgx+C$
$f(x)={1}/{cos^2x}$ $F(x)=tgx+C$
$f(x)=√x$ $F(x)={2x√x}/{3}+C$
$f(x)={1}/{√x}$ $F(x)=2√x+C$

Если $y=F(x)$ – это первообразная для функции $y=f(x)$ на промежутке $Х$, то $у$ $у=f(x)$ бесконечно много первообразных и все они имеют вид $y=F(x)+C$

Правила вычисления первообразных:

  1. Первообразная суммы равна сумме первообразных. Если $F(x)$ — первообразная для $f(x)$, а $G(x)$ – первообразная для $g(x)$, то $F(x)+G(x)$ — первообразная для $f(x)+g(x)$.
  2. Постоянный множитель выносится за знак первообразной. Если $F(x)$ — первообразная для $f(x)$, а $k$ – постоянная величина, то $k$ $F(x)$ — первообразная для $k$ $f(x)$.
  3. Если $F(x)$ — первообразная для $f(x)$, $а, k, b$ — постоянные величины, причем $k≠0$, то ${1}/{k}$ $F(kx+b)$ — это первообразная для $f(kx+b)$.

Пример:

Найти первообразную для функции $f(x)=2sin⁡x+{4}/{x}-{cos⁡x}/{3}$.

Решение:

Чтобы было проще найти первообразную от функции, выделим коэффициенты каждого слагаемого

$f(x)=2sin⁡x+{4}/{x}-{cos⁡x}/{3}=2∙sin⁡x+4∙{1}/{x}-{1/3}∙cos⁡x$

Далее, воспользовавшись таблицей первообразных, найдем первообразную для каждой функции, входящих в состав $f(x)$

$f_1=sin⁡x$

$f_2={1}/{x}$

$f_3=cos⁡x$

Для $f_1=sin⁡x$ первообразная равна $F_1=-cos⁡x$

Для $f_2={1}/{x}$ первообразная равна $F_2=ln⁡|x|$

Для $f_2=cos⁡x$ первообразная равна $F_3=sin⁡x$

По первому правилу вычисления первообразных получаем:

$F(x)=2F_1+4F_2-{1}/{3}F_3=2∙(-cos⁡x)+4∙ln⁡|x|-{1}/{3}∙sin⁡x$

Итак, общий вид первообразной для заданной функции

$F(x)=-2cos⁡x+4ln⁡|x|-{sin x}/{3}+C$

Связь между графиками функции и ее первообразной:

  1. Если график функции $f (x) > 0$ на промежутке, то график ее первообразной $F(x)$ возрастает на этом промежутке.
  2. Если график функции $f (x) < 0$ на промежутке, то график ее первообразной $F(x)$ убывает на этом промежутке.
  3. Если $f(x)=0$, то график ее первообразной $F(x)$ в этой точке меняется с возрастающего на убывающий (или наоборот).

Пример:

На рисунке изображен график функции $y=F(x)$ – одной из первообразных некоторой функции $f(x)$, определенной на интервале $(-3;5)$. Пользуясь рисунком, определите количество решений $f(x)=0$ на отрезке $(-2;2]$

Если $f(x)=0$, то график ее первообразной $F(x)$ в этой точке меняется с возрастающего на убывающий(или наоборот).

Выделим отрезок $(-2;2]$ и отметим на нем экстремумы.

У нас получилось $6$ таких точек.

Ответ: $6$

Неопределенный интеграл

Если функция $у=f(x)$ имеет на промежутке $Х$ первообразную $у=F(x)$, то множество всех первообразных $у=F(x)+С$, называют неопределенным интегралом функции $у=f(x)$ и записывают:

$∫f(x)dx$

Определенный интеграл – это интеграл с пределами интегрирования (на отрезке)

$∫_a^bf(x)dx$, где $a,b$ — пределы интегрирования

Площадь криволинейной трапеции или геометрический смысл первообразной

Площадь $S$ фигуры, ограниченной осью $Oх$, прямыми $х=а$ и $х=b$ и графиком неотрицательной функции $у=f(x)$ на отрезке $[a;b]$, находится по формуле

$S=∫_a^bf(x)dx$ 

Формула Ньютона — Лейбница

Если функция $у=f(x)$ непрерывна на отрезке $[a;b]$, то справедливо равенство

$∫_a^bf(x)dx=F(x)|_a^b=F(b)-F(a)$, где $F(x)$ — первообразная для $f(x)$

Пример:

На рисунке изображен график некоторой функции $у=f(x)$. Одна из первообразных этой функции равна $F(x)={2х^3}/{3}-2х^2-1$. Найдите площадь заштрихованной фигуры.

Решение:

Площадь выделенной фигуры равна разности значений первообразных, вычисленных в точках $1$ и $-2$

$S=F(1)-F(-2)$

Первообразная нам известна, следовательно, осталось только подставить в нее значения и вычислить

$F(1)={2∙1}/{3}-2∙1-1={2}/{3}-2-1={2}/{3}-3$

$F(-2)={2(-2)^3}/{3}-2(-2)^2-1={2∙(-8)}/{3}-8-1=-{16}/{3}-9$

$S={2}/{3}-3-(-{16}/{3}-9)={2}/{3}-3+{16}/{3}+9={18}/{3}+6=6+6=12$

Ответ: $12$

Блок 1. Физический смысл производной

1 Материальная точка движется прямолинейно по закону x(t) = t^3 — 9t^2 + 2t +30 (где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения). В какой момент времени её скорость была равна 50 м/с? Смотреть видеоразбор
2 Материальная точка движется прямолинейно по закону x(t)=−t^4+6t^3+5t+23, где x−расстояние от точки отсчета в метрах, t−время в секундах, измеренное с начала движения. Найдите ее скорость (в метрах в секунду) в момент времени t = 3 с. Смотреть видеоразбор

Блок 2. Анализ графика функции, касательные

3 На графике дифференцируемой функции у=f(x) отмечены семь точек: х1 ,…,  х7. Найдите все отмеченные точки, в которых производная функции f(x) равна нулю. В ответе укажите количество этих точек.
Смотреть видеоразбор
4 На рисунке изображён график дифференцируемой функции y = f(x). На оси абсцисс отмечены девять точек x1, x2, …, x9. Среди этих точек найдите все точки, в которых производная функции f(x) отрицательна. В ответе укажите количество найденных точек.
Смотреть видеоразбор
5 На рисунке изображен график функции y = f(x) и касательная к нему в точке с абсциссой X0. Найдите значение производной функции f(x) в точке X0.
Смотреть видеоразбор
6 На рисунке изображен график функции y = f(x) и касательная к нему в точке с абсциссой X0. Найдите значение производной функции f(x) в точке X0.
Смотреть видеоразбор
7 На рисунке изображен график функции y = f(x) и отмечены точки -7, -3, 1, 5. В какой из этих точек значение производной этой функции наибольшее? В ответе укажите эту точку.
Смотреть видеоразбор
8 На рисунке изображен график функции y = f(x), одна из первообразных которой равна F(x). Найдите разность F(4) — F(-1).
Смотреть видеоразбор
9 На рисунке изображен график функции y = f(x), определенной на интервале (-2; 12). Найдите сумму точек экстремума функции f(x).
Смотреть видеоразбор
10 На рисунке изображен график функции y = f(x), определенной на интервале (-5;5). Найдите количество точек, в которых касательная к графику функции параллельна прямой y = 6 или совпадает с ней.
Смотреть видеоразбор
11 На рисунке изображен график функции y = f(x). Касательная к этому графику, проведенная в точке с абсциссой -1, проходит через начало координат. Найдите значение производной функции f(x) в точке -1.
Смотреть видеоразбор
12 На рисунке изображен график функции y=f(x) и касательная к этому графику, проведенная в точке x0. Уравнение касательной y=-2x-7. Найдите значение производной функции y=-frac{1}{4}f(x)+5x-3 в точке x0.
Смотреть видеоразбор
13 На рисунке изображен график функции y=f(x), определенной на интервале (-5;5). Определите количество целых точек, в которых производная функции f(x) отрицательна.
Смотреть видеоразбор
14 На рисунке изображен график функции y=f(x), определенной на интервале (-6;8). Определите количество целых точек, в которых производная функции положительна.
Смотреть видеоразбор
15 На рисунке изображен график функции и шесть точек на оси абсцисс: x_1, x_2, x_3, x_4, x_5, x_6. В скольких из этих точек производная функции отрицательна?
Смотреть видеоразбор
16 Функция f(x) определена на интервале (-4; 6). На рисунке изображен ее график. В скольких целых точках ее производная положительна?
Смотреть видеоразбор

Блок 3. Анализ графика производной

17 На рисунке изображен график y = f'(x) — производной функции f(x), определенной на интервале (-18; 6). Найдите количество точек минимума функции f(x), принадлежащих отрезку [-13;1].
Смотреть видеоразбор
18 На рисунке изображен график y = f'(x) — производной функции f(x), определенной на интервале (-7; 14). Найдите количество точек максимума функции f(x), принадлежащих отрезку [-6;9].
Смотреть видеоразбор
19 На рисунке изображён график y = f'(x) — производной функции f(x), определенной на интервале (-8; 3). В какой точке отрезка [-3; 2] функция f(x) принимает наибольшее значение?
Смотреть видеоразбор
20 На рисунке изображён график y = f'(x) — производной функции f(x), определенной на интервале (-8; 4). В какой точке отрезка [-7; -3] функция f(x) принимает наименьшее значение?
Смотреть видеоразбор
21 На рисунке изображён график y = f′(x) производной функции f(x) и шесть точек на оси абсцисс: x1 , x2 , . . . , x6. В скольких из этих точек функция f(x) возрастает?
Смотреть видеоразбор
22 На рисунке изображен график y=f'(x) — производной функции f(x), определенной на интервале (-3; 19). Найдите количество точек максимума функции f(x), принадлежащих отрезку [-2; 15].
Смотреть видеоразбор
23 На рисунке изображен график производной функции f(x) и отмечены одиннадцать точек на оси абсцисс: x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11. В скольких из этих точек функция f(x) возрастает?
Смотреть видеоразбор
24 На рисунке изображен график производной функции f(x), определенной на интервале (-10; 2). Найдите количество точек, в которых касательная к графику функции f(x) параллельна прямой y=-2x-11 или совпадает с ней.
Смотреть видеоразбор
25 На рисунке изображен график производной функции f(x), определенной на интервале (-17; 2). Найдите число точек минимума функции y=f(x).
Смотреть видеоразбор
26 На рисунке изображен график производной функции f(x), определенной на интервале (-4; 4). Найдите абсциссу точки, в которой касательная к графику функции f(x) параллельна прямой y=-3x-11 или совпадает с ней.
Смотреть видеоразбор
27 На рисунке изображен график производной функции f(x), определенной на интервале (-6; 8). Найдите количество таких чисел x, что касательная к графику функции f(x) в точке x параллельна прямой y=2x-5 или совпадает с ней.
Смотреть видеоразбор
28 На рисунке изображен график производной функции f(x), определенной на интервале (-8; 4). В какой точке отрезка [-7; -2] функция f(x) принимает наибольшее значение?
Смотреть видеоразбор
29 Функция f(x) определена на отрезке [-6; 6]. На рисунке изображен график ее производной. Найдите наибольшую длину промежутка возрастания функции f(x).
Смотреть видеоразбор
30 Функция y = f(x) определена и непрерывна на отрезке [-5; 5]. На рисунке изображен график её производной. Найдите точку x, в которой функция принимает наименьшее значение, если f(-5) больше либо равна f(5).
Смотреть видеоразбор

Блок 4. Задачи на производную без готовых графиков

31 Прямая y=-4x-11 является касательной к графику функции y=x^3+7x^2+7x-6. Найдите абсциссу точки касания. Смотреть видеоразбор
32 Прямая y=7x-5 параллельна касательной к графику функции y=x^2+6x-8. Найдите абсциссу точки касания. Смотреть видеоразбор

Блок 5. Первообразная, интеграл

33 На рисунке изображен график функции y=f(x). Функция F(x)=-x^3-21x^2-144x-frac{11}{4} — одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.
Смотреть видеоразбор
34 На рисунке изображен график y=F(x) одной из первообразных некоторой функции f(x), определенной на интервале (-8; 7). Пользуясь рисунком, определите количество решений уравнения f(x)=0 на отрезке [-5; 5].
Смотреть видеоразбор
35 На рисунке изображен график некоторой функции y=f(x) (два луча с общей начальной точкой). Пользуясь рисунком, вычислить F(8)-F(2), где F(x) — одна из первообразных функции f(x).
Смотреть видеоразбор
36 На рисунке изображен график некоторой функции y=f(x). Пользуясь рисунком, вычислите intlimits_{-7}^{-1} f(x)dx
Смотреть видеоразбор
37 На рисунке изображен график некоторой функции y=f(x). Функция F(x) = x^3+30x^2+302x-frac{15}{8} — одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.
Смотреть видеоразбор
38 На рисунке изображен график одной из первообразных некоторой функции, определенной на интервале (-3;5). Пользуясь рисунком, определите число корней уравнения на отрезке [-2;4]
Смотреть видеоразбор
39 На рисунке изображен график функции y = f(x). Пользуясь рисунком, вычислите F(8) — F(2), где F(x) — одна из первообразных функции f(x).
Смотреть видеоразбор
40 На рисунке изображен график функции y=F(x) — одной из первообразных некоторой функции f(x), определенной на интервале (-3; 5). Пользуясь графиком, определите число корней уравнения f(x)=0 на отрезке [-2; 4].
Смотреть видеоразбор
41 На рисунке изображен график функции y=F(x) одной из первообразных некоторой функции f(x), определенной на интервале (-3; 5). Пользуясь рисунком, определите количество решений уравнения f(x)=0 на отрезке [1; 4].
Смотреть видеоразбор
42 Значение первообразной F(x) функции f(x)=frac{7}{x} в точке 1 равно -11. Найдите F(e^2) Смотреть видеоразбор

Блок 6. Нестандартные задачи

Лучшие репетиторы для сдачи ЕГЭ

Задания по теме «Первообразная функции»

Открытый банк заданий по теме первообразная функции. Задания B7 из ЕГЭ по математике (профильный уровень)

Геометрические фигуры на плоскости: вычисление величин с использованием углов

Геометрические фигуры в пространстве: нахождение длины, площади, объема

Задание №1164

Тип задания: 7
Тема:
Первообразная функции

Условие

На рисунке изображён график функции y=f(x) (являющийся ломаной линией, составленной из трёх прямолинейных отрезков). Пользуясь рисунком, вычислите F(9)-F(5), где F(x) — одна из первообразных функции f(x).

График функции y=f(x), являющийся ломаной линией, составленной из трёх прямолинейных отрезков

Показать решение

Решение

По формуле Ньютона-Лейбница разность F(9)-F(5), где F(x) — одна из первообразных функции f(x), равна площади криволинейной трапеции, ограниченной графиком функции y=f(x), прямыми y=0, x=9 и x=5. По графику определяем, что указанная криволинейная трапеция является трапецией с основаниями, равными 4 и 3 и высотой 3.

Её площадь равна frac{4+3}{2}cdot 3=10,5.

Ответ

10,5

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1158

Тип задания: 7
Тема:
Первообразная функции

Условие

На рисунке изображён график функции y=F(x) — одной из первообразных некоторой функции f(x), определённой на интервале (-5; 5). Пользуясь рисунком, определите количество решений уравнения f(x)=0 на отрезке [-3; 4].

График функции y= F(x) - одной из первообразных функции f(x), на интервале (-5; 5)

Показать решение

Решение

Согласно определению первообразной выполняется равенство: F'(x)=f(x). Поэтому уравнение f(x)=0 можно записать в виде F'(x)=0. Так как на рисунке изображён график функции y=F(x), то надо найти те точки промежутка [-3; 4], в которых производная функции F(x) равна нулю. Из рисунка видно, что это будут абсциссы экстремальных точек (максимума или минимума) графика F(x). Их на указанном промежутке ровно 7 (четыре точки минимума и три точки максимума).

Ответ

7

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1155

Тип задания: 7
Тема:
Первообразная функции

Условие

На рисунке изображён график функции y=f(x) (являющийся ломаной линией, составленной из трёх прямолинейных отрезков). Пользуясь рисунком, вычислите F(5)-F(0), где F(x) — одна из первообразных функции f(x).

График функции у=f(x) являющийся ломаной линией, составленной из трёх прямолинейных отрезков

Показать решение

Решение

По формуле Ньютона-Лейбница разность F(5)-F(0), где F(x) — одна из первообразных функции f(x), равна площади криволинейной трапеции, ограниченной графиком функции y=f(x), прямыми y=0, x=5 и x=0. По графику определяем, что указанная криволинейная трапеция является трапецией с основаниями, равными 5 и 3 и высотой 3.

Её площадь равна frac{5+3}{2}cdot 3=12.

Ответ

12

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1149

Тип задания: 7
Тема:
Первообразная функции

Условие

На рисунке изображён график функции y=F(x) — одной из первообразных некоторой функции f(x), определённой на интервале (-5; 4). Пользуясь рисунком, определите количество решений уравнения f (x)=0 на отрезке (-3; 3].

График функции y=F(x) — одной из первообразных некоторой функции f(x) на интервале (-5; 4)

Показать решение

Решение

Согласно определению первообразной выполняется равенство: F'(x)=f(x). Поэтому уравнение f(x)=0 можно записать в виде F'(x)=0. Так как на рисунке изображён график функции y=F(x), то надо найти те точки промежутка [-3; 3], в которых производная функции F(x) равна нулю.

Из рисунка видно, что это будут абсциссы экстремальных точек (максимума или минимума) графика F(x). Их на указанном промежутке ровно 5 (две точки минимума и три точки максимума).

Ответ

5

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1146

Тип задания: 7
Тема:
Первообразная функции

Условие

На рисунке изображен график некоторой функции y=f(x). Функция F(x)=-x^3+4,5x^2-7 — одна из первообразных функции f(x).

Найдите площадь заштрихованной фигуры.

График некоторой функции y=f(x) с известной первообразной и заштрихованной фигурой

Показать решение

Решение

Заштрихованная фигура является криволинейной трапецией, ограниченной сверху графиком функции y=f(x), прямыми y=0, x=1 и x=3. По формуле Ньютона-Лейбница её площадь S равна разности F(3)-F(1), где F(x) — указанная в условии первообразная функции f(x). Поэтому S= F(3)-F(1)= -3^3 +(4,5)cdot 3^2 -7-(-1^3 +(4,5)cdot 1^2 -7)= 6,5-(-3,5)= 10.

Ответ

10

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №907

Тип задания: 7
Тема:
Первообразная функции

Условие

На рисунке изображён график некоторой функции y=f(x). Функция F(x)=x^3+6x^2+13x-5 — одна из первообразных функции f(x). Найдите площадь заштрихованной фигуры.

График функции y=f(x) с заштрихованной областью

Показать решение

Решение

Заштрихованная фигура является криволинейной трапецией, ограниченной графиком функции y=f(x) и прямыми y=0, x=-4 и x=-1. По формуле Ньютона-Лейбница её площадь S равна разности F(-1)-F(-4), где F(x) — указанная в условии первообразная функции f(x).

Поэтому S= F(-1)-F(-4)= (-1)^3+6(-1)^2+13(-1)-5-((-4)^3+6(-4)^2+13(-4)-5)= -13-(-25)=12.

Ответ

12

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №307

Тип задания: 7
Тема:
Первообразная функции

Условие

На рисунке изображен график некоторой функции y=f(x). Функция F(x)=x^3+18x^2+221x-frac12 — одна из первообразных функции f(x). Найдите площадь заштрихованной фигуры.

График некоторой функции y=f(x) с заштрихованной фигурой

Показать решение

Решение

По формуле Ньютона-Лейбница S=F(-1)-F(-5).

F(-1)= (-1)^3+18cdot(-1)^2+221cdot(-1)-frac12= -204-frac12.

F(-5)= (-5)^3+18cdot(-5)^2+221cdot(-5)-frac12= -125+450-1105-frac12= -780-frac12.

F(-1)-F(-5)= -204-frac12-left (-780-frac12right)= 576.

Ответ

576

Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №306

Тип задания: 7
Тема:
Первообразная функции

Условие

На рисунке изображен график некоторой функции y=f(x).Пользуясь рисунком, вычислите F(9)-F(3), где F(x) — одна из первообразных функции f(x).

График функции y=f(x)

Показать решение

Решение

F(9)-F(3)=S, где S — площадь фигуры, ограниченной графиком функции y=f(x), прямыми y=0 и x=3,:x=9. Рассмотрим рисунок ниже.

Трапеция, ограниченная графиком функции y=f(x) и прямыми.

Данная фигура — трапеция с основаниями 6 и 1 и высотой 2. Ее площадь равна frac{6+1}{2}cdot2=7.

Ответ

7

Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №104

Тип задания: 7
Тема:
Первообразная функции

Условие

На координатной плоскости изображен график функции y=f(x). Одна из первообразных этой функции имеет вид: F(x)=-frac13x^3-frac52x^2-4x+2. Найдите площадь заштрихованной фигуры.

График дифференцируемой функции y=f(x)

Показать решение

Решение

На рисунке видно, что заштрихованная фигура ограничена по оси абсцисс точками −4, −1, а по оси ординат графиком функции: f(x). Значит площадь фигуры мы можем найти с помощью разности значений первообразных в точках −4 и −1, по формуле определенного интеграла:

intlimits_{-4}^{-1}f(x)dx=F(-1)-F(-4)

Подставим значение первообразной из условия и получим площадь фигуры:

F(-1)-F(-4)=

=frac13-frac52+4+2-frac{64}{3}+frac{80}{2}-16-2=

=-frac{63}{3}+frac{75}{2}-12=-21+37,5-12=4,5

Ответ

4,5

Задание №103

Тип задания: 7
Тема:
Первообразная функции

Условие

Первообразная y=F(x) некоторой функции y=f(x) определена на интервале (−16; −2). Определите сколько решений имеет уравнение f(x) = 0 на отрезке [−10; −5].

Первообразная y=F(x) функции y=f(x)

Показать решение

Решение

Формула первообразной имеет следующий вид:

f(x) = F'(x)

По условию задачи нужно найти точки, в которых функция f(x) равна нулю. Принимая во внимание формулу первообразной, это значит, что, нужно найти точки, в которых F'(x) = 0, то есть те точки, в которых производная от первообразной равна нулю.

Мы знаем, что производная равна нулю в точках локального экстремума, т.е. функция имеет решения в тех точках, в которых возрастание F(x) сменяется убыванием и наоборот.

На отрезке [−10; −5] видно что это точки: −9; −7; −6. Значит уравнение f(x) = 0 имеет 3 решения.

Первообразная y=F(x) функции y=f(x)

Ответ

3

Лучшие репетиторы для сдачи ЕГЭ

Сложно со сдачей ЕГЭ?

Звоните, и подберем для вас репетитора: 78007750928

Like this post? Please share to your friends:
  • Есть ли институты без егэ после 11 класса
  • Есть ли изменения в егэ по русскому языку в 2023 году
  • Есть ли идеалы у современной молодежи сочинение рассуждение
  • Есть ли змейка на экзамене в гаи
  • Есть ли задачи на оптимизацию в егэ