ЕГЭ по математике профильного уровня — один из самых сложных экзаменов. Планируете сдавать его, но не знаете, с чего начать? Этот экзамен не покажется вам таким трудным, если вы узнаете про него побольше и грамотно подготовитесь. В этой статье обсудим, что нужно знать про ЕГЭ по математике 2023, из каких разделов он состоит и как к нему подготовиться.
Какие темы важно знать для ЕГЭ по математике 2023?
В математике, как и в любом предмете, есть опорные темы. Если вы их выучите, будет легче справиться с экзаменом.
Формулы тригонометрии
Очень важно знать формулы тригонометрии и уметь применять их. Хорошая новость: в справочных материалах можно найти несколько тригонометрических формул.
Но формул гораздо больше. Я советую не зубрить их, а научиться выводить: приходить к формулам шаг за шагом, опираясь на тождества. Кстати, мы учим выводить формулы на курсах подготовки к ЕГЭ: это полезно, чтобы оказаться на экзамене во всеоружии и ничего не перепутать.
Квадратные уравнения
Эти уравнения мы учимся решать еще в 7 классе. Они встречаются в ЕГЭ по математике постоянно: и как самостоятельные задания, и внутри более сложных уравнений или неравенств. Квадратные уравнения могут встретиться в математических моделях № 9 и № 15, в задачах на геометрию и стереометрию, в задании № 17 с параметром.
Самое главное — хорошо знать универсальные методы решения. Первый — через формулу дискриминанта, второй — через теорему Виета, которая может сэкономить время на экзамене.
Треугольники
Эта замечательная тема, которую проходят в 7 классе — основа основ всей геометрии. Она нужна и для решения стереометрии, и для простейших планиметрических задач. Еще треугольники необходимы, чтобы освоить огромное количество теорем. Выучите все, что с ними связано! Особое внимание обратите на прямоугольные треугольники, которые встречаются чаще остальных — тогда геометрические задачи сразу станут проще.
Проценты
Самая нелюбимая тема моих учеников после тригонометрии, которую необходимо хорошо знать. Проценты нужны для реальной математики — это № 9 (с кратким ответом) и № 15 (с развернутым ответом). Понимание этой темы может принести вам 3 первичных балла.
План успешной подготовки к ЕГЭ по математике 2023
Если вы хотите получить больше 80 баллов на ЕГЭ, нужно идеально решать часть с кратким ответом, а также справляться с большинством заданий с развернутым ответом.
Чтобы постепенно прорабатывать материал, воспользуйтесь кодификатором. В нем обратите внимание на таблицу 2, а именно на блоки:
- Алгебра
- Уравнения и неравенства
- Элементы комбинаторики, статистики и теории вероятностей
- Функции
- Начала математического анализа
- Геометрия
Ориентируйтесь на указанную последовательность, но геометрию изучайте параллельно с остальными блоками — на нее нужно больше времени.
Самое главное — ни в коем случае не ограничивайтесь теорией. Ее у вас не спросят на экзамене, а вот задания решать придется. Поэтому тренируйте практические навыки: актуальные задания вы сможете найти в открытом банке заданий на сайте ФИПИ или в нашем тренажере «Решутест».
Как решать часть с кратким ответом
Ни в коем случае не пренебрегайте частью с кратким ответом! Иначе будет обидно: например, вы наберете за экономическую задачу № 15 полные 2 балла, но потеряете их в двух заданиях первой части. Это актуально для всех ЕГЭ: подробнее о том, как идеально справляться с первой частью экзамена, читайте здесь.
Еще одно заблуждение: «часть с кратким ответом простая, к ней можно не готовиться». Даже в первой части иногда встречаются такие задания, которые ученики даже не решают, потому что не готовились к ним.
Как я уже говорила, часть с кратким ответом содержит 11 заданий. Начинать подготовку необходимо именно с заданий базового уровня сложности, потому что это та основа, на которую потом накладывается более сложная теория.
Что касается задач повышенного уровня сложности, то среди каждого номера есть лайфхаки, например, в этой статье я уже рассказывала про № 11, в котором нужно работать с производной.
Задания с развернутым ответом: немного статистики
Многие думают, что эта часть ЕГЭ по математике очень сложная. Поэтому ребята, которые не рассчитывают на высокие баллы, даже не приступают к ней. И очень зря! С помощью этих заданий можно заработать дополнительные баллы и побороться за высокое место в рейтинге.
Сейчас будет немного статистики. В среднем около 35% учеников получают полные 2 балла за решение № 12, а вот неравенство № 14 дается хуже, только около 12% с ним справляются на полный балл. Геометрия даётся ещё хуже: стереометрию № 13 полностью решают 2% выпускников, планиметрию (№ 16) менее 5%. А вот с экономической задачей (№ 15) справляются около 20%, а это целых 2 балла! Что касается № 17 и 18, то они даются ещё хуже, но на то они и самые сложные, хотя 1 балл за № 18 по статистике получают около 25% сдающих — там нужно просто привести пример.
Особенности уровней ЕГЭ по математике
В 2015 году ЕГЭ по математике разделили на базовый и профильный уровни. Это упростило жизнь выпускникам, которые не планируют поступать на специальности, связанные с математикой. Если ЕГЭ по математике нужен только для получения аттестата, можно сдать его облегченную версию, оставив время и силы для профильных экзаменов.
Базовый уровень ЕГЭ по математике
Как устроен базовый ЕГЭ по математике? Экзамен идет 180 минут, он состоит из 21 задания, за каждое из которых можно получить 1 балл. Этот экзамен единственный, который переводится не в 100-бальную систему, а в оценки.
В ЕГЭ по математике базового уровня 6 тематических блоков:
Также обратите внимание, что базовый ЕГЭ по математике не поменялся с точки зрения наполнения, изменился лишь порядок заданий. Вот что пишут ФИПИ:
Подробнее про базовый ЕГЭ по математике, включая разбор всех заданий, читайте здесь, а мы перейдём к профильному.
Профильный уровень ЕГЭ по математике
Данный экзамен, как и остальные ЕГЭ, переводится в 100-бальную систему:
Экзамен состоит из двух частей: Часть 1 с кратким ответом, а Часть 2 — с развернутым. Длится он 235 минут. Всего есть 18 заданий, которые разделены на 3 блока: алгебра, геометрия и реальная математика. Максимальное количество первичных баллов — 31.
База, профиль — неважно, к какому именно уровню вы готовитесь. В любом случае надо не только правильно решить каждое задание, но и оформить его так, чтобы проверяющие ни к чему не придрались. Нарисовать и описать график, расписать решение уравнения или задачи… И это не все: нужно еще и внести ответы в бланк без ошибок. И все это — за ограниченный период времени! Так можно перенервничать и запороть даже самую простую задачку. А на ЕГЭ — каждый балл на счету.
Поэтому на своих занятиях я сразу показываю своим ученикам, как правильно оформлять каждое задание в ЕГЭ по математике. Мы разбираем все критерии и учимся правильно отвечать на вопросы. А еще я всегда помогаю ученикам закрыть пробелы в знаниях и объясняю сложные темы столько раз, сколько нужно. И куда же без лайфхаков? Всегда рассказываю лучший способ решения типичных заданий. Так что мои ученики приходят на экзамены подготовленными и не нервничают, когда видят задачу. Хотите также? Приходите ко мне на курсы подготовки к ЕГЭ по математике — научу!
Структура ЕГЭ по математике 2023
Часть 1:
- Приносит 11 баллов, то есть 35% всего экзамена
- 11 заданий с кратким ответом
Часть 2:
- Приносит 20 баллов, то есть 65% всего экзамена
- 7 заданий с развернутым ответом
Внимание! Вся нумерация заданий в статье соответствует ЕГЭ 2023 года.
В заданиях с кратким ответом нужно лишь записать верное число в бланк. Заданий с развернутым ответом 7, в них нужно подробно расписать решение, которое должно соответствовать критериям оценивания.
ЕГЭ — стандартизированный экзамен, поэтому каждое задание всегда соответствует определенной теме.
Обратите внимание, что по сравнению с 2022 годом, в части 1 изменился только порядок заданий. Сами сотрудники ФИПИ говорят следующее:
Задания с кратким ответом принесут вам до 11 первичных баллов (64 вторичных). Если не понимаете, что это за баллы и откуда они берутся, почитайте эту статью. Самая популярная цель на ЕГЭ по математике — набрать 80 баллов, для этого раньше было необходимо 19 первичных баллов. Ранее многие ученики пользовались рабочей стратегией — решить всю часть с кратким ответом, а также № 12, 14 и 15. Если хорошо разбирались в геометрии, выбирали № 13 и 16 — или использовали их как запасные задания. Сейчас стратегия должна быть другая, так как № 13 (стереометрия) стал стоить дороже — 3 балла вместо 2, а № 15 (экономическая задача) — подешевел с 3 баллов до 2. Изменилась также шкала перевода баллов, поэтому подумайте, какими заданиями вы сможете набрать необходимое количество первичных баллов.
Разделы ЕГЭ по математике
- Алгебра и начала анализа — 8 заданий, 13 первичных баллов
- Геометрия — 4 задания, 8 первичных баллов
- Реальная математика — 6 заданий, 10 первичных баллов
Какие задания входят в ЕГЭ по математике?
Здесь вам на помощь приходят документы с официального сайта ФИПИ: кодификатор, демоверсия и спецификация.
- Кодификатор — это краткий перечень всех блоков и тем, которые включены в экзамен.
Сейчас кодификатор общий для обоих уровней экзамена, как базового, так и профильного. Он снова представляет собой единый документ, так что не запутаетесь.
- Демоверсия — типовой вариант ЕГЭ. Он показывает уровень экзамена и ориентировочную сложность заданий.
- Спецификация — это документ, описывающий структуру экзамена и разбалловку.
Что в итоге
Теперь вы знаете больше про ЕГЭ по математике 2023. Вы познакомились со структурой и поняли, на что стоит обращать внимание при подготовке. А еще узнали, что первую часть обязательно решать на максимум, а вторая не такая страшная, как кажется. Но наверняка у вас еще осталась куча вопросов: по оформлению и конкретному решению каких-то заданий точно.
Обо всем этом я подробно рассказываю своим ученикам во время подготовки к ЕГЭ по математике. Мы изучаем все непонятные темы, а потом прорешиваем много однотипных заданий — так легче запоминается формат. Еще мы всегда проводим пробные экзамены, чтобы выявить слабые места. Я анализирую ошибки каждого ученика и индивидуально разбираю их с ними. Благодаря этому мои выпускники гарантированно сдают ЕГЭ на 80+. Если вы хотите оказаться среди них — записывайтесь на курсы!
Необходимая теория:
Производная функции
Таблица производных
Первообразная функции
Задание 7 Профильного ЕГЭ по математике — это задачи на геометрический и физический смысл производной. Это задачи о том, как производная связана с поведением функции. И еще (правда, очень редко) в этих задачах встречаются вопросы о первообразной.
Геометрический смысл производной
Вспомним, что производная — это скорость изменения функции.
Производная функции в точке равна угловому коэффициенту касательной, проведенной к графику функции в этой точке. Производная также равна тангенсу угла наклона касательной.
1. На рисунке изображён график функции и касательная к нему в точке с абсциссой Найдите значение производной функции в точке
Производная функции в точке равна тангенсу угла наклона касательной, проведенной в точке .
Достроив до прямоугольного треугольника АВС, получим:
Ответ: 0,25.
2. На рисунке изображён график функции и касательная к нему в точке с абсциссой
Найдите значение производной функции в точке
Начнём с определения знака производной. Мы видим, что в точке функция убывает, следовательно, её производная отрицательна. Касательная в точке образует тупой угол с положительным направлением оси . Поэтому из прямоугольного треугольника мы найдём тангенс угла , смежного с углом .
Мы помним, что тангенс угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему: Поскольку , имеем:
Ответ: −0, 25.
Касательная к графику функции
3. Прямая является касательной к графику функции
Найдите абсциссу точки касания.
Запишем условие касания функции и прямой в точке
При значения выражений и равны.
При этом производная функции равна угловому коэффициенту касательной, то есть .
Из второго уравнения находим или Первому уравнению удовлетворяет только .
Физический смысл производной
Мы помним, что производная — это скорость изменения функции.
Мгновенная скорость — это производная от координаты по времени. Но это не единственное применение производной в физике. Например, cила тока — это производная заряда по времени, то есть скорость изменения заряда. Угловая скорость — производная от угла поворота по времени.
Множество процессов в природе, экономике и технике описывается дифференциальными уравнениями — то есть уравнениями, содержащими не только сами функции, но и их производные.
4. Материальная точка движется прямолинейно по закону , где — расстояние от точки отсчета в метрах, — время в секундах, измеренное с начала движения. Найдите ее скорость (в м/с) в момент времени с.
Мгновенная скорость движущегося тела является производной от его координаты по времени. Это физический смысл производной. В условии дан закон изменения координаты материальной точки, то есть расстояния от точки отсчета:
Найдем скорость материальной точки как производную от координаты по времени:
В момент времени получим:
.
Ответ: 3.
Применение производной к исследованию функций
Каждый год в вариантах ЕГЭ встречаются задачи, в которых старшеклассники делают одни и те же ошибки.
Например, на рисунке изображен график функции — а спрашивают о производной. Кто их перепутал, тот задачу не решил.
Или наоборот. Нарисован график производной — а спрашивают о поведении функции.
И значит, надо просто внимательно читать условие. И знать, как же связана производная с поведением функции.
Если , то функция возрастает.
Если , то функция убывает.
В точке максимума производная равна нулю и меняет знак с «плюса» на «минус».
В точке минимума производная тоже равна нулю и меняет знак с «минуса» на «плюс».
возрастает | точка максимума | убывает | точка минимума | возрастает | |
0 | 0 |
5. На рисунке изображен график функции , определенной на интервале Найдите количество точек, в которых производная функции равна 0.
Производная функции в точках максимума и минимума функции Таких точек на графике 5.
Ответ: 5.
6. На рисунке изображён график — производной функции , определённой на интервале . В какой точке отрезка функция принимает наибольшее значение?
Не спешим. Зададим себе два вопроса: что изображено на рисунке и о чем спрашивается в этой задаче?
Изображен график производной, а спрашивают о поведении функции. График функции не нарисован. Но мы знаем, как производная связана с поведением функции.
На отрезке производная функции положительна.
Значит, функция возрастает на этом отрезке. Большим значениям х соответствует большее значение Наибольшее значение функции достигается в правом конце отрезка, то есть в точке 3.
Ответ: 3.
7. На рисунке изображён график функции , определённой на интервале . Найдите количество точек, в которых касательная к графику функции параллельна прямой
Прямая параллельна оси абсцисс. Найдем на графике функции точки, в которых касательная параллельна оси абсцисс, то есть горизонтальна. Таких точек на графике 7. Это точки максимума и минимума.
Ответ: 7.
8. На рисунке изображен график производной функции , определенной на интервале Найдите количество точек максимума функции на отрезке
Очень внимательно читаем условие задачи. Изображен график производной, а спрашивают о точках максимума функции. В точке максимума производная равна нулю и меняет знак с «плюса» на «минус». На отрезке такая точка всего одна! Это
Ответ: 1.
9. На рисунке изображен график производной функции , определенной на интервале Найдите точку экстремума функции на отрезке
Точками экстремума называют точки максимума и минимума функции. Если производная функции в некоторой точке равна нулю и при переходе через эту точку меняет знак, то это точка экстремума. На отрезке график производной (а именно он изображен на рисунке) пересекает ось абсцисс в точке В этой точке производная меняет знак с минуса на плюс.
Значит, является точкой экстремума.
Первообразная и формула Ньютона-Лейбница
Функция , для которой является производной, называется первообразной функции Функции вида образуют множество первообразных функции
10. На рисунке изображён график — одной из первообразных некоторой функции , определённой на интервале Пользуясь рисунком, определите количество решений уравнения на отрезке
Функция для которой является производной, называется первообразной функции
Это значит, что на графике нужно найти такие точки, принадлежащие отрезку , в которых производная функции равна нулю. Это точки максимума и минимума функции На отрезке таких точек 4.
Ответ: 4.
Больше задач на тему «Первообразная. Площадь под графиком функции» — в этой статье
Первообразная функции. Формула Ньютона-Лейбница.
Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Задание №7. Производная. Поведение функции. Первообразная u0026#8212; профильный ЕГЭ по Математике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.
Публикация обновлена:
09.03.2023
А вы знаете, как безошибочно читать графики функций, искать производную и определять количество целых точек при ее положительном или отрицательном значении? В нашей серии обучающих видеороликов эксперт ЕГЭ по математике разберет задачи с производной и наглядно на графике покажет, что нужно делать, чтобы получить правильный ответ. Это поможет в поиске быстрого решения 7 задания ЕГЭ по математике.
7 задание ЕГЭ по математике профильный уровень 2023 года – задача №1
Перед вами график функции, на котором определен интервал значений. Преподаватель нашего учебного центра за несколько минут разбирает этот пример, отвечая на самые популярные вопросы по задачам с производной. Для того чтобы решить задачу №1, достаточно внимательно прочитать задание и правильно выделить положительную/отрицательную производную. В целом, ничего сложного, если посмотреть видео целиком и вникнуть в детали.
Разбор задания 7 по математике ЕГЭ профиль 2023 года – задача №2
Еще один пример, показывающий, как быстро находить точки производной функции. Зная теорию по графикам, можно без длительной подготовки решить задачу №2, опираясь на аналогичные примеры. Разбор задания 7 ЕГЭ по математике еще раз повторяет азы для закрепления результата.
Если вы хотите получить 80+ баллов по сложнейшему школьному предмету – математике, вам не обойтись без поддержки. Наш учебный центр Годограф поможет каждому ученику, независимо от уровня начальной подготовки, правильно найти решение 7 задания ЕГЭ по математике, а также другим задачам экзамена и получить высокий балл. Запишитесь на пробный урок уже сегодня!
Рассылка с лучшими статьями. Раз в неделю для самых занятных
Для тех, кто ценит свое время. Выбирайте интересную вам тему и подписывайтесь, чтобы ничего не пропустить. Это бесплатно!
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
Математика профильного уровня
Сайты, меню, вход, новости
Каталог заданий.
Первообразная
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
На рисунке изображён график функции y = F(x) — одной из первообразных функции f(x), определённой на интервале (−3; 5). Найдите количество решений уравнения f(x) = 0 на отрезке [−2; 4].
Источник: Пробный экзамен по математике. Санкт-Петербург 2013. Вариант 2.
2
На рисунке изображён график некоторой функции (два луча с общей начальной точкой). Пользуясь рисунком, вычислите F(8) − F(2), где F(x) — одна из первообразных функции f(x).
Источник: Пробный экзамен по математике. Санкт-Петербург 2013. Вариант 1., Пробный экзамен по математике Санкт-Петербург 2014. Вариант 1.
3
На рисунке изображён график функции y = f(x). Функция — одна из первообразных функции y = f(x). Найдите площадь закрашенной фигуры.
4
На рисунке изображён график некоторой функции y = f(x). Функция — одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.
Пройти тестирование по этим заданиям
Привет! На связи методический отдел федеральной сети курсов ЕГЭ и ОГЭ Lancman School («Ланцман скул»). Сегодня мы расскажем о том, как готовиться к ЕГЭ по профильной математике 2022 года.
Все таблицы в сопроводительных к демоверсии документов указывают на то, что интегралы на ЕГЭ будут, и надо учить еще и эту тему.
Но на практике, правда, все не очень однозначно.
Проблема в том, что эти таблицы – как бы теоретические доводы. Или, вернее сказать, бюрократические: они есть на бумаге. Ещё в сборниках от ФИПИ.
Но за последние лет 5 (а то и больше) на ЕГЭ основной волны интегралы не встречались.
Как же справляться с такой противоречивой ситуацией?
Ведь не хочется тратить зря время на все-таки весьма обширные по меркам 1 части ЕГЭ темы. Но есть опасения: вдруг в этом году раз — и дадут-таки эти темы в №6.
Вот наши советы:
• Выделите время в конце подготовки: займитесь этой темой в мае.
Какой смысл разбирать редкую тему осенью-зимой, если весной на нее все равно придется тратить время, чтоб повторить? Раз уж она вряд ли встретится – экономьте на ней время, разберитесь с типовыми задачами один раз незадолго до экзамена, чтобы больше уже к этому не возвращаться.
• Задачи по этим темам не очень сложные, тут скорее вопрос во времязатратах. Поэтому перенесите их в онлайн.
Мы, например, весной так и делаем. Преподаватель записывает ролики с кратким объяснением теории и решением типовых задач. Обычно интегралы занимают ~30 мин.
Если вы преподаватель – запишите видео и отправьте своим ученикам.
Если сами готовитесь к экзамену – поищите в интернете, есть немало узконаправленных роликов, посвященным интегралам и условиям касания именно на ЕГЭ.
Надеемся, теперь вы уверенно чувствуете себя в этом вопросе и подберете подходящее для себя решение.
Хочешь БЕСПЛАТНО разобрать с опытным преподавателем все детали новых усложнённых вариантов ЕГЭ по профильной математике 2022 года — приходи на пробное занятие в Lancman School. Мы 13 лет готовим к ЕГЭ на высокие баллы и знаем об экзаменах и поступлении в хорошие вузы буквально всё. Решишь продолжить готовиться к ЕГЭ вместе с нами весь год — дадим скидку после бесплатного пробного занятия. Любой вопрос смело пиши сюда.
Если ты живешь не в Москве, но хочешь заниматься с лучшими столичными репетиторами и сдать ЕГЭ на 80+ баллов, то регистрируйся на наши онлайн-курсы. В этом году мы включили в договор пункт, гарантирующий поступление на бюджет в любой вуз страны. Если ученик будет соблюдать все обговоренные условия, он обязательно поступит. В противном случае мы вернём деньги. Первое пробное занятие БЕСПЛАТНО.
Рассылка «Lancman School»
Мы отправляем нашу интересную и очень полезную рассылку
два раза в неделю: во вторник и пятницу
Похожие статьи:
Первообразной для функции $f(x)$ называется такая функция $F(x)$, для которой выполняется равенство: $F'(x)=f(x)$
Таблица первообразных
Первообразная нуля равна $С$
Функция | Первообразная |
$f(x)=k$ | $F(x)=kx+C$ |
$f(x)=x^m, m≠-1$ | $F(x)={x^{m+1}}/{m+1}+C$ |
$f(x)={1}/{x}$ | $F(x)=ln|x|+C$ |
$f(x)=e^x$ | $F(x)=e^x+C$ |
$f(x)=a^x$ | $F(x)={a^x}/{lna}+C$ |
$f(x)=sinx$ | $F(x)-cosx+C$ |
$f(x)=cosx$ | $F(x)=sinx+C$ |
$f(x)={1}/{sin^2x}$ | $F(x)=-ctgx+C$ |
$f(x)={1}/{cos^2x}$ | $F(x)=tgx+C$ |
$f(x)=√x$ | $F(x)={2x√x}/{3}+C$ |
$f(x)={1}/{√x}$ | $F(x)=2√x+C$ |
Если $y=F(x)$ – это первообразная для функции $y=f(x)$ на промежутке $Х$, то $у$ $у=f(x)$ бесконечно много первообразных и все они имеют вид $y=F(x)+C$
Правила вычисления первообразных:
- Первообразная суммы равна сумме первообразных. Если $F(x)$ — первообразная для $f(x)$, а $G(x)$ – первообразная для $g(x)$, то $F(x)+G(x)$ — первообразная для $f(x)+g(x)$.
- Постоянный множитель выносится за знак первообразной. Если $F(x)$ — первообразная для $f(x)$, а $k$ – постоянная величина, то $k$ $F(x)$ — первообразная для $k$ $f(x)$.
- Если $F(x)$ — первообразная для $f(x)$, $а, k, b$ — постоянные величины, причем $k≠0$, то ${1}/{k}$ $F(kx+b)$ — это первообразная для $f(kx+b)$.
Пример:
Найти первообразную для функции $f(x)=2sinx+{4}/{x}-{cosx}/{3}$.
Решение:
Чтобы было проще найти первообразную от функции, выделим коэффициенты каждого слагаемого
$f(x)=2sinx+{4}/{x}-{cosx}/{3}=2∙sinx+4∙{1}/{x}-{1/3}∙cosx$
Далее, воспользовавшись таблицей первообразных, найдем первообразную для каждой функции, входящих в состав $f(x)$
$f_1=sinx$
$f_2={1}/{x}$
$f_3=cosx$
Для $f_1=sinx$ первообразная равна $F_1=-cosx$
Для $f_2={1}/{x}$ первообразная равна $F_2=ln|x|$
Для $f_2=cosx$ первообразная равна $F_3=sinx$
По первому правилу вычисления первообразных получаем:
$F(x)=2F_1+4F_2-{1}/{3}F_3=2∙(-cosx)+4∙ln|x|-{1}/{3}∙sinx$
Итак, общий вид первообразной для заданной функции
$F(x)=-2cosx+4ln|x|-{sin x}/{3}+C$
Связь между графиками функции и ее первообразной:
- Если график функции $f (x) > 0$ на промежутке, то график ее первообразной $F(x)$ возрастает на этом промежутке.
- Если график функции $f (x) < 0$ на промежутке, то график ее первообразной $F(x)$ убывает на этом промежутке.
- Если $f(x)=0$, то график ее первообразной $F(x)$ в этой точке меняется с возрастающего на убывающий (или наоборот).
Пример:
На рисунке изображен график функции $y=F(x)$ – одной из первообразных некоторой функции $f(x)$, определенной на интервале $(-3;5)$. Пользуясь рисунком, определите количество решений $f(x)=0$ на отрезке $(-2;2]$
Если $f(x)=0$, то график ее первообразной $F(x)$ в этой точке меняется с возрастающего на убывающий(или наоборот).
Выделим отрезок $(-2;2]$ и отметим на нем экстремумы.
У нас получилось $6$ таких точек.
Ответ: $6$
Неопределенный интеграл
Если функция $у=f(x)$ имеет на промежутке $Х$ первообразную $у=F(x)$, то множество всех первообразных $у=F(x)+С$, называют неопределенным интегралом функции $у=f(x)$ и записывают:
$∫f(x)dx$
Определенный интеграл – это интеграл с пределами интегрирования (на отрезке)
$∫_a^bf(x)dx$, где $a,b$ — пределы интегрирования
Площадь криволинейной трапеции или геометрический смысл первообразной
Площадь $S$ фигуры, ограниченной осью $Oх$, прямыми $х=а$ и $х=b$ и графиком неотрицательной функции $у=f(x)$ на отрезке $[a;b]$, находится по формуле
$S=∫_a^bf(x)dx$
Формула Ньютона — Лейбница
Если функция $у=f(x)$ непрерывна на отрезке $[a;b]$, то справедливо равенство
$∫_a^bf(x)dx=F(x)|_a^b=F(b)-F(a)$, где $F(x)$ — первообразная для $f(x)$
Пример:
На рисунке изображен график некоторой функции $у=f(x)$. Одна из первообразных этой функции равна $F(x)={2х^3}/{3}-2х^2-1$. Найдите площадь заштрихованной фигуры.
Решение:
Площадь выделенной фигуры равна разности значений первообразных, вычисленных в точках $1$ и $-2$
$S=F(1)-F(-2)$
Первообразная нам известна, следовательно, осталось только подставить в нее значения и вычислить
$F(1)={2∙1}/{3}-2∙1-1={2}/{3}-2-1={2}/{3}-3$
$F(-2)={2(-2)^3}/{3}-2(-2)^2-1={2∙(-8)}/{3}-8-1=-{16}/{3}-9$
$S={2}/{3}-3-(-{16}/{3}-9)={2}/{3}-3+{16}/{3}+9={18}/{3}+6=6+6=12$
Ответ: $12$
24 августа вышла демоверсия ЕГЭ 2023 по профильной математике. Для тех, кто пока не готов вникать в тему основательно, успокоительный спойлер: почти ничего не изменилось, принципиально новых заданий нет. Всё в порядке.
А для тех, кто давно был на низком старте и ждал разбор демо ЕГЭ, математик Эйджей провёл стрим с решением заданий из демоверсии ЕГЭ 2023 по профильной математике. В этой статье собраны резюме по заданиям экзамена, которые составители ЕГЭ представили в демоверсии.
https://youtu.be/RFQwP8DW8sA
Что изменилось в ЕГЭ 2023 по профильной математике
По сути, никаких критически важных изменений в демоверсии ЕГЭ 2023 нет, о чём составители написали прямо: «Изменения в содержании КИМ отсутствуют». Но есть момент: все задания из первой части, кроме 11, изменили свои номера.
Будем искать позитивные моменты: если в 2022 году вы не смогли запомнить номера заданий в тесте — ничего страшного, запомните новые в 2023 году.
Главное, что новых заданий не появилось.
Важный момент в самостоятельной подготовке к ЕГЭ по профильной математике — выбор качественных сборников задач. Делимся лучшими ресурсами для повторения теории и отработки практики.
1, 2 задания
В демоверсии ЕГЭ 2023 по профильной математике всё начинается с простой геометрии и стереометрии. Составители хотят, чтобы геометрические задачи научились решать как можно больше ребят, поэтому поместили эти задания вперёд как одни из самых простых, чтобы поднять решаемость.
3, 4 задания
Задания 3–4 посвящены теории вероятности.
Задание 3 — обычная задача наподобие задачи из ОГЭ, а задание 4 — задача про монеты и проценты из КИМа 2022 года.
5, 6 задания
После вероятностей составители ЕГЭ 2023 по профильной математике решили поставить уравнения и выражения. Уравнения ожидаются не супер лёгкие, но вполне решаемые: будут корни, логарифмы и степени. В выражениях в демоверсии ЕГЭ встретилась тригонометрия и степени.
7 задание
Ура, 7 задание осталось на своём месте: это задание с графиком и производными. Почему-то его не объединили в общий блок с 11 заданием, тоже посвящённым производным.
Далее в разборе демоверсии ЕГЭ 2023 по профильной математике выпускников ждут две задачи.
8 задание
8 задача на подстановку: нужно подставить в формулу известные числа и вычислить какую-либо величину. Ничего сложного, главное внимательность.
9 задание
Ещё одна текстовая задача. Здесь могут встретиться темы «Движение по прямой», «Движение по окружности», «Движение по реке» и «Сплавы, смеси, растворы». Такие задачи считаются не самыми простыми. Вместе с Эйджеем разберём этот номер в Телеграме.
10 задание
10 задание в демо ЕГЭ 2023 — «новое старое задание». Этот тип заданий с графиком впервые появился в 2022 году, и в КИМ 2023 попал без изменений. Возможно, стоит ждать усложнения этого задания.
11 задание
Традиционное задание с производными и точками минимума и максимума, которое почему-то не объединили в блок с другим заданием на производные.
Итак, обобщим всё, что мы узнали про первую часть демоверсии ЕГЭ по математике: в 2023 году в экзамене не появились ни вектора, ни комплексные числа. Можно немного расслабиться! Осталось выучить новую нумерацию, и всё будет хорошо.
Нумерация второй части в демоверсии ЕГЭ 2023 осталась без изменений, и это радует: не придётся переучивать номера и переживать. Посмотрим, что приготовили составители в этом году.
12 задание
Традиционно в разборе демоверсии ЕГЭ 2023 по профильной математике в 12 задании выпускников ждёт тригонометрическое уравнение.
13 задание
В 13 задании осталась стереометрия: в демоверсии представлена треугольная призма.
14 задание
В 14 задании всё по плану, там остались неравенства с логарифмами, ничего нового.
Это задание вместе с 12-ым составляет «джентльменский набор» из второй части — их под силу решить каждому, и этому нужно обязательно научиться, чтобы набрать 70+ баллов за ЕГЭ по профильной математике.
15 задание
15 задание также считается вполне решаемым. В демоверсии это экономическая задача про человека, который взял кредит в банке и рассчитывает выплаты и проценты.
16 задание
В задании 16 демоверсии ЕГЭ 2023 представлена планиметрическая задача про две окружности.
17 задание
Задача на параметр. Как показывает практика прошлых лет, параметр — самое решаемое задание из сложных заданий ЕГЭ.
18 задание
Задача на целые числа. Из трёх пунктов, А и Б решить может каждый, если хорошо подготовиться.
Чтобы получить 80+ баллов по профильной математике, нужно без ошибок решить первую часть и выполнить 12, 14, 15 и 18аб задания. А планиметрия, стереометрия, параметр и 18 задание полностью помогут получить заветную сотку. Как повысить свои шансы на успешную сдачу ЕГЭ по математике, рассказали в нашей статье.
Мы разобрали демоверсию ЕГЭ 2023 по математике, и теперь вы знаете, что приготовили для вас составители экзамена. Можно смело начинать подготовку! Эйджей уже составил план занятий и ждёт вас на курсе «Основа». Это возможность разобраться во всех темах и набить руку в решении заданий в компании единомышленников и с личным наставником.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter. Мы обязательно поправим!