Факториал в егэ по математике

29 декабря 2011

Решая задачи по теории вероятностей, мы постоянно используем одну и ту же формулу, которая одновременно является классическим определением вероятности:

Классическое определение вероятности: p = k/n

где k — число благоприятных исходов, n — общее число исходов (см. «Тест по теории вероятностей»).

И эта формула прекрасно работает до тех пор, пока задачи были легкими, а числа, стоящие в числителе и знаменателе — очевидными.

Однако последние пробные экзамены показали, что в настоящем ЕГЭ по математике могут встречаться значительно более сложные конструкции. Отыскание значений n и k становится проблематичным. В таком случае на помощь приходит комбинаторика. Ее законы работают там, где искомые значения не выводятся непосредственно из текста задачи.

В сегодняшнем уроке не будет строгих формулировок и длинных теорем — они слишком сложны и, к тому же, совершенно бесполезны для решения настоящих задач B6. Вместо этого мы рассмотрим простые правила и разберем конкретные задачи, которые действительно встречаются на ЕГЭ. Итак, поехали!

Число сочетаний и факториалы

Пусть имеется n объектов (карандашей, конфет, бутылок водки — чего угодно), из которых требуется выбрать ровно k различных объектов. Тогда количество вариантов такого выбора называется числом сочетаний из n элементов по k. Это число обозначается Cnk и считается по специальной формуле.

Обозначение:

Число сочетаний из n элементов по k

Выражение n! читается как «эн-факториал» и обозначает произведение всех натуральных чисел от 1 до n включительно: n! = 1 · 2 · 3 · … · n.

Кроме того, в математике по определению считают, что 0! = 1 — подобный бред редко, но все же встречается в задачах по теории вероятностей.

Что дает нам эта формула? На самом деле, без нее не решается практически ни одна серьезная задача.

К сожалению, в школе совершенно не умеют работать с факториалами. Кроме того, в формуле числа сочетаний очень легко запутаться: где стоит и что обозначает число n, а где — k. Поэтому для начала просто запомните: меньшее число всегда стоит сверху — точно так же, как и в формуле определения вероятности (вероятность никогда не бывает больше единицы).

Для лучшего понимания разберем несколько простейших комбинаторных задач:

Задача. У бармена есть 6 сортов зеленого чая. Для проведения чайной церемонии требуется подать зеленый чай ровно 3 различных сортов. Сколькими способами бармен может выполнить заказ?

Тут все просто: есть n = 6 сортов, из которых надо выбрать k = 3 сорта. Число сочетаний можно найти по формуле:

Число сочетаний из 6 элементов по 3

Задача. В группе из 20 студентов надо выбрать 2 представителей для выступления на конференции. Сколькими способами можно это сделать?

Опять же, всего у нас есть n = 20 студентов, а выбрать надо k = 2 студента. Находим число сочетаний:

Число сочетаний из 20 элементов по 2

Обратите внимание: красным цветом отмечены множители, входящие в разные факториалы. Эти множители можно безболезненно сократить и тем самым значительно уменьшить общий объем вычислений.

Задача. На склад завезли 17 серверов с различными дефектами, которые стоят в 2 раза дешевле нормальных серверов. Директор купил в школу 14 таких серверов, а сэкономленные деньги своровал и купил дочке шубу из меха соболя за 200 000 рублей. Сколькими способами директор может выбрать бракованные серверы?

В задаче довольно много лишних данных, которые могут сбить с толку. Наиболее важные факты: всего есть n = 17 серверов, а директору надо k = 14 серверов. Считаем число сочетаний:

Число сочетаний из 17 элементов по 14

Красным цветом снова обозначены множители, которые сокращаются. Итого, получилось 680 комбинаций. В общем, директору есть из чего выбрать.

Как видите, число сочетаний из n по k считается достаточно просто. Проблема в том, что многие школьники никогда не работали с факториалами. Для них это новый и незнакомый математический объект, и для его освоения требуется некоторая тренировка.

Хорошая новость состоит в том, что во многих задачах формулы Cnk оказывается вполне достаточно для нахождения ответа. Но есть и плохая новость: в тех редких случаях, когда нужны дополнительные правила, решение задачи резко усложняется. Эти правила мы сейчас и рассмотрим.

Закон умножения

Закон умножения в комбинаторике: число сочетаний (способов, комбинаций) в независимых наборах умножается.

Другими словами, пусть имеется A способов выполнить одно действие и B способов выполнить другое действие. Путь также эти действия независимы, т.е. никак не связаны между собой. Тогда можно найти число способов выполнить первое и второе действие по формуле: C = A · B.

Задача. У Пети есть 4 монеты по 1 рублю и 2 монеты по 10 рублей. Петя, не глядя, достал из кармана 1 монету номиналом 1 рубль и еще 1 монету номиналом 10 рублей, чтобы купить сигарету за 11 рублей у бабули в подземном переходе. Сколькими способами он может выбрать эти монеты?

Итак, сначала Петя достает k = 1 монету из n = 4 имеющихся монет номиналом 1 рубль. Число способов сделать это равно C41 = … = 4.

Затем Петя снова лезет в карман и достает k = 1 монету из n = 2 имеющихся монет номиналом 10 рублей. Здесь число сочетаний равно C21 = … = 2.

Поскольку эти действия независимы, общее число вариантов равно C = 4 · 2 = 8.

Задача. В корзине лежат 8 белых шаров и 12 черных. Сколькими способами можно достать из этой корзины 2 белых шара и 2 черных?

Всего в корзине n = 8 белых шаров, из которых надо выбрать k = 2 шара. Это можно сделать C82 = … = 28 различными способами.

Кроме того, в корзине имеется n = 12 черных шаров, из которых надо выбрать опять же k = 2 шара. Число способов сделать это равно C122 = … = 66.

Поскольку выбор белого шара и выбор черного — события независимые, общее число комбинаций считается по закону умножения: C = 28 · 66 = 1848. Как видим, вариантов может быть довольно много.

Закон умножения показывает, сколькими способами можно выполнить сложное действие, которое состоит из двух и более простых — при условии, что все они независимы.

Именно этой формулы многим не хватило для решения задачи B6 на пробном ЕГЭ по математике. Разумеется, существуют и другие методы решения, в которых комбинаторика не используется — и мы обязательно рассмотрим их ближе к настоящему экзамену. Однако ни один из них не сравнится по надежности и лаконичности с теми приемами, которые мы сейчас изучаем.

Закон сложения

Если закон умножения оперирует «изолированными» событиями, которые не зависят друг от друга, то в законе сложения все наоборот. Здесь рассматриваются взаимоисключающие события, которые никогда не случаются одновременно.

Например, «Петя вынул из кармана 1 монету» и «Петя не вынул из кармана ни одной монеты» — это взаимоисключающие события, поскольку вынуть одну монету и при этом не вынуть ни одной невозможно.

Аналогично, события «Выбранный наугад шар — белый» и «Выбранный наугад шар — черный» также являются взаимоисключающими.

Закон сложения в комбинаторике: если два взаимоисключающих действия можно выполнить A и B способами соответственно, то эти события можно объединить. При этом возникнет новое событие, которое можно выполнить X = A + B способами.

Другими словами, при объединении взаимоисключающих действий (событий, вариантов) число их комбинаций складывается.

Можно сказать, что закон сложения — это логическое «ИЛИ» в комбинаторике, когда нас устраивает любой из взаимоисключающих вариантов. И наоборот, закон умножения — это логическое «И», при котором нас интересует одновременное выполнение и первого, и второго действия.

Задача. В корзине лежат 9 черных шаров и 7 красных. Мальчик достает 2 шара одинакового цвета. Сколькими способами он может это сделать?

Если шары одинакового цвета, то вариантов немного: оба они либо черные, либо красные. Очевидно, что эти варианты — взаимоисключающие.

В первом случае мальчику предстоит выбирать k = 2 черных шара из n = 9 имеющихся. Число способов сделать это равно C92 = … = 36.

Аналогично, во втором случае выбираем k = 2 красных шара из n = 7 возможных. Число способов равно C72 = … = 21.

Осталось найти общее количество способов. Поскольку варианты с черными и красными шарами — взаимоисключающие, по закону сложения имеем: X = 36 + 21 = 57.

Задача. В ларьке продаются 15 роз и 18 тюльпанов. Ученик 9-го класса хочет купить 3 цветка для своей одноклассницы, причем все цветы должны быть одинаковыми. Сколькими способами он может составить такой букет?

По условию, все цветы должны быть одинаковыми. Значит, будем покупать либо 3 розы, либо 3 тюльпана. В любом случае, k = 3.

В случае с розами придется выбирать из n = 15 вариантов, поэтому число сочетаний равно C153 = … = 455. Для тюльпанов же n = 18, а число сочетаний — C183 = … = 816.

Поскольку розы и тюльпаны — это взаимоисключающие варианты, работаем по закону сложения. Получаем общее число вариантов X = 455 + 816 = 1271. Это и есть ответ.

Дополнительные условия и ограничения

Очень часто в тексте задачи присутствуют дополнительные условия, накладывающие существенные ограничения на интересующие нас сочетания. Сравните два предложения:

  1. Имеется набор из 5 ручек разных цветов. Сколькими способами можно выбрать 3 ручки для обводки чертежа?
  2. Имеется набор из 5 ручек разных цветов. Сколькими способами можно выбрать 3 ручки для обводки чертежа, если среди них обязательно должен быть красный цвет?

Чувствуете разницу? В первом случае мы вправе брать любые цвета, какие нам нравятся — дополнительных ограничений нет. Во втором случае все сложнее, поскольку мы обязаны выбрать ручку красного цвета (предполагается, что она есть в исходном наборе).

Очевидно, что любые ограничения резко сокращают итоговое количество вариантов. Ну и как в этом случае найти число сочетаний? Просто запомните следующее правило:

Пусть имеется набор из n элементов, среди которых надо выбрать k элементов. При введении дополнительных ограничений числа n и k уменьшаются на одинаковую величину.

Другими словами, если из 5 ручек надо выбрать 3, при этом одна из них должна быть красной, то выбирать придется из n = 5 − 1 = 4 элементов по k = 3 − 1 = 2 элемента. Таким образом, вместо C53 надо считать C42.

Теперь посмотрим, как это правило работает на конкретных примерах:

Задача. В группе из 20 студентов, среди которых 2 отличника, надо выбрать 4 человека для участия в конференции. Сколькими способами можно выбрать этих четверых, если отличники обязательно должны попасть на конференцию?

Итак, есть группа из n = 20 студентов. Но выбрать надо лишь k = 4 из них. Если бы не было дополнительных ограничений, то количество вариантов равнялось числу сочетаний C204.

Однако нам поставили дополнительное условие: 2 отличника должны быть среди этих четырех. Таким образом, согласно приведенному выше правилу, мы уменьшаем числа n и k на 2. Имеем:

Число сочетаний из 18 элементов по 2

Задача. У Пети в кармане есть 8 монет, из которых 6 монет по рублю и 2 монеты по 10 рублей. Петя перекладывает какие-то три монеты в другой карман. Сколькими способами Петя может это сделать, если известно, что обе монеты по 10 рублей оказались в другом кармане?

Итак, есть n = 8 монет. Петя перекладывает k = 3 монеты, из которых 2 — десятирублевые. Получается, что из 3 монет, которые будут переложены, 2 уже зафиксированы, поэтому числа n и k надо уменьшить на 2. Имеем:

Число сочетаний из 6 элементов по 1

В обоих примерах я намеренно пропустил детали работы с факториалами — попробуйте выполнить все расчеты самостоятельно. Разумеется, для этих задач существуют и другие способы решения. Например, с помощью закона умножения. В любом случае, ответ будет один и тот же.

В заключение отмечу, что в первой задаче мы получили 153 варианта — это намного меньше, чем исходные C204 = … = 4845 вариантов. Аналогично, 3 монеты из 8 можно переложить C83 = … = 56 способами, что значительно больше 6 способов, которые мы получили в последней задаче.

Эти примеры наглядно демонстрируют, что введение любых ограничений значительно сокращает нашу «свободу выбора».

Смотрите также:

  1. Комбинаторика в задаче B6: легкий тест
  2. Задачи B6 с монетами
  3. Что такое логарифм
  4. Четырехугольная пирамида: как найти координаты вершин
  5. Задача B15: работаем с показательной функцией без производной
  6. Сложные задачи B15: комбинация тригонометрии и многочленов

Задачи повышенной сложности

Числовые множества

1. Натуральные числа – числа, которые мы используем для счета предметов, счёт начинается с единицы, поэтому ноль не является натуральным числом. Множество натуральных чисел обозначается $N$.

2. Целые числа – это ноль и «плюс – минус натуральные числа». Множество целых чисел обозначается $Z$.

3. Рациональные числа – это всевозможные дроби ${m}/{n}$, где $m$ — целое число, а $n$ – натуральное число, т.е. $n≠0$. Множество рациональных чисел обозначается $Q$.

Делимость

Число $а$ делится на число $с≠0$, если найдется такое число $b$, что $a=c·b$.

Если число $а$ делится на $с$, то число с называется делителем числа $а$.

Если числа $а$ и $b$ делятся на $с$, то их сумма $а + b$ тоже делится на $с$.

Признаки делимости:

Признак делимости на $2$

Число делится на $2$ тогда и только тогда, когда его последняя цифра ноль или делится на $2$, то есть является чётной.

Признак делимости на $3$

Число делится на $3$ тогда и только тогда, когда сумма его цифр делится на 3.

Признак делимости на $4$

Число делится на $4$ тогда и только тогда, когда число из двух последних его цифр нули или делится на $4$.

Признак делимости на $5$

Число делится на $5$ тогда и только тогда, когда последняя цифра делится на $5$ (то есть равна $0$ или $5$).

Признак делимости на $6$

Число делится на $6$ тогда и только тогда, когда оно делится на $2$ и на $3$.

Признак делимости на $7$

Число делится на $7$ тогда и только тогда, когда результат вычитания удвоенной последней цифры из этого числа без последней цифры делится на $7$ (например, $217$ делится на $7$, так как $21 — (2 · 7) = 7$ делится на $7$).

Признак делимости на $8$

Число делится на $8$ тогда и только тогда, когда три его последние цифры — нули или образуют число, которое делится на $8$.

Признак делимости на $9$

Число делится на $9$ тогда и только тогда, когда сумма его цифр делится на $9$.

Признак делимости на $10$

Число делится на $10$ тогда и только тогда, когда оно оканчивается на ноль.

Признак делимости на $11$

Число делится на $11$ тогда и только тогда, когда сумма цифр с чередующимися знаками делится на $11$ (то есть $182919$ делится на $11$, так как $1 — 8 + 2 — 9 + 1 — 9 = -22$ делится на $11$). Следствие факта, что все числа вида $10^n$ при делении на $11$ дают в остатке $(-1)^n$.

Признак делимости на $12$

Число делится на $12$ тогда и только тогда, когда оно делится на $3$ и на $4$.

Признак делимости на $13$

Число делится на $13$ тогда и только тогда, когда число его десятков, сложенное с учетверённым числом единиц, кратно $13$ (например, $949$ делится на $13$, так как $94 + (4 · 9) = 130$ делится на $13$).

Признак делимости на $14$

Число делится на $14$ тогда и только тогда, когда оно делится на $2$ и на $7$.

Признак делимости на $15$

Число делится на $15$ тогда и только тогда, когда оно делится на $3$ и на $5.$

Признак делимости на $17$

Число делится на $17$ тогда и только тогда, когда разность между числом его десятков и упятеренным числом единиц, кратно $17.$

Признак делимости на $19$

Число делится на $19$ тогда и только тогда, когда число его десятков, сложенное с удвоенным числом единиц, кратно $19$ (например, $646$ делится на $19$, так как $64 + (6 · 2) = 76$ делится на $19$).

Четность и нечетность чисел

  1. Число называется четным, если оно делится нацело на $2$. Если $а$ четное число, то его вид можно записать $a=2n$.
  2. Число называется нечетным, если оно не делится нацело на $2$. Если $а$ нечетное число, то его вид можно записать $a=2n+1$.
  3. Сумма любого количества четных слагаемых четна.
  4. Сумма четного количества нечетных слагаемых – четное число.
  5. Сумма нечетного количества нечетных слагаемых – нечетное число.
  6. Если в произведении все множители нечетные числа, то произведение – нечетное число.
  7. Если в произведении попадется хотя бы одно четное число, то в результате умножения получится четное число.

Простые и взаимно простые числа

Простые числа – это целые числа, большие единицы, которые имеют только два положительных делителя, а именно самих себя и $1$.

Взаимно простые числа – это числа, которые не имеют общих делителей, кроме единицы. Например, числа $15$ и $4$ взаимно просты, так как их общий делитель равен $1$.

Свойства взаимно простых чисел.

Пусть $а$ и $b$ – взаимно простые числа, тогда для них справедливы следующие высказывания.

  1. Если некоторое число делится на $а$ и $b$, то оно делится и на их произведение $аb$.
  2. Если произведение $ас$ делится на $b$, то с делится на $b$.
  3. Если целые числа $а$ и $b$ взаимно просты, то их сумма $(а + b)$ и произведение $(а·b)$ так же являются взаимно простыми числами.
  4. Если целые числа $а$ и $b$ взаимно просты, то НОД (наименьший общий делитель) из суммы $(а + b)$ или разности ($а — b$) равен $1$ или $2$.
  5. Любые два последовательных натуральных числа взаимно просты.
  6. Если целые числа $а$ и $b$ взаимно просты, то НОД $(а + b$ или $a^2-ab+b^2)$ равен $1$ или $3$.
Числовые свойства степеней
  1. Точный квадрат целого числа не может оканчиваться цифрами $2, 3, 7, 8,$ а также нечётным количеством нулей.
  2. Квадрат натурального числа либо делится на $4$, либо при делении на $8$ даёт остаток $1$.
  3. Квадрат натурального числа либо делится на $9$, либо при делении на $3$ даёт остаток $1$.
  4. Разность квадратов двух целых чисел одинаковой четности делится на $4$.
  5. При делении на $3$ куб целого числа и само число дают одинаковые остатки $(0,1,2)$.
  6. При делении на $9$ куб целого числа дает в остатке $0,1$ или $8$.
  7. При делении на $4$ куб целого числа дает в остатке $0,1$ или $3$.
  8. Число $m^5$ оканчивается на ту же цифру, что и число $m$.

Среднее арифметическое чисел

Среднее арифметическое нескольких величин — это отношение суммы величин к их количеству.

Чтобы вычислить среднее арифметическое нескольких чисел, нужно взять сумму этих чисел и разделить все на количество слагаемых. Частное и будет средним арифметическим этих чисел.

Среднее геометрическое чисел

Чтобы найти среднее геометрическое чисел надо:

  1. Перемножить все числа
  2. Из полученного выражения в п.1 надо извлечь корень, степени, равной количеству элементов ряда.

Пример:

Найдите среднее геометрическое чисел $3,9,8$

Решение:

1. Найдем произведение чисел $3·9·8=216$

2. Извлечем корень третьей степени из полученного произведения

$√^3{216}=6$ – полученный результат и есть среднее геометрическое.

Ответ: $6$

Факториал

Факториал числа — это произведение натуральных чисел от $1$ до самого числа (включая данное число). Обозначается знаком (!).

$n!=1·2·3·….·n$

Факториал нуля равен единице $0!=1$

Пример:

Вычислите $7!$

Решение:

7!=1·2·3·4·5·6·7=5040

Ответ: 5040

Последовательности

Последовательность чисел – это набор чисел, в котором каждому числу можно присвоить некоторый номер, причем каждому номеру соответствует единственное число данного набора. Номер числа – это всегда натуральное число, нумерация номеров начинается с единицы. Число с номером $n$ (то есть $n$ — ый член последовательности) обычно обозначается $a_n$.

Большинство последовательностей можно задать аналитическим способом.

Последовательность задана аналитически, если указана формула ее $n$ – го члена. Например, $a_n=4n+3$. В данной формуле указав конкретное число $n$, нетрудно найти член последовательности с соответствующим номером. Если номер $n=5$, то подставим $5$ в формулу последовательности, получим числовое выражение, вычислив которое получим член последовательности с соответствующим номером. $a_5=4·5+3=23$

Прогрессии

Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом.

$а_1$ — первый член арифметической прогрессии

$d$ — разность между последующим и предыдущим членом прогрессии

$d=a_(n+1)-a_n$

$a_n$ — член арифметической прогрессии, стоящий на $n$-ом месте

$n$ — номер места для членов арифметической прогрессии

$S_n$ — сумма первых n членов арифметической прогрессии

Формула, для нахождения n-ого члена прогрессии:

$a_n=a_1+d(n-1)$

Формула суммы первых n членов арифметической прогрессии:

$S_n={(a_1+a_n)·n}/{2}$

Геометрической прогрессией называется последовательность отличных от нуля чисел, каждый член которой, начиная со второго, равен предыдущему члену, умноженному на одно и то же число.

$b_1$ — первый член геометрической прогрессии

$q$ — знаменатель геометрической прогрессии, показывает во сколько раз последующее число больше предыдущего.

$q={b_{n+1}}/{b_n}$

$b_n$ — $n$-ый член геометрической прогрессии

$S_n$ — сумма первых $n$ членов геометрической прогрессии

Формула, для нахождения $n$-ого члена прогрессии:

$b_n=b_1·q^{n-1}$

Формула суммы первых n членов арифметической прогрессии:

$S_n={b_1·(q^n-1)}/{q-1},q≠1$

Факториалом натурального числа n (обозначается n!) называется произведение всех натуральных чисел от 1 до n. Например, 4! = 1 · 2 · 3 · 4 = 24.

Дано целое положительное число A. Необходимо найти минимальное натуральное K, для которого K! ≥ A.

Для решения этой задачи ученик написал программу, но, к сожалению, его программа неправильная.

Ниже эта программа для Вашего удобства приведена на пяти языках программирования.

Бейсик Python

DIM A, K, F AS INTEGER

INPUT A

K = 0

F = 1

WHILE F <= A

    K = K + 1

    F = F * K

WEND

PRINT K

END

a = int(input())

k = 0

f = 1

while f <= a:

    k += 1

    f *= k

print(k)

Паскаль Алгоритмический язык

var a, k, f: integer;

begin

    read(a);

    k := 0;

    f := 1;

    while f <= a do begin

        k := k + 1;

        f := f * k

    end;

    writeln(k)

end.

алг

нач

    цел a, k, f

    ввод a

    k := 0

    f := 1

    нц пока f <= a

        k := k + 1

        f := f * k

    кц

    вывод k

кон

Си++

#include

using namespace std;

int main(){

    int a, k, f;

    cin >> a;

    k = 0;

    f = 1;

    while (f <= a) {

        ++k;

        f *= k;

    }

    cout << k;

    return 0;

}

Последовательно выполните следующее.

1.  Напишите, что выведет эта программа при вводе A = 6.

2.  Назовите минимальное A, большее 10, при котором программа выведет неверный ответ.

3.  Найдите в программе все ошибки (их может быть одна или несколько).

Для каждой ошибки выпишите строку, в которой она допущена, и приведите эту же строку в исправленном виде.

Достаточно указать ошибки и способ их исправления для одного языка программирования.

Обратите внимание: Вам нужно исправить приведённую программу, а не написать свою. Вы можете только заменять ошибочные строки, но не можете удалять строки или добавлять новые. Заменять следует только ошибочные строки: за исправления, внесённые в строки, не содержащие ошибок, баллы будут снижаться.

Жираф в квадрате

32 / 32 / 2

Регистрация: 28.02.2010

Сообщений: 282

1

29.04.2012, 17:47. Показов 4665. Ответов 6


Решите в натуральных числах уравнение:
n!+5n+13=k2

__________________
Помощь в написании контрольных, курсовых и дипломных работ, диссертаций здесь



0



Programming

Эксперт

94731 / 64177 / 26122

Регистрация: 12.04.2006

Сообщений: 116,782

29.04.2012, 17:47

Ответы с готовыми решениями:

Задача на аннуитетный платеж из ЕГЭ по Математике
Проблемы в понимании экономических задач. Сам текст:

Сам пытался решать задачу так:
{A}_{0} -…

система уравнении(ЕГЭ С3)
Здравствуйте, помогите решить первую уравнению из системы. Мне нужно решить хотябы первую часть,…

Задача С5 по ЕГЭ
Доброго времени суток! Помогите решить задачу. Я незнаю как это решается. Так что, если можно мне…

Задача из ЕГЭ
Написать алгоритм подсчета количества уникальных элементов в целочисленном массиве длины N&lt;1000…

6

К.О.

534 / 499 / 344

Регистрация: 26.03.2011

Сообщений: 1,141

29.04.2012, 18:16

2

n = 2
K = 5



0



Жираф в квадрате

32 / 32 / 2

Регистрация: 28.02.2010

Сообщений: 282

29.04.2012, 20:00

 [ТС]

3

У меня подбором тоже самое получилось, но нужно решение ещё.



0



Змеюка одышечная

9863 / 4593 / 178

Регистрация: 04.01.2011

Сообщений: 8,556

29.04.2012, 20:06

4

А чем перебор не решение?



0



Жираф в квадрате

32 / 32 / 2

Регистрация: 28.02.2010

Сообщений: 282

29.04.2012, 20:27

 [ТС]

5

Цитата
Сообщение от vetvet
Посмотреть сообщение

А чем перебор не решение?

Это задача из ЕГЭ по математике — С6
За простой перебор мне дадут 1 балл из 4 возможных.



0



52 / 52 / 24

Регистрация: 24.12.2011

Сообщений: 133

29.04.2012, 21:29

6

Скорее всего надо обосновать, почему решение единственно. Ну и числа для подбора как-то ограничить сверху.



1



Модератор

Эксперт по математике/физике

4214 / 3409 / 396

Регистрация: 15.06.2009

Сообщений: 5,818

30.04.2012, 01:27

7

Лучший ответ Сообщение было отмечено как решение

Решение

При n>=5 n!+5n оканчивается на 0 или 5, тогда левая часть уравнения оканчивается на 3 или 8. Но таких квадратов не существует. Остаются только варианты n = (2, 3, 4).



3



IT_Exp

Эксперт

87844 / 49110 / 22898

Регистрация: 17.06.2006

Сообщений: 92,604

30.04.2012, 01:27

Помогаю со студенческими работами здесь

Задача по егэ
Помогите дописать задачку пожалуйста. Не могу вывести все элементы List.

На вход программе в…

Задача ЕГЭ
Всем привет ,на егэ была такая задача №19 ,подскажите решение.
пенсионный фонд владеет ценными…

Задача ЕГЭ
Здравствуйте! Имеется задача C4 из ЕГЭ:
На вход программе подаются сведения о номерах школ…

задача из егэ
ПОМОГИТЕ ПРОШУ ФОТО ВНИЗУ

Искать еще темы с ответами

Или воспользуйтесь поиском по форуму:

7

ЕГЭ №18 (19). Теория чисел. Рекуррентная задача – самая сложная задача мартовского статграда 2021

ЕГЭ 18 (19) – это задачи на теорию чисел, на свойства чисел, на последовательности. Что такое рекуррентная последовательность?

Сейчас узнаете…

Последовательности чисел нам хорошо известны ещё с 8 – 9 класса. Например, прогрессии – арифметическая и геометрическая.

На ЕГЭ довольно часто попадаются задачи на последовательности – как на стандартные прогрессии, так и на необычные – у каждой из которых какая-то своя формула. И формулы у таких последовательностей обычно рекуррентные – то есть такие, когда каждое следующее число вычисляется через значения каких-то предыдущих.

Например, самая известная не-прогрессия – это последовательность Фибоначчи: каждое число равно сумме двух предыдущих.

Такие последовательности – это не просто очередные бессмысленные упражнения математиков (которым, как известно, делать нечего, вот и грузят всех своими задачками). Последовательности очень часто встречаются нам в жизни, и с их помощью очень удобно описывать некоторые процессы.

Например, говорят, что Фибоначчи свою последовательность придумал, наблюдая за размножением кроликов: первые 2 месяца жизни кролик просто растёт, а потом начинает каждый месяц рожать нового кролика (в среднем).

Сколько будет кроликов через полгода? Через год? В задаче 18 (19 из последнего статграда нам попалась как раз такая последовательность.

Смотрите видео, и вы научитесь исследовать такие последовательности, а также узнаете, как правильно решается эта задача.

Факториал! Задача 19 профильный ЕГЭ 2021

содержание видео

Факториал! Задача 19 профильный ЕГЭ 2021
matematik_mgu: Замечательное объяснение. Только вот возник один вопрос: допускается ли подобное оформление решения данной задачи непосредственно на самом экзамене?

Дата: 2021-09-22

Комментарии и отзывы: 2

Обрадовался, честно говоря
Т. к пункты а и б вообще несложные
Ну пункт в чуть чуть доставит проблем
А так, годный вариант, 4 сложных задачи)

TM
Ну задание какое то другое тип первый раз выжу на егэ эт ну если знать n! (слово плохо пишу) и тд и понимать задание лёгкое и бесплатные баллы

Другие видео канала

Решаем самый сложный вариант Ященко ЕГЭ 2021 Математика профильный 5 (повышенная сложность)1:34:54

Исследование функции. Построение графика. Высшая математика17:52

Самый сложный параметр из сборника Ященко 2021. Профильный ЕГЭ задача 1820:29

Решаем ЕГЭ 2021 Ященко Математика профильный Вариант 3 (повышенная сложность)1:4:9

Решаем новый ОГЭ 2021 Ященко математика Вариант 352:32

Линейная алгебра, Матрицы: Метод Гаусса. Высшая математика24:1

Решаем новый ОГЭ 2021 Ященко математика Вариант 1. Задача про зонт59:12

Решаем ЕГЭ 2021 Ященко Математика профильный Вариант 247:5

Аналитическая геометрия: Эллипс, Парабола, Гипербола. Высшая математика26:15

Решаем Базовый ЕГЭ 2021 Ященко Математика Вариант 126:44

Понравилась статья? Поделить с друзьями:
  • Фактологические ошибки в сочинении егэ это
  • Фактологическая точность в сочинении егэ это
  • Фактическое допущение работника к работе без ведома или поручения работодателя запрещается егэ
  • Фактическое допущение к работе считается заключением трудового договора егэ
  • Фактические ошибки связанные с пониманием проблемы исходного текста оцениваются в егэ критерием