Жизненный цикл клетки (клеточный цикл)
С момента появления клетки и до ее смерти в результате апоптоза (программируемой клеточной гибели) непрерывно продолжается
жизненный цикл клетки.
Здесь и в дальнейшем мы будем пользоваться генетической формулой клетки, где «n» — число хромосом, а «c» — число ДНК (хроматид).
Напомню, что в состав каждой хромосомы может входить как одна молекула ДНК (одна хроматида) (nc), либо две (n2c).
Клеточный цикл включает в себя несколько этапов: деление (митоз), постмитотический (пресинтетический), синтетический,
постсинтетический (премитотический) период. Три последних периода составляют интерфазу — подготовку к делению клетки.
Разберем периоды интерфазы более подробно:
- Пресинтетический (постмитотический) период G1 — 2n2c
- Синтетический период S — 2n4c
- Постсинтетический (премитотический) период G2 — 2n4c
Интенсивно образуются органоиды (рибосомы и другие), синтезируется белки, АТФ и все виды РНК, ферменты, клетка растет.
Длится 6-10 часов. Важнейшее событие этого периода — удвоение ДНК, вследствие которого к концу синтетического периода
каждая хромосома состоит из двух хроматид. Происходит удвоение центриолей (репликация центриолей). Активно синтезируются структурные белки ДНК — гистоны.
Короткий, длится 2-6 часов. Это время клетка тратит на подготовку к последующему процессу — делению клетки, синтезируются
белки (тубулин для веретена деления) и АТФ, делятся митохондрии и хлоропласты.
Митоз (греч. μίτος — нить)
Митоз является непрямым способом деления клетки, наиболее распространенным среди эукариотических организмов. По продолжительности
занимает около 1 часа. К митозу клетка готовится в период интерфазы путем синтеза белков, АТФ и удвоения молекулы ДНК в синтетическом
периоде.
Митоз состоит из 4 фаз, которые мы далее детально рассмотрим: профаза, метафаза, анафаза, телофаза. Напомню, что клетка вступает в
митоз с уже удвоенным (в синтетическом периоде) количеством ДНК. Мы рассмотрим митоз на примере клетки с набором хромосом и ДНК 2n4c.
- Профаза — 2n4c
- Бесформенный хроматин в ядре начинает собираться в четкие оформленные структуры — хромосомы — происходит это за счет
спирализации ДНК (вспомните мой пример ассоциации хромосомы с мотком ниток) - Оболочка ядра распадается, хромосомы оказываются в цитоплазме клетки
- Центриоли перемещаются к полюсам клетки, образуются центры веретена деления
- Метафаза — 2n4c
- Анафаза — 4n4c
- Телофаза — 2n2c
- Начинается процесс деспирализации ДНК, хромосомы исчезают и становятся хроматином (вспомните ассоциацию про раскрученный
моток ниток) - Появляется ядерная оболочка, формируется ядро
- Разрушаются нити веретена деления
ДНК максимально спирализована в хромосомы, которые располагаются на экваторе клетки. Каждая хромосома состоит из двух
хроматид, соединенных центромерой (кинетохором). Нити веретена деления прикрепляются к центромерам хромосом (если точнее,
прикрепляются к кинетохору центромеры).
Самая короткая фаза митоза. Хромосомы, состоящие из двух хроматид, распадаются на отдельные хроматиды. Нити веретена деления
тянут хроматиды (синоним — дочерние хромосомы) к полюсам клетки.
В этой фазе хроматиды (дочерние хромосомы) достигают полюсов клетки.
В телофазе происходит деление цитоплазмы — цитокинез (цитотомия), в результате которого образуются две дочерние клетки с
набором 2n2c. В клетках животных цитокинез осуществляется стягиванием цитоплазмы, в клетках растений — формированием
плотной клеточной стенки (которая растет изнутри кнаружи).
Образовавшиеся в телофазе дочерние клетки 2n2c вступают в постмитотический период. Затем в синтетический период, где происходит
удвоение ДНК, после чего каждая хромосома состоит из двух хроматид — 2n4c. Клетка с набором 2n4c и попадает в профазу
митоза. Так замыкается клеточный цикл.
Биологическое значение митоза очень существенно:
- В результате митоза образуются дочерние клетки — генетические копии (клоны) материнской.
-
Митоз является универсальным способом бесполого размножения, регенерации и протекает одинаково у всех эукариот (ядерных
организмов). - Универсальность митоза служит очередным доказательством единства всего органического мира.
Попробуйте самостоятельно вспомнить фазы митоза и описать события, которые в них происходят. Особенное внимание уделите состоянию
хромосом, подчеркните сколько в них содержится молекул ДНК (хроматид).
Мейоз
Мейоз (от греч. μείωσις — уменьшение), или редукционное деление клетки — способ деления клетки, при котором наследственный материал
в них (число хромосом) уменьшается вдвое. Мейоз происходит в ходе образования половых клеток (гамет) у животных и спор у растений.
В результате мейоза из диплоидных клеток (2n) получаются гаплоидные (n). Мейоз состоит из двух последовательных делений, между которыми
практически отсутствует пауза. Удвоение ДНК перед мейозом происходит в синтетическом периоде интерфазы (как и при митозе).
Как уже было сказано, мейоз состоит из двух делений: мейоза I (редукционного) и мейоза II (эквационного). Первое деление
называют редукционным (лат. reductio — уменьшение), так как к его окончанию число хромосом уменьшается вдвое. Второе деление — эквационное
(лат. aequatio — уравнивание) очень похоже на митоз.
Приступим к изучению первого деления мейоза. За основу возьмем клетку с двумя хромосомами и удвоенным (в синтетическом периоде
интерфазы) количеством ДНК — 2n4c.
- Профаза мейоза I
- Метафаза мейоза I
- Анафаза мейоза I
- Телофаза мейоза I
Помимо типичных для профазы процессов (спирализация ДНК в хромосомы, разрушение ядерной оболочки, движение центриолей к полюсам клетки) в профазе мейоза I происходят два важнейших процесса: конъюгация и кроссинговер.
Конъюгация (лат. conjugatio — соединение) — сближение гомологичных хромосом друг с другом. Гомологичными хромосомами называются
такие, которые соответствуют друг другу по размерам, форме и строению. В результате конъюгации образуются комплексы,
состоящие из двух хромосом — биваленты (лат. bi — двойной и valens — сильный).
После конъюгации становится возможен следующий процесс —
кроссинговер (от англ. crossing over — пересечение), в ходе которого происходит обмен участками между гомологичными хромосомами.
Кроссинговер является важнейшим процессом, в ходе которого возникают рекомбинации генов, что создает уникальный материал для эволюции,
последующего естественного отбора. Кроссинговер приводит к генетическому разнообразию потомства.
Биваленты (комплексы из двух хромосом) выстраиваются по экватору клетки. Формируется веретено деления, нити которого
крепятся к центромере (кинетохору) каждой хромосомы, составляющей бивалент.
Нити веретена деления сокращаются, вследствие чего биваленты распадаются на отдельные хромосомы, которые и притягиваются
к полюсам клетки. В результате у каждого полюса формируется гаплоидный набор будущей клетки — n2c, за счет чего мейоз I и называется редукционным делением.
Происходит цитокинез — деление цитоплазмы. Формируются две клетки с гаплоидным набором хромосом. Очень короткая интерфаза
после мейоза I сменяется новым делением — мейозом II.
Мейоз II весьма напоминает митоз по всем фазам, поэтому если вы что-то подзабыли: поищите в теме про митоз. Главное отличие мейоза II от мейоза I в том, что в анафазе мейоза II к полюсам клетки расходятся не хромосомы, а хроматиды (дочерние хромосомы).
В результате мейоза I и мейоза II мы получили из диплоидной клетки 2n4c гаплоидную клетку — nc. В этом и состоит сущность
мейоза — образование гаплоидных (половых) клеток. Вспомнить набор хромосом и ДНК в различных фазах мейоза нам еще предстоит,
когда будем изучать гаметогенез, в результате которого образуются сперматозоиды и яйцеклетки — половые клетки (гаметы).
Сейчас мы возьмем клетку, в которой 4 хромосомы. Попытайтесь самостоятельно описать фазы и этапы, через которые она
пройдет в ходе мейоза. Проговорите и осмыслите набор хромосом в каждой фазе.
Помните, что до мейоза происходит удвоение ДНК в синтетическом периоде. Из-за этого уже в начале мейоза вы видите их
увеличенное число — 2n4c (4 хромосомы, 8 молекул ДНК). Я понимаю, что хочется написать 4n8c, однако это неправильная запись!) Ведь наша исходная клетка диплоидна (2n), а не тетраплоидна (4n)
Итак, самое время обсудить биологическое значение мейоза:
- Поддерживает постоянное число хромосом во всех поколениях, предотвращает удвоение числа хромосом
- Благодаря кроссинговеру возникают новые комбинации генов, обеспечивается генетическое разнообразие состава гамет
- Потомство с новыми признаками — материал для эволюции, который проходит естественный отбор
Бинарное деление надвое
Митоз и мейоз возможен только у эукариот, а как же быть прокариотам — бактериям? Они изобрели несколько другой способ и делятся
бинарным делением надвое. Оно встречается не только у бактерий, но и у ряда ядерных организмов: амебы, инфузории, эвглены зеленой.
При благоприятных условиях бактерии делятся каждые 20 минут. В случае, если условия не столь благоприятны, то больше времени
уходит на рост и развитие, накопление питательных веществ. Интервалы между делениями становятся длиннее.
Амитоз (от греч. ἀ — частица отрицания и μίτος — нить)
Способ прямого деления клетки, при котором не происходит образования веретена деления и равномерного распределения
хромосом. Клетки делятся напрямую путем перетяжки, наследственный материал распределяется «как кому повезет» — случайным
образом.
Амитоз встречается в раковых (опухолевых) клетках, воспалительно измененных, в старых клетках.
© Беллевич Юрий Сергеевич 2018-2023
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.
Продолжаем разбираться с делением клетки! Эта тема не ограничивается митозом, о котором я рассказала в прошлый раз. В этой статье я расскажу про мейоз в ЕГЭ по биологии — второй, но не менее важный способ деления. Вас ждет необходимая теория и разбор нескольких заданий!
Что такое мейоз?
Мейоз — это деление, при котором образуются половые клетки: яйцеклетки у самок и сперматозоиды у самцов. В мейоз вступают клетки с набором 2n2c, поэтому я предостерегаю вас от использования формулировки «деление половых клеток». Правильнее будет охарактеризовать его как деление, в результате которого образуются половые клетки. Чтобы решать задания на мейоз в ЕГЭ по биологии, нужно разобраться в его процессе и фазах — этим мы сейчас и займемся.
Напомню, что буквой n принято обозначать количество хромосом в клетке, а с – количество ДНК. Причем n и c – это количество наборов, а не штук. Например, в соматической клетке человека набор 2n2с – 46 хромосом, в каждой из которых по 1 молекуле ДНК (тоже 46), а в соматической клетке собаки 2n2c – 78 хромосом и 78 молекул ДНК.
Интерфаза
Как и в митозе, перед делением проходит подготовительная стадия – интерфаза. В ней запускаются важнейшие процессы для того, чтобы клетка могла начать клеточное деление. Клетка синтезирует органические вещества и молекулы АТФ, чтобы во время мейоза ей хватило энергии и строительного материала, удваивает некоторые органоиды и молекулы ДНК.
Вот что именно происходит во время интерфазы.
- Синтез АТФ. Энергии должно хватить на весь процесс деления, а он непростой и достаточно долгий.
- Ускорение метаболизма — синтез и накопление органических веществ, будущего строительного материала для новых клеток
- Репликация ДНК. Образование двух молекул ДНК из одной, каждая из этих молекул потом уйдет в дочернюю клетку. Удвоение ДНК – центральный процесс интерфазы, теперь в каждой хромосоме располагается по две молекулы, а набор становится 2n4c.
- Удвоение органоидов. После деления каждая клетка должна получить полный набор органоидов для оптимального функционирования.
После того, как клетка совершит все ритуалы для подготовки, она может приступать к мейозу.
Если хотите лучше понять клеточную теорию и изучить не только мейоз для ЕГЭ по биологии, но и остальные темы, приходите учиться в MAXIMUM! Записывайтесь на консультацию — вы сможете пройти диагностику по выбранным предметам ЕГЭ, поставить цели и составить стратегию подготовки, чтобы получить на экзамене высокие баллы. Все это абсолютно бесплатно!
Первое деление
Чем мейоз функционально отличается от митоза? Дело в том, что в мейозе происходит не одно деление, а два. Их так и называют: первое и второе деление мейоза. В каждом делении по 4 фазы. Тут нам повезлоЕ называются эти фазы так же, как и фазы митоза, поэтому сложностей с ними обычно не возникает. Между делениями не проходит интерфаза, клетка может немного «отдохнуть», но удвоения ДНК не происходит.
Рассмотрим фазы каждого деления подробнее.
Профаза первого деления
Начинается мейоз практически так же, как и митоз. Хромосомы спирализуются, ядро и ядерная оболочка распадается, центриоли клеточного центра расходятся к полюсам и начинают формировать веретено деления. А вот дальше начинается самое интересное – хромосомы встречают свою гомологичную пару.
Что же такое гомологичные хромосомы? Все мы знаем, что половину хромосом при оплодотворении получаем от материнского организма, а другую половину от отцовского. Так вот, гомологичные хромосомы сходны по строению, размеру и несут одинаковый набор генов (но, возможно, разные аллели). Одну из таких хромосом организм получает от матери, а вторую от отца. Такие хромосомы подходят близко друг к другу, это называется конъюгация, и могут даже обменяться участками – это кроссинговер.
После этого хромосомы хаотично располагаются в цитоплазме. При этом набор хромосом и ДНК по сравнению с интерфазой не меняется (меняется только генетическая информация), а остается таким же, как в интерфазе – 2n4c.
Метафаза первого деления
Помните, что метафаза — самая статичная и красивая из всех фаз? Хромосомы выстраиваются по экватору гомологичными парами, друг напротив друга. Нити веретена деления прикрепляются к центромере хромосомы, которая расположена ближе к тому полюсу, где находится центриоль. Таким образом, каждую хромосому нить фиксирует только одной стороны. Набор остается 2n4c.
Анафаза первого деления
Нити веретена деления сокращаются и растаскивают к полюсам по одной из пары гомологичных двухроматидных хромосом. Хромосомы расходятся к полюсам, а набор в клетке не меняется, так и остается 2n4c.
Телофаза первого деления
Дальше клетка действует, как будто по инерции. Она продолжает работать по тому же алгоритму, что и в митозе. Поэтому в первой телофазе хромосомы деконденсируются, формируются ядра и ядерные оболочки, клетка делится на две, при этом набор в каждой из новых клеток тоже делится пополам и становится 1n2c. С этим набором клетка переходит во второе деление.
Второе деление
Хочу обратить ваше внимание на то, что дальше процессы деления будут проходить в двух получившихся клетках параллельно. Мы, конечно, будем говорить только про одну из них, но в голове держите обе. Второе деление мейоза очень напоминает митоз (можно даже сказать о том, что оно его повторяет). Разница только в наборах и в том, что в профазе 1 между хромосомами произошел обмен генетической информацией.
Профаза второго деления
Хромосомы спирализуются, растворяются ядро и ядерная оболочка. Так как хромосомы больше ничто не удерживает на месте, они хаотично располагаются по всей клетке. Центриоли клеточного центра расходятся к полюсам и начинают формировать нити веретена деления. Набор при этом остается таким же, как в телофазе 1 – n2c.
Метафаза второго деления
Хромосомы выстраиваются по экватору, они потеряли свои гомологичные пары в первом делении, поэтому теперь выстраиваются в линию — как в митозе. Нити веретена деления прикрепляются к центромерам хромосом с каждого полюса, выходит так, что каждую хромосому с двух сторон фиксирует веретено деления. События, происходящие в эту фазу, не приводят к изменению хромосомного набора, он остается n2c.
Анафаза второго деления
Нити веретена деления сокращаются и разрывают двухроматидные хромосомы на две однохроматидные сестринские хромосомы, каждая из которых несет по одной молекуле ДНК. Потом эти хромосомы растаскивают по полюсам. Таким образом, из каждой хромосомы образуется две новые, количество ДНК при этом не меняется. Просто раньше в каждой из хромосом было по две молекулы ДНК, а теперь по одной. Набор 2n2c.
Телофаза второго деления
Хорошо, что в телофазах события всегда одинаковые: деспирализация хромосом, формирование ядер и деление клетки на две дочерние. Но мы помним, что во второе деление вступило две клетки, каждая из которых поделилась еще на две. Так что в процессе мейоза образуется 4 гаплоидные клетки с набором nc, причем эти клетки генетически отличаются друг от друга и от вступившей в деление материнской клетки.
Зачем нужен мейоз?
Теперь, когда мы вспомнили, как именно проходит процесс мейоза, пришло время ответить еще на один вопрос. Зачем он проходит? Это важно понимать, чтобы лучше справляться с заданиями на мейоз в ЕГЭ.
- В результате мейоза образуются половые клетки, а, следовательно, основное значение мейоза – это половое размножение.
- Мейоз – редукционное деление, при этом клетки уменьшают свой набор хромосом вдвое. Благодаря редукции поддерживается постоянство числа хромосом в поколениях. Только представьте, если бы этот процесс проходил иначе или не проходил вовсе, набор хромосом из поколения в поколение увеличивался бы вдвое. Например, у человека при оплодотворении сперматозоид, имеющий 46 хромосом, сливался бы с яйцеклеткой с таким же набором. Зародыш получил бы 92 хромосомы, а это только первое поколение!
- В профазе первого деления мейоза происходит кроссинговер – обмен участками гомологичных хромосом, после этого каждая из хромосом несет уникальную генетическую информацию. Это приводит к увеличению генетического разнообразия и комбинативной изменчивости.
Задания на мейоз в ЕГЭ по биологии
В экзамене достаточно много вопросов о делении клетки, они встречаются и в первой, и во второй части. Каждое из них может принести от одного до трех первичных баллов.
Пример 1
В ядрах клеток слизистой оболочки кишечника позвоночного животного 36 хромосом. Определите число молекул ДНК в анафазе второго деления мейоза при образовании гамет? В ответ запишите только соответствующее число.
Решение. В анафазе второго деления клетки диплоидный набор хромосом и ДНК – 2n2c, так как к полюсам расходятся двухроматидные хромосомы. В клетках слизистой оболочки набор тоже диплоидный, клетка соматическая. Число молекул ДНК совпадает с диплоидным набором и равняется 36.
Ответ: 36.
Пример 2
Установите последовательность процессов, происходящих в ходе мейоза.
- расположение пар гомологичных хромосом по экватору
- расхождение гомологичных хромосом
- расхождение сестринских хроматид
- образование гаплоидных ядер с однохроматидными хромосомами
- конъюгация
Решение. Один из вариантов решения, разобрать в какой из стадий происходит каждый из процессов, а потом расставить фазы деления по местам.
- Гомологичные хромосомы располагаются парами по экватору в первую метафазу и образуют экваториальную пластинку.
- Расхождение гомологичных, а значит двухроматидных хромосом, к полюсам происходит в анафазу первого деления.
- Сестринские хроматиды, а значит однохроматидные, расходятся к полюсам в анафазу второго деления.
- Гаплоидные ядра с однохроматидными хромосомами имеют набор nc, перед нами телофаза 2.
- Последний вариант «конъюгация» — это сближение гомологичных хромосом с образованием бивалента и происходит этот процесс в профазе первого деления.
Дальше вспоминаем последовательность фаз, для этого можно использовать слово «ПРИМАТ». Буквы в нем расположены в том же порядке, как и названия фаз во время деления.
Ответ: 51234.
Пример 3
Соматические клетки козы содержат 60 хромосом. Как изменится число хромосом и молекул ДНК в ядре при гаметогенезе перед началом деления и в конце телофазы мейоза I? Объясните результаты в каждом случае.
Решение.
- В соматических клетках набор 2n2c- 60 хромосом и 60 молекул ДНК.
- В интерфазе, перед началом деления проходит репликация ДНК, набор 2n4с- 60 хромосом и 120 молекул ДНК
- В конце телофазы мейоза I набор 1n2c- 30 хромосом и 60 молекул ДНК, так как в анафазе I к полюсам расходятся двухроматидные хромосомы, а в телофазе I клетка делится на две клетки с гаплоидным набором двухроматидных хромосом.
Как видите, задания на мейоз в ЕГЭ по биологии вполне реально решить! Немного практики — и заветные баллы у вас в кармане. Если хотите разобраться в остальных темах, обязательно обратите внимание на курсы MAXIMUM. Приходите к нам на бесплатную консультацию по подготовке к ЕГЭ — чем раньше приступите к подготовке, тем больше будет времени, чтобы найти все слабые места и проработать их. Записывайтесь и начните путь к высоким баллам ЕГЭ уже сейчас!
Мейоз. Фазы мейоза
Мейоз — это способ непрямого деления первичных половых клеток (2n2с), в результате которого образуются гаплоидные клетки (1n1с), чаще всего половые.
В отличие от митоза, мейоз состоит из двух последовательных делений клетки, каждому из которых предшествует интерфаза. Первое деление мейоза (мейоз I) называется редукционным, так как при этом количество хромосом уменьшается вдвое, а второе деление (мейоз II) — эквационным, так как в его процессе количество хромосом сохраняется.
Интерфаза I протекает подобно интерфазе митоза. Мейоз I делится на четыре фазы: профазу I, метафазу I, анафазу I и телофазу I. В профазе I происходят два важнейших процесса — конъюгация и кроссинговер. Конъюгация — это процесс слияния гомологичных (парных) хромосом по всей длине. Образовавшиеся в процессе конъюгации пары хромосом сохраняются до конца метафазы I.
Кроссинговер — взаимный обмен гомологичными участками гомологичных хромосом. В результате кроссинговера хромосомы, полученные организмом от обоих родителей, приобретают новые комбинации генов, что обусловливает появление генетически разнообразного потомства. В конце профазы I, как и в профазе митоза, исчезает ядрышко, центриоли расходятся к полюсам клетки, а ядерная оболочка распадается.
В метафазе I пары хромосом выстраиваются по экватору клетки, к их центромерам прикреп ляются микротрубочки веретена деления.
В анафазе I к полюсам расходятся целые гомологичные хромосомы, состоящие из двух хроматид.
В телофазе I вокруг скоплений хромосом у полюсов клетки образуются ядерные оболочки, формируются ядрышки.
Цитокинез I обеспечивает разделение цитоплазм дочерних клеток.
Образовавшиеся в результате мейоза I дочерние клетки (1n2c) генетически разнородны, поскольку их хромосомы, случайным образом разошедшиеся к полюсам клетки, содержат неодинаковые гены.
Сравнительная характеристика митоза и мейоза
Признак | Митоз | Мейоз | |
Какие клетки вступают в деление? | Соматические (2n) | Первичные половые клетки (2n) | |
Число делений | 1 | 2 | |
Сколько и каких клеток образуется в процессе деления? | 2 соматические (2n) | 4 половые (n) | |
Интерфаза | Подготовка клетки к делению, удвоение ДНК | Подготовка клетки к делению, удвоение ДНК | Очень короткая, удвоения ДНК не происходит |
Фазы | Мейоз I | Мейоз II | |
Профаза | Конденсация хромосом, исчезновение ядрышка, распад ядерной оболочки | Конденсация хромосом, исчезновение ядрышка, распад ядерной оболочки, могут происходить конъюгация и кроссинговер | Конденсация хромосом, исчезновение ядрышка, распад ядерной оболочки |
Метафаза | Хромосомы выстраиваются по экватору, формируется веретено деления | По экватору располагаются пары хромосом, формируется веретено деления | Хромосомы выстраиваются по экватору, формируется веретено деления |
Анафаза | К полюсам расходятся хроматиды | К полюсам расходятся гомологичные хромосомы из двух хроматид | К полюсам расходятся хроматиды |
Телофаза | Хромосомы деспирализуются, формируются новые ядерные оболочки и ядрышки | Хромосомы деспирализуются, формируются новые ядерные оболочки и ядрышки | Хромосомы деспирализуются, формируются новые ядерные оболочки и ядрышки |
Интерфаза II очень короткая, так как в ней не происходит удвоения ДНК, то есть отсутствует S-период.
Мейоз II также делится на четыре фазы: профазу II, метафазу II, анафазу II и телофазу II. В профазе II протекают те же процессы, что и в профазе I, за исключением конъюгации и кроссинговера.
В метафазе II хромосомы располагаются вдоль экватора клетки.
В анафазе II хромосомы расщепляются в центромерах и к полюсам растягиваются уже хроматиды.
В телофазе II вокруг скоплений дочерних хромосом формируются ядерные оболочки и ядрышки.
После цитокинеза II генетическая формула всех четырех дочерних клеток — 1n1c, однако все они имеют различный набор генов, что является результатом кроссинговера и случайного сочетания хромосом материнского и отцовского организмов в дочерних клетках.
Мейоз, в свою очередь, обеспечивает постоянство кариотипа при половом размножении, так как уменьшает вдвое набор хромосом перед половым размножением, который затем восстанавливается в результате оплодотворения. Кроме того, мейоз приводит к появлению новых комбинаций родительских генов благодаря кроссинговеру и случайному сочетанию хромосом в дочерних клетках. Благодаря этому потомство получается генетически разнообразным, что дает материал для естественного отбора и является материальной основой эволюции. Изменение числа, формы и размеров хромосом, с одной стороны, может привести к появлению различных отклонений в развитии организма и даже его гибели, а с другой — может привести к появлению особей, более приспособленных к среде обитания.
Таким образом, клетка является единицей роста, развития и размножения организмов.
ФАЗА |
КАРИОТИП |
ОПИСАНИЕ |
РИСУНОК |
ИНТЕРФАЗА |
2n2c до 2n4c после |
Фаза 1. 2. 3. |
|
МИТОЗ |
|||
ПРОФАЗА |
2n4c |
Исчезновение |
|
МЕТАФАЗА |
2n4c |
Нити |
|
АНАФАЗА |
4n4c во 2n2c у |
Нити |
|
ТЕЛОФАЗА |
2n2c |
Происходит |
|
МЕЙОЗ |
|||
I ДЕЛЕНИЕ |
|||
ПРОФАЗА I |
2n4c |
Исчезновение Два Конъюгация Кроссинговер |
|
МЕТАФАЗА |
2n4c |
Нити |
|
АНАФАЗА I |
2n4c во всей 1n2c (n2c) у |
Нити |
|
ТЕЛОФАЗА |
1n2c (n2c) |
Деление |
|
ИНТЕРФАЗА |
|||
— |
1n2c (n2c) |
пауза |
|
II ДЕЛЕНИЕ |
|||
ПРОФАЗА II |
1n2c (n2c) |
Набор |
|
МЕТАФАЗА |
1n2c (n2c) |
Нити |
|
АНАФАЗА II |
2n2c во 1n1c (nc) у |
Нити |
|
ТЕЛОФАЗА |
1n1c (nc) |
Деление |
|
Как отличить
рисунки:
МИТОЗ:
1. Все
хромосомы и хроматиды всегда должны иметь пары в любой фазе.
2. Не должно
быть признаков кроссинговера, конъюгации (бивалентов, тетрад)
3. В профазе,
метафазе и анафазе ВСЕ хромосомы парные, в анафазе расходятся хроматиды, причем
их набор ОДИНАКОВЫЙ. В телофазе 2 клетки с ОДИНАКОВЫМИ хроматидами.
МЕЙОЗ:
I деление:
1. Есть
признаки кроссинговера (НЕОБЯЗАТЕЛЬНО), хромосомы объединены в биваленты
(тетрады). В метафазе по экватору биваленты, в анафазе расходятся целые
хромосомы.
2. В телофазе
в 2-х клетках находятся хромосомы БЕЗ ПАРЫ (возможны признаки кроссинговера). В
дочерних клетках хромосомы с одинаковой формой имеют разные цвета. Хромосомы
Х-образные.
II-деление.
1. У хромосом
НЕТ пар, они всегда по одной. Возможны признаки кроссинговера. НЕТ бивалентов
ни на одной из стадий.
2. В метафазе
непарные хромосомы по ОДНОЙ на экваторе, в анафазе расходятся ХРОМАТИДЫ, но
хроматиды каждого типа только по 1 у каждого полюса.
3. Телофаза –
4 клетки, в каждой только ХРОМАТИДЫ, и ВСЕ наборы хроматид РАЗНЫЕ.
ЗНАЧЕНИЕ:
МИТОЗ:
1. Приводит
к увеличению числа клеток и обеспечивают рост многоклеточного организма.
2. Обеспечивает
замещение изношенных или поврежденных тканей. Регенерация.
3. Сохраняет
набор хромосом во всех соматических клетках.
4. Служит
механизмом бесполого размножения, при котором создается потомство, генетически
идентичное родителям, необходимое для быстрого распространения, однако, имеющее
крайне ограниченную роль в эволюции из-за идентичности генома.
5. Позволяет
изучить кариотип организма (в метафазе).
6. Клонирование.
МЕЙОЗ:
1. Мейоз
является основой комбинативной изменчивости благодаря кроссинговеру (профаза I)
и независимому расхождению гомологичных хромосом (анафаза I и II). Тем самым
ускоряется эволюция, из-за возможности отбора среди генетически неоднородного
потомства.
2. Благодаря
уменьшению количества хромосом в гаметах в новых организмах поддерживается
постоянный диплоидный (2n) набор хромосом.
3. Формирование
половых клеток животных (фаза созревания в гаметогенезе) и спор растений.
Когда вы только родились, ваш вес составлял в среднем от 3 до 4кг, а рост всего около 50-60 см, но с каждым днем вы становились больше и выше..
А какой рост и вес у вас сегодня и почему произошло увеличение этих показателей по сравнению с прошлыми годами?
Всё это благодаря способности клеток к размножению, в основе которого лежит процесс деления.
Рост и развитие всех многоклеточных организмов всегда связаны с делением клеток.
Эта информация доступна зарегистрированным пользователям
У человека и животных во взрослом состоянии в некоторых тканях клетки постоянно отмирают и заменяются новыми, которые образуются как раз путем деления.
Следовательно, деление клеток является тем процессом, благодаря которому поддерживается жизнь всего организма и обеспечивается непрерывность жизни клетки.
Наряду с непрерывностью жизни клетки происходит и преемственность наследственных свойств от родительской клетки к дочерней.
То есть в процессе деления каждая вновь образующаяся клетка должна получить точную копию генетического материала, чтобы обладать общей наследственной программой, специализироваться и выполнять функции, какие и выполняла материнская клетка.
Эта информация доступна зарегистрированным пользователям
Существуют два различных типа деления клетки: вегетативное деление, при котором каждая дочерняя клетка генетически идентична родительской клетке -митоз, и репродуктивное клеточное деление, при котором количество хромосом в дочерней клетке снижается вдвое для производства гамет — мейоз.
То есть клетки тела или соматические клетки образуются путем непрямого деления —митозом, а половые клетки (гаметы) образуются благодаря редукционному делению клетки или мейозу.
Сегодня наука может заглянуть в этот клеточный мир и проследить за процессами митоза и мейоза в клетках, приближая нас к раскрытию и пониманию еще одной тайны живой природы — самовоспроизведению.
Для начала рассмотрим жизнь одной клетки нашего организма.
Весь период существования клетки от момента её образования до собственного деления или гибели называется клеточным циклом или жизненным циклом клетки.
Длительность жизненного цикла у разных клеток разная, но у большинства активно делящихся клеток, она составляет примерно от 10 до 24 часов.
Эта информация доступна зарегистрированным пользователям
Ученые выделяют следующие периоды в этом жизненном цикле клетки у эукариот:
· интерфаза— период клеточного роста, во время которого идет синтез ДНК и белков и осуществляется подготовка к делению клетки.
Интерфаза подразделяется на период G1-фазы, период S-фазы, период G2-фазы, период G0-фазы
· период клеточного деления, обозначается как М- фаза
Посмотрите на схему жизненного цикла клетки:
Эта информация доступна зарегистрированным пользователям
Периоды интерфазы:
Название периода |
Процессы, происходящие в клетке |
Пресинтетический период- G1—фаза или фаза начального роста 2n- набор хромосом (двойной), 2c- количество ДНК |
синтез всех РНК, ферментов, белков, образование рибосом, синтез АТФ, образование одномембранных органелл клетки, рост клетки, создание запаса питательных веществ |
Синтетический период- S-фаза 2n4c- количество хромосом осталось прежним, а количество ДНК увеличилось вдвое |
происходит репликация ДНК клеточного ядра, построение второй хроматиды и формирование двухроматидных хромосом |
Постсинтетический период- G2-фаза 2n4c |
происходит подготовка к митозу, интенсивный синтез белков, РНК, деление митохондрий и пропластид (предшественники всех типов пластид) у растений, синтез АТФ, удвоение массы цитоплазмы, увеличение массы ядра |
Период функционирования клеток- фаза покоя G0 2n2c |
период клеточного цикла, в течение которого клетки находятся в состоянии покоя и не делятся, клетка как бы находится вне клеточного цикла. Примеры: нервные клетки или клетки сердечной мышцы. Они вступают в состояние покоя при достижении зрелости (то есть когда закончена их дифференцировка). Некоторые клетки могут выйти из этого состояния и начать вновь деление. |
Эта информация доступна зарегистрированным пользователям
Период деления клетки.
Деление клетки- процесс образования из родительской клетки двух и более дочерних клеток.
Эта информация доступна зарегистрированным пользователям
Обычно деление клетки — это малая часть большого клеточного цикла.
У эукариот есть два различных типа деления клетки:
1) непрямое деление:
· митоз- вегетативное деление, при котором каждая дочерняя клетка генетически идентична родительской клетке
· мейоз— репродуктивное клеточное деление, при котором количество хромосом в дочерней клетке снижается вдвое для производства половых клеток
2) прямое деление- амитоз, встречается относительно редко и проявляется в отмирающих тканях, а также в клетках опухолей
Для того чтобы понять, как происходят процессы деления клеток, необходимо знать строение хромосом, ведь именно они играют важнейшую роль в передаче наследственной информации от клетки к клетке.
Эта информация доступна зарегистрированным пользователям
Хромосомы- это структуры, в которых сосредоточена большая часть наследственной информации.
Они располагаются в ядре эукариотической клетки, состоят из молекулы ДНК, которая связана с белками-гистонами.
Эта информация доступна зарегистрированным пользователям
Хромосомы состоят из 2 сестринских хроматид (удвоенных молекул ДНК), соединенных друг с другом в области первичной перетяжки- центромеров.
Центромера- специализированный участок ДНК, в районе которого в стадии профазы и метафазы деления клетки соединяются две сестринские хроматиды в митозе, а в мейозе гомологичные хромосомы в профазе и метафазе первого деления.
Значение центромеры:
• центромера играет важную роль при расположении хромосом в виде метафазной пластинки в процессе расхождения дочерних хромосом к полюсам клетки, так как при помощи центромеры каждая хроматида соединяется с нитями веретена деления
• каждая центромера разделяет хромосому на два плеча
Строение хромосомы:
Эта информация доступна зарегистрированным пользователям
В жизненном цикле клетки, а конкретно в синтетический период происходит репликация ДНК (удвоение), именно с этого момента каждая хромосома состоит уже не из одной хроматиды, а из двух хроматид.
Эта информация доступна зарегистрированным пользователям
Хроматида (от греч. chroma — цвет, краска + eidos — вид)- это нить молекулы ДНК, соединенная с белками. Является частью хромосомы от момента ее дупликации до разделения на две дочерние хроматиды в анафазе митоза или анафазе второго деления мейоза.
Типы хромосом (морфологические типы):
• акроцентрические (центромера расположена близко к концу хромосомы, и одно плечо значительно короче другого)
• субметацентрические (центромера смещена от середины хромосом, и одно плечо короче другого)
• метацентрические (центромера расположена в середине хромосомы, и плечи ее равны)
· телоцентрическая хромосома— хромосома, состоящая только из одного плеча и имеющая центромеру на самом краю; считается, что истинных телоцентрических хромосом не существует, т.к. даже маленькое второе плечо (визуально на хромосомных препаратах не выявляемое), по-видимому, всегда присутствует; часто такой вид хромосом используется в качестве синонима термина «акроцентрическая хромосома»
Эта информация доступна зарегистрированным пользователям
Гомологичные хромосомы (от греч. «гомос»- одинаковый).
Гомологичные хромосомы— парные хромосомы, одинаковые по форме, размерам и набору генов.
Их гены в соответствующих (идентичных) участках представляют собой аллельные гены.
Аллельные гены— различные формы одного и того же гена, расположенные в одинаковых участках (локусах) гомологичных хромосом.
Но следует отметить, что гомологичные хромосомы не идентичны друг другу по следующим причинам:
• хотя гомологичные хромосомы имеют один и тот же набор генов, но этот набор может быть представлен различными формами одного и того же гена.
К примеру, у вас в гомологичных хромосомах есть участок с аллельными генами, которые определяют цвет ваших глаз. От матери в вашу гомологичную хромосому попал ген, отвечающий за карий цвет глаз- доминантный (сильный) признак, а от отца в хромосому попал ген, отвечающий за серый цвет глаз- это рецессивный (слабый) признак. Таким образом, аллельные гены отвечают за один признак- цвет глаз, но этот ген представлен в данном случае различными формами (доминантный и рецессивный, серый и карий).
То есть ген один, а проявление его разное, поэтому мы говорим о гомологии, а не о идентичности.
• также в результате некоторых мутаций (удвоение хромосом, утраты ее частей и других причин) могут возникать гомологичные хромосомы, различающиеся наборами или расположением генов
Для каждого эукариотического организма характерен свой набор хромосом.
Количество, формы размеры хромосом у каждого организма различны.
К примеру, у человека всего 46 хромосом с 20-25 тыс. активных генов, а у коровы 60 хромосом с 22 тыс. активных генов.
А для проведения анализа и исследования всех хромосом клетки, ученые выделили такое понятие как кариотип.
Такой анализ имеет большое значение в медицинской практике, позволяя диагностировать ряд хромосомных заболеваний, вызванных как грубыми нарушениями кариотипов (нарушение числа хромосом), так и нарушением хромосомной структуры.
Кариотип— совокупность признаков полного набора хромосом, присущая клеткам данного биологического вида данного организма (индивидуальный кариотип).
В комплекс характеристик кариотипа входят:
• число хромосом, характерное для данного вида
• размеры хромосом
• положение центромеры каждой хромосомы
• рисунок дифференциального окрашивания хромосом (специальный метод окрашивания, который позволяет по рисунку чередующихся поперечных темных и светлых полос на хромосоме идентифицировать конкретную хромосому или ее участок)
Рассмотрим кариотип человека:
Эта информация доступна зарегистрированным пользователям
По рисунку мы видим кариотип здорового человека, который включает 22 пары неполовых хромосом (аутосом) и пару половых хромосом (ХХ (женский пол) или ХY (мужской пол).
Хромосомы в кариотипе различаются размерами, формой, положением центромеры, рисунком окрашивания.
Каждая хромосома содержит определенный набор генов (например, в первой хромосоме хранятся гены A, B, C, D, во второй хромосоме — гены K, L, M, N). Каждый ген отвечает за свой признак (один ген отвечает за цвет глаз, другой за структуру волос, третий отвечает за проявление праворукости или леворукости и так далее.
Хромосомы также нумеруют: самая большая хромосома- первая, и далее, чем меньше хромосома, тем больший номер она получает.
На рисунке вы видите, что каждая хромосома состоит из двух сестринских хроматид (не забывайте, что каждая хроматида содержит 1 молекулу ДНК).
Поэтому получается, что хромосома одна, но она содержит 2 молекулы ДНК.
Помимо этого у диплоидного организма имеется двойной набор хромосом.
То есть у каждой хромосомы есть гомологичная ей хромосома, это тоже вы можете разглядеть на рисунке.
У человека имеются 22 пары гомологичных хромосом (плюс пара половых хромосом, которые негомологичны друг другу).
Один набор хромосом человек получает от матери, другой от отца.
Объединение этих наборов происходит при оплодотворении.
Половые клетки, образовавшиеся в результате мейоза, содержат только одну из двух гомологичных хромосом. Такой набор хромосом называется гаплоидный или одинарный (от греч. haploos- одиночный, простой и eidos- вид).
У человека путем мейоза образуются половые клетки (гаметы), каждая из них несет 23 хромосомы, а не 46, как в обычной соматической клетке.
В биологии обычно количество хромосом в клетке обозначается буквой n:
1n или просто одной буквой n- гаплоидный (одинарный) набор хромосом
2 n- диплоидный (двойной) набор хромосом
с— количество ДНК в хромосоме.
Количество хромосом в жизненном цикле разных организмов может быть разным.
У животных хромосомный набор диплоидный, а гаплоидны только гаметы.
Например, у хламидомонады, наоборот, гаплоидный набор хромосом на протяжении всего жизненного цикла, а диплоидна лишь зигота, которая сразу вступает в мейоз.
У некоторых растений наблюдаются сразу две фазы:
• у мхов преобладает гаметофит — он обладает гаплоидным набором хромосом
• у папоротников взрослого растения спорофита, наоборот, основная жизненная стадия представлена диплоидным набором хромосом
На спорофите путем митоза образуются клетки спорангия- органы, производящие споры, клетки которого имеют также диплоидный набор хромосом.
Сами споры имеют гаплоидный набор хромосом, благодаря мейозу.
Также у папоротников есть стадия заростка, который прорастает из споры, — значит, и у него гаплоидный набор хромосом.
Жизненные циклы растений вы можете посмотреть в темах «Водоросли. Мхи. Лишайники» и «Плауны. Хвощи. Папоротники».
У семенных растений самостоятельной гаплоидной стадии не существует.
Хромосомный набор у различных типов клеток растений на разных стадиях жизненного цикла
Жизненный цикл покрытосеменных растений (кратко)
Покрытосеменные растения являются спорофитами (2n).
Органом их полового размножения является цветок.
Процесс формирования половых клеток у растений подразделяется на два этапа:
- 1-й этап- спорогенез- завершается образованием гаплоидных клеток- спор (микроспоры и макроспоры)
- 2-й этап- гаметогенеза- происходит ряд делений гаплоидных клеток, прежде чем образуются зрелые гаметы (яйцеклетки и спермии)
Процесс созревания мужских клеток- микроспорогенез
Этапы:
- в результате двух мейотических делений материнской клетки пыльцы (микроспороцита) возникают четыре гаплоидные микроспоры, то есть набор хромосом-n.
- далее в микроспорах идет митоз, который приводит к образованию вегетативной и генеративной клеток- набор хромосом-n
- вегетативная клетка не делится, а накапливает питательные вещества
- генеративная клетка делится путем митоза, в результате деления также митозом образуются две мужские половые клетки, которые в отличие от сперматозоидов животных называются спермиями.
Процесс созревания женских клеток (макроспорогенез)
У покрытосеменных растений женский гаметофит— это зародышевый мешок, который закладывается и развивается внутри семяпочки.
Этапы:
- для того чтобы женский гаметофит сформировался необходим мегаспорогенез, во время которого образуется материнская клетка мегаспора (2n)
- далее материнская клетка мегаспора делится мейозом и образуется четыре гаплоидных мегаспоры (n)
- одна из мегаспор растет и делится митозом трехкратно, в результате чего образуется зародышевый мешок с 8 наследственно одинаковыми гаплоидными ядрами, из которых только одно дает яйцеклетку
После опыления из генеративной клетки (n) образуются 2 спермия (n), а из вегетативной (n)– пыльцевая трубка (n), врастающая внутрь семязачатка и доставляющая спермии (n) к яйцеклетке (n) и центральной клетке (2n).
Один спермий (n) сливается с яйцеклеткой (n) и образуется зигота (2n), из которой митозом формируется зародыш растения (2n).
Второй спермий (n) сливается центральной клеткой (2n) с образованием триплоидного эндосперма (3n).
Такое оплодотворение у покрытосеменных растений называется двойным.
В результате из семязачатка формируется семя, покрытое кожурой и содержащее внутри зародыш (2n) и эндосперм (3n).
Жизненный цикл голосеменных растений (сосна)
Листостебельное растение голосеменных растений– спорофит (2n), на котором развиваются женские и мужские шишки (2n).
На чешуйках женских шишек расположены семязачатки– мегаспорангии (2n), в которых путём мейоза образуются 4 мегаспоры (n), 3 из них погибают, а из оставшейся– развивается женский гаметофит– эндосперм (n) с двумя архегониями (n).
В архегониях образуются 2 яйцеклетки (n), одна погибает.
На чешуйках мужских шишек располагаются пыльцевые мешки– микроспорангии (2n), в которых путём мейоза образуются микроспоры (n), из них развиваются мужские гаметофиты– пыльцевые зёрна (n), состоящие из двух гаплоидных клеток (вегетативной и генеративной) и двух воздушных камер.
Пыльцевые зёрна (n) (пыльца) ветром переносятся на женские шишки, где митозом из генеративной клетки (n) образуются 2 спермия (n), а из вегетативной (n)– пыльцевая трубка (n), врастающая внутрь семязачатка и доставляющая спермии (n) к яйцеклетке (n). Один спермий погибает, а второй участвует в оплодотворении, образуется зигота (2n), из которой митозом формируется зародыш растения (2n).
В результате из семязачатка формируется семя, покрытое кожурой и содержащее внутри зародыш (2n) и эндосперм (n).
Хромосомный набор у различных типов клеток
Примеры различных типов клеток |
Хромосомный набор |
Как образуется |
Цветковые растения |
||
Эндосперм семени любого цветкового растения |
триплоидный набор- 3n |
образуется при слиянии двух ядер центральной клетки семязачатка (2n) и одного спермия (n) |
Клетки листьев любого цветкового растения (эпидермис листа, мезофилл листа и др.) |
диплоидный набор хромосом- 2n |
клетки листа образуются путем митоза |
Восьмиядерный зародышевый мешок семязачатка цветкового растения |
все клетки зародышевого мешка гаплоидны |
образуются в результате митоза |
Макроспоры цветковых растений |
гаплоидный набор |
формируются из клеток спорофита (2n) мейозом. |
Микроспоры растений |
гаплоидный набор |
формируются путем мейоза |
Яйцеклетки цветковых растений |
гаплоидный набор |
формируются из клеток гаметофита (1n) митозом |
Спермии пыльцевого зерна цветкового растения |
гаплоидный набор |
образуются из генеративной клетки путём митоза |
Вегетативные, генеративные клетки цветкового растения |
гаплоидный набор |
образуются путём митоза при прорастании гаплоидной споры |
Голосеменные растения |
||
В женской споре (мегаспоре сосны) |
гаплоидный набор хромосом (n) |
образуются из клеток семязачатка (мегаспорангия) с диплоидным набором хромосом (2n) путём мейоза |
В мужской споре (микроспоре) |
гаплоидный набор хромосом- n |
мужская спора образуется из клеток спорангия в шишках в результате мейоза |
Клетки эндосперма сосны |
гаплоидный набор хромосом (n |
эндосперм сосны формируется из гаплоидных мегаспор (n) путём митоза |
Клетки женских шишек и в клетках мужских шишек |
диплоидный набор хромосом- 2n; |
развиваются из диплоидных клеток спорофита (взрослого растения) в результате митоза |
Споровые растения |
||
Споры мха, споры кукушкина льна, споры папоротника |
гаплоидный набор- n |
образуются на диплоидном спорофите в спорангиях путём мейоза из диплоидных клеток |
Сперматозоиды и яйцеклетки мха, папоротника |
гаплоидный набор- n |
образуются на гаметофитах из гаплоидной клетки путём митоза |
Листостебельные растения мхов |
гаплоидный набор- n |
является гаметофитом |
В клетках заростка папоротника |
гаплоидный набор хромосом- n |
заросток развивается путём митоза из гаплоидной споры |
В клетках листьев папоротника |
диплоидный набор хромосом — 2n |
взрослое растение папоротника является спорофитом и развивается из диплоидной зиготы |
Архегонии мхов и папоротников |
гаплоидный набор хромосом- n |
путём митоза |
Антеридии мхов и папоротника |
гаплоидный набор хромосом- n |
путём митоза |
Споры у растений образуются путем мейоза, а гаметы- митозом.
У животных гаметы образуются путем мейоза.
Нарушение структуры хромосом.
Нарушение структуры хромосом происходит в результате спонтанных или спровоцированных изменений:
• генные мутации (изменения на молекулярном уровне)
• делеции- хромосомная перестройка, при которой происходит потеря участка хромосомы
• дупликации или удвоение- структурная хромосомная мутация, заключающаяся в удвоении участка хромосомы
• транслокации- тип хромосомных мутаций, при которых происходит перенос участка хромосомы на негомологичную хромосому, приводят к развитию лимфом, сарком, лейкемии, шизофрении
• инверсии- это поворот определенного участка хромосомы на 180°, является следствием двух одновременных разрывов в одной хромосоме
Эта информация доступна зарегистрированным пользователям
Наиболее широко распространенная форма воспроизведения клеток у живых организмов- непрямое деление или митоз.
Длительность митоза составляет от нескольких минут до 2- 3 часов.
Митоз состоит из четырех последовательных фаз:
· профазы
· метафазы
· анафазы
· телофазы
Эта информация доступна зарегистрированным пользователям
1. Профаза является фазой подготовки к разделению хромосом
Количество хромосом и ДНК в хромосомах: 2n4c
Процессы:
· разборка ядрышка, оно исчезает
· образуются хромосомы, каждая из которых состоит из двух сестринских хроматид
· образуются нити веретена деления (два клеточных центра расходятся к противоположным концам клетки, образуя полюса веретена деления, от каждого из них начинают расти микротрубочки)
· микротрубочки (нити веретена деления) прикрепляются к центромерам хромосом, причем к каждой хромосоме прикрепляется две микротрубочки: одна от одного полюса, а вторая от другого
· ядерная оболочка растворяется на фрагменты (пузырьки)
2.Метафаза
Количество хромосом и ДНК: 2n4c
Процессы:
· за счет изменения длины нитей веретена хромосомы перемещаются к экватору клетки, образуя метафазную пластинку (экваториальная пластинка)
· хромосомы находятся в одной плоскости довольно длительное время
· происходит смена белков в центромерах хромосом, что позволяет в дальнейшем разделить их (белковая структура на хромосоме, к которой крепятся волокна веретена деления во время деления клетки называется кинетохор, который как по канату ползет вверх по нити веретена деления, что помогает разделению хромосомы на отдельные хроматиды)
3.Анафаза
Количество хромосом и ДНК: 4n4c
Процессы:
· центромеры сестринских хроматид разделяются
· нити веретена деления укорачиваются благодаря белку кинетохору — в результате дочерние хроматиды расходятся к противоположным полюсам
· движение продолжается до тех пор, пока хроматиды, ставшие самостоятельными хромосомами, не достигнут полюсов
· у каждого полюса деления образуется полный набор хромосом, характерный для данного вида
4.Телофаза
Количество хромосом и ДНК: 2n2c в конце телофазы (в начале телофазы 4n4c)
Процессы:
· растворяются нити веретена деления
· формируется ядрышко
· восстанавливается ядерная оболочка вокруг каждого набора хромосом
· на экваторе клетки закладывается перегородка между клетками или образуется перетяжка
· после этого начинается удлинение и уменьшение толщины хромосом, называемое деконденсацией хроматина.
· хромосомы превращаются в хроматиновые нити
· на этом завершается митоз и начинается деление цитоплазмы и органоидов клетки- цитокинез
Во время митоза компоненты цитоскелета и одномембранные органеллы могут разбираться на фрагменты и собираться заново, поэтому в дочерних клетках во время цитокинеза из этих фрагментов могут образовываться новые компоненты клеток.
К примеру, двумембранные органеллы, такие как митохондрии и пластиды, содержат собственную ДНК. Количество этих органелл в клетке достаточно велико, поэтому при случайном распределении они попадают в обе дочерние клетки.
Механизм митоза клеток растений практически не отличается от митоза животных, кроме некоторых особенностей:
· у растений полюса веретена деления не содержат центриолей и отличаются более диффузным характером, чем полюса веретена в клетках животных
· у растений жесткая клеточная стенка не позволяет образовать перетяжку
После расхождения хромосом и образования ядер к нитям веретена прикрепляются мембранные пузырьки, находящиеся в цитоплазме.
Они перемещаются по нитям веретена на экватор клетки.
Там происходит вскрытие пузырьков — их содержимое застывает, образуя срединную пластинку- фрагмопласт, а мембраны пузырьков формируют с двух сторон от нее две новые клеточные мембраны.
Эти мембраны затем синтезируют целлюлозные волокна, формирующие две новые клеточные стенки.
Значение митоза:
· равномерное распределение генетической информации родительской клетки между дочерними (то есть благодаря митозу наследственный материал сначала удваивается, а затем равномерно распределяется между дочерними клетками)
· результат митоза— образование двух новых генетически идентичных клеток
· у одноклеточных эукариот митоз является способом бесполого размножения
· у многоклеточных митоз, приводящий к увеличению числа клеток, является основой роста
Все организмы способны к росту и развитию. Например, семя дуба, прорастет со временем в огромное дерево, а детеныш кита вырастет в огромный организм массой 140 000 кг.
Процессы роста и развития необратимы: дерево не превратится в семя, а взрослый кит не станет вновь детенышем. Рост и развитие неразрывно связаны друг с другом, и в их основе лежит способность клетки к делению и специализации.
Деление прокариотической клетки.
У бактерий в клетках отсутствует ядро, поэтому их относят к прокариотическим организмам.
У бактерий деление идет достаточно просто.
Для начала клетка растет за счет поглощения веществ окружающей среды (при наличии достаточного количества веществ начинается удвоение молекулы ДНК).
Молекула ДНК и вновь образовавшаяся дочерняя ДНК в бактерии прикрепляются к мембране клетки, но в разных точках.
Эта информация доступна зарегистрированным пользователям
Далее происходит рост бактериальной клетки и мембраны.
Две ДНК расходятся в разные стороны за счет растяжения мембраны, после чего клетка делится пополам.
То есть, в отличие от эукариотической клетки, у прокариот во время деления веретено деления не образуется.
Эта информация доступна зарегистрированным пользователям
Многие организмы передают свои гены потомкам.
Это происходит, когда две гаметы (мужская и женская) сливаются и образует зародыш, генетически отличный от родительских особей.
Зародыш, в свою очередь, становится взрослым организмом, который также передает свои гены потомкам.
При половом размножении организмов постоянно создаются новые комбинации генов.
Благодаря этому увеличивается генетическое разнообразие потомства и, соответственно, шансы приспособиться к меняющимся условиям среды.
Генетическое разнообразие обусловлено тем, что хромосомы, доставшиеся организму от матери и отца, перестают существовать как целое: в результате обмена участков хромосом образуются новые варианты хромосом, скомбинированные из отцовских и материнских.
Таким образом, хромосомы детей, как правило, не идентичны хромосомам родителей- они содержат другие комбинации аллелей (вариантов генов).
Создание новых комбинаций генов и формирование гамет или спор происходит в процессе мейоза.
В ходе мейоза происходит редукция хромосомного набора- образование из диплоидной клетки 4 гаплоидных клеток (n), у которых каждая хромосома представлена уже не парой гомологов, а 1 хромосомой.
У человека путем мейоза образуются половые клетки (гаметы), каждая из которых несет 23 хромосомы.
Мейоз-это всего лишь одна из стадий жизненного цикла клеток.
Прежде чем вступить в мейоз, клетка так же, как и в случае с митозом, проходит через интерфазу, где ДНК клетки удваивается.
Эта информация доступна зарегистрированным пользователям
Мейоз- непрямое деление клеток, в процессе которого из одной диплоидной (2n) клетки получаются 4 гаплоидные (n) клетки.
Так как у дочерних клеток происходит уменьшение (редукция) числа хромосом с 2n до n, такое деление названо редукционным.
Он состоит из 2-х следующих друг за другом делений: мейоз I и мейоз II.
Первое деление мейоза является собственно редукционным, то есть именно в ходе него происходит переход от диплоидности к гаплоидности за счет расхождения хромосом к разным полюсам клетки.
Это значит, что из одной диплоидной клетки образуется две уникальные дочерние клетки, каждая из которых содержит половину генетического материала родительской клетки.
Второе деление мейоза аналогично митозу и называется эквационным (то есть «равным»).
В ходе этого деления, как и при митозе, расходятся сестринские хроматиды (копии ДНК), а не сами хромосомы, поэтому количество хромосом, по сравнению с первым делением мейоза, остается прежним.
Результат второго деления мейоза- образование четырех уникальных гаплоидных клеток, которые имеют только одну копию каждой хромосомы.
Между двумя делениями мейоза либо нет интерфазы, либо в ней отсутствует синтетический период — соответственно, и не происходит удвоения ДНК, поскольку хромосомы уже имеют по две хроматиды.
Мейоз у животных наблюдается при формировании половых клеток — гамет (гаметогенезе).
Мейоз у растений и грибов происходит при образовании гаплоидных спор.
Мейоз также может наблюдаться и у одноклеточных организмов: к примеру, у хламидомонады, которой при наступлении периода полового размножения необходимо уменьшить вдвое количество хромосом в клетке.
Для восстановления диплоидности клетки происходит слияние гаплоидных клеток или оплодотворение.
Мейозу предшествует интерфаза, поэтому вступают в мейоз хромосомы уже двухроматидные (2n4с)
Интерфаза сопровождается ростом, синтезом и накоплением веществ и энергии, необходимых для осуществления обоих делений, увеличением числа органоидов, удвоением центриолей, репликацией ДНК.
Каждая хромосома после этого уже состоит из двух идентичных хроматид, соединенных одной центромерой.
Приступим к изучению процессов, происходящих в клетках, на различных этапах мейоза:
Первое деление мейоза.
Профаза I— 2n4c
Процессы:
· демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки
· формирование нитей веретена деления, «исчезновение” ядрышек
· сверхспирализация хромосом; они становятся видны в микроскоп
· конъюгация (соединение) гомологичных хромосом с образованием бивалентов
· кроссинговер— обмен участками между гомологичными хромосомами
Очень длительная фаза, которая подразделяется на пять промежуточных стадий:
1. Лептотена (тонкие нити).
Хромосомы слабо спирализованы, поэтому они тонкие и плохо заметны под микроскопом.
И хотя хромосомы после интерфазы уже удвоены, эти сестринские хроматиды настолько сближены, что хромосомы имеют вид одиночных тонких нитей.
2. Зиготена (попарно слипшиеся нити).
Эта стадия сближения удвоенных хромосом, в ходе которой образуются биваленты– спаренные гомологичные хромосомы («би-» означает «двойной»).
Каждый бивалент состоит из четырех хроматид.
Процесс точного и тесного сближения гомологичных хромосом называется конъюгация.
Гомологичные хромосомы— это пара хромосом (одна отцовская, другая материнская), которые имеют один и тот же набор генов, то есть их гены кодируют одинаковые белки или РНК.
Далее начинается распад ядерной оболочки на фрагменты: центриоли расходятся к разным полюсам клетки, образуется веретено деления, исчезают ядрышки.
Продолжается уплотнение двухроматидных хромосом, которые находятся в виде бивалентов.
3. Пахитена (толстые пухлые нити).
Продолжается процесс спирализации хромосом, которые становятся очень хорошо заметны в световой микроскоп.
Важнейшим событием этой стадии является кроссинговер— процесс обмена участками гомологичных хромосом.
Кроссинговер приводит к первой во время мейоза рекомбинации генов.
Чем ближе друг к другу находятся гены, тем реже между ними происходит кроссинговер, поэтому на основе частотности кроссинговера можно судить о взаимном расположении генов и расстоянии между ними.
После кроссинговера сестринские хроматиды в каждой хромосоме больше не идентичны друг другу.
Это одна из причин, почему братья и сестры, кроме близнецов, генетически не идентичны.
Кроссинговер хромосом:
Эта информация доступна зарегистрированным пользователям
4. Диплотена (двойные нити).
Хромосомы в бивалентах в области центромеры начинают отталкиваться друг от друга.
Однако они все еще остаются связанными друг с другом в некоторых точках, которые называют- хиазмы.
5. Диакинез (раздвижение).
Хромосомы максимально укорачиваются, утолщаются и отделяются от ядерной мембраны, так как ядерная оболочка почти полностью разрушена, центриоли расходятся к полюсам, происходит образование веретена деления.
Эта информация доступна зарегистрированным пользователям
Метафаза I- 2n4c
Процессы:
· биваленты выстраиваются вдоль экватора клетки
· к центромере каждой двухроматидной хромосомы прикрепляется одна нить веретена деления- это важно!
Анафаза I- 2n4c
Процессы:
· микротрубочки веретена деления сокращаются, биваленты делятся
· центромеры не делятся — к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая (из каждой пары гомологичных хромосом одна хромосома отходит к одному полюсу, другая- к другому)
· каждая хромосома по-прежнему состоит из двух хроматид
Телофаза I- n2c (в каждой дочерней клетке по такому хромосомному набору n2c)
Процессы:
· хромосомы удлиняются и раскручиваются, вокруг них формируется ядерная оболочка
· нити веретена деления исчезают
· формируется ядерная оболочка
· образуются две дочерние клетки
Второе деление мейоза
Фазы |
Процессы, происходящие во время второго деления мейоза |
Профаза II n2c |
· фаза укорочена, нет конъюгации и кроссинговера. · происходит по принципу митоза, но при гаплоидном наборе хромосом (п2с) · утолщаются двухроматидные хромосомы · центриоли расходятся к полюсам клетки и формируется веретено деления · разрушается ядерная оболочка |
Метафаза II n2c |
· двухроматидные хромосомы выстраиваются по экватору клетки (процессы идут одновременно в двух клетках, образовавшихся после первого деления мейоза) · к центромерам прикрепляются нити веретена деления |
Анафаза II 2n2c |
· центромеры делятся надвое · деление двухроматидных хромосом, благодаря сокращению нитей веретена деления · отдельные хроматиды. расходятся к полюсам (при этом хроматиды становятся самостоятельными однохроматидными хромосомами), поэтому набор хромосом становится не 1n, а 2n |
Телофаза II nc |
· однохроматидные хромосомы удлиняются (деспирализация) · разрушаются нити веретена деления · восстанавливаются ядрышко и ядерная оболочка · происходит цитокинез в клетках — образуются 4 дочерние гаплоидные клетки, в каждой такой клетке набор хромосом nc |
Значение мейоза
Половые клетки родителей, образовавшиеся путем мейоза, обладают гаплоидным набором (n) хромосом.
В зиготе при объединении двух таких наборов число хромосом становится диплоидным (2n).
Формирование нового организма происходит путем митотических делений зиготы, когда каждая его клетка содержит диплоидный (2n) набор хромосом.
Каждая пара гомологичных хромосом содержит одну отцовскую и одну материнскую хромосому.
Исходя из этого:
1. мейоз является основой комбинативной изменчивости благодаря кроссинговеру (профаза I) и независимому расхождению гомологичных хромосом (анафаза I и II)
2. благодаря уменьшению количества хромосом в гаметах новых организмов поддерживается постоянный диплоидный (2n) набор хромосом.
Эта информация доступна зарегистрированным пользователям
Процесс формирования половых клеток или гамет называется гаметогенез.
Вы уже знаете, что в гаметах гаплоидный набор хромосом, а благодаря какому процессу?
Да, именно мейоз обеспечивает уменьшение числа хромосом в диплоидной клетке.
А для чего происходит уменьшение количества хромосом в два раза?
Оказывается, это необходимо для поддерживания постоянного диплоидного (2n) набора хромосом у организмов.
Ведь при слиянии двух половых клеток с одинарным набором хромосом образуется диплоидный набор, который характерен для любой соматической клетки здорового организма.
Если бы процесса мейоза не было, то происходило бы постоянное увеличение количества хромосом, что приводило бы к серьёзным болезненным изменениям, чаще всего несовместимых с жизнью.
Хотя среди растений встречаются виды, у которых кратно увеличено число наборов хромосом: например, пшеница, картофель, овес.
Стандартный хромосомный набор соматических клеток пшеницы мягкой равен 14 или 7 хромосом в гаплоидной клетке, а у гексаплоидных разновидностей наблюдается сразу 6 гаплоидных наборов, то есть число хромосом у такой пшеницы будет равно 6n = 42.
Эта информация доступна зарегистрированным пользователям
Гаметогенез протекает в половых железах- гонадах.
Гонады:
· семенники- мужские гонады
· яичники- женские гонады
Гаметогенез делится на два вида:
· сперматогенез- образование и созревание мужских половых клеток- сперматозоидов
· овогенез (оогенез)- образование и созревание женских половых клеток- яйцеклеток
Эта информация доступна зарегистрированным пользователям
Гоноцит или первичная половая клетка— эмбриональная клетка, из которой впоследствии могут образоваться сперматозоиды или яйцеклетки.
Периоды гаметогенеза
Период |
Овогенез |
Сперматогенез |
Период размножения первичных половых клеток гоноцитов, содержащих диплоидный набор хромосом. (митоз) 2n2c |
гоноциты закладываются в период эмбриогенеза самки; их размножение — митотическое деление заканчивается к рождению; овогонии- незрелые половые клетки, способные к митозу, находятся в женских половых гонадах- яичниках |
размножение первичных половых клеток (гоноцитов) начинается с периода полового созревания и продолжается всю жизнь самца; сперматогонии- незрелые половые клетки, способные к митозу, находятся в мужских половых железах- семенниках |
Период роста этих клеток заключается в накоплении массы цитоплазмы и питательных веществ, а также в удвоении ДНК. Рост (интерфаза) 2n4c |
значительный рост клетки: овоциты I порядка |
незначительный рост клетки: сперматоциты I порядка |
Период созревания: период созревания гамет, т.е. образование клеток с гаплоидным набором хромосом в результате мейотического деления. · мейоз I (n2с) · мейоз II (nc) |
· в профазе I происходит конъюгация гомологичных хромосом и кроссинговер- образование овоцита II порядка и редукционного тельца · второе деление мейоза завершается не всегда, а только в том случае, если сперматозоид достигает поверхности овоцита и проникает в него; · из овоцита II порядка образуется одна яйцеклетка(nc) с редукционными тельцами |
· в профазе I конъюгация гомологичных хромосом и кроссинговер: · образуются два сперматоцита II порядка; · в мейозе II из каждого сперматоцита II порядка образуются 2 сперматида, то есть все четыре клетки |
Период формирования зрелых гамет |
образование оболочек у яйцеклетки |
из одной сперматиды формируется сперматозоид, подвижность |
Результат гаметогенеза |
из одного овоцита I порядка образуется одна яйцеклетка с гаплоидным набором хромосом (nc) |
из одного сперматоцита I порядка образуется четыре сперматозоида с гаплоидным набором хромосом (nc) |
Эта информация доступна зарегистрированным пользователям
Эта информация доступна зарегистрированным пользователям
Кроссинговер или брачный танец хромосом.
При мейозе клеток гомологичные хромосомы совершают различные «брачные танцы».
Во время этих танцев хромосомы могут обмениваться гомологичными участками, то есть теми участками, в которых расположены одинаковые гены.
Одинаковость их в том, что они кодируют какой-то один признак- например, наличие веснушек.
Только в материнской хромосоме последовательность нуклеотидов отвечает за наличие веснушек, а в отцовской хромосоме в этом месте находится последовательность нуклеотидов, которая не передает «веснушчатость» и отвечает за их отсутствие.
То есть ген один, а проявление его разное.
Такой гомологии, однако, вполне достаточно для сближения участков материнской и отцовской хромосомы, и даже для переноса такого участка с материнской хромосомы на отцовскую и наоборот.
В результате переносов участка хромосомы из одной в другую возникает множество вариаций.
Предположим, на папиной хромосоме друг за дружкой располагались гены, определяющие:
· рыжие волосы- зеленые глаза- кучерявые волосы- римский нос — густые брови.
А на маминой хромосоме:
· темные волосы- карие глаза — прямые волосы — нос пуговкой- тонкие брови.
В ходе брачных танцев в процессе образования половых клеток (мейозе) мы можем получить химерную хромосому, такую:
· темные волосы- карие глаза — прямые волосы — римский нос- густые брови
или такую (дело случая):
· рыжие волосы- зеленые глаза — курчавые волосы — римский нос- тонкие брови
Такая же химерная хромосома, в которой уже смешались папины и мамины гены досталась вам, поэтому вы чем-то похожи на свою маму, чем-то на папу.
И не забывайте, что в отцовских и материнских хромосомах были гены ваших бабушек и дедушек, прабабушек и прадедушек и так далее, и все это также перешло к вам в наследство- весь этот коктейль генов, а, вы в свою очередь, передадите это своим детям.
Вот почему так важно продолжение рода, потому что потомство является хранителем генов предков.
В голове не укладывается масштаб всей собранной генетической информации одной клетки- сколько эпох, тысячелетий, генов других людей хранится именно в вас, в ваших «танцующих» во время мейоза и в процессе кроссинговера хромосомах.
Эта информация доступна зарегистрированным пользователям
Читайте также
Слайд 1
Сущность процессов. Сравнение процессов. Их значение. Подготовка к ЕГЭ. Митоз и мейоз
Слайд 2
Хромосома, хроматида, бивалент Бивалент -пара гомологичных Хромосом из 2х хроматид.
Слайд 3
1. Гомологи́чные хромосо́мы (от греч. ομόλογο «подобный») — пара хромосом с одинаковым набором генов и сходной морфологии 2. Теломерой называют специализированный участок конца хромосомы. К ней прикрепляются белки , образующие «шапочку» для защиты конца хромосомы. Теломеры предположительно препятствуют патологическому слиянию концов хромосом конец в конец 3. Се́стринские хромати́ды — идентичные хроматиды , образовавшиеся в результате репликации хромосомы и соединенные в области центромеры 4. Центромера — участок хромосомы , который связывает сестринские хроматиды , играет важную роль в процессе деления клеточного ядра
Слайд 4
Жизненный(клеточный) цикл клеток жизнь клетки от момента её появления в процессе деления материнской клетки и до её собственного деления(включая это деление) или гибели. У простейших и бактерий деление клетки-основной способ размножения. Амёба не подвергается естественной смерти, а делится надвое. Апоптоз -«запрограммированная» клеточная смерть . От своего рождения до Апоптоза клетка проходит множество клеточных циклов.
Слайд 5
Процессу митоза предшествует интерфаза. Её суть- подготовка клетки к непосредственному делению(к митозу). Она не является фазой митоза! Стадии интерфазы: 1) Пресинтетический период ( G1 )-2-3 ч – неск.суток -клетка растёт и запасает энергию для послед.удвоения ДНК 2) Синтетический период (S) -6-10 ч.-удвоение ДНК, синтез белков, увеличение кол-ва РНК. 3) Постсинтетический (G2) -2-5 ч.-удвоение хромосом, накопление энергии для последующего основного деления .
Слайд 6
Митоз — процесс непрямого деления соматических клеток эукариот Состоит из двух процессов: кариокенез-деление ядра цитокенез-деление цитоплазмы. Фазы Митоза: 1)Профаза 2)Метафаза 3)Анафаза 4)Телофаза кариокенез цитокенез
Слайд 7
Набор хромосом в клетке- 2 n 4 c . Диплоидный(двойной). 2 хромосомы, каждая из 2 хроматид. n- набор, с-количество хроматид.
Слайд 8
По экватору клетки лежит метафазная пластинка(из хромосом). Набор хромосом- 2 n 4 c.
Слайд 9
Набор хромосом- 4n 4 c. Одна хромосома имеет вид хроматиды.
Слайд 10
Набор хромосом у двух образовавшихся клеток 2 n 2 c. Результат митоза- 2 диплоидные Клетки(т.е. с двойным набором хромосом)
Слайд 12
Перед мейозом 1, как и перед митозом, происходит интерфаза. Перед мейозом2 интерфазы нет!!!! Набор хромосом в интерфазе- 2n4c
Слайд 13
бивалент 2n4c 2n4c 2n4c n2c
Слайд 14
Процесс кроссинговера позволяет увеличить варианты проявления признака в процессе образования новых половых клеток- генетическое разнообразие .
Слайд 15
n2c n2c 2n2c nc
Слайд 16
Значение мейоза
Слайд 17
ЗАПОМНИТЬ!!!
Здравствуйте, уважаемые читатели блога репетитора биологии по Скайпу biorepet-ufa.ru.
В последние два года в вариантах тестовых заданий ЕГЭ по биологии стало появляться все больше вопросов по способам размножения организмов, чередованию поколений, способам деления клеток, отличиям разных стадий митоза и мейоза, наборам хромосом (n) и содержанию ДНК (с) в различных стадиях жизни клеток.
Я согласен с авторами заданий. Чтобы хорошо вникнуть в суть процессов митоза и мейоза надо не только в целом понимать, чем они отличаются друг от друга, но и знать как меняется набор хромосом (n), а, главное, их качество (с), на различных стадиях этих процессов.
Помним, конечно, что митоз и мейоз — это различные способы деления ядра клеток, а не деление самих клеток (цитокинез).
Помним и то, что благодаря митозу происходит размножение диплоидных (2n) соматических клеток и обеспечивается бесполое размножение, а мейоз обеспечивает образование гаплоидных (n) половых клеток (гамет) у животных или гаплоидных (n) спор у растений.
Для удобства восприятия информации
на рисунке ниже митоз и мейоз изображены вместе. Как мы видим, эта схема не включает жизненный цикл клетки, в ней нет и полного описания того, что происходит в клетках при митозе или мейозе. Цель данной статьи и этого рисунка обратить ваше внимание только на те изменения, которые происходят с самими хромосомами на разных стадиях митоза и мейоза. Именно на это делается упор в новых тестовых заданиях ЕГЭ.
Чтобы не перегружать рисунки, диплоидный кариотип в ядрах клеток представлен всего двумя парами гомологичных хромосом (то есть n = 2). Первая пара — более крупные хромосомы (красная и оранжевая). Вторая пара — более мелкие (синяя и зеленая). Если бы мы изображали конкретно, например, кариотип человека (n = 23), пришлось бы рисовать 46 хромосом.
Так каков был набор хромосом и их качество до начала деления в интерфазной клетке в период G1? Конечно он был 2n2c. Клеток с таким набором хромосом мы на этом рисунке не видим. Так как после S периода интерфазы (после репликации ДНК) количество хромосом, хотя и остается прежним (2n), но, так как каждая из хромосом теперь состоит из двух сестринских хроматид, то формула кариотипа клетки будет записываться уже так: 2n4c. И вот клетки с такими двойными хромосомами, готовые уже приступить к митозу или мейозу, и изображены на рисунке.
Данный рисунок позволяет нам ответить на следующие вопросы тестовых заданий
— Чем отличается профаза митоза от профазы I мейоза? В профазе I мейоза хромосомы не свободно распределены по всему объему бывшего клеточного ядра (ядерная оболочка в профазе растворяется), как в профазе митоза, а гомологи объединяются и коньюгируют (переплетаются) друг с другом. Это может привести к кроссинговеру: обмену некоторыми идентичными участками сестринских хроматид у гомологов.
— Чем отличается метафаза митоза от метафазы I мейоза? В метафазу I мейоза по экватору клетки выстраиваются не отдельные двухроматидные хромосомы как в метафазе митоза, в биваленты (по два гомолога вместе) или тетрады (тетра — четыре, по числу задействованных в коньюгации сестринских хроматид).
— Чем отличается анафаза митоза от анафазы I мейоза? В анафазу митоза нитями веретена деления к полюсам клетки растаскиваются сестринские хроматиды (которые в это время уже следует называть однохроматидными хромосомами). Обратите внимание, что в это время, поскольку из каждой двухроматидной хромосомы образовалось две однохроматидные хромосомы, а два новых ядра еще не образовались, то хромосомная формула таких клеток будет иметь вид 4n4c. В анафазу I мейоза нитями веретена деления к полюсам клетки растаскиваются двухроматидные гомологи. Кстати, на рисунке в анафазу I мы видим, что одна из сестринских хроматид оранжевой хромосомы имеет участки из красной хроматиды (и, соответственно, наоборот), а одна из сестринских хроматид зеленой хромосомы имеет участки из синей хроматиды (и, соответственно, наоборот). Поэтому мы можем утверждать, что в профазу I мейоза между гомологичными хромосомами происходила не только коньюгация, но и кроссинговер.
— Чем отличается телофаза митоза от телофазы I мейоза? В телофазу митоза в двух новых образовавшихся ядрах (двух клеток еще нет, они образуются в результате цитокинеза) будет содержаться диплоидный набор однохроматидных хромосом — 2n2c. В телофазу I мейоза в двух образующихся ядрах будет находиться гаплоидный набор двухроматидных хромосом — 1n2c. Таким образом, мы видим, что мейоз I уже обеспечил редукционное деление (количество хромосом снизилось вдвое).
— Что обеспечивает мейоз II ? Мейозом II называется эквационное (уравнительное) деление, в результате которого в четырех образовавшихся клетках будет находиться гаплоидный набор нормальных однохроматидных хромосом — 1n1c.
— Чем отличается профаза I от профазы II ? В профазу II ядра клеток не содержат гомологичных хромосом, как в профазу I, поэтому не происходит объединения гомологов.
— Чем отличается метафаза митоза от метафазы II мейоза? Очень «коварный» вопрос, так как из любого учебника вы запомните, что мейоз II в целом протекает как митоз. Но, обратите внимание, в метафазу митоза по экватору клетки выстраиваются двухроматидные хромосомы и у каждой хромосомы есть её гомолог. В метафазе II мейоза по экватору тоже выстраиваются двухроматидные хромосомы, но нет гомологичных. На цветном рисунке, как в этой статье выше, это хорошо видно, но на экзамене рисунки черно-белые. На этом черно-белом рисунке одного из тестовых заданий изображена метафаза митоза, так как здесь есть гомологичные хромосомы (большая черная и большая белая — одна пара; маленькая черная и маленькая белая — другая пара).
— Может быть и аналогичный вопрос по анафазе митоза и анафазе II мейоза.
— Чем отличается телофаза I мейоза от телофазы II ? Хотя набор хромосом в обоих случаях гаплоидный, но во время телофазы I хромосомы двухроматидные, а во время телофазы II они однохроматидные.
Когда писал на этом блоге подобную статью о митозе и мейозе никак не думал, что за три года содержание тестов так сильно изменится. Очевидно, из-за сложностей создавать все новые и новые тесты, опираясь на школьную программу по биологии, авторы-составители уже не имеют возможности «копать вширь» (всё уже давно «вскопано») и они вынуждены «копать вглубь».
*******************************************
У кого будут вопросы по статье к репетитору биологии по Скайпу, прошу обращаться в комментариях.
Репетитор по биологии
Садыков Борис Фагимович, 1956 г. рождения. Кандидат биологических наук, доцент. Живу в замечательном городе Уфе. Преподавательский стаж с 1980 года. Репетитор биологии по Скайпу.
А. Общая биологияИ. Единый Государственный Экзамен (ЕГЭ)
|
гомологичные хромосомыконьюгациякроссинговермейозМитозрепетитор ЕГЭ по биологии по Скайпусестринские хроматидыфазы мейозафазы митоза
|