Этапы трансляции егэ

И транскрипция, и трансляция относятся к матричным биосинтезам. Матричным биосинтезом называется синтез
биополимеров (нуклеиновых кислот, белков) на матрице — нуклеиновой кислоте ДНК или РНК. Процессы матричного биосинтеза относятся к пластическому обмену: клетка расходует энергию АТФ.

Матричный синтез можно представить как создание копии исходной информации на несколько другом или новом
«генетическом языке». Скоро вы все поймете — мы научимся достраивать по одной цепи ДНК другую, переводить РНК в ДНК
и наоборот, синтезировать белок с иРНК на рибосоме. В данной статье вас ждут подробные примеры решения задач, генетический словарик пригодится — перерисуйте его себе :)

Перевод РНК в ДНК

Возьмем 3 абстрактных нуклеотида ДНК (триплет) — АТЦ. На иРНК этим нуклеотидам будут соответствовать — УАГ (кодон иРНК).
тРНК, комплементарная иРНК, будет иметь запись — АУЦ (антикодон тРНК). Три нуклеотида в зависимости от своего расположения
будут называться по-разному: триплет, кодон и антикодон. Обратите на это особое внимание.

Репликация ДНК — удвоение, дупликация (лат. replicatio — возобновление, лат. duplicatio — удвоение)

Процесс синтеза дочерней молекулы ДНК по матрице родительской ДНК. Нуклеотиды достраивает фермент ДНК-полимераза по
принципу комплементарности. Переводя действия данного фермента на наш язык, он следует следующему правилу: А (аденин) переводит в Т (тимин), Г (гуанин) — в Ц (цитозин).

Репликация ДНК

Удвоение ДНК происходит в синтетическом периоде интерфазы. При этом общее число хромосом не меняется, однако каждая из них
содержит к началу деления две молекулы ДНК: это необходимо для равномерного распределения генетического материала между
дочерними клетками.

Транскрипция (лат. transcriptio — переписывание)

Транскрипция представляет собой синтез информационной РНК (иРНК) по матрице ДНК. Несомненно, транскрипция происходит
в соответствии с принципом комплементарности азотистых оснований: А — У, Т — А, Г — Ц, Ц — Г (загляните в «генетический словарик»
выше).

Транскрипция

До начала непосредственно транскрипции происходит подготовительный этап: фермент РНК-полимераза узнает особый участок молекулы ДНК — промотор и связывается с ним. После связывания с промотором происходит раскручивание молекулы ДНК, состоящей из двух
цепей: транскрибируемой и смысловой. В процессе транскрипции принимает участие только транскрибируемая цепь ДНК.

Транскрипция осуществляется в несколько этапов:

  • Инициация (лат. injicere — вызывать)
  • Образуется несколько начальных кодонов иРНК.

  • Элонгация (лат. elongare — удлинять)
  • Нити ДНК последовательно расплетаются, освобождая место для передвигающейся РНК-полимеразы. Молекула иРНК
    быстро растет.

  • Терминация (лат. terminalis — заключительный)
  • Достигая особого участка цепи ДНК — терминатора, РНК-полимераза получает сигнал к прекращению синтеза иРНК. Транскрипция завершается. Синтезированная иРНК направляется из ядра в цитоплазму.

Фазы транскрипции

Трансляция (от лат. translatio — перенос, перемещение)

Куда же отправляется новосинтезированная иРНК в процессе транскрипции? На следующую ступень — в процесс трансляции.
Он заключается в синтезе белка на рибосоме по матрице иРНК. Последовательность кодонов иРНК переводится в последовательность
аминокислот.

Трансляция

Перед процессом трансляции происходит подготовительный этап, на котором аминокислоты присоединяются к соответствующим молекулам тРНК. Трансляцию можно разделить на несколько стадий:

  • Инициация
  • Информационная РНК (иРНК, синоним — мРНК (матричная РНК)) присоединяется к рибосоме, состоящей из двух субъединиц.
    Замечу, что вне процесса трансляции субъединицы рибосом находятся в разобранном состоянии.

    Первый кодон иРНК, старт-кодон, АУГ оказывается в центре рибосомы, после чего тРНК приносит аминокислоту,
    соответствующую кодону АУГ — метионин.

  • Элонгация
  • Рибосома делает шаг, и иРНК продвигается на один кодон: такое в фазу элонгации происходит десятки тысяч раз.
    Молекулы тРНК приносят новые аминокислоты, соответствующие кодонам иРНК. Аминокислоты соединяются друг с другом: между ними образуются пептидные связи, молекула белка растет.

    Доставка нужных аминокислот осуществляется благодаря точному соответствию 3 нуклеотидов (кодона) иРНК 3 нуклеотидам (антикодону) тРНК. Язык перевода между иРНК и тРНК выглядит как: А (аденин) — У (урацил), Г (гуанин) — Ц (цитозин).
    В основе этого также лежит принцип комплементарности.

    Трансляция

    Движение рибосомы вдоль молекулы иРНК называется транслокация. Нередко в клетке множество рибосом садятся на одну молекулу
    иРНК одновременно — образующаяся при этом структура называется полирибосома (полисома). В результате происходит одновременный синтез множества одинаковых белков.

    Полисома

  • Терминация
  • Синтез белка — полипептидной цепи из аминокислот — в определенный момент завершатся. Сигналом к этому служит попадание
    в центр рибосомы одного из так называемых стоп-кодонов: УАГ, УГА, УАА. Они относятся к нонсенс-кодонам (бессмысленным), которые не кодируют ни одну аминокислоту. Их функция — завершить синтез белка.

Существует специальная таблица для перевода кодонов иРНК в аминокислоты. Пользоваться ей очень просто, если вы запомните, что
кодон состоит из 3 нуклеотидов. Первый нуклеотид берется из левого вертикального столбика, второй — из верхнего горизонтального,
третий — из правого вертикального столбика. На пересечении всех линий, идущих от них, и находится нужная вам аминокислота :)

Таблица генетического кода

Давайте потренируемся: кодону ЦАЦ соответствует аминокислота Гис, кодону ЦАА — Глн. Попробуйте самостоятельно найти
аминокислоты, которые кодируют кодоны ГЦУ, ААА, УАА.

Кодону ГЦУ соответствует аминокислота — Ала, ААА — Лиз. Напротив кодона УАА в таблице вы должны были обнаружить прочерк:
это один из трех нонсенс-кодонов, завершающих синтез белка.

Примеры решения задачи №1

Без практики теория мертва, так что скорее решим задачи! В первых двух задачах будем пользоваться таблицей генетического кода (по иРНК),
приведенной вверху.

«Фрагмент цепи ДНК имеет следующую последовательность нуклеотидов: ЦГА-ТГГ-ТЦЦ-ГАЦ. Определите последовательность нуклеотидов
во второй цепочке ДНК, последовательность нуклеотидов на иРНК, антикодоны
соответствующих тРНК и аминокислотную последовательность соответствующего фрагмента молекулы белка, используя таблицу генетического кода»

Задача на транскрипцию и трансляцию

Объяснение:

По принципу комплементарности мы нашли вторую цепочку ДНК: ГЦТ-АЦЦ-АГГ-ЦТГ. Мы использовали следующие правила при нахождении второй нити
ДНК: А-Т, Т-А, Г-Ц, Ц-Г.

Вернемся к первой цепочке, и именно от нее пойдем к иРНК: ГЦУ-АЦЦ-АГГ-ЦУГ. Мы использовали следующие правила при переводе ДНК в иРНК:
А-У, Т-А, Г-Ц, Ц-Г.

Зная последовательность нуклеотидов иРНК, легко найдем тРНК: ЦГА, УГГ, УЦЦ, ГАЦ. Мы использовали следующие правила перевода иРНК в тРНК:
А-У, У-А, Г-Ц, Ц-Г. Обратите внимание, что антикодоны тРНК мы разделяем запятыми, в отличие кодонов иРНК. Это связано с тем, что
тРНК представляют собой отдельные молекулы (в виде клеверного листа), а не линейную структуру (как ДНК, иРНК).

Пример решения задачи №2

«Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой синтезируется участок центральной петли тРНК, имеет
следующую последовательность нуклеотидов: ТАГ-ЦАА-АЦГ-ГЦТ-АЦЦ. Установите нуклеотидную последовательность участка тРНК, который синтезируется
на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону
тРНК»

Задача на транскрипцию и трансляцию

Обратите свое пристальное внимание на слова «Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой
синтезируется участок центральной петли тРНК «. Эта фраза кардинально меняет ход решения задачи: мы получаем право напрямую и сразу
синтезировать с ДНК фрагмент тРНК — другой подход здесь будет считаться ошибкой.

Итак, синтезируем напрямую с ДНК фрагмент молекулы тРНК: АУЦ-ГУУ-УГЦ-ЦГА-УГГ. Это не отдельные молекулы тРНК (как было
в предыдущей задаче), поэтому не следует разделять их запятой — мы записываем их линейно через тире.

Третий триплет ДНК — АЦГ соответствует антикодону тРНК — УГЦ. Однако мы пользуемся таблицей генетического кода по иРНК,
так что переведем антикодон тРНК — УГЦ в кодон иРНК — АЦГ. Теперь очевидно, что аминокислота кодируемая АЦГ — Тре.

Пример решения задачи №3

Длина фрагмента молекулы ДНК составляет 150 нуклеотидов. Найдите число триплетов ДНК, кодонов иРНК, антикодонов тРНК и
аминокислот, соответствующих данному фрагменту. Известно, что аденин составляет 20% в данном фрагменте (двухцепочечной
молекуле ДНК), найдите содержание в процентах остальных нуклеотидов.

Задача на транскрипцию и трансляцию

Один триплет ДНК состоит из 3 нуклеотидов, следовательно, 150 нуклеотидов составляют 50 триплетов ДНК (150 / 3). Каждый триплет ДНК
соответствует одному кодону иРНК, который в свою очередь соответствует одному антикодону тРНК — так что их тоже по 50.

По правилу Чаргаффа: количество аденина = количеству тимина, цитозина = гуанина. Аденина 20%, значит и тимина также 20%.
100% — (20%+20%) = 60% — столько приходится на оставшиеся цитозин и гуанин. Поскольку их процент содержания равен, то
на каждый приходится по 30%.

Теперь мы украсили теорию практикой. Что может быть лучше при изучении новой темы? :)

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Задания

Версия для печати и копирования в MS Word

Установите последовательность этапов трансляции. Запишите в таблицу соответствующую последовательность цифр.

1)  перемещение рибосомы на один триплет

2)  формирование комплекса: рибосома, иРНК, тРНК с аминокислотой

3)  присоединение второй тРНК с аминокислотой

4)  иРНК соединяется с двумя субъединицами рибосомы

5)  возникновение пептидной связи между аминокислотами

Спрятать пояснение

Пояснение.

Последовательность этапов трансляции:

4)  иРНК соединяется с двумя субъединицами рибосомы → 2) формирование комплекса: рибосома, иРНК, тРНК с аминокислотой → 3) присоединение второй тРНК с аминокислотой → 5) возникновение пептидной связи между аминокислотами;→ 1) перемещение рибосомы на один триплет .

Ответ: 42351.



Скачать материал

РЕАКЦИИ МАТРИЧНОГО СИНТЕЗА. БИОСИНТЕЗ БЕЛКАПодготовка к ЕГЭ



Скачать материал

  • Курс добавлен 13.12.2022

  • Сейчас обучается 410 человек из 69 регионов

Описание презентации по отдельным слайдам:

  • РЕАКЦИИ МАТРИЧНОГО СИНТЕЗА. БИОСИНТЕЗ БЕЛКАПодготовка к ЕГЭ

    1 слайд

    РЕАКЦИИ МАТРИЧНОГО СИНТЕЗА.
    БИОСИНТЕЗ БЕЛКА
    Подготовка к ЕГЭ

  • Особенности реакций матричного синтезаСвойственны только живым организмамОтра...

    2 слайд

    Особенности реакций матричного синтеза
    Свойственны только живым организмам
    Отражают основное свойства живого – воспроизведение себе подобных
    Обеспечивают специфическую последовательность нуклеотидов
    Способствуют высокой скорости реакции

  • К реакциям матричного синтеза относят репликацию ДНК, синтез и-РНК на ДНК (тр...

    3 слайд

    К реакциям матричного синтеза относят репликацию ДНК, синтез и-РНК на ДНК (транскрипцию) и синтез белка на и-РНК (трансляцию), а также синтез РНК или ДНК на РНК вирусов.

    Биосинтез белка — это один из видов пластического обмена, в ходе которого наследственная информация, закодированная в генах ДНК, реализуется в определенную последовательность аминокислот в белковых молекулах. В биосинтезе белка выделяют два основных этапа: транскрипцию и трансляцию.

  • Передача информации и синтез белка идут по матричному принципу, сравнимому с...

    4 слайд

    Передача информации и синтез белка идут по матричному принципу, сравнимому с работой печатного станка в типографии. Информация от ДНК многократно копируется. Если при копировании произойдут ошибки, то они повторятся во всех последующих копиях. Правда, некоторые ошибки при копировании информации молекулой ДНК могут исправляться. Этот процесс устранения ошибок называется репарацией.
    Первой из реакций в процессе передачи информации является репликация молекулы ДНК и синтез новых цепей ДНК.

  • ИнформацияИнформация о первичной структуре белка закодирована в молекуле ДНК...

    5 слайд

    Информация
    Информация о первичной структуре белка закодирована в молекуле ДНК в виде триплетов (кодонов)
    Триплет (кодон) – участок из трех нуклеотидов в молекуле ДНК
    Один триплет молекулы ДНК кодирует одну аминокислоту молекулы белка:
    1 триплет 1 аминокислота

  • ДНК:   АТГ – ГГЦ – ТГА – ГЦА – ТЦГ  Белок:тирпротреаргсерДНК:Белок:генГен – у...

    6 слайд

    ДНК: АТГ – ГГЦ – ТГА – ГЦА – ТЦГ
    Белок:
    тир
    про
    тре
    арг
    сер
    ДНК:
    Белок:
    ген
    Ген – участок молекулы ДНК, в котором закодирована информация о структуре одного белка: 1ген 1 белок
    Ген
    ген

  • Генетический код – система записи генетической информации в молекуле ДНК о ст...

    7 слайд

    Генетический код – система записи генетической информации в молекуле ДНК о строении молекулы белка
    Генетическая информация записана только в одной (кодогенной) цепи ДНК
    Генетический код
    ДНК
    и-РНК

  • Свойства генетического кодаТриплетностьИнформация закодирована в виде триплет...

    8 слайд

    Свойства генетического кода
    Триплетность
    Информация закодирована в виде триплетов
    Однозначность
    Один триплет может кодировать одну аминокислоту
    Вырожденность (избыточность)
    Для большинства аминокислот существует несколько триплетов
    Неперекрываемость
    Нуклеотид входит в состав только одного триплета
    Прерывистость
    Между генами имеются «знаки препинания»

  • Свойства генетического кодаУниверсальность Код одинаков для всех живых органи...

    9 слайд

    Свойства генетического кода
    Универсальность
    Код одинаков для всех живых организмов
    20 аминокислот
    43=64 триплета
    Стартовые и стоп-кодоны: УАГ, УГА, УАА – не кодируют аминокислоты и указывают на начало и конец синтеза молекулы белка

  • В клетках принцип матричного синтеза заключается в том, что новые молекулы бе...

    10 слайд

    В клетках принцип матричного синтеза заключается в том, что новые молекулы белков и нуклеиновых кислот синтезируются в соответствии с программой, заложенной в структуре ранее существовавших молекул тех же нуклеиновых кислот (ДНК или РНК).
    Репликация ДНК. ДНК представляет собой двухцепочечный биополимер, мономерами которого являются нуклеотиды. Если бы биосинтез ДНК происходил по принципу ксерокопирования, то неизбежно возникали бы многочисленные искажения и погрешности в наследственной информации, которые в конечном итоге привели бы к гибели новых организмов. Поэтому процесс удвоения ДНК происходит иным, полуконсервативным способом: молекула ДНК расплетается, и на каждой из цепей синтезируется новая цепь по принципу комплементарности. Процесс самовоспроизведения молекулы ДНК, обеспечивающий точное копирование наследственной информации и передачу ее из поколения в поколение, называется репликацией.В результате репликации образуются две абсолютно точные копии материнской молекулы ДНК, каждая из которых несет по одной копии материнской.

  • Репликация — это процесс самоудвоения молекулы ДНК, осуществляемый под контро...

    11 слайд

    Репликация — это процесс самоудвоения молекулы ДНК, осуществляемый под контролем ферментов. На каждой из цепей ДНК, образовавшихся после разрыва водородных связей, при участии фермента ДНК-полимеразы синтезируется дочерняя цепь ДНК. Материалом для синтеза служат свободные нуклеотиды, имеющиеся в цитоплазме клеток.
    Биологический смысл репликации заключается в точной передаче наследственной информации от материнской молекулы к дочерним, что в норме и происходит при делении соматических клеток.

  • Этапы биосинтезаТранскрипцияТрансляция

    12 слайд

    Этапы биосинтеза
    Транскрипция
    Трансляция

  • I этап -  транскрипцияТранскрипция («списывание») –  процесс считывания инфор...

    13 слайд

    I этап — транскрипция
    Транскрипция («списывание») – процесс считывания информации о первичной структуре белка с молекулы ДНК молекулой и-РНК (синтез молекулы и-РНК на основе молекулы ДНК)
    Во время транскрипции происходит перенос генетической информации с молекулы ДНК на и-РНК
    Транскрипция происходит с помощью фермента ДНК-полимеразы по принципу комплементарности

  • Реакции, в которых одна молекула полимера служит матрицей (основой) для синт...

    14 слайд

    Реакции, в которых одна молекула полимера служит матрицей (основой) для синтеза другой молекулы, называются реакциями матричного типа
    ДНК служит матрицей для синтеза и-РНК
    I этап — транскрипция
    и-РНК переносит информацию из ядра на рибосомы и становится матричной РНК (м-РНК)

  • Транскрипция — это биосинтез молекул иРНК на соответствующих участках ДНК. Тр...

    15 слайд

    Транскрипция — это биосинтез молекул иРНК на соответствующих участках ДНК. Транскрипция происходит только на одной цепи ДНК, которая называется транскрибируемой, или кодирующей, в отличие от другой — смысловой, или кодогенной. Обеспечивает процесс переписывания специальный фермент РНК-полимераза, который подбирает нуклеотиды РНК по принципу комплементарности.
    Синтезированные в процессе транскрипции в ядре молекулы иРНК покидают его через ядерные поры, а митохондриальные и пластидные иРНК остаются внутри органоидов. После транскрипции происходит процесс активации аминокислот, в ходе которой аминокислота присоединяется к соответствующей свободной тРНК.

  • Трансляция – перевод  нуклеотидной последовательности с и-РНК на аминокислотн...

    16 слайд

    Трансляция – перевод нуклеотидной последовательности с и-РНК на аминокислотную последовательность и сборка молекулы белка на рибосомах
    *В трансляции принимают участие молекулы т-РНК, все виды РНК, рибосомы, аминокислоты
    II этап — трансляция
    т-РНК
    и-РНК
    рибосома
    аминокислоты

  • Акцепторный конец – 
присоединяет аминокислотуКодовый  триплет (антикодон)*Су...

    17 слайд

    Акцепторный конец –
    присоединяет аминокислоту
    Кодовый триплет (антикодон)
    *Существует 61 тип т-РНК с разными антикодонами
    ГУЦ
    Антикодон т-РНК комплементарен триплету на и–РНК
    «Трилистник» т-РНК
    вал

  • 1. Инициация – начало биосинтеза   Малая субъединица  рибосомы нанизывается н...

    18 слайд

    1. Инициация – начало биосинтеза
    Малая субъединица рибосомы нанизывается на м-РНК и скользит до точки инициации (начала) биосинтеза – это стартовый кодон АУГ
    Данный кодон соответствует  – метиониновой т-РНК, которая связывается со стартовым кодоном с помощью водородных связей
    Стадии трансляции
    АУГ ААГ ЦГУ ГГЦ
    м – РНК:
    Затем происходит присоединение большой субъединицы рибосомы
    *Целостная рибосома, несет два активных триплета – функциональный центр

  • Функциональный центр рибосомы – ФЦР
(два триплета) А аминокислотный центр 
це...

    19 слайд

    Функциональный центр рибосомы – ФЦР
    (два триплета)
    А аминокислотный центр
    центр узнавания аминокислоты

    Р
    пептидный центр
    центр присоединения аминокислоты

  • Стадии трансляциим – РНК: АУГ – ААГ  – ЦГУ – ГГЦ …  2. Элонгация -  сборка мо...

    20 слайд

    Стадии трансляции
    м – РНК:
    АУГ – ААГ – ЦГУ – ГГЦ …
    2. Элонгация — сборка молекулы белка

  • Стадии трансляции3.Терминация – окончание биосинтеза На стоп-кодонах  синтез...

    21 слайд

    Стадии трансляции
    3.Терминация – окончание биосинтеза
    На стоп-кодонах синтез полипептида прекращается
    Рибосома вновь разделяется на субъединицы

  • Трансляция— это биосинтез полипептидной цепи на матрице иРНК, при котором про...

    22 слайд

    Трансляция— это биосинтез полипептидной цепи на матрице иРНК, при котором происходит перевод генетической информации в последовательность аминокислот полипептидной цепи.
    Второй этап синтеза белка чаще всего происходит в цитоплазме, например на шероховатой ЭПС. Для его протекания необходимы наличие рибосом, активация тРНК, в ходе которой они присоединяют соответствующие аминокислоты, присутствие ионов Mg2+, а также оптимальные условия среды (температура, рН, давление и т. д.).

  • Для начала транскрипции (инициации) к молекуле иРНК присоединяется малая субъ...

    23 слайд

    Для начала транскрипции (инициации) к молекуле иРНК присоединяется малая субъединица рибосомы, а затем по принципу комплементарности к первому кодону АУГ подбирается тРНК, несущая аминокислоту метионин. Лишь после этого присоединяется большая субъединица рибосомы. В пределах собранной рибосомы оказываются два кодона иРНК, первый из которых уже занят. К соседнему с ним кодону присоединяется вторая тРНК, также несущая аминокислоту, после чего между остатками аминокислот с помощью ферментов образуется пептидная связь.
    Когда рибосома передвигается на один кодон иРНК, первая из тРНК, освободившаяся от аминокислоты, возвращается в цитоплазму за следующей аминокислотой, а фрагмент будущей полипептидной цепи как бы повисает на оставшейся тРНК. К новому кодону, оказавшемуся в пределах рибосомы, присоединяется следующая тРНК, процесс повторяется, и шаг за шагом полипептидная цепь удлиняется, то есть происходит ее элонгация.

  • Окончание синтеза белка (терминация) происходит, как только в молекуле иРНК в...

    24 слайд

    Окончание синтеза белка (терминация) происходит, как только в молекуле иРНК встретится специфическая последовательность нуклеотидов, которая не кодирует аминокислоту (стоп-кодон). После этого рибосома, иРНК и полипептидная цепь разделяются, а вновь синтезированный белок приобретает соответствующую структуру и транспортируется в ту часть клетки, где он будет выполнять свои функции.
    Трансляция является весьма энергоемким процессом, поскольку на присоединение одной аминокислоты к тРНК расходуется энергия одной молекулы АТФ, еще несколько используются для продвижения рибосомы по молекуле иРНК.
    Репликация ДНК и синтез белка в клетке протекают по принципу матричного синтеза, поскольку новые молекулы нуклеиновых кислот и белков синтезируются в соответствии с программой, заложенной в структуре ранее существовавших молекул тех же нуклеиновых кислот (ДНК или РНК).

  • Стадии трансляции Полисома – молекула и-РНК, на которой  находятся несколько...

    25 слайд

    Стадии трансляции
    Полисома – молекула и-РНК, на которой находятся несколько рибосом, синтезирующих одинаковые белки

  • ДНК*Содержит информацию о первичной  структуре белка *Служит матрицей для син...

    26 слайд

    ДНК
    *Содержит информацию о первичной структуре белка *Служит матрицей для синтеза и-РНК
    и-РНК
    *Переносит информацию о структуре белка из ядра на рибосомы
    *Служит матрицей для синтеза белка
    Роль участников синтеза белков
    аминокислоты
    *Служат строительным материалом для молекулы белка

  • т-РНК*С помощью ферментов присоединяет аминокислоту и транспортирует ее на ри...

    27 слайд

    т-РНК
    *С помощью ферментов присоединяет аминокислоту и транспортирует ее на рибосомы
    рибосома
    *Осуществляет сборку молекулы белка
    ферменты
    *Катализируют процессы биосинтеза
    Роль участников синтеза белков
    АТФ
    *Обеспечивает энергией процессы биосинтеза белка

  • т-РНК

  • Задачи 272021

  • Задача 1. Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент м...

    33 слайд

    Задача 1. Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов (верхняя цепь смысловая, нижняя транскрибируемая)
    5’-ЦГААГГТГАЦААТГТ-3’
    3’-ГЦТТЦЦАЦТГТТАЦА-5’ 

    Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, обозначьте 5’ и 3’ концы этого фрагмента и определите аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет с 5’ конца соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода.

  • 1. Нуклеотидная последовательность участка тРНК (верхняя цепь по условию смыс...

    34 слайд

    1. Нуклеотидная последовательность участка тРНК (верхняя цепь по условию смысловая):
    ДНК: 3’-ГЦТ-ТЦЦ-АЦТ-ГТТ-АЦА-5’
    тРНК: 5’-ЦГА-АГГ-УГА-ЦАА-УГУ-3’ 
    2. Нуклеотидная последовательность антикодона УГА (по условию третий триплет) соответствует кодону на иРНК УЦА;
    3. По таблице генетического кода этому кодону соответствует аминокислота -Сер, которую будет переносить данная тРНК.

  • Алгоритм выполнения задания
1. По фрагменту молекулы ДНК, определяем нуклеоти...

    35 слайд

    Алгоритм выполнения задания
    1. По фрагменту молекулы ДНК, определяем нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте.
    ДНК: 3’-ГЦТ-ТЦЦ-АЦТ-ГТТ-АЦА-5’
    тРНК: 5’-ЦГА-АГГ-УГА-ЦАА-УГУ-3’  
    На ДНК с 3′ конца строится тРНК с 5′ — конца.
    2. Определяем кодон иРНК, который будет комплементарен триплету тРНК в процессе биосинтеза белка.
    Если третий триплет соответствует антикодону тРНК 5’- УГА-3’ , для нахождения иРНК сначала произведем запись в обратном порядке от 3’ → к 5’ получим 3’-АГУ- 5’, определяем иРНК: 5’–УЦА–3′.
    3. По таблице генетического кода кодону 5′-УЦА-3′ соответствует аминокислота -Сер, которую будет переносить данная тРНК.
    Пояснение к строению ДНК в условии:
    Двойная спираль ДНК. Две антипараллельные ( 5’- конец одной цепи располагается напротив 3’- конца другой) комплементарные цепи полинуклеотидов, соединенной водородными связями в парах А-Т и Г-Ц, образуют двухцепочечную молекулу ДНК. Молекула ДНК спирально закручена вокруг своей оси. На один виток ДНК приходится приблизительно 10 пар оснований.
    Смысловая цепь ДНК — Последовательность нуклеотидов в цепи кодирует наследственную информацию.

  • Задача 2. Фрагмент начала гена имеет следующую последовательность нуклеотидов...

    36 слайд

    Задача 2. Фрагмент начала гена имеет следующую последовательность нуклеотидов (верхняя цепь — смысловая, нижняя — транскрибируемая):
    5’ − ТААТГАЦЦГЦАТАТАТЦЦАТ −3’
    3’ − АТТАЦТГГЦГТАТАТАГГТА −5’

    Ген содержит информативную и неинформативную части для трансляции. Информативная часть гена начинается с триплета, кодирующего аминокислоту Мет. С какого нуклеотида начинается информативная часть гена? Определите последовательность аминокислот во фрагменте полипептидной цепи. Ответ поясните. Для выполнения задания используйте таблицу генетического кода.

  • 1. По принципу комплементарности находим цепь иРНК:
5’ − УААУГАЦЦГЦАУАУАУЦЦАУ...

    37 слайд

    1. По принципу комплементарности находим цепь иРНК:
    5’ − УААУГАЦЦГЦАУАУАУЦЦАУ − 3’.
    2. Информативная часть начинается с третьего нуклеотида Т на ДНК, так как кодон АУГ кодирует аминокислоту Мет.
    3. Последовательность аминокислот находим по кодонам иРНК в таблице генетического кода:
    Мет-Тре-Ала-Тир-Иле-Гис

  • Алгоритм выполнения задания
1. По принципу комплементарности на основе транск...

    38 слайд

    Алгоритм выполнения задания
    1. По принципу комплементарности на основе транскрибируемой цепи ДНК находим цепь иРНК:
    ДНК 3’ − АТТАЦТГГЦГТАТАТАГГТА −5’
    иРНК 5’ − УААУГАЦЦГЦАУАУАУЦЦАУ − 3’
    2. По условию сказано, что синтез начинается с кодона, которым закодирована аминокислота МЕТ, по таблице генетического находим триплет иРНК, который кодирует МЕТ: АУГ (5’ −АУГ− 3’)
    По принципу комплементарности определяем, что информативная часть гена в транскрибируемой цепи ДНК будет начинаться с нуклеотида Т (триплет 3’−ТАЦ−5’)
    В ответ: Информативная часть начинается с третьего нуклеотида Т на ДНК, так как кодон АУГ кодирует аминокислоту Мет.
    3. Последовательность аминокислот находим по кодонам иРНК в таблице генетического кода (начиная с триплета АУГ, т.е. «откидываем» два нуклеотида) :
    иРНК 5’ − АУГ-АЦЦ-ГЦА-УАУ-АУЦ-ЦАУ − 3’
    белок: Мет-Тре-Ала-Тир-Иле-Гис

  • Задача 3. Исходный фрагмент молекулы ДНК имеет следующую последовательность н...

    39 слайд

    Задача 3. Исходный фрагмент молекулы ДНК имеет следующую последовательность нуклеотидов (верхняя цепь — смысловая, нижняя — транскрибируемая):
    5’ − ГЦГГГЦТАТГАТЦТГ − 3’
    3’ − ЦГЦЦЦГАТАЦТАГАЦ − 5’

     В результате замены одного нуклеотида в ДНК четвёртая аминокислота во фрагменте полипептида заменилась на аминокислоту Вал. Определите аминокислоту, которая кодировалась до мутации. Какие изменения произошли в ДНК, иРНК в результате замены одного нуклеотида? Благодаря какому свойству генетического кода одна и та же аминокислота у разных организмов кодируется одним и тем же триплетом? Ответ поясните. Для выполнения задания используйте таблицу генетического кода. 

  • 1. Четвёртый триплет исходного фрагмента смысловой цепи ДНК — ГАТ (транскриби...

    40 слайд

    1. Четвёртый триплет исходного фрагмента смысловой цепи ДНК — ГАТ (транскрибируемой цепи ДНК — АТЦ), определяем триплет иРНК: ГАУ, по таблице генетического кода определяем, что он кодирует аминокислоту Асп.

     2. Во фрагменте ДНК в четвёртом триплете смысловой цепи ГАТ нуклеотид А заменился на Т (в транскрибируемой цепи в триплете АТЦ нуклеотид Т заменился на А), а в иРНК в четвёртом кодоне (ГАУ) нуклеотид А заменился на У (ГУУ).
    3. Свойство генетического кода — универсальность.
    (!!!) Наличие в ответе множества триплетов считается ошибкой, так как в задании указано, что произошла замена одного нуклеотида.

  • Алгоритм выполнения задания
1. Четвёртый триплет исходного фрагмента смыслово...

    41 слайд

    Алгоритм выполнения задания
    1. Четвёртый триплет исходного фрагмента смысловой цепи ДНК: 5′-ГАТ-3′ (транскрибируемой цепи ДНК: 5′-АТЦ-3′), определяем триплет иРНК: 5′-ГАУ-3′, по таблице генетического кода определяем, что он кодирует аминокислоту Асп.
    (!!!)Триплет иРНК: 5′-ГАУ-3′ нашли по принципу комплементарности на основе триплета транскрибируемой цепи ДНК 5′-АТЦ-3′. Для нахождения иРНК сначала произведем запись триплета ДНК в обратном порядке от 3’ → к 5’ получим 3’-ЦТА- 5’
    2. По условию сказано, что «четвёртая аминокислота во фрагменте полипептида заменилась на аминокислоту Вал». По таблице генетического кода находим, что аминокислота Вал кодируется четырьмя нуклеотидами: ГУУ, ГУЦ, ГУА, ГУГ;
    НО в условии указано, что произошла замена одного нуклеотида! т.е. в иРНК в четвёртом кодоне (5′-ГАУ-3′) нуклеотид А заменился на У (5′-ГУУ-3′).

     В ответ: В иРНК в четвёртом кодоне (ГАУ) нуклеотид А заменился на У (ГУУ). Во фрагменте ДНК в четвёртом триплете смысловой цепи 5′-ГАТ-3′ нуклеотид А заменился на Т (в транскрибируемой цепи в триплете 5′-АТЦ-3′ нуклеотид Т заменился на А).
    3. Свойство генетического кода — универсальность (Код един для всех организмов живущих на Земле).

  • Задача 4. Молекулы тРНК, несущие соответствующие антикодоны, входят в рибосом...

    42 слайд

    Задача 4. Молекулы тРНК, несущие соответствующие антикодоны, входят в рибосому в следующем порядке: ГУА, УАЦ, УГЦ, ГЦА.
    Определите последовательность нуклеотидов смысловой и транскрибируемой цепей ДНК, иРНК и аминокислот в молекуле синтезируемого фрагмента белка. Ответ поясните. Для решения задания используйте таблицу генетического кода. При выполнении задания учитывайте, что антикодоны тРНК антипараллельны кодонам иРНК.

  • 1. По принципу комплементарности определяем последовательность иРНК: 5’— УАЦГ...

    43 слайд

    1. По принципу комплементарности определяем последовательность иРНК: 5’— УАЦГУАГЦАУГЦ — 3’;
    2. Нуклеотидную последовательность транскрибируемой и смысловой цепей ДНК также определяем по принципу комплементарности:
    5’ − ТАЦГ ТАГЦАТГЦ − 3’
    3’ − АТ ГЦАТЦГТАЦГ − 5’.
    3. По таблице генетического кода и кодонам иРНК находим последовательность аминокислот в пептиде: Тир-Вал-Ала-Цис.

  • Алгоритм выполнения задания
1. По принципу комплементарности определяем посл...

    44 слайд

    Алгоритм выполнения задания
    1. По принципу комплементарности определяем последовательность иРНК на основе антикодонов тРНК, но сначала ориентируем антикодоны тРНК (3’→ 5’) так, чтобы они присоединялись к иРНК антипараллельно (по условию антикодоны тРНК даны в ориентации 5’→ 3’)
    тРНК: 3’АУГ 5’, 3’ЦАУ 5’, 3’ЦГУ 5’, 3’АЦГ 5’
    иРНК: 5’— УАЦ-ГУА-ГЦА-УГЦ — 3’ 
    2. Нуклеотидную последовательность транскрибируемой и смысловой цепей ДНК также определяем по принципу комплементарности (на основе найденной иРНК по принципу комплементарности строим транскрибируемую ДНК, затем на её основе находим смысловую. В молекулярной генетике принято смысловую ДНК писать сверху, транскрибируему — снизу):
    5’ − ТАЦ-ГТА-ГЦА-ТГЦ − 3’
    3’ − АТГ-ЦАТ-ЦГТ-АЦГ − 5’.
    3. По таблице генетического кода и кодонам иРНК находим последовательность аминокислот в пептиде:
    иРНК: 5’— УАЦ-ГУА-ГЦА-УГЦ — 3’
    белок: Тир-Вал-Ала-Цис

  • Задача 5. Фрагмент молекулы ДНК имеет следующую последовательность нуклеотидо...

    45 слайд

    Задача 5. Фрагмент молекулы ДНК имеет следующую последовательность нуклеотидов (верхняя цепь — смысловая, нижняя — транскрибируемая):
    5’ − ГТЦАЦАГЦГАТЦААТ − 3’
    3’ − ЦАГТГТЦГЦТАГТТА − 5’

     Определите последовательность аминокислот во фрагменте полипептидной цепи и обоснуйте свой ответ. Какие изменения могли произойти в результате генной мутации во фрагменте молекулы ДНК, если вторая аминокислота в полипептиде заменилась на аминокислоту Про? Какое свойство генетического кода определяет возможность существования разных фрагментов мутированной молекулы ДНК? Ответ обоснуйте. Для решения задания используйте таблицу генетического кода.

  • 1. Последовательность аминокислот в полипептиде: Вал-Тре-Ала-Иле-Асн определя...

    46 слайд

    1. Последовательность аминокислот в полипептиде: Вал-Тре-Ала-Иле-Асн определяется по последовательности нуклеотидов в молекуле иРНК:
    5’ − ГУЦАЦАГЦГАУЦААУ − 3’.
    2. Во фрагменте белка вторая аминокислота Тре заменилась на Про что возможно при замене второго триплета в смысловой цепи ДНК АЦА на триплет ЦЦТ, ЦЦЦ, ЦЦА или ЦЦГ (второго кодона в РНК АЦА на кодон ЦЦУ, ЦЦЦ, ЦЦА или ЦЦГ).
    3. Свойство генетического кода — избыточность (вырожденность), так как одной аминокислоте (Про) соответствует более одного триплета (четыре триплета).

  • Алгоритм выполнения задания
1. Последовательность аминокислот в полипептиде о...

    47 слайд

    Алгоритм выполнения задания
    1. Последовательность аминокислот в полипептиде определяется по последовательности нуклеотидов в молекуле иРНК:
    иРНК: 5’ − ГУЦ-АЦА-ГЦГ-АУЦ-ААУ − 3’
    белок: Вал-Тре-Ала-Иле-Асн
    2. Во фрагменте белка вторая аминокислота Тре заменилась на Про что возможно при замене второго кодона в иРНК 5’-АЦА-3’ на кодон 5’-ЦЦУ-3’, 5’-ЦЦЦ-3’, 5’-ЦЦА-3’ или 5’-ЦЦГ-3’ → кодоны находим по таблице генетического кода
    Второй триплет в смысловой цепи ДНК 5’-АЦА-3’ заменился на триплет 5’-ЦЦТ-3’, 5’-ЦЦЦ-3’, 5’-ЦЦА-3’ или 5’-ЦЦГ-3’.
    дополнительно — НЕ ДЛЯ ОТВЕТА! — Скорее всего произошла мутация инверсия — хромосомная перестройка, при которой происходит поворот участка хромосомы на 180°:
    иРНК: 5’ − ГУЦ-АЦА-ГЦГ -АУЦ-ААУ − 3’ → иРНК: 5’ − ГУА-ЦЦА-ГЦГ -АУЦ-ААУ − 3’
    Первая аминокислота осталась той же, т.к. кодон ГУА, так же как и ГУЦ, кодирует аминокислоту вал (определяем по таблице генетического кода).
    3. Свойство генетического кода — избыточность (вырожденность), так как одной аминокислоте (Про) (и вал) соответствует более одного триплета (четыре триплета).

  • Задача 6. Некоторые вирусы в качестве генетического материала несут РНК. Таки...

    48 слайд

    Задача 6. Некоторые вирусы в качестве генетического материала несут РНК. Такие вирусы, заразив клетку, встраивают ДНК-копию своего генома в геном хозяйской клетки. В клетку проникла вирусная РНК следующей последовательности:
    5’ − АУГГЦУУУУГЦА − 3’.
    Определите, какова будет последовательность вирусного белка, если матрицей для синтеза иРНК служит цепь, комплементарная вирусной РНК. Напишите последовательность двуцепочечного фрагмента ДНК, укажите 5’ и 3’ концы цепей. Ответ поясните. Для решения задания используйте таблицу генетического кода.

  • 1. По принципу комплементарности находим нуклеотидную последовательность учас...

    49 слайд

    1. По принципу комплементарности находим нуклеотидную последовательность участка ДНК:
    5’ − АТГГЦТТТТГЦА − 3’
    3’ — ТАЦЦГААААЦГТ − 5’.
    2. По принципу комплементарности находим нуклеотидную последовательность иРНК:
    5’ − АУГГЦУУУУГЦА − 3’.
    3. По таблице Генетического кода определяем последовательность вирусного белка: МЕТ-АЛА-ФЕН-АЛА.

  • Алгоритм выполнения задания
1. По принципу комплементарности на основе вирусн...

    50 слайд

    Алгоритм выполнения задания
    1. По принципу комплементарности на основе вирусной РНК находим нуклеотидную последовательность транскрибируемого участка ДНК: 
    вирусная РНК: 5’ − АУГ-ГЦУ-УУУ-ГЦА − 3’
    транскрибируемая ДНК 3’− ТАЦ-ЦГА-ААА-ЦГТ − 5’.
    Нуклеотидную последовательность транскрибируемой и смысловой цепей ДНК также определяем по принципу комплементарности (на основе данной РНК по принципу комплементарности строим транскрибируемую ДНК, затем на её основе находим смысловую. В молекулярной генетике принято смысловую ДНК писать сверху, транскрибируемую — снизу):
    5’ − АТГ-ГЦТ-ТТТ-ГЦА − 3’
    3’ — ТАЦ-ЦГА-ААА-ЦГТ − 5’.
    2. По принципу комплементарности на основе транскрибируемой ДНК находим нуклеотидную последовательность иРНК:
    ДНК: 3’ — ТАЦ-ЦГА-ААА-ЦГТ − 5
    иРНК: 5’ − АУГ-ГЦУ-УУУ-ГЦА − 3’.
    3. По таблице Генетического кода на основе иРНК определяем последовательность вирусного белка:
    иРНК: 5’ − АУГ-ГЦУ-УУУ-ГЦА − 3’
    белок: МЕТ-АЛА-ФЕН-АЛА 

  • Задача 7. Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент м...

    51 слайд

    Задача 7. Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов (верхняя цепь — смысловая, нижняя — транскрибируемая):
    5’ − ТГЦГЦТГЦАЦЦАГЦТ − 3’
    3’ − АЦГЦГАЦГТГГТЦГА − 5’
    Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, обозначьте 5’ и 3’ концы этого фрагмента и определите аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет с 5’ конца соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода.

  • 1. Нуклеотидная последовательность участка тРНК (нижняя цепь по условию транс...

    52 слайд

    1. Нуклеотидная последовательность участка тРНК (нижняя цепь по условию транскрибируемая):
    ДНК: 3’-АЦГ-ЦГА-ЦГТ-ГГТ-ЦГА-5’
    тРНК: 5’-УГЦ-ГЦУ-ГЦА-ЦЦА-ГЦУ-3’ 
    2. Нуклеотидная последовательность антикодона ГЦА (по условию третий триплет) соответствует кодону на иРНК УГЦ;
    3. По таблице генетического кода этому кодону соответствует аминокислота -Цис, которую будет переносить данная тРНК.

  • Алгоритм выполнения задания
1. По фрагменту молекулы ДНК, определяем нуклеоти...

    53 слайд

    Алгоритм выполнения задания
    1. По фрагменту молекулы ДНК, определяем нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте.
    ДНК: 3’-АЦГ-ЦГА-ЦГТ-ГГТ-ЦГА-5’
    тРНК: 5’-УГЦ-ГЦУ-ГЦА-ЦЦА-ГЦУ-3’ 
    На ДНК с 3′ конца строится тРНК с 5′ — конца.
    2. Определяем кодон иРНК, который будет комплементарен триплету тРНК в процессе биосинтеза белка.
    Если третий триплет соответствует антикодону тРНК 5’- ГЦА-3’ , для нахождения иРНК сначала произведем запись в обратном порядке от 3’ → к 5’ получим 3’-АЦГ- 5’, определяем иРНК: 5’–УГЦ–3′.
    3. По таблице генетического кода кодону 5′-УГЦ-3′ соответствует аминокислота Цис, которую будет переносить данная тРНК.

  • Задача 8. Антикодоны тРНК поступают к рибосомам в следующей последовательност...

    54 слайд

    Задача 8. Антикодоны тРНК поступают к рибосомам в следующей последовательности нуклеотидов УЦГ, ЦГА, ААУ, ЦЦЦ. Определите последовательность нуклеотидов на иРНК, последовательность нуклеотидов смысловой и транскрибируемой цепей ДНК и последовательность аминокислот во фрагменте молекулы синтезируемого белка, используя таблицу генетического кода.
    Ответ поясните. При выполнении задания учитывайте, что антикодоны тРНК антипараллельны кодонам иРНК.

  • 1. По принципу комплементарности определяем последовательность иРНК на основе...

    55 слайд

    1. По принципу комплементарности определяем последовательность иРНК на основе антикодонов тРНК, но сначала ориентируем антикодоны тРНК (3’→ 5’) так, чтобы они присоединялись к иРНК антипараллельно (по условию антикодоны тРНК даны в ориентации 5’→ 3’)
    тРНК: 3’ГЦУ 5’, 3’АГЦ5’, 3’УАА5’, 3’ЦЦЦ5’
    иРНК: 5’-ЦГА-УЦГ-АУУ-ГГГ- 3’ 
    2. Нуклеотидную последовательность транскрибируемой и смысловой цепей ДНК также определяем по принципу комплементарности (на основе найденной иРНК по принципу комплементарности строим транскрибируемую ДНК, затем на её основе находим смысловую. В молекулярной генетике принято смысловую ДНК писать сверху, транскрибируему — снизу):
    5’ − ЦГА-ТЦГ-АТТ-ГГГ − 3’
    3’ − ГЦТ-АГЦ-ТАА-ЦЦЦ − 5’.
    3. По таблице генетического кода и кодонам иРНК находим последовательность аминокислот в пептиде:
    иРНК: 5’- ЦГА-УЦГ-АУУ-ГГГ — 3’
    белок: Арг-Сер-Иле-Гли 

  • Задача 9. Фрагмент генетического аппарата вируса, представленного молекулой Р...

    56 слайд

    Задача 9. Фрагмент генетического аппарата вируса, представленного молекулой РНК, имеет нуклеотидную последовательность: 5′ − АУГГУАГЦУУУУАУА − 3′.
    Определите нуклеотидную последовательность фрагмента двуцепочечной молекулы ДНК, которая синтезируется в результате обратной транскрипции на вирусной РНК, укажите 5′ и 3′ концы. Установите последовательность нуклеотидов в иРНК и аминокислот во фрагменте белка вируса, если матрицей для синтеза иРНК
    служит цепь, комплементарная вирусной РНК. Ответ поясните. Для решения задания используйте таблицу генетического кода.

  • 1) Фрагмент двуцепочечной молекулы ДНК определяется по принципу комплементарн...

    57 слайд

    1) Фрагмент двуцепочечной молекулы ДНК определяется по принципу комплементарности по вирусной РНК:
    5′ −  АТГГТАГЦТТТТАТА − 3′ (кодирующая цепь)
    3′ − ТАЦЦАТЦГААААТАТ − 5′ (матричная цепь);
    Примечание
    Обратная транскрипция — процесс образования двуцепочечной ДНК на основе одноцепочечной РНК, характерный для РНК-вирусов.
    2) Последовательность иРНК — 5′ − АУГГУАГЦУУУУАУА − 3′ — находим комлементарную цепь иРНК по условию задачи по матричной цепи ДНК, которая в свою очередь комплементарна вирусной РНК;
    3) По таблице генетического кода определяем последовательность аминокислот вирусного белка: Мет-Вал-Ала-Фен-Иле.

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 157 108 материалов в базе

  • Выберите категорию:

  • Выберите учебник и тему

  • Выберите класс:

  • Тип материала:

    • Все материалы

    • Статьи

    • Научные работы

    • Видеоуроки

    • Презентации

    • Конспекты

    • Тесты

    • Рабочие программы

    • Другие методич. материалы

Найти материалы

Материал подходит для УМК

  • «Биология. Базовый уровень», Пономарева И.Н. и др.

Другие материалы

«Биология», Пасечник В.В., Суматохин С.В., Калинова Г.С. и др. / Под ред. Пасечника В.В.

«Биология», Пасечник В.В., Суматохин С.В., Калинова Г.С. и др. / Под ред. Пасечника В.В.

«Биология», Сивоглазов В.И., Плешаков А.А.

«Биология», Сивоглазов В.И., Плешаков А.А.

«Биология», Пасечник В.В., Каменский А.А., Швецов Г.Г. / Под ред. Пасечника В.В.

«Биология», Константинов В.М., Бабенко В.Г., Кучменко В.С. / Под ред. Константинова В.М.

  • 17.12.2021
  • 86
  • 0
  • 17.12.2021
  • 67
  • 0

Вам будут интересны эти курсы:

  • Курс повышения квалификации «Организация и руководство учебно-исследовательскими проектами учащихся по предмету «Биология» в рамках реализации ФГОС»

  • Курс повышения квалификации «ФГОС общего образования: формирование универсальных учебных действий на уроке биологии»

  • Курс повышения квалификации «Медико-биологические основы безопасности жизнедеятельности»

  • Курс повышения квалификации «Методические аспекты реализации элективного курса «Антропология и этнопсихология» в условиях реализации ФГОС»

  • Курс повышения квалификации «Нанотехнологии и наноматериалы в биологии. Нанобиотехнологическая продукция»

  • Курс повышения квалификации «Основы биоэтических знаний и их место в структуре компетенций ФГОС»

  • Курс профессиональной переподготовки «Анатомия и физиология: теория и методика преподавания в образовательной организации»

  • Курс повышения квалификации «Гендерные особенности воспитания мальчиков и девочек в рамках образовательных организаций и семейного воспитания»

  • Курс профессиональной переподготовки «Биология и химия: теория и методика преподавания в образовательной организации»

  • Курс профессиональной переподготовки «Организация производственно-технологической деятельности в области декоративного садоводства»

  • Курс повышения квалификации «Инновационные технологии обучения биологии как основа реализации ФГОС»

  • Курс профессиональной переподготовки «Организация и выполнение работ по производству продукции растениеводства»

Философ Фридрих Энгельс в своем знаменитом определении сказал, что жизнь является способом существования белковых тел. В каждом живом организме безостановочно идет сложный процесс, требующий немалых энергетических затрат, — синтезируются и созревают белки. Общая схема биосентеза белка такова: ДНК — иРНК — белок.

Биосинтез белка делится на два главных этапа. Во-первых, из аминокислот синтезируется полипептидная цепь. Этот этап проходит на рибосомах при участии молекул двух типов РНК, информационной и транспортной. Во-вторых, с полипептидной цепью происходят посттрансляционные модификации. Образно представить весь этот процесс можно как крошечную железную дорогу, по которой постоянно, от одной станции к другой, снуют паровозы с прицепленными гружеными вагонами.

Трансляция

1.      Синтез полипептидных белковых цепей по матрице иРНК, который производится рибосомами, называется трансляцией.

2.      Полисома — система рибосом в виде цепи, используемая для увеличения количества производимых белков. Через нее может проходить одна и та же иРНК.

3.      Первым делом иРНК должна получить некую информацию. Транскрипция — процесс перенесения информации с ДНК на иРНК в ядре по принципу комплементарности. Далее иРНК идет в цитоплазму для синтеза белка на ее матрице.

4.      Как ДНК проходит подготовку к транскрипции? При помощи ферментов двойная связь ДНК раскручивается, разрываются водородные связи.

5.      Значительная часть ДНК, как и ее копия иРНК являются некодирующими. Кодирующие части иРНК называют экзонами, некодирующие интронами. Для «отбрасывания» некодирующих участков происходит сплайсинг — вырезание интронов с помощью ферментов.

6.      Как аминокислоты доставляются к рибосомам? С помощью тРНК, по форме напоминающей клеверный лист и состоящей из 70–90 нуклеотидов.

7.      Сколько видов тРНК в клетке? Столько же, сколько кодонов (триплетов), шифрующих аминокислоты — 64. Кодоны — это триплеты нуклеотидов в иРНК. Пример триплета — АГЦ (аденин, гуанин, цитозин). Каждое азотистое основание, например, аденин, входит в состав какого-то нуклеотида.

8.      Вверху в тРНК имеется триплет, присоединяющийся к кодонам иРНК. Это антикодон.

9.      Фермент кодаза присоединяет аминокислоту к тРНК. Причем он присоединяет строго ту аминокислоту, которая кодируется кодоном иРНК — триплетом, комплементарным антикодону тРНК.

10. Для связывания одной аминокислоты с тРНК тратится одна молекула АТФ.

11. Аминокислота отрывается от тРНК в тот момент, когда тРНК подходит к рибосоме и ее антикодон узнает кодон иРНК по принципу комплементарности.

12. В акцепторном участке рибосомы приходящая тРНК присоединяется к своему кодону иРНК, причем аминокислота присоединяет к себе растущую цепь белка — образуется пептидная связь.

13. В донорный участок рибосомы тРНК перемещается вместе с кодоном иРНК и с аминокислотой, цепь удлиняется на одну аминокислоту. На место данной тРНК в акцепторный участок идет новая тРНК.

14. Разные полипептидные цепи отделяются друг от друга своеобразными «знаками препинания», тремя триплетами — УАА, УАГ, УГА. Ни одна тРНК не имеет антикодонов, комплементарных данным триплетам, потому она не сможет поступить в акцепторный участок.

15. Какая аминокислота стоит в начале синтезируемого полипептида в рибосоме прокариот? Формилметионин, она соответствует антикодону АУГ иРНК. Данная измененная форма аминокислоты метионина является «заглавной буквой» фразы и прямиком следует в донорный участок рибосомы. С нее начинается синтез любой белковой цепи у бактерий, митохондрий, хлоропластов. У эукариот гены ядра не кодируют эту аминокислоту. После того как синтез полипептидной цепи закончен, формилметионин отщепляется от нее и отсутствует в готовом белке.

16. Что происходит с тРНК после выполнения ее роли? С помощью фермента кодазы к ней будет присоединена та же аминокислота, и тРНК продолжит функционировать.

17. Посттрансляционная модификация — формирование структур белка: вторичной, третичной и четвертичной. В этом процессе участвуют ферменты и затрачивается энергия.

Понятие метаболизма

Метаболизм — совокупность всех химических реакций, протекающих в живом организме. Значение метаболизма состоит в создании необходимых организму веществ и обеспечении его энергией.

Выделяют две составные части метаболизма — катаболизм и анаболизм.

Составные части метаболизма

Часть Характеристика Примеры Затраты энергии
Катаболизм (энергетический обмен, диссимиляция) Совокупность химических реакций, приводящих к образованию простых веществ из более сложных Гидролиз полимеров до мономеров и расщепление последних до низкомолекулярных соединений углекислого газа, воды, аммиака и других веществ Энергия выделяется
Анаболизм (пластический обмен, ассимиляция) Совокупность химических реакций синтеза сложных веществ из более простых Образование углеводов из углекислого газа и воды в процессе фотосинтеза, реакции матричного синтеза Энергия поглощается

Процессы пластического и энергетического обмена неразрывно связаны между собой. Все синтетические (анаболические) процессы нуждаются в энергии, поставляемой в ходе реакций диссимиляции. Сами же реакции расщепления (катаболизма) протекают лишь при участии ферментов, синтезируемых в процессе ассимиляции.

Роль ФТФ в метаболизме

Энергия, высвобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме высокоэнергетических соединений, как правило, в форме аденозинтрифосфата (АТФ). По своей химической природе АТФ относится к мононуклеотидам.

АТФ (аденозинтрифосфорная кислота) — мононуклеотид, состоящий из аденина, рибозы и трёх остатков фосфорной кислоты, соединяющихся между собой макроэргическими связями.

В этих связях запасена энергия, которая высвобождается при их разрыве:
АТФ + H2O → АДФ + H3PO4 + Q1
АДФ + H2O → АМФ + H3PO4 + Q2
АМФ + H2O → аденин + рибоза + H3PO4 + Q3,
где АТФ — аденозинтрифосфорная кислота; АДФ — аденозиндифосфорная кислота; АМФ — аденозинмонофосфорная кислота; Q1 = Q2 = 30,6 кДж; Q3 = 13,8 кДж.
Запас АТФ в клетке ограничен и пополняется благодаря процессу фосфорилирования. Фосфорилирование — присоединение остатка фосфорной кислоты к АДФ (АДФ + Ф → АТФ). Он происходит с разной интенсивностью при дыхании, брожении и фотосинтезе. АТФ обновляется чрезвычайно быстро (у человека продолжительность жизни одной молекулы АТФ менее 1 мин).
Энергия, накопленная в молекулах АТФ, используется организмом в анаболических реакциях (реакциях биосинтеза). Молекула АТФ является универсальным хранителем и переносчиком энергии для всех живых существ.

Энергетический обмен

Энергию, необходимую для жизнедеятельности, большинство организмов получают в результате процессов окисления органических веществ, то есть в результате катаболических реакций. Важнейшим соединением, выступающим в роли топлива, является глюкоза.
По отношению к свободному кислороду организмы делятся на три группы.

Классификация организмов по отношению к свободному кислороду

Группа Характеристика Организмы
Аэробы (облигатные аэробы) Организмы, способные жить только в кислородной среде Животные, растения, некоторые бактерии и грибы
Анаэробы (облигатные анаэробы) Организмы, неспособные жить в кислородной среде Некоторые бактерии
Факультативные формы (факультативные анаэробы) Организмы, способные жить как в присутствии кислорода, так и без него Некоторые бактерии и грибы

У облигатных аэробов и факультативных анаэробов в присутствии кислорода катаболизм протекает в три этапа: подготовительный, бес- кислородный и кислородный. В результате органические вещества распадаются до неорганических соединений. У облигатных анаэробов и факультативных анаэробов при недостатке кислорода катаболизм протекает в два первых этапа: подготовительный и бескислородный. В результате образуются промежуточные органические соединения, еще богатые энергией.

Этапы катаболизма

1. Первый этап — подготовительный — заключается в ферментативном расщеплении сложных органических соединений на более простые. Белки расщепляются до аминокислот, жиры — до глицерина и жирных кислот, полисахариды — до моносахаридов, нуклеиновые кислоты — до нуклеотидов. У многоклеточных организмов это происходит в желудочно-кишечном тракте, у одноклеточных — в лизосомах под действием гидролитических ферментов. Высвобождающаяся при этом энергия рассеивается в виде теплоты. Образовавшиеся органические соединения либо подвергаются дальнейшему окислению, либо используются клеткой для синтеза собственных органических соединений.
2. Второй этап — неполное окисление (бескислородный) — заключается в дальнейшем расщеплении органических веществ, осуществляется в цитоплазме клетки без участия кислорода. Главным источником энергии в клетке является глюкоза. Бескислородное, неполное окисление глюкозы называется гликолизом. В результате гликолиза одной молекулы глюкозы образуется по две молекулы пировиноградной кислоты (ПВК, пируват) CH3COCOOH, АТФ и воды, а также атомы водорода, которые связываются молекулой-переносчиком НАД+ и запасаются в виде НАД·Н.
Суммарная формула гликолиза имеет следующий вид:
C6H12O6 + 2H3PO4 + 2АДФ + 2НАД+ → 2C3Н4O3 + 2H2O + 2АТФ + 2НАД·Н.
Далее при отсутствии в среде кислорода продукты гликолиза (ПВК и НАД·Н) перерабатываются либо в этиловый спирт — спиртовое брожение (в клетках дрожжей и растений при недостатке кислорода)
CH3COCOOH → СО2 + СН3СОН
СН3СОН + 2НАД·Н → С2Н5ОН + 2НАД+,
либо в молочную кислоту — молочнокислое брожение (в клетках животных при недостатке кислорода)
CH3COCOOH + 2НАД·Н → C3Н6O3 + 2НАД+.
При наличии в среде кислорода продукты гликолиза претерпевают дальнейшее расщепление до конечных продуктов.
3. Третий этап — полное окисление (дыхание) — заключается в окислении ПВК до углекислого газа и воды, осуществляется в митохондриях при обязательном участии кислорода.
Он состоит из трёх стадий:
А) образование ацетилкоэнзима А;
Б) окисление ацетилкоэнзима А в цикле Кребса;
В) окислительное фосфорилирование в электронотранспортной цепи.

А. На первой стадии ПВК переносится из цитоплазмы в митохондрии, где взаимодействует с ферментами матрикса и образует 1) диоксид углерода, который выводится из клетки; 2) атомы водорода, которые молекулами-переносчиками доставляются к внутренней мембране митохондрии; 3) ацетилкофермент А (ацетил-КоА).
Б. На второй стадии происходит окисление ацетилкоэнзима А в цикле Кребса. Цикл Кребса (цикл трикарбоновых кислот, цикл лимонной кислоты) — это цепь последовательных реакций, в ходе которых из одной молекулы ацетил-КоА образуются 1) две молекулы диоксида углерода, 2) молекула АТФ и 3) четыре пары атомов водорода, передаваемые на молекулы-переносчики — НАД и ФАД. Таким образом, в результате гликолиза и цикла Кребса молекула глюкозы расщепляется до СО2, а высвободившаяся при этом энергия расходуется на синтез 4 АТФ и накапливается в 10 НАД·Н и 4 ФАД·Н2.
В. На третьей стадии атомы водорода с НАД·Н и ФАД·Н2 окисляются молекулярным кислородом О2 с образованием воды. Один НАД·Н способен образовывать 3 АТФ, а один ФАД·Н2–2 АТФ. Таким образом, выделяющаяся при этом энергия запасается в виде ещё 34 АТФ.
Этот процесс протекает следующим образом. Атомы водорода концентрируются около наружной стороны внутренней мембраны митохондрии. Они теряют электроны, которые по цепи молекул-переносчиков (цитохромов) электронотранспортной цепи (ЭТЦ) переносятся на внутреннюю сторону внутренней мембраны, где соединяются с молекулами кислорода:
О2 + е → О2.
В результате деятельности ферментов цепи переноса электронов внутренняя мембрана митохондрий изнутри заряжается отрицательно (за счёт О2), а снаружи — положительно (за счёт Н+), так что между её поверхностями создаётся разность потенциалов. Во внутреннюю мембрану митохондрий встроены молекулы фермента АТФ- синтетазы, обладающие ионным каналом. Когда разность потенциалов на мембране достигает критического уровня, положительно заряженные частицы H+ силой электрического поля начинают проталкиваться через канал АТФазы и, оказавшись на внутренней поверхности мембраны, взаимодействуют с кислородом, образуя воду:
1/2О2 +2H+ → Н2О.
Энергия ионов водорода H+, транспортирующихся через ионный канал внутренней мембраны митохондрии, используется для фосфорилирования АДФ в АТФ:
АДФ + Ф → АТФ.
Такое образование АТФ в митохондриях при участии кислорода называется окислительным фосфорилированием.
Суммарное уравнение расщепления глюкозы в процессе клеточного дыхания:
C6H12O6 + 6O2 + 38H3PO4 + 38АДФ → 6CO2 + 44H2O + 38АТФ.
Таким образом, в ходе гликолиза образуются 2 молекулы АТФ, в ходе клеточного дыхания — ещё 36 молекул АТФ, в целом при пол- ном окислении глюкозы — 38 молекул АТФ.

Пластический обмен

Пластический обмен, или ассимиляция, представляет собой совокупность реакций, обеспечивающих синтез сложных органических соединений из более простых (фотосинтез, хемосинтез, биосинтез белка и др.).

Гетеротрофные организмы строят собственные органические вещества из органических компонентов пищи. Гетеротрофная ассимиляция сводится, по существу, к перестройке молекул:
органические вещества пищи (белки, жиры, углеводы) → простые органические молекулы (аминокислоты, жирные кислоты, моносахариды) → макромолекулы тела (белки, жиры, углеводы).
Автотрофные организмы способны полностью самостоятельно синтезировать органические вещества из неорганических молекул, потребляемых из внешней среды. В процессе фото- и хемосинтеза происходит образование простых органических соединений, из которых в дальнейшем синтезируются макромолекулы:
неорганические вещества (СО2, Н2О) → простые органические молекулы (аминокислоты, жирные кислоты, моносахариды) → макромолекулы тела (белки, жиры, углеводы).

Фотосинтез

Фотосинтез — синтез органических соединений из неорганических за счёт энергии света. Суммарное уравнение фотосинтеза:

Фотосинтез протекает при участии фотосинтезирующих пигментов, обладающих уникальным свойством преобразования энергии солнечного света в энергию химической связи в виде АТФ. Фотосинтезирующие пигменты представляют собой белковоподобные вещества. Наиболее важным является пигмент хлорофилл. У эукариот фотосинтезирующие пигменты встроены во внутреннюю мембрану пластид, у прокариот — во впячивания цитоплазматической мембраны.
Строение хлоропласта очень похоже на строение митохондрии. Во внутренней мембране тилакоидов гран содержатся фотосинтетические пигменты, а также белки цепи переноса электронов и молекулы фермента АТФ-синтетазы.
Процесс фотосинтеза состоит из двух фаз: световой и темновой.
1. Световая фаза фотосинтеза протекает только на свету в мембране тилакоидов граны.
К ней относятся поглощение хлорофиллом квантов света, образование молекулы АТФ и фотолиз воды.
Под действием кванта света (hv) хлорофилл теряет электроны, переходя в возбуждённое состояние:

Эти электроны передаются переносчиками на наружную, то есть обращенную к матриксу поверхность мембраны тилакоидов, где накапливаются.
Одновременно внутри тилакоидов происходит фотолиз воды, то есть её разложение под действием света:

Образующиеся электроны передаются переносчиками к молекулам хлорофилла и восстанавливают их. Молекулы хлорофилла возвращаются в стабильное состояние.
Протоны водорода, образовавшиеся при фотолизе воды, накапливаются внутри тилакоида, создавая Н+-резервуар. В результате внутренняя поверхность мембраны тилакоида заряжается положительно (за счёт Н+), а наружная — отрицательно (за счёт е). По мере накопления по обе стороны мембраны противоположно заряженных частиц нарастает разность потенциалов. При достижении критической величины разности потенциалов сила электрического поля начинает проталкивать протоны через канал АТФ-синтетазы. Выделяющаяся при этом энергия используется для фосфорилирования молекул АДФ:
АДФ + Ф → АТФ.

Образование АТФ в процессе фотосинтеза под действием энергии света называется фотофосфорилированием.
Ионы водорода, оказавшись на наружной поверхности мембраны тилакоида, встречаются там с электронами и образуют атомарный водород, который связывается с молекулой-переносчиком водорода НАДФ (никотинамидадениндинуклеотидфосфат):
+ + 4е + НАДФ+ → НАДФ·Н2.
Таким образом, во время световой фазы фотосинтеза происходят три процесса: образование кислорода вследствие разложения воды, синтез АТФ и образование атомов водорода в форме НАДФ·Н2. Кислород диффундирует в атмосферу, а АТФ и НАДФ·Н2 участвуют в процессах темновой фазы.
2. Темновая фаза фотосинтеза протекает в матриксе хлоропласта как на свету, так и в темноте и представляет собой ряд последовательных преобразований СО2, поступающего из воздуха, в цикле Кальвина. Осуществляются реакции темновой фазы за счёт энергии АТФ. В цикле Кальвина СО2 связывается с водородом из НАДФ·Н2 с образованием глюкозы.
В процессе фотосинтеза кроме моносахаридов (глюкоза и др.) синтезируются мономеры других органических соединений — аминокислоты, глицерин и жирные кислоты. Таким образом, благодаря фотосинтезу растения обеспечивают себя и всё живое на Земле необходимыми органическими веществами и кислородом.
Сравнительная характеристика фотосинтеза и дыхания эукариот представлена в таблице.

Сравнительная характеристика фотосинтеза и дыхания эукариот

Признак Фотосинтез Дыхание
Уравнение реакции 6СО2 + 6Н2О + энергия света → C6H12O6 + 6O2 C6H12O6 + 6O2 → 6СО2 + 6Н2О + энергия (АТФ)
Исходные вещества Углекислый газ, вода Органические вещества, кислород
Продукты реакции Органические вещества, кислород Углекислый газ, вода
Значение в круговороте веществ Синтез органических веществ из неорганических Разложение органических веществ до неорганических
Превращение энергии Превращение энергии света в энергию химических связей органических веществ Превращение энергии химических связей органических веществ в энергию макроэргических связей АТФ
Важнейшие этапы Световая и темновая фаза (включая цикл Кальвина) Неполное окисление (гликолиз) и полное окисление (включая цикл Кребса)
Место протекания процесса Хлоропласты Гиалоплазма (неполное окисление) и митохондрии (полное окисление)

Генетическая информация у всех организмов хранится в виде определённой последовательности нуклеотидов ДНК (или РНК у РНК-содержащих вирусов). Прокариоты содержат генетическую информацию в виде одной молекулы ДНК. В эукариотических клетках генетический материал распределён в нескольких молекулах ДНК, организованных в хромосомы.
ДНК состоит из кодирующих и некодирующих участков. Кодирующие участки кодируют РНК. Некодирующие области ДНК выполняют структурную функцию, позволяя участкам генетического материала упаковываться определённым образом, или регуляторную функцию, участвуя во включении генов, направляющих синтез белка.
Кодирующими участками ДНК являются гены. Ген — участок молекулы ДНК, кодирующей синтез одной мРНК (и соответственно полипептида), рРНК или тРНК.
Участок хромосомы, где расположен ген называется локусом. Совокупность генов клеточного ядра представляет собой генотип, совокупность генов гаплоидного набора хромосом — гено́м, совокупность генов внеядерных ДНК (митохондрий, пластид, цитоплазмы) — плазмон.
Реализация информации, записанной в генах, через синтез белков называется экспрессией (проявлением) генов. Генетическая информация хранится в виде определённой последовательности нуклеотидов ДНК, а реализуется в виде последовательности аминокислот в белке. Посредниками, переносчиками информации выступают РНК. То есть реализация генетической информации происходит следующим образом:
ДНК → РНК → белок.
Этот процесс осуществляется в два этапа:
1) транскрипция;
2) трансляция.

Транскрипция (от лат. transcriptio — переписывание) — синтез РНК с использованием ДНК в качестве матрицы. В результате образуются мРНК, тРНК и рРНК. Процесс транскрипции требует больших затрат энергии в виде АТФ и осуществляется ферментом РНК-полимеразой.

Одновременно транскрибируется не вся молекула ДНК, а лишь отдельные её отрезки. Такой отрезок (транскриптон) начинается промотором — участком ДНК, куда присоединяется РНК-полимераза и откуда начинается транскрипция, а заканчивается терминатором — участком ДНК, содержащим сигнал окончания транскрипции. Транскриптон — это ген с точки зрения молекулярной биологии.
Транскрипция, как и репликация, основана на способности азотистых оснований нуклеотидов к комплементарному связыванию. На время транскрипции двойная цепь ДНК разрывается, и синтез РНК осуществляется по одной цепи ДНК.

В процессе транскрипции последовательность нуклеотидов ДНК переписывается на синтезирующуюся молекулу мРНК, которая выступает в качестве матрицы в процессе биосинтеза белка.
Гены прокариот состоят только из кодирующих нуклеотидных последовательностей.

Гены эукариот состоят из чередующихся кодирующих (экзонов) и некодирующих (интронов) участков.

После транскрипции участки мРНК, соответствующие интронам, удаляются в ходе сплайсинга, являющегося составной частью процессинга.

Процессинг — процесс формирования зрелой мРНК из её предшественника пре-мРНК. Он включает два основных события. 1.Присоединение к концам мРНК коротких последовательностей нуклеотидов, обозначающих место начала и место конца трансляции. Сплайсинг — удаление неинформативных последовательностей мРНК, соответствующих интронам ДНК. В результате сплайсинга молекулярная масса мРНК уменьшается в 10 раз.
Трансляция (от лат. translatio — перевод) — синтез полипептидной цепи с использованием мРНК в роли матрицы.

В трансляции участвуют все три типа РНК: мРНК является информационной матрицей; тРНК доставляют аминокислоты и узнают кодоны; рРНК вместе с белками образуют рибосомы, которые удерживают мРНК, тРНК и белок и осуществляют синтез полипептидной цепи.

Этапы трансляции

Этап Характеристика
Инициация Сборка комплекса, участвующего в синтезе полипептидной цепи. Малая субчастица рибосомы соединяется с инициаторной мет-трнк, а затем с мрнк, после чего происходит образование целой рибосомы, состоящей из малой и большой субчастиц.
Элонгация Удлинение полипептидной цепи. Рибосома перемещается вдоль мрнк, что сопровождается многократным повторением цикла присоединения очередной аминокислоты к растущей полипептидной цепи.
Терминация Завершение синтеза полипептидной молекулы. Рибосома достигает одного из трёх стоп-кодонов мрнк, а так как не существует трнк с антикодонами, комплементарными стоп-кодонам, синтез полипептидной цепи прекращается. Она высвобождается и отделяется от рибосомы. Рибосомные субчастицы диссоциируют, отделяются от мрнк и могут принять участие в синтезе следующей полипептидной цепи.

Реакции матричного синтеза. К реакциям матричного синтеза относятся

  • самоудвоение ДНК (репликация);
  • образование мРНК, тРНК и рРНК на молекуле ДНК (транскрипция);
  • биосинтез белка на мРНК (трансляция).

Все эти реакции объединяет то, что молекула ДНК в одном случае или молекула мРНК в другом выступают в роли матрицы, на которой происходит образование одинаковых молекул. Реакции матричного синтеза являются основой способности живых организмов к воспроизведению себе подобных.
Регуляция экспрессии генов. Тело многоклеточного организма построено из разнообразных клеточных типов. Они отличаются структурой и функциями, то есть дифференцированы. Различия проявляются в том, что помимо белков, необходимых любой клетке организма, клетки каждого типа синтезируют ещё и специализированные белки: в эпидермисе образуется кератин, в эритроцитах — гемоглобин и т. д. Клеточная дифференцировка обусловлена изменением набора экспрессируемых генов и не сопровождается какими-либо необратимыми изменениями в структуре самих последовательностей ДНК.

Понравилась статья? Поделить с друзьями:
  • Этапы транскрипции егэ биология
  • Этапы синтеза белка егэ
  • Этапы сертификационного экзамена медики
  • Этапы сдачи экзаменов на водительские права
  • Этапы сдачи экзаменов в гибдд