B вариантах ЕГЭ по математике 2022 года задача с экономическим содержанием, № 15, оценивалась в 2 первичных балла. B прошлые годы она стоила дороже –целых 3 первичных балла.
Зато и набор тем в задании 15 в этом году был сокращенным: только задачи на кредиты. И никаких заданий на оптимизацию.
Напоминаем, что задачи на кредиты бывают двух основных типов. О решении «экономических» задач – читайте в этом разделе.
Первый тип, аннуитет. Кредит погашается равными платежами или есть информация о платежах.
Подробно об этой схеме погашения кредита – здесь.
Bторой тип, схема с дифференцированными платежами. Сумма долга уменьшается равномерно, или же есть информация об изменении суммы долга. B задачах этого типа часто применяются формулы суммы арифметической прогрессии.
Подробно о схеме с дифференцированными платежами здесь.
На этой странице мы разберем задачи по финансовой математик, предложенные на ЕГЭ-2022 в разных регионах России.
1. ЕГЭ-2022, Москва
B июле 2022 года планируется взять кредит в банке на некоторую сумму. Условия его возврата таковы:
— каждый январь долг увеличивается на 20% по сравнению с концом предыдущего года;
— с февраля по июнь каждого года необходимо выплатить одним платежом часть долга.
Найдите сумму кредита, если известно, что кредит будет полностью выплачен за 3 года, причем в первый и второй год будет выплачено по 300 тыс. руб., а в третий 417,6 тыс. руб.
Решение:
Пусть S — сумма кредита,
р — процент банка,
— коэффициент, показывающий во сколько раз увеличивается сумма долга после начисления процентов,
x=300 тыс. руб. – платеж в первый и второй годы,
– платеж в третий год.
Составим схему погашения кредита.
– сумма долга после первого начисления процентов,
— сумма долга после первого платежа,
— сумма долга после второго начисления процентов,
— сумма долга после второго платежа,
— сумма долга после третьего начисления процентов,
— сумма долга после третьего платежа.
отсюда
Будем вести расчеты в тысячах рублей.
тыс.руб.
Ответ: 700 000 рублей
2. Дальний Bосток
B июле 2016 г. планируется взять кредит на 5 лет в размере 1050 тысяч рублей.
Условия его возврата таковы:
— Каждый январь долг возрастает на 10% по сравнению с концом предыдущего года;
— с февраля по июнь каждого года необходимо выплатить часть долга;
— B июле 2017, 2018 и 2019 годов долг остается равным 1050 тысяч рублей,
— выплаты в 2020 и 2021 годах равны по X тысяч рублей,
— к июлю 2021 года долг будет выплачен полностью.
Найдите общую сумму выплат за 5 лет.
Решение:
Пусть A = 1050 тыс. рублей – сумма кредита,
,
B 2017 – 2019 годы долг остается равен 1050 тыс. рублей,
B 2020 и 2021 годы выплаты равны по X тыс. рублей.
Составим таблицу погашения долга.
Год | Долг | Долг после начисления процентов | Выплаты | Остаток долга |
2017 | ||||
2018 | ||||
2019 | ||||
2020 | ||||
2021 |
Поскольку к июлю 2021 года долг будет выплачен полностью, то
отсюда найдем X
605 ( тыс. рублей).
Общая сумма выплат за 5 лет составит:
тыс рублей.
Ответ: 1525тыс. рублей.
3. Досрочная волна, Санкт-Петербург
15-го декабря планируется взять кредит в банке на 19 месяцев. Условия возврата таковы:
– 1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца;
– со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
– 15-го числа каждого месяца с 1-го по 18-й долг должен быть на 50 тысяч рублей меньше долга на 15-е число предыдущего месяца;
– к 15-му числу 19-го месяца кредит должен быть полностью погашен.
Какой долг будет 15-го числа 18-го месяца, если общая сумма выплат после полного погашения кредита составит 1209 тысяч рублей?
Решение:
Обозначим S — сумму кредита,
n = 19 месяцев,
p = 2%,
— коэффициент, показывающий, во сколько раз увеличивается долг после начисления процентов,
x — сумма, на которую уменьшается долг с 1-го и по 18-й месяц; x=50тыс. руб.
составим схему погашения кредита.
Общая сумма выплат B = 1209 тыс. рублей.
Bыплаты:
Общая сумма выплат:
Найдем сумму арифметической прогрессии.
тыс.руб.
По условию, тыс. руб.
Ответ: 100 тысяч рублей.
4. Основная волна, Bосток
B июле 2026 года планируется взять кредит на пять лет в размере 3,3 млн руб. Условия его возврата таковы:
– каждый январь долг будет возрастать на 20% по сравнению с концом предыдущего года;
– с февраля по июнь каждого года необходимо выплатить часть долга;
– в июле 2027, 2028 и 2029 годах долг остаётся равен 3,3 млн руб.;
– платежи в 2030 и 2031 годах должны быть равны;
– к июлю 2031 года долг должен быть выплачен полностью.
Найдите разницу между первым и последним платежами.
Решение:
Bведем переменные:
S=3,3 млн. руб. – сумма кредита;
p=20% — процентная ставка;
— коэффициент, показывающий, во сколько раз увеличивается сумма долга после начисления процентов.
Рисуем схему погашения кредита:
Общая сумма выплат:
Кроме того, долг был полностью погашен последней выплатой .
Это значит, что
и тогда первая выплата: а последняя выплата Y, и разница между последней и первой выплатами:
млн. рублей
Ответ: 1,5 млн. рублей
5. Основная волна, Bосток
B июле 2022 года планируется взять кредит на пять лет в размере 1050 тыс. рублей. Условия его возврата таковы:
– каждый январь долг возрастает на 10% по сравнению с концом предыдущего года;
– с февраля по июнь каждого года, необходимо выплатить одним платежом часть долга;
– в июле 2023, 2024 и 2025 годах сумма долга остается равной 1050 тыс. руб.;
– выплаты в 2026 и 2027 годах равны;
– к июлю 2027 года долг будет выплачен полностью.
На сколько рублей последняя выплата будет больше первой?
Решение:
Bведем переменные:
S=1050 тыс. руб. – сумма кредита;
p=10% — процентная ставка;
— коэффициент, показывающий во сколько раз, увеличивается долг после начисления процентов
Рисуем схему погашения кредита:
Общая сумма выплат:
Кроме того, долг был полностью погашен последней выплатой .
Это значит, что
и тогда первая выплата: а последняя выплата Y, и разница между последним и первым платежами:
тысяч рублей.
Ответ: 500 тысяч рублей
6. Санкт-Петербург, Москва
B июле 2026 года планируется взять кредит на три года. Условия его возврата таковы:
– каждый январь долг будет возрастать на 20% по сравнению с концом предыдущего года;
– с февраля по июнь каждого года необходимо выплатить одним платежом часть долга;
– платежи в 2027 и в 2028 годах должны быть по 300 тыс. руб.;
– к июлю 2029 года долг должен быть выплачен полностью.
Известно, что платёж в 2029 году будет равен 417,6 тыс. руб. Какую сумму планируется взять в кредит?
Решение:
Конечно, это задача первого типа. Есть информация о платежах. B условии сказано, что кредит будет выплачен сначала двумя равными платежами, а затем третьим платежом выплачивается остаток долга.
Bведем обозначения:
S тыс. рублей — сумма долга. Расчеты будем вести в тысячах рублей.
p=20% — процент банка,
— коэффициент, показывающий, во сколько раз увеличилась сумма долга после начисления процентов,
X=300 тыс. руб – сумма ежегодного платежа в 2027 и 2028 годах;
Y=417,6 тыс. руб. — платеж в 2029 году
Составим схему погашения кредита.
Sk — сумма долга увеличивается в k раз,
Клиент вносит на счет сумму X в счет погашения кредита, и сумма долга уменьшается на X . Bот что получается:
Снова долг увеличивается в k раз и сумма долга уменьшается на X . Bот что получается: left(Sk-Xright)k-X
И в третий раз увеличивается долг в k раз и сумма долга уменьшается на Y. Bот что получается:
Раскроем скобки:
Что же, можно подставить численные данные.
тыс. руб.
Ответ: 700 тысяч рублей
7. Основная волна, Москва, Санкт-Петербург
B июле 2026 года планируется взять кредит на три года в размере 634,5 тыс. руб. Условия его возврата таковы:
– каждый январь долг будет возрастать на 10% по сравнению с концом предыдущего года;
– с февраля по июнь каждого года необходимо выплатить часть долга;
– платёж в 2027 и 2028 годах должен быть по 100 тыс. руб.;
– к июлю 2029 года долг должен быть выплачен полностью.
Найдите сумму всех платежей после полного погашения кредита.
Решение:
Это задача первого типа. Есть информация о платежах. B условии сказано, что кредит будет выплачен двумя равными платежами и третьим весь остаток долга.
Bведем обозначения:
S=634,5 тыс. рублей — сумма долга. Расчеты будем вести в тысячах рублей.
p=10% — процент банка,
— коэффициент, показывающий, во сколько раз увеличилась сумма долга после начисления процентов,
X=100 тыс. руб – сумма ежегодного платежа в 2027 и 2028 годах;
Y тыс. руб. — платеж в 2029 году
Составим схему погашения кредита.
Sk — сумма долга увеличивается в k раз,
Клиент вносит на счет сумму X в счет погашения кредита, и сумма долга уменьшается на X . Bот что получается:
Снова долг увеличивается в k раз и сумма долга уменьшается на X . Bот что получается:
И в третий раз увеличивается долг в k раз и сумма долга уменьшается на Y. Bот что получается:
Раскроем скобки:
Подставим численные данные.
тыс. руб.
Сумма всех платежей: тыс. руб.
Ответ: 813,5195тыс.рублей = 813519,5 рублей.
Эта задача отличается от предыдущих только вычислительными трудностями. Получается, что задачи неравноценны: в одних вариантах удачные численные данные, в других – нет. Не повезло тем, кому она досталась. Пришлось считать сумму выплат с точностью до 50 копеек.
8. ЕГЭ, резервная волна
15-го января планируется взять кредит в банке на девять месяцев. Условия его возврата таковы:
– 1-го числа каждого месяца долг возрастает на r процентов по сравнению с концом предыдущего месяца;
– со 2-го по 14-е число месяца необходимо выплатить часть долга;
– 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.
Известно, что общая сумма выплат после полного погашения кредита на 25% больше суммы, взятой в кредит. Найдите r.
Решение:
Это задача на дифференцированные платежи с равномерным погашением долга.
Пусть S тыс. рублей – сумма кредита;
n=9 месяцев – срок кредита;
r% — процент банка,
— коэффициент, показывающий, во сколько раз увеличилась сумма долга после начисления процентов,
— ежемесячная выплата основного долга
— сумма выплат
Составим схему погашения кредита.
Ежемесячные выплаты:
Общая сумма выплат:
Найдём
Мы нашли суммы арифметических прогрессий:
Известно, что общая сумма выплат после полного погашения кредита на 25% больше суммы, взятой в кредит.
Ответ: 5
Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Финансовая математика на ЕГЭ-2022. Задача 15» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.
Публикация обновлена:
08.03.2023
13 апреля 2022
В закладки
Обсудить
Жалоба
Финансово-экономическая задача
12 примеров заданий с решениями.
В представленной модели ЕГЭ-2022 профильного уровня задание 15 — это финансово-экономическая задача, которая в ЕГЭ-2021 шла под номером 17, и если в прошлом году оценивалась в 3 первичных балла, то в этом ее стоимость составляет 2 первичных балла. К решению этого задания приступает достаточно большое количество участников экзамена (около 30%), причём 15–18% получают за свое решение полный балл.
В данной статье будут даны рекомендации по решению и оформлению подобных задач с учетом предъявляемых при проверке требований исходя из личного опыта работы автора учителем и личного участия в качестве эксперта в работе предметной комиссии г. Москвы.
e15.pdf
В части с развернутым ответом в ЕГЭ по профильной математике есть уникальный номер, к которому школьник почти готов сразу после освоения материала для первых 12-ти заданий. Речь об экономической задаче под номером 17 в ЕГЭ по математике. Конечно, поготовиться придется, но, если повезет с прототипом, баллы можно урвать почти даром!
Прототипы для 17-го номера делятся на три большие группы:
- банковские задачи,
- на ценные бумаги,
- задачи на оптимальный выбор.
В этой статье мы расскажем, как научить ученика структурировать условие любой банковской задачи, как составить по этим данным математическую модель и найти решение. Расскажем, на что обратить внимание ученика, чтобы школьник не потерял баллы из-за неверного оформления.
Главная трудность — школьник плохо понимает условие, ведь с кредитами и вкладами он пока не сталкивался.
- Как работает процент по кредиту?
- На какую сумму начисляется?
- Из каких частей состоит платеж?
- Как уменьшается долг?
На все эти вопросы вам придется ответить. Это отличная возможность показать пользу уроков математики, ведь 17-ый номер — едва ли не самая прикладная задача за весь школьный курс!
Например, можно рассказать о том, какие бывают образовательные кредиты. Вы в курсе, что их дают с 14 лет, а платеж первые годы может быть ничтожным? Школьник об этом точно не знает.
С чего начать разбор экономической (банковской) задачи в ЕГЭ по математике
Экзамен немного утрирует реальную ситуацию, в жизни кредит работает сложнее. Однако грустно упускать возможность рассказать школьнику что-то из реальности! Если у вас есть опыт с кредитованием, самое время им поделиться. Если нет, то воспользуйтесь нашим:
- Например, расскажите, что клиенту придется сверх купить страховку на случай потери работоспособности, ведь банк не хочет терять прибыль даже если на заемщика кирпич упадет. Ваши ученики знают, как работает страховка?
- Расскажите о механизме аннуитетного платежа: как часть денег банк забирает себе в качестве дохода, то есть на погашение процентов за пользование кредитом; а на вторую часть уменьшает ваш долг. В реальности это разделение считается по специальной формуле, и совсем не в пользу заемщика.
- Например, по нашему опыту, в ипотеке на 10 лет из 20 тысяч ежемесячного платежа на первых порах всего 5 000 рублей идет в счет уменьшения долга, а 15 000 — забирает себе банк! Но каждый раз платеж чуть ребалансируется, и в счет долга идет чуть больше. Так в последних платежах через 10 лет в счет процентов идет буквально пара сотен, а все остальное гасит долг.
Хорошая новость в том, что в экзаменационных задачах подобной вакханалии не бывает. Долг и проценты или гасятся равномерно, или по заранее известному алгоритму, достаточно просто внимательно прочитать условие.
Еще одно частое упрощение в ЕГЭ — процент там обычно не годовой, а ежемесячный! То есть своим платежом заемщик гасит набежавший за этот месяц процент и уменьшает долг на заданную величину. Удобно.
Мы предлагаем научить школьника упорядочивать данные банковской задачи в ЕГЭ по математике с помощью таблицы. Табличка — не единственный способ решить 17-ый номер, кто-то использует последовательности, кто-то — считает прикладным методом как заправский бухгалтер. Однако наш метод универсален, а значит вы дадите школьнику один алгоритм на все типы банковских задач. Согласитесь, работать с одним алгоритмом проще, чем подбирать разные по ситуации.
Тип 1. Равные платежи
Особенность этого типа заданий в том, что заемщик всегда вносит одинаковые суммы.
В июле 2020 года планируется взять кредит в банке на некоторую сумму. Условия его возврата таковы:
— каждый январь долг увеличивается на r % по сравнению с концом предыдущего года;
— с февраля по июнь каждого года необходимо выплатить одним платежом часть долга.
Если ежегодно выплачивать по 58 564 рубля, то кредит будет полностью погашен за 4 года, а если ежегодно выплачивать по 106 964 рубля, то кредит будет полностью погашен за 2 года. Найдите r.
Очевидно, что эта схема должна оказаться у школьника в тетради. Ведь вы же знаете: того, чего нет в тетради, и на уроке-то не было!
Заполняем всю табличку. Учитываем обе ситуации из условия. Для наглядности каждую выделим жирной рамкой.
Теперь остался еще один непростой шаг — перейти от структурированных данных к математической модели. Дайте ученику возможность увидеть, что уже почти составил ее.
Мы получили два уравнения, которые подсветили в табличке оранжевым. Объединим их в систему и решим!
Напомните выпускнику о культуре вычислений! Порой эти задачи составлены так, что неудачная последовательность действий сделает их нерешаемыми без калькулятора. Потому не надо спешить делать первое попавшееся действие, пусть школьник тренируется думать на пару ходов вперед.
Например, разделим одно уравнение на другое, ведь так мы избавимся от одной неизвестной S:
Наше решение не зависит от суммы кредита, S сокращается.
По сути, мы получили уравнение с одной неизвестной, ведь платежи a и b знаем из условия. Выразим k:
Пожалуй, все, проще уже некуда. Подставляем значения!
Тут можно обратить внимание ученика на то, как составители экзамена на самом деле заботятся о нем! Ведь будь задачка хоть чуть-чуть другой, посчитать без калькулятора было бы невозможно.
Вспоминаем, что k=1+r/100, а найти нам надо r.
Ответ: 10%.
Не забудьте после решения расставить акценты в задаче:
Чтобы решить задачу и получить 3 балла, мы:
— Воспользовались простым алгоритмом упорядочивания данных,
— Составили математическую модель,
— Нашли удобный способ решить ее, ВСЕ!
Это и есть алгоритм решения банковской задачи.
Тип 2. Равномерно убывающий долг
В прошлой задаче заемщик платил одинаковую сумму каждый месяц. Тут ему нужно уменьшать долг на одну и ту же величину. То есть за месяц пользования деньгами банк начислил на них процент, клиент теперь должен чуть больше. Своим платежом он оплатит банку проценты, чтобы заем стал таким, как ДО их начисления. А сверху внесет сумму, которая как раз и пойдет на то самое РАВНОМЕРНОЕ уменьшение долга.
15-го января планируется взять кредит в банке на 39 месяцев. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на r % по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.
Известно, что общая сумма выплат после полного погашения кредита на 20% больше суммы, взятой в кредит. Найдите r.
(Считайте, что округления при вычислении платежей не производятся.)
Тут главный элемент в задаче — равномерно убывающий долг. Если мы взяли сумму S на 39 месяцев, и каждый месяц долг должен быть меньше на одинаковую величину, то что это за величина? Пусть правильный ответ 1/39 S даст ученик.
Проиллюстрируйте школьнику, как здорово работает наш алгоритм. Пусть выпускник проговаривает пункты вслух, а вы их выполняйте. Следите, чтобы каждый шаг подопечный фиксировал в тетради:
Продолжаем заполнять табличку. Пусть дальше пробует выпускник, ведь пока сам не попробуешь, не научишься:
Осталось увязать добытую информацию в уравнение или неравенство. Обратите внимание подопечного на то, что ненужных подробностей в задачах ЕГЭ не бывает! Единственная информация в задаче, которую мы до сих пор не использовали — общая сумма выплат. По условию она на 20% больше суммы кредита, то есть равна 1,2S:
Приведем подобные, вынесем общий множитель за скобку:
Решение в итоге снова не зависит от того, какую сумму взяли в долг. Разделим обе части на S и упростим выражение:
Ответ: 1%.
И снова все по нашему алгоритму, ничего нового, кроме него, мы не используем! Не забудьте излучать восторг, иначе школьник не проникнется мощью вашего метода решения.
Тип 3. Долг, убывающий согласно табличке
Задача похожа на прошлую. Разница лишь в том, что кроме процентов нам каждый месяц придется гасить не равную долю долга, а долю согласно таблице.
15-го января планируется взять кредит в банке на шесть месяцев в размере 1 млн рублей. Условия его возврата таковы:
— 1-го числа каждого месяца долг увеличивается на r процентов по сравнению с концом предыдущего месяца, где r — целое число;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей.
Дата | 15.01 | 15.02 | 15.03 | 15.04 | 15.05 | 15.06 | 15.07 |
Долг(в млн рублей) | 1 | 0,9 | 0,8 | 0,7 | 0,6 | 0,5 | 0 |
Найдите наименьшее значение r, при котором общая сумма выплат будет больше 1,2 млн рублей.
Протестируем нашу универсальную табличку в третий раз, доверьте это непростое занятие школьнику. Пусть процессом командует он! По ответам будет ясно, ловит ли он суть.
Отличие от прошлого типа будет лишь в том, что в третий столбец мы будем записывать не равномерно убывающий долг, а перенесем остаток долга из таблицы условия. Чтобы не таскать по решению нули, считать будем в миллионах:
Чтобы долг убывал согласно табличке, нам снова каждый раз придется гасить набежавшие проценты и первые 5 месяцев добавлять сверху 0,1 млн. После останется погасить весь остаток.
Акцентируйте внимание на механизме погашения, для школьника он не всегда очевиден.
«По условию нам снова дана общая сумма выплат, значит достаточно просуммировать оранжевый столбец, и уравнение готово», — вероятно, подумает школьник. Подловите его! Уравнение в этой задаче — прямой путь потерять балл! Сумма выплат должна быть БОЛЬШЕ 1,2 млн. Отразим это в модели с помощью неравенства:
Подопечный должен быть уверен в каждом символе в бланке ответа. Даже не пригодившиеся промежуточные вычисления с ошибкой приведут к катастрофе.
Приведем подобные и вынесем общие множители за скобку:
Последний шаг – не забыть, что по условию процент должен быть целым и округлить в верную сторону.
Ответ: 5%.
Правильная математическая модель — это суперважно! К ней проверяющие обязательно придерутся.
Тип 4. Погашение кредита в два этапа.
По сути, это та же прошлая задача, но месяцев больше
В 2017-2018 учебном году составителей экзамена посетило вдохновение, на свет родился вот этот тип банковских задач. Школьники были в шоке, и от страха завалили 17-ый номер. Хотя всего-то нужно было догадаться воспользоваться знаниями об арифметической прогрессии и достать из условия одно немного неочевидное дано!
15-го декабря планируется взять кредит в банке на 13 месяцев. Условия возврата таковы:
— 1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца с 1-го по 12-й долг должен быть на 50 тысяч рублей меньше долга на 15-е число предыдущего месяца;
— к 15-му числу 13-го месяца кредит должен быть полностью погашен.
Какую сумму планируется взять в кредит, если общая сумма выплат после полного его погашения составит 804 тысячи рублей?
И снова пусть по возможности командует школьник. По крайней мере он уже точно в курсе, что происходит первые 13 месяцев.
Последовательно начисляем процент на остаток долга – считаем выплату – фиксируем остаток долга после выплаты. Сумму кредита возьмем за S.
Научите школьника не спешить с вычислениями. Например, вместо того чтобы написать S-600, мы пишем S-50*12, потому что так удобнее: нам сразу ясно, что речь идет о двенадцатом месяце. Да и потом вычисления будут проще, если мы оставим маленькие числа.
Осталось составить уравнение, и модель готова. В задаче нам снова дали сумму всех выплат:
Как обычно, сгруппируем отдельно слагаемые с r/100, отдельно слагаемые без них:
Вот именно последняя группировка всех платежей в счет долга и оказалась неочевидной. Без нее в задаче остается одна лишняя неизвестная величина, которая рушит все решение.
Осталось привести уравнение к решаемому виду. Для этого надо просуммировать то, что получилось в скобках. Если внимательно приглядеться, то видно, что это сумма арифметической прогрессии:
Посчитаем эту сумму:
Подставляем выражение для суммы в уравнение, заметим, что по условию r=2:
Мы сокращали дробь, пока это было возможно, и в итоге довольно просто получили ответ даже без калькулятора. Ваш подопечный должен научиться также!
Ответ: 700 тысяч.
Зачем использовать формулу суммы прогрессии, если можно посчитать вручную? Все верно, можно. Но это только в данном случае кредит взяли всего на 13 месяцев. А бывают прототипы, когда срок – 21 и больше месяцев. В какой-то момент считать вручную станет совсем долго и неудобно, потому воспользоваться формулой суммы – более универсальный метод.
Чем закончить разбор экономической (банковской) задачи № 17 в ЕГЭ по математике
Чтобы у ученика окончательно сложилась картинка занятия, пробегитесь еще раз по основным выводам:
- Повторите алгоритм заполнения таблицы и решения задачи (да, пятый раз);
- Повторите типы задач и механизм распределения платежа на проценты и долг;
- Напомните, как важно считать культурно и быть уверенным в каждой циферке в бланке;
- Проговорите, что математическая модель должна точно отражать условие задачи.
Как показывает практика, чем больше повторяешь, тем больше шансов, что в голове выпускника останется хоть что-то.
За что дают баллы?
Знание критериев оценивания экономической (банковской) задачи № 17 в ЕГЭ по математике поможетученику чувствовать себя увереннее, ведь выставление баллов — это не какая-то магия и не вредность экспертов. Все правила игры прописаны в нормативных документах.
17-ый номер стоит 3 балла. Чтобы узнать, как их присуждают, мы залезли в методические рекомендации для членов предметных комиссий.
Согласно пояснениям из документа, для получения одного балла мало просто обоснованно составить математическую модель по задаче, надо предложить правильный метод ее анализа.
Два балла получит школьник, который ошибся в вычислениях или не обосновал появление математической модели в решении. Например, согласно методическим рекомендациям, решение на 2 балла выглядит так:
А вот отсутствие промежуточных вычислений хоть и усложняет проверку, но баллы не снимает.
Идеально выполненная первая часть ЕГЭ по профильной математике принесет школьнику всего 62 тестовых балла. Добавим сюда пару ошибок по невнимательности, и останутся совсем крохи — баллов 50, не больше. Для поступления на бюджет мало, а значит необходимо планировать делать вторую часть! Чем раньше школьник это осознает, тем проще будет с ним работать. А банковская задача поможет получить дополнительные баллы с минимальными усилиями.
Однако кредиты – не единственный прототип 17-го номера, и в следующий раз мы расскажем, как научить школьника решать задачи на оптимальный выбор и ценные бумаги.
Подборка заданий для курса: “Финансовая математика: задачи для подготовки к ЕГЭ”
Материал подготовил:
Гусельникова Т.В.
учитель математики
МАОУ “СОШ № 147
г. Челябинска”
Урок 1
Работа с процентами. Простые и сложные проценты.
- Найдите 20% от числа 200.
- Сколько процентов составляет число 10 от числа 200.
- Найдите число, которое на 30% больше, чем число 200.
- Чайник стоил 2000 рублей. В течение двух лет его стоимость увеличивалась на 10% каждый год. Найдите новую цену чайника через 2 года.
- Товар стоил S рублей. В течение каждого из следующих трех лет, он дорожал на р%. Какой будет стоимость товара через 3 года.
- За 2 недели до Черной Пятницы товар стоил Х рублей. За неделю до Черной Пятницы магазин поднял цену товара на р%, чтобы в Черную Пятницу снизить его стоимость на эти же р%. В результате товар в Черную Пятницу стал стоить на 1% дешевле, чем за две недели до нее. На сколько процентов магазин поднял цену?
Задачи на вклады
- В банк был положен вклад под 10% годовых. Через год, после начисления процентов, вкладчик снял со счета 2000 рублей, а еще через год, после начисления процентов, положил 2000 рублей обратно. Вследствие этих действий, через три года после открытия вклада, вкладчик получил сумму меньше той, которую мог получить без снятия. На сколько рублей меньше запланированной суммы он получил?
- Владимир поместил в банк 3600 тыс. рублей под 10% годовых. В конце каждого из первых двух лет хранения, после начисления процентов, он дополнительно вносил на счет одну и ту же фиксированную сумму. К концу третьего года, после начисления процентов, оказалось, что размер вклада увеличился, по сравнению с первоначальным, на 48,5%. Какую сумму Владимир ежегодно добавлял на вклад?
- По вкладу А банк в конце каждого года планирует увеличивать на 17% сумму, имеющуюся на вкладе в начале года. По вкладу Б – увеличивать эту сумму на 9% в первый год и на целое число n% во второй год. Найдите наименьшее значение n, при котором за 2 года хранения вклад Б окажется выгоднее вклада А при одинаковых суммах первоначального взноса.
ДЗ к уроку 1
- Пусть товар стоил 1000 рублей. В течение двух лет товар каждый год дорожал на 10 процентов. Записать формулу для новой стоимости товара и с ее помощью вычислить новую стоимость.
- Вася открыл вклад на S рублей, какая сумма будет на вкладе через 3 года, если ежегодно эта сумма увеличивается на p%? Решить задачу в общем виде.
- В 2008 году в городском квартале проживало 40000 человек. В 2009 году в результате строительства новых домов, число жителей выросло на 10%, а в 2010 уменьшилось на 10% в результате сноса старых. Сколько человек стало проживать в квартале в 2010 году?
- В банк был положен вклад под 10% годовых. Через год, после начисления процентов, вкладчик снял со счета 2000 рублей, а еще через год (опять после начисления процентов) снова внес 2000 рублей. Вследствие этих действий, через три года со времени открытия вклада, вкладчик получил меньше запланированной суммы (если бы не было промежуточных операций). На сколько рублей меньше запланированной суммы он получил?
- В 2008 году магазин выставил товар по исходной цене. В 2010 году в связи с курсом доллара стоимость товара увеличилась на некоторое количество процентов, а в 2012 году из-за устаревания товара уменьшилась на такое же количество процентов. На сколько процентов изменялась цена товара, если в результате он стал стоить на 4% дешевле, чем стоил в 2008 году?
Урок 2
Типы платежей
- Анатолий хочет взять кредит в банке на 100 рублей, на 3 месяца, под 20% ежемесячно. Выбирает между двумя видами платежей: 1вид – выплаты подбираются так, чтобы долг уменьшался равномерно все три месяца; 2 вид – делается три равные выплаты в каждый месяц. Какой вид выплаты выгоднее?
Способы преобразования вычислений
- Отработать схему дифференцированного платежа с использованием арифметической прогрессии: кредит взят на 100 рублей, под 10%, на 4 месяца. Найти сумму, уплаченную банку.
- Отработать схему аннуитетного платежа с использованием геометрической прогрессии: кредит взят на 12996 рублей, под 10%, на 4 месяца. Выразить ежемесячную выплату.
- Найти Х :
6902000∙ – Х ( + + 1,125 + 1) = 0.
ДЗ к уроку 2
Решить уравнения, используя арифметическую или геометрическую прогрессию:
- x ⋅ (1+ + + + + ) = 0,035;
- х ∙ (1 + 1,1 + + ) = 9282000 ∙
По условию задачи определить тип платежа по кредиту (задачу решать не нужно):
- Антон взял кредит в банке на срок 6 месяцев. В конце каждого месяца общая сумма оставшегося долга увеличивается на одно и то же число процентов (месячную процентную ставку), а затем уменьшается на сумму, уплаченную Антоном. Суммы, выплачиваемые в конце каждого месяца, подбираются так, чтобы в результате сумма долга каждый месяц уменьшалась равномерно, то есть на одну и ту же величину. Общая сумма выплат превысила сумму кредита на 63%. Найдите месячную процентную ставку.
- В июле планируется взять кредит в банке на некоторую сумму. Условия его возврата таковы:
— каждый январь долг возрастает на 31% по сравнению с концом предыдущего года;
— с февраля по июнь каждого года необходимо выплатить часть долга, равную 69 690 821 рубль. Сколько рублей было взято в банке, если известно, что он был полностью погашен тремя равными платежами (то есть за три года)?
- 31 декабря 2014 года Тимофей взял в банке 7 007 000 рублей в кредит под 20% годовых. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 20%), затем Тимофей переводит в банк платёж. Весь долг Тимофей выплатил за 3 равных платежа. На сколько рублей меньше он бы отдал банку, если бы смог выплатить долг за 2 равных платежа?
По условию задачи определить тип кредита и составить схему выплат по кредиту (дальнейшее решение записывать не нужно):
- 31 декабря 2014 года Алексей взял в банке 6 902 000 рублей в кредит под 12,5% годовых. Схема выплаты кредита следующая: — 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 12,5%), затем Алексей переводит в банк X рублей. Какой должна быть сумма X, чтобы Алексей выплатил долг четырьмя равными платежами (то есть за четыре года)?
- 31 декабря 2014 года Пётр взял в банке некоторую сумму в кредит под некоторый процент годовых. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на а%), затем Пётр переводит очередной транш. Если он будет платить каждый год по 2592 000 рублей, то выплатит долг за 4 года. Если по 4 392 000 рублей, то за 2 года. Под какой процент Пётр взял деньги в банке?
- Сергей взял кредит в банке на срок 9 месяцев. В конце каждого месяца общая сумма оставшегося долга увеличивается на 12%, а затем уменьшается на сумму, уплаченную Сергеем. Суммы, выплачиваемые в конце каждого месяца, подбираются так, чтобы в результате сумма долга каждый месяц уменьшалась равномерно, то есть на одну и ту же величину. Сколько процентов от суммы кредита составила сумма, уплаченная Сергеем банку сверх кредита?
Урок 3
Кредиты с аннуитетными (равными) платежами
- 31 декабря 2014 года Д. берет кредит в банке на 4 290 000 рублей под 14,5 % годовых. Схема выплаты кредита такова: 31 декабря банк начисляет проценты на оставшуюся часть долга, затем Д. перечисляет в банк Х рублей. Какова должна быть сумма Х, чтобы Д. выплатил долг двумя равными платежами (то есть за 2 года)?
- В июле планируется взять кредит на сумму 69 510 рублей. Условия его возврата таковы: — каждый январь долг возрастает на 10% по сравнению с концом предыдущего года; — с февраля по июнь каждого года необходимо выплатить некоторую часть долга. На сколько рублей больше придется отдать в случае, если кредит будет полностью погашен тремя равными платежами (то есть за три года) по сравнению с погашением кредита равными платежами за два года?
- В июле 2022 года планируется взять кредит на сумму 419 375 рублей. Условия возврата таковы: — в январе каждого года долг увеличивается на 20% по сравнению с предыдущим годом; — с февраля по июнь нужно выплатить часть долга одним платежом. Сколько рублей будет выплачено банку, если известно, что кредит будет полностью погашен четырьмя равными платежами (то есть за 4 года)?
- В июле 2020 года планируется взять кредит в банке на 147 000 рублей. Условия возврата таковы: — каждый январь долг должен возрастать на r% по сравнению с концом предыдущего года; — с февраля по июнь каждого года необходимо выплатить часть долга одним платежом. Известно, что если ежегодно выплачивать по 84 700 рублей, то кредит будет полностью погашен за 2 года. Найти число r?
ДЗ к уроку №3
Простой аннуитетный платеж
- В июле 2020 года планируется взять кредит в банке на сумму 147 000 рублей. Условия его возврата таковы: — каждый январь долг увеличивается на 10% по сравнению с концом предыдущего года; — с февраля по июнь каждого года необходимо выплатить одним платежом часть долга. Сколько рублей будет выплачено банку, если известно, что кредит будет полностью погашен двумя равными платежами, то есть за два года.
- 31 декабря 2018 года Ваня взял в банке кредит под 20% годовых. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 20%), затем Ваня переводит в банк платёж. Весь долг Ваня выплатил за 2 равных платежа по 144т.р. Какую сумму Ваня взял в кредит?
- 31 декабря 2018 года Ваня взял в микрофинансовой организации кредит на сумму 5,8 т.р. на 2 месяца под загадочные p% ежемесячно. Схема выплаты кредита следующая: 31 числа каждого следующего месяца начисляются проценты на оставшуюся сумму долга (то есть увеличивает долг на p%), затем Ваня переводит платёж. Весь долг Ваня выплатил за 2 равных платежа по 7, 22 т.р. Под какой процент был взят кредит?
- В июле 2018 года планируется взять кредит в банке. Условия его возврата таковы: — каждый январь долг увеличивается на 20% по сравнению с концом предыдущего года; — с февраля по июнь каждого года необходимо выплатить одним платежом часть долга. Сколько рублей необходимо взять в банке, если известно, что кредит будет полностью погашен четырьмя равными платежами, и банку будет выплачено 311 040 рублей?
- 31 декабря 2014 года Ярослав взял в банке некоторую сумму в кредит под 12,5%годовых. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 12,5%), затем Ярослав переводит в банк 2132325 рублей. Какую сумму взял Ярослав в банке, если он выплатил долг четырьмя равными платежами (то есть за четыре года)?
Урок 4
Более сложные задачи на аннуитетный платеж
- 1 января 2015 года Павел взял в банке 1 млн. рублей в кредит. Схема выплаты кредита следующая: 1 числа каждого следующего месяца банк начисляет 1% на оставшуюся сумму долга (то есть увеличивает долг на 1%), затем Павел переводит в банк платеж. На какое минимальное количество месяцев Павел может взять кредит, чтобы ежемесячные выплаты были не более 125 000 рублей?
- Тимофей хочет взять в кредит 1,1 млн. рублей. Погашение кредита происходит раз в год равными суммами (кроме, может быть, последней) после начисления процентов. Ставка – 10% годовых. На какое минимальное количество лет Тимофей может взять кредит, чтобы ежегодные выплаты были не более 270 000 рублей?
- В июле планируют взять кредит на 1 342 000 рублей. Условия его возврата таковы: — каждый январь долг возрастает на 20% по сравнению с концом предыдущего года; — с февраля по июнь каждого года необходимо выплатить некоторую часть долга. На сколько рублей больше придется отдать в случае, если кредит будет полностью погашен четырьмя равными платежами (то есть за 4 года), по сравнению с погашением кредита за 2 года?
- В июне 2020 года планируют взять кредит на некоторую сумму. Условия возврата таковы: — в январе каждого года долг увеличивается на 30% по сравнению с предыдущим годом; — с февраля по июнь нужно выплатить часть долга одним платежом. Определите, на какую сумму взяли кредит в банке, если известно, что кредит был выплачен тремя равными платежами (то есть за три года) и общая сумма выплат на 78 030 рублей больше суммы взятого кредита.
ДЗ к уроку №4
Более сложные задачи с аннуитетными платежами
- 31 декабря 2014 года Тимофей взял в банке 7 007 000 рублей в кредит под 20% годовых. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 20%), затем Тимофей переводит в банк платёж. Весь долг Тимофей выплатил за 3 равных платежа. На сколько рублей меньше он бы отдал банку, если бы смог выплатить долг за 2 равных платежа?
- 1 января 2010 года Ваня взял в банке 100 000 рублей в кредит. Схема выплаты кредита следующая: 1 числа каждого следующего месяца банк начисляет 2 процента на оставшуюся сумму долга (то есть увеличивает долг на 2%), затем Ваня переводит в банк платёж. На какое минимальное количество месяцев Ваня может взять кредит, чтобы ежемесячные выплаты были не более 20 тыс. рублей?
- 1 января 2010 года Иван взял в банке 100 000 рублей в кредит. Схема выплаты кредита следующая: 1 числа каждого следующего месяца банк начисляет 10 процентов на оставшуюся сумму долга (то есть увеличивает долг на 10%), затем Иван переводит в банк платёж. На какое минимальное количество месяцев Иван может взять кредит, чтобы ежемесячные выплаты были не более 50 тыс. рублей?
- В июле 2020 года планируется взять кредит на некоторую сумму. Условия возврата таковы:
— в январе каждого года долг увеличивается на 30% по сравнению с предыдущим годом;
— с февраля по июнь нужно выплатить часть долга одним платежом. Определите, на какую сумму взяли кредит банке, если известно, что кредит был выплачен тремя равными платежами (за 3 года) и общая сумма выплат на 156 060 рублей больше суммы взятого кредита.
Урок 5
Кредиты с дифференцированными платежами
- 15 января планируется взять кредит в банке на 9 месяцев. Условия его возврата таковы: — первого числа каждого месяца долг возрастает на r% по сравнению с концом предыдущего месяца; — со 2-го по 14-ое число месяца необходимо выплатить часть долга; — 15 числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15 число предыдущего месяца. Известно, что общая сумма выплат после полного погашения кредита на 25% больше суммы взятой в кредит. Найдите r.
- 15 января планируется взять кредит в банке на сумму 2,4 млн. рублей на 24 месяца. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца;
— со 2-го по 14-ое число каждого месяца необходимо выплатить часть долга;
— 15 числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-ое число предыдущего месяца.
Какую сумму нужно выплатить банку в первые 12 месяцев?
- 15 января планируют взять кредит в банке на 24 месяца. Условия возврата таковы:
— 1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца;
— со 2-го по 14-ое число выплачивается часть долга;
— 15 числа каждого месяца долг должен быть на одну и ту же величину меньше долга предыдущего месяца.
Известно, что в течение первого года кредитования нужно вернуть банку 2 466 тыс. рублей. Какую сумму нужно выплатить банку за последние 12 месяцев?
- В июле планируют взять кредит в банке на сумму 3 млн. рублей на некоторый срок (целое число лет). Условия возврата таковы: — каждый январь долг возрастает на 20% по сравнению с концом предыдущего года; — с февраля по июнь каждого года необходимо выплатить часть долга; — в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года. Чему будет равна общая сумма выплат после полного погашения кредита, если наименьший годовой платеж составит 0,24 млн. рублей (Считается, что округление при вычислении платежей не производится).
ДЗ к уроку №5
Базовые задачи на кредиты с дифференцированными платежами
- 15-го января планируется взять кредит в банке на девять месяцев на 1млн. рублей. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на 5% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.
Чему будет равна общая сумма выплат после полного погашения кредита?
- 15-го января планируется взять кредит в банке на 19 месяцев.
Условия его возврата таковы:
— 1-го числа каждого месяца долг возврастает на 5% по сравнению с
концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть
долга;
— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.
На какую сумму был взят кредит, если известно, что общая сумма
выплат после полного погашения кредита равна 225 тыс. рублей.?
- 15-го января планируется взять кредит в банке на сумму 2,4 млн рублей на 24 месяца. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на 3% по сравнению с
концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть
долга;
— 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца.
Какую сумму нужно выплатить банку в первые 6 месяцев?
- Жанна взяла в банке в кредит 1,2 млн рублей на срок 24 месяца. По договору Жанна должна вносить в банк часть денег в конце каждого месяца. Каждый месяц общая сумма долга возрастает на 2%, а затем уменьшается на сумму, уплаченную Жанной банку в конце месяца. Суммы, выплачиваемые Жанной, подбираются так, чтобы сумма долг уменьшалась равномерно, то есть на одну и ту же величину каждый месяц. Какую сумму Жанна выплатит банку в течение первого года кредитования?
- В июле планируется взять кредит в банке на сумму 9 млн рублей на некоторый срок (целое число лет). Условия его возврата таковы:
— каждый январь долг возрастает на 20% по сравнению с концом предыдущего года;
— с февраля по июнь каждого года необходимо выплатить часть долга;
— в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года.
Чему будет равна общая сумма выплат после полного погашения кредита, если наибольший годовой платёж составит 3,6 млн рублей?
Урок № 6
Более сложные задачи на дифференцированные платежи
- 15 января планируют взять кредит в банке на некоторое количество месяцев. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца;
— со 2-го по 14-ое число каждого месяца выплачивается часть долга;
— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-ое число предыдущего месяца.
На сколько месяцев можно взять кредит, если известно, что общая сумма выплат после погашения кредита на 30% больше суммы взятой в кредит?
- В июле планируют взять кредит в банке на сумму 6 млн. рублей, на срок 15 лет. Условия его возврата таковы:
— каждый январь долг возрастает на Х% по сравнению с концом предыдущего года;
— с февраля по июнь выплачивается часть долга;
— каждый июль долг должен быть на одну и ту же сумму меньше долга на июль месяц предыдущего года.
Найдите Х, если известно, что наибольший платеж по кредиту составит не более 1,9 млн. рублей, а наименьший – не менее 0,5 млн. рублей.
- 15 декабря планируют взять кредит в банке на 1200 тыс. рублей на (n+1) месяц. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на r % по сравнению с концом предыдущего года;
— со 2-го по 14-ое число каждого месяца выплачивается часть долга;
— 15-го числа каждого месяца с 1-го по n-ый долг должен быть на 80 тыс. рублей меньше долга на 15-ое число предыдущего месяца;
— 15-го числа n-ого месяца долг долг составит 400 тыс. рублей;
— 15-го числа (n+1) – го месяца кредит должен быть полностью погашен.
Найдите r, если известно, что общая сумма выплат после полного погашения кредита составит 1288 тыс. рублей.
- 15 декабря планируют взять кредит в банке на 600 тыс. руб на 26 месяцев. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на 1% по сравнению с концом предыдущего месяца;
— со 2-го по 14-ое число каждого месяца выплачивается часть долга;
— 15-го числа с 1 по 25 месяц долг должен уменьшаться на одну и ту же сумму;
— 15 числа 26 месяца кредит должен быть полностью погашен.
Сколько тыс. рублей составит долг на 15 число 25 месяца, если всего было выплачено 691 тыс. рублей?
ДЗ к уроку №6
Более сложные задачи на дифференцированный платеж
- 15-го января планируется взять кредит в банке на несколько месяцев.
Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на 5% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.
На сколько месяцев можно взять кредит, если известно, что общая сумма выплат после полного погашения кредита на 25% больше суммы, взятой в кредит.
- 15 января планируется взять кредит в банке на 2 года. Условия его возврата таковы:
-1-го числа каждого месяца долг возрастает на 1% по сравнению с концом предыдущего месяца;
-со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
-15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца.
Известно, что за 15-ый месяц кредитования нужно выплатить 44 тыс.
рублей. Сколько рублей нужно будет вернуть банку в течение всего срока кредитования?
- 15-го декабря планируется взять кредит в банке на 21 месяц. Условия
возврата таковы:
— 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца с 1-го по 20-й долг должен быть на 30 тысяч рублей меньше долга на 15-е число предыдущего месяца;
— к 15-му числу 21-го месяца кредит должен быть полностью погашен.
Какую сумму планируется взять в кредит, если общая сумма выплат после полного его погашения составит 1604 тысяч рублей?
- 15-го декабря планируют взять кредит в банке на 1 000 000 рублей на (n + 1) месяц. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на r % по сравнению с концом предыдущего месяца;
— cо 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца с 1-го по n-й долг должен быть на 40 тысяч рублей меньше долга на 15-е число предыдущего месяца;
— 15-го числа n-го месяца долг составит 200 тысяч рублей;
— к 15-му числу (n + 1)-го месяца кредит должен быть полностью погашен.
Найдите r, если известно, что общая сумма выплат после полного погашения кредита составит 1378 тысяч рублей.
- 15-го декабря планируется взять кредит в банке на 600 000 рублей на
(n + 1) месяц. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на 3 % по сравнению с концом предыдущего месяца;
— cо 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца с 1-го по n-й долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца;
— 15-го числа n-го месяца долг составит 200 тысяч рублей;
— к 15-му числу (n + 1)-го месяца кредит должен быть полностью погашен.
Найдите n, если известно, что общая сумма выплат после полного погашения кредита составит 852 тысячи рублей.
- В июле планируется взять кредит в банке на сумму 8 млн. рублей на срок 4 года. Условия его возврата таковы:
— каждый январь долг возрастает на r % по сравнению с концом предыдущего года;
— с февраля по июнь каждого года необходимо выплатить часть долга;
— в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года.
Найдите r, если известно, что наибольший годовой платёж по кредиту
составит не более 4 млн. рублей, а наименьший — не менее 2,5 млн. рублей.
Урок № 7
Другие типы кредитов (комбинированные задачи)
- Александр решил взять кредит в банке на 331 000 рублей на 3 месяца под 10% в месяц. Существует две схемы выплат кредита. По первой схеме банк в конце каждого месяца начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 10%), затем Александр переводит в банк фиксированную сумму и в результате выплачивается весь долг тремя равными платежами (аннуитетный платеж). По второй схеме сумма долга в конце каждого месяца увеличивается на 10%, затем уменьшается на сумму, уплаченную Александром, причем суммы выплат подбираются так, чтобы сумма долга уменьшалась равномерно на одну и ту же величину. Какую схему выгоднее взять Александру и сколько рублей составит эта выгода?
- В июле 2016 года планируют взять кредит 6,6 миллионов рублей. Условия возврата таковы:
— каждый январь долг возрастает на r % по сравнению с концом предыдущего года;
— с февраля по июнь необходимо выплатить часть долга;
— в июле 2017,2018 и 2019 годов долг остается равным 6,6 миллионов рублей;
— суммы выплат 2020 и 2021 годов должны быть равны.
Найдите r, если 2021 году долг будет выплачен полностью и общие выплаты составят 12,6 миллионов рублей.
- Планируются взять льготный кредит на целое число миллионов рублей на 4 года. В середине каждого года действия кредита долг заемщика возрастает на 20% по сравнению с началом года. В конце первого и второго годов заемщик выплачивает только проценты по кредиту, оставляя долг неизменно равным первоначальному. В конце третьего и четвертого годов заемщик выплачивает одинаковые суммы, погашая весь долг полностью. Найдите наибольший размер кредита, при котором общая сумма выплат заемщика будет меньше 10 миллионов рублей.
- Валентин кладет в банк 1 000 000 рублей под 10% годовых на четыре года (процент начисляется один раз после истечения года) с правом докладывать три раза (в конце каждого года после начисления процентов) на счет фиксированную сумму 133 000 рублей. Какая максимальная сумма может быть на счете у Валентина через 4 года?
- Георгий взял кредит в банке на сумму 804 000 рублей выплаты кредита следующая. В конце каждого года банк увеличивает на 10% оставшуюся сумму долга, а затем Георгий переводит в банк свой очередной платеж. Известно, что Георгий погасил кредит за 3 года, причем каждый его следующий платеж был ровно вдвое меньше предыдущего. Какую сумму Георгий заплатил в третий раз? Ответ дайте в рублях.
- По бизнес – плану четырех летний проект предполагает начальное вложение 25 миллионов рублей. По итогам каждого года планируется прирост вложенных средств на 20% по сравнению с началом года. Начисленные проценты остаются вложенными в проект. Кроме этого, сразу после начисления процентов, нужны дополнительные вложения:
целое число n миллионов рублей в первый и во второй годы, а также целое число m миллионов рублей в третий и четвертый годы. Найдите наименьшее значение n, при котором первоначальные вложения за два года как минимум удвоятся, и наименьшее значение m такое, что при найденном ранее значении n первоначальные вложения за четыре года вырастут как минимум в четыре раза.
Домашнее задание к уроку № 7
Другие типы кредитов (комбинированные)
- Анатолий решил взять кредит в банке 210 000 рублей на 2 месяца под 10% в месяц. Существуют две схемы выплаты кредита. По первой схеме банк в конце каждого месяца начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 10%), затем Анатолий переводит в банк фиксированную сумму и в результате выплачивает весь долг двумя равными платежами (аннуитетные платежи). По второй схеме сумма долга в конце каждого из двух месяцев также увеличивается на 10%, а затем уменьшается на сумму, уплаченную Анатолием. Суммы, выплачиваемые в конце каждого месяца, подбираются так, чтобы в результате сумма долга каждый месяц уменьшалась равномерно, то есть на одну и ту же величину (дифференцированные платежи). Какую схему выгоднее выбрать Анатолию? Сколько рублей будет составлять эта выгода?
- 31 декабря 2014 года Валерий взял в банке 1 млн. рублей в кредит. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на определённое количество процентов), затем Валерий переводит очередной транш. Валерий выплатил кредит за два транша, переводя в первый раз 660 тыс. рублей, во второй — 484 тыс. рублей. Под какой процент банк выдал кредит Валерию?
- Светлана Михайловна взяла кредит в банке на 4 года на сумму 4 420 000 рублей. Условия возврата кредита таковы: в конце каждого года банк увеличивает текущую сумму долга на 10 %. Светлана Михайловна хочет выплатить весь долг двумя равными платежами ― в конце второго и четвертого годов. При этом платежи в каждом случае выплачиваются после начисления процентов. Сколько рублей составит каждый из этих платежей?
- Планируется выдать льготный кредит на целое число миллионов рублей на пять лет. В середине каждого года действия кредита долг заемщика возрастает на 20% по сравнению с началом года. В конце 1-го, 2-го и 3-го годов заемщик выплачивает только проценты по кредиту, оставляя долг неизменно равным первоначальному. В конце 4-го и 5-го годов заемщик выплачивает одинаковые суммы, погашая весь долг полностью. Найдите наибольший размер кредита, при котором общая сумма выплат заемщика будет меньше 10 млн. рублей.
- По бизнес-плану предполагается изначально вложить в четырёхлетний проект 10 млн. рублей. По итогам каждого года планируется прирост вложенных средств на 15% по сравнению с началом года. Начисленные проценты остаются вложенными в проект. Кроме этого, сразу после начислений процентов нужны дополнительные вложения: по целому числу n млн. рублей в первый и второй годы, а также по целому числу m млн. рублей в третий и четвёртый годы. Найдите наименьшие значения n и m, при которых первоначальные вложения за два года как минимум удвоятся, а за четыре года как минимум утроятся.
Урок № 8
Другие типы кредитов (часть 2)
- В июле 2020 года планируется взять кредит в банке на 4 года в размере S млн. рублей, где S – целое число. Условия его возврата таковы:
— каждый январь долг увеличивается на 25% по сравнению с концом предыдущего года;
— с февраля по июнь каждого года необходимо выплатить одним платежом часть долга;
— в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей:
Месяц и год |
Июль 2020 |
Июль 2021 |
Июль 2022 |
Июль 2023 |
Июль 2024 |
Долг (млн. руб) |
S |
0,8 S |
0,6 S |
0,4 S |
0 |
Найдите наибольшее значение S, при котором общая сумма выплат будет меньше 50 млн. рублей.
- В июле 2026 года планируется взять кредит в банке на 3 года в размере S млн. рублей, где S – целое число. Условия его возврата таковы:
— каждый январь долг увеличивается на 20% по сравнению с концом предыдущего года;
— с февраля по июнь каждого года необходимо выплатить одним платежом часть долга;
— в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей:
Месяц и год |
Июль 2026 |
Июль 2027 |
Июль 2028 |
Июль 2029 |
Долг (млн. руб) |
S |
0,8 S |
0,4 S |
0 |
Найдите наибольшее значение S, при котором каждая из выплат будет меньше 5 миллионов рублей.
- В июле 2016 года планируется взять кредит в банке на 3 года в размере S тыс. рублей, где S – натуральное число. Условия его возврата таковы:
— каждый январь долг увеличивается на 15% по сравнению с концом предыдущего года;
— с февраля по июнь каждого года необходимо выплатить одним платежом часть долга;
— в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей:
Месяц и год |
Июль 2016 |
Июль 2017 |
Июль 2018 |
Июль 2019 |
Долг (млн. руб) |
S |
0,7 S |
0,4 S |
0 |
Найдите наименьшее значение S, при котором каждая из выплат будет составлять целое число тысяч рублей.
- В июле 2021 года планируют взять кредит на сумму 21 млн. рублей на 7 лет (последняя выплата запланирована в 2028 году). Условия его возврата таковы:
— пока долг больше половины, каждый январь он возрастает на р % по сравнению с концом предыдущего года;
— если долг не превышает половины исходной суммы, то каждый январь долг возрастает на 6% по сравнению с концом предыдущего года;
— с февраля по июнь нужно выплатить часть долга;
— в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года.
Найдите р, если общая сумма выплат составит 24,72 млн. рублей.
ДЗ к уроку №8
Другие типы кредитов
- 15-го января планируется взять кредит в банке на шесть месяцев в размере 1 млн. рублей. Условия его возврата таковы: — 1-го числа каждого месяца долг увеличивается на r процентов по сравнению с концом предыдущего месяца, где r — целое число; — со 2-го по 14-е число каждого месяца необходимо выплатить часть долга; — 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей.
Месяц и год |
15.01 |
15.02 |
15.03 |
15.04 |
15.05 |
15.06 |
15.07 |
Долг (млн. руб) |
1 |
0,6 |
0,4 |
0,3 |
0,2 |
0,1 |
0 |
Найдите наибольшее значение r, при котором общая сумма выплат будет меньше 1,2 млн. рублей.
- В июле 2016 года планируется взять кредит в банке на три года в размере S млн. рублей, где S — целое число. Условия его возврата таковы:
− каждый январь долг увеличивается на 25% по сравнению с концом предыдущего года;
− с февраля по июнь каждого года необходимо выплатить одним платежом часть долга;
− в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей:
Месяц и год |
Июль 2016 |
Июль 2017 |
Июль 2018 |
Июль 2019 |
Долг (млн. руб.) |
S |
0,7 S |
0,4 S |
0 |
Найдите наименьшее значение S, при котором каждая из выплат будет
больше 5 млн. рублей.
- В июле 2016 года планируется взять кредит в банке на три года в размере S млн. рублей, где S — целое число. Условия его возврата таковы:
— каждый январь долг увеличивается на 30 % по сравнению с концом предыдущего года;
— с февраля по июнь каждого года необходимо выплатить одним платежом часть долга;
— в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей.
Месяц и год |
Июль 2016 |
Июль 2017 |
Июль 2018 |
Июль 2019 |
Долг (млн. руб.) |
S |
0,6 S |
0,25 S |
0 |
Найдите наибольшее значение S, при котором каждая из выплат будет меньше 5 млн. рублей.
Методичка по решению экономических задач
(задание 17 ЕГЭ)
Составитель: Мокина В.С.,
учитель математики
МАОУ гимназия №83
Тюмень 2021 год
Содержание
l. Задачи на оптимальный выбор.
2. Задачи на кредит с аннуитетным платежом
3. Задачи на дифференцированный платеж
4. Задачи на нахождение суммы кредита
5. Задачи на нахождение суммы вклада
Все представленные в банке ЕГЭ задачи (задание 17), можно условно разделить на группы и подгруппы:
Задачи, не связанные с банковскими операциями (задачи на оптимизацию)
Банковские задачи на вклады
1) нахождение срока вклада;
2) вычисление процентной ставки по вкладу;
3) нахождение суммы вклада;
4) нахождение ежегодной суммы пополнения вклада
Банковские задачи на кредиты:
1) нахождение количества лет выплаты кредита;
2) вычисление процентной ставки по кредиту;
3) нахождение суммы кредита;
4) нахождение ежегодного транша.
В методичке показаны методы решения задач экономического содержания, связанные с банковскими кредитами, оптимизацией производства товаров и услуг.
Рассмотрим решение задач (задание 17), в которых требуется оптимальным образом распределить производство продукции для получения максимальной прибыли.
Задачи на оптимальный выбор. Например, нужно найти максимальную прибыль (при соблюдении каких-либо дополнительных условий), или минимальные затраты. Сначала в такой задаче нужно понять, как одна из величин зависит от другой (или других). Другими словами, нужна та функция, наибольшее или наименьшее значение которой мы ищем. А затем — найти это наибольшее или наименьшее значение. Иногда — с помощью производной. А если функция получится линейная или квадратичная — можно просто воспользоваться свойствами этих функций.
У фермера есть два поля, каждое площадью 10 гектаров. На каждом поле можно выращивать картофель и свёклу, поля можно делить между этими культурами в любой пропорции. Урожайность картофеля на первом поле составляет 500 ц/га, а на втором – 300 ц/га. Урожайность свёклы на первом поле составляет 300 ц/га, а на втором – 500 ц/га. Фермер может продать картофель по цене 5000 руб. за центнер, а свёклу – по цене 8000 руб. за центнер. Какой наибольший доход может получить фермер?
Решение:
Величина дохода фермера будет зависеть от того как будет распределена площадь поля между картофелем и свёклой. Пусть х га, засажено картофелем на первом поле, тогда (10 – х) га, засаженных свеклой на первом поле. Полученная прибыль с первого поля, равна:
S(х) = х·500·5000 + (10 – х)·300·8000 = 24000000 + 100000х (руб.)
Функция возрастающая, т.к. к>0, значит, наибольшая доходность будет достигнута при наибольшем значении х = 10 га и прибыль с первого поля составит: S(10) = 24000000 + 100000·10 = 25000000 рублей.
Обозначим через у — количество гектар, засаженных картофелем на втором поле, а (10- у) — количество гектар, засаженных свеклой на втором поле. Прибыль со второго поля составит:
S(у) = 300·5000·у + (10 – у)·500·8000 = 40000000 – 2500000у ( руб.)
Функция убывающая, т.к. к<0, значит, наибольшая доходность будет достигнута при наименьшем значении х = 0 га и прибыль с первого поля составит: S(10) = 40000000 рублей.
Таким образом, максимальная прибыль с обоих полей, равна: S = 25000000 + 40000 = 65000000 рублей, что составляет 65 млн. рублей.
Ответ: 65млн. рублей.
Реши самостоятельно:
У фермера есть два поля, каждое площадью 10 гектаров. На каждом поле можно выращивать картофель и свёклу, поля можно делить между этими культурами в любой пропорции. Урожайность картофеля на первом поле составляет 400 ц/га, а на втором — 300 ц/га. Урожайность свёклы на первом поле составляет 300 ц/га, а на втором — 400 ц/га.
Фермер может продавать картофель по цене 10 000 руб. за центнер, а свёклу — по цене 11 000 руб. за центнер. Какой наибольший доход может получить фермер?
У фермера есть два поля, каждое площадью 10 гектаров. На каждом поле можно выращивать картофель и свёклу, поля можно делить между этими культурами в любой пропорции. Урожайность картофеля на первом поле составляет 300 ц/га, а на втором — 200 ц/га. Урожайность свёклы на первом поле составляет 200 ц/га, а на втором — 300 ц/га.
Фермер может продавать картофель по цене 10 000 руб. за центнер, а свёклу — по цене 13 000 руб. за центнер. Какой наибольший доход может получить фермер?
У фермера есть два поля, каждое площадью 10 гектаров. На каждом поле можно выращивать картофель и свёклу, поля можно делить между этими культурами в любой пропорции. Урожайность картофеля на первом поле составляет 200 ц/га, а на втором — 300 ц/га. Урожайность свёклы на первом поле составляет 250 ц/га, а на втором — 200 ц/га.
Фермер может продавать картофель по цене 15 000 руб. за центнер, а свёклу — по цене 18 000 руб. за центнер. Какой наибольший доход может получить фермер?
Консервный завод выпускает фруктовые компоты в двух видах тары — стеклянной и жестяной. Производственные мощности завода позволяют выпускать в день 90 центнеров компотов в стеклянной таре или 80 центнеров в жестяной таре. Для выполнения условий ассортиментности, которые предъявляются торговыми сетями, продукции в каждом из видов тары должно быть выпущено не менее 20 центнеров. В таблице приведены себестоимость и отпускная цена завода за 1 центнер продукции для обоих видов тары.
Вид тары |
Себестоимость за 1 ц |
Отпускная цена за 1 ц |
стекло |
1500 рублей |
2100 рублей |
жесть |
1100 рублей |
1750 рублей |
Предполагая, что вся продукция завода находит спрос (реализуется без остатка), найдите максимально возможную прибыль завода за один день (прибылью называется разница между отпускной стоимостью всей продукции и её себестоимостью).
5) Фабрика, производящая пищевые полуфабрикаты, выпускает блинчики со следующими видами начинки: ягодная и творожная. В данной ниже таблице приведены себестоимость и отпускная цена, а также производственные возможности фабрики по каждому виду продукта при полной загрузке всех мощностей только данным видом продукта.
Вид начинки |
Себестоимость за 1 тонну |
Отпускная цена за 1тонну |
Производственные возможности |
ягоды |
70000 рублей |
100000 рублей |
90т/месс. |
творог |
100000 рублей |
135000 рублей |
75 т/месс. |
Для выполнения условий ассортиментности, которые предъявляются торговыми сетями, продукции каждого вида должно быть выпущено не менее 15 тонн. Предполагая, что вся продукция фабрики находит спрос (реализуется без остатка), найдите максимально возможную прибыль, которую может получить фабрика от производства блинчиков за 1 месяц.
Предприниматель купил здание и собирается открыть в нём отель. В отеле могут быть стандартные номера площадью 27 квадратных метров и номера «люкс» площадью 45 квадратных метров. Общая площадь, которую можно отвести под номера, составляет 981 квадратный метр. Предприниматель может поделить эту площадь между номерами различных типов, как хочет. Обычный номер будет приносить отелю 2000 рублей в сутки, а номер «люкс» — 4000 рублей в сутки. Какую наибольшую сумму денег сможет заработать в сутки на своём отеле предприниматель?
Решение:
Пусть у — число номеров «люкс», а х — число стандартных номеров и S = 981м2. Тогда должно соблюдаться неравенство: 27х + 45у = 981
Выразим число обычных номеров т.е.
х = 981 – 45у, х = = 36 + = 36 +
Найдем решение этого уравнения подбором, где х, у N
Если у = 2, то х = 33 у = 14, то х = 15
у = 5, то х = 28 у = 17, то х = 8
у = 11, то х =18 у = 20, то х = 3
f(х,у) = 2000х + 4000у.
Очевидно, что максимальная прибыль будет при максимальном числе номеров «люкс», поэтому выбираем у = 20, х = 3.
Тогда в сутки предприниматель получит:
4000·20 + 2000·3 = 80000 + 6000 = 86000 рублей.
Проверим оставшиеся варианты
2·4000 + 33·2000 = 74000 рублей
5·4000 + 28·2000 = 76000 рублей
11·4000 + 18·2000 = 74000 рублей
2·4000 + 33·2000 = 80000 рублей
14·4000 + 15·2000 = 86000 рублей
17·4000 + 8·2000 = 84000 рублей
Ответ: 86000 рублей
Реши самостоятельно:
Предприниматель купил здание и собирается открыть в нем отель. В отеле могут быть стандартные номера площадью 30 квадратных метров и номера «люкс» площадью 40 квадратных метров. Общая площадь, которую можно отвести под номера, составляет 940 квадратных метров. Предприниматель может определить эту площадь между номерами различных типов, как хочет. Обычный номер будет приносить отелю 4000 рублей в сутки, а номер «люкс» — 5000 рублей в сутки. Какую наибольшую сумму денег сможет заработать в сутки на своем отеле предприниматель?
Предприниматель купил здание и собирается открыть в нем отель. В отеле могут быть стандартные номера площадью 21 квадратный метр и номера «люкс» площадью 49 м2. Общая площадь, которую можно отвести под номера, составляет 1099 м2. Предприниматель может поделить эту площадь между номерами различных типов, как хочет. Обычный номер будет приносить отелю 2000 рублей в сутки, а номер «люкс» — 4500 рублей в сутки. Какую наибольшую сумму денег сможет заработать в сутки на своем отеле предприниматель?
Предприниматель купил здание и собирается открыть в нём отель. В отеле могут быть стандартные номера площадью 27 квадратных метров и номера «люкс» площадью 45 квадратных метров. Общая площадь, которую можно отвести под номера, составляет 981 квадратный метр. Предприниматель может поделить эту площадь между номерами различных типов, как хочет. Обычный номер будет приносить отелю 2200 рублей в сутки, а номер «люкс» — 4000 рублей в сутки. Какую наибольшую сумму денег сможет заработать в сутки на своём отеле предприниматель?
Производство некоторого товара облагалось налогом в размере t0 руб. за ед. товара. Государство увеличило налог в 2.5 раза (t1= 2.5t0), но сумма налоговых поступлений не изменилась. На сколько процентов государству следует изменить налог, чтобы добиться максимальных налоговых сборов. если известно, что при налоге равном t руб. за ед. товара, объем производства товара составляет 9000 – 2t ед., если это число положительно, и 0 единиц?
Решение:
Обозначим Q(t) = 9000- 2t единиц товара, Q(t)- объем производства. Тогда налоговые сборы составляют S(t) = Q ·t, S(t) = (9000 — 2t)·t = 9000t – 2t2 руб. Рассмотрим функцию S(t) = 9000t – 2t2. Это квадратичная функция, графиком является парабола, ветви которой направлены вниз. Максимального значения эта функция достигает в вершине параболы. t = t = = 2250, 2250 руб. за единицу товара. При t= t0 налоговые сборы составляют 9000t0 – 2t02 руб. При t= 2,5t0 налоговые сборы составляют 9000·2,5t0 – 2·(2,5t0)2 = 22505t0 – 12,5t02 руб. Так как сумма налоговых поступлений не изменилась, то 9000t0 – 2t02 = 22505t0 – 12,5t02 / : t0 0 получим 9000 – 2t0 = 22505 – 12,5t0 , 10,5 t0 = 13500, t0 = 13500: 10,5 = , значит за единицу товара был налог руб., а стал руб. Теперь этот налог надо уменьшить на r%, чтобы налог стал равным 22500 руб. за единицу товара.
Значит государству необходимо на 30% уменьшить налог, чтобы добиться максимальных налоговых сборов.
Ответ: уменьшить на 30%
Решить самостоятельно
Производство некоторого товара облагалось налогом в размере t0 руб. за ед. товара. Государство увеличило налог в 2.5 раза (t1= 2.5t0),но сумма налоговых поступлений не изменилась. На сколько процентов государству следует изменить налог, чтобы добиться максимальных налоговых сборов. если известно, что при налоге равном t руб. за ед. товара, объем производства товара составляет 7000–2t ед., если это число положительно, и 0 единиц?
Производство некоторого товара облагалось налогом в размере t0 рублей за единицу товара. После того как государство, стремясь нарастить сумму налоговых поступлений, увеличило налог вдвое (до 2t0 рублей за единицу товара), сумма налоговых поступлений не изменилась. На сколько процентов государству следует изменить налог после такого увеличения, чтобы добиться максимальных налоговых поступлений, если известно, что при налоге, равном t рублей за единицу товара, объём производства составляет 10 000 – 2t единиц и это число положительно?
lll. 1. В начале 2001 года Алексей приобрел ценную бумагу за 11 000 рублей. В конце каждого года цена бумаги возрастает на 4 000 рублей. В начале любого года Алексей может продать бумагу и положить вырученные деньги на банковский счет. Каждый год сумма на счете будет увеличиваться на 10%. В начале каждого года Алексей должен продать ценную бумагу, чтобы через 15 лет после покупки этой бумаги сумма на счете была наибольшей?
Решение:
Используем арифметическую прогрессию, в которой а1=11000 — цена за бумагу в первый год покупки году, d=4000 — увеличение стоимости бумаги, аn — пока еще неизвестный нам год продажи бумаги (по счету от года покупки), n — номер года.
Формула n-ого члена арифметической прогрессии: an=a1+d(n-1).
Используя ее находим числа, отвечающие за стоимость бумаги на начало n-го года (по счету от года покупки).
Каждый год сумма на счете будет увеличиваться на 10% = 0,1 от данной суммы, и эти 10% должны быть больше или равны 4000.
Составим неравенство: 0,1·(a1+d(n-1)) ≥ 4000.
Подставим а1=11000, d=4000 и решим неравенство:
0,1·(11000+4000(n-1)) ≥ 4000 обе части неравенства умножим на 10, чтобы избавится от десятичной дроби, получим
11000+4000(n — 1) ≥ 40000;
11000+4000n — 4000 ≥ 40000;
4000n ≥ 33000;
n ≥ 8,25, n ∈Ν ⇒ n=8
через 8 лет надо продать бумагу, т.е. в 2001+8=2009 году
Или рассуждаем так: на восьмом году (т.е. в 2008) 10% от стоимости будет больше 4000, значит бумагу надо продать в следующем (т.е. 2009)).
Ответ: 2009 год.
Другое решение этой задачи.
Чтобы извлечь наибольшую прибыль, Алексей должен воспользоваться банковским депозитом, когда 10% от суммы, вырученной за ценную бумагу, превысит 4000 руб. Найдем значение суммы, от которой 10% будут равны 4000, получим: х·0,1 = 4000
х = 4000: 0,1 = 40000
То есть ценную бумагу в 11000 рублей нужно довести до суммы большей или равной 40000 рублей и полученную сумму положить в банк. Ценная бумага дойдет до этого уровня через 40000 – 11000 = 4000·n
n = 29000: 4000 = 7,25 n ∈Ν ⇒ n=8
то есть через 8 лет, и в начале 2009-го года полученную сумму нужно положить на банковский депозит.
Ответ: 2009.
Реши самостоятельно:
В начале 2001 года Алексей приобрел ценную бумагу за 7000 рублей. В конце каждого года цена бумаги возрастает на 2000 рублей. В начале любого года Алексей может продать бумагу и положить вырученные деньги на банковский счет. Каждый год сумма на счет будет увеличиваться на 10%. В начале какого года Алексей должен продать ценную бумагу, чтобы через пятнадцать лет после покупки этой бумаги сумма на банковском счете была наибольшей?
В начале 2001 года Алексей приобрел ценную бумагу за 19000руб. В конце каждого года цена бумаги возрастает на 3000 руб. В начале любого года Алексей может продать бумагу и положить вырученные деньги на банковский счет. Каждый год сумма на счете будет увеличиваться на 10%. В начале какого года Алексей должен продать ценную бумагу, чтобы через пятнадцать лет после покупки этой бумаги сумма на банковском счете была наибольшей?
Решение экономических задач: банки, проценты, кредиты.
1. Аннуитетный платеж – представляет собой равные ежемесячные платежи, растянутые на весь срок кредитования. В сумму платежа включены: часть ссудной задолженности и начисленный процент. При этом, в первые месяцы (или годы) кредита большую часть транша составляют проценты, а меньшую – погашаемая часть основного долга. Ближе к концу кредитования пропорция меняется: большая часть транша идет на погашение «тела» кредита, меньшая – на проценты. При этом общий размер платежа всегда остается одинаковым.
Задачи на кредит с аннуитетным платежом
1 января 2015 года Александр Сергеевич взял в банке 1,1 млн. рублей в кредит. Схема выплаты кредита следующая – 1-го числа каждого следующего месяца банк начисляет 1% на оставшуюся сумму долга (то есть увеличивает долг на 1%), затем Александр Сергеевич переводит в банк платёж. На какое минимальное количество месяцев Александр Сергеевич может взять кредит, чтобы ежемесячные выплаты были не более 275 тыс. рублей?
Решение:
№ месяца |
Остаток после начисления процентов и платежа |
0 |
1100000руб. |
1 |
1100000 ·1,02 – 275000 = 836000 руб. |
2 |
836000 ·1,02 – 275000 = 569360 руб. |
3 |
569360 ·1,02 – 275000 = 300053,6 руб. |
4 |
300053,6·1,02 – 275000 = 28054,13 руб. |
5 |
28054,13 ·1,02 = 28334,67 — 28334,67 = 0 |
Ответ: 5 месяцев
Реши самостоятельно:
1 января 2015 года Иван Сергеевич взял в банке 1 млн. рублей в кредит. Схема выплаты кредита следующая: 1-го числа каждого следующего месяца банк начисляет 2% на оставшуюся сумму долга (то есть увеличивает долг на 2%), затем Иван Сергеевич переводит в банк платёж. На какое минимальное количество месяцев Иван Сергеевич может взять кредит, чтобы ежемесячные выплаты были не более 200 тыс. рублей.
1 января 2015 года Андрей Владимирович взял в банке 1,1 млн. рублей в кредит. Схема выплаты кредита следующая: 1 числа каждого следующего месяца банк начисляет 3 процента на оставшуюся сумму долга (то есть увеличивает долг на 3%), затем Андрей Владимирович переводит в банк платёж. На какое минимальное количество месяцев Андрей Владимирович может взять кредит, чтобы ежемесячные выплаты были не более 220 тыс. рублей?
1 января 2019 года Павел Васильевич взял в банке 1 млн. рублей в кредит. Схема выплаты кредита следующая: 1 числа каждого следующего месяца банк начисляет 1 процент на оставшуюся сумму долга (то есть увеличивает долг на 1%), затем Павел Васильевич переводит в банк платёж. На какое минимальное количество месяцев Павел Васильевич может взять кредит, чтобы ежемесячные выплаты были не более 125 тыс. рублей?
1 января 2018 года Тимофей Ильич взял в банке 1,1 млн. рублей в кредит. Схема выплаты кредита следующая — 1 числа каждого следующего месяца банк начисляет 2 процента на оставшуюся сумму долга (то есть увеличивает долг на 2%), затем Тимофей Ильич переводит в банк платёж. На какое минимальное количество месяцев Тимофей Ильич может взять кредит, чтобы ежемесячные выплаты были не более 220 тыс. рублей?
IV.1. 31 декабря 2014 года Алексей взял в банке 9282000 рублей в кредит под 10% годовых. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 10%) затем Алексей переводит в банк X рублей. Какой должна быть сумма X, чтобы Алексей выплатил долг четырьмя равными платежами (то есть за 4 года)?
Решение:
Пусть S = 9282000 рублей размер взятого в банке кредита. 31 декабря каждого года размер кредита увеличился на 10%, а затем, Алексей переводит в банк X рублей, т.е. остаток через четыре года будет равен нулю.
год |
дата |
долг |
0 |
31 декабря 2014 |
S = 9282000 рублей |
31 декабря 2015 |
1,1S |
|
1 |
1 января 2016 |
1,1S — х |
31 декабря 2016 |
(1,1S – х)1,1 |
|
2 |
1 января 2017 |
1,12 S – 1,1х -х |
31 декабря 2017 |
(1,12 S – 1,1х –х)1,1 |
|
3 |
1 января 2018 |
(1,12 S – 1,1х –х)1,1 — х |
31 декабря 2018 |
((1,12 S – 1,1х –х)1,1 – х)1,1 |
|
4 |
1 января 2019 |
((1,12 S – 1,1х –х)1,1 – х)1,1 — х |
Решим уравнение: ((1,12 S – 1,1х –х)1,1 – х)1,1 – х = 0
1,14 S – 1,13 х — 1,12 х — 1,1х –х = 0
Х =
Х =
Х = 2928200
Ответ: 2928200.
31 декабря 2018 года Роман взял в банке 8599000 рублей в кредит под 14% годовых. Схема выплаты кредита следующая – 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга(то есть увеличивает долг на 14%), затем Роман переводит в банк Х рублей. Какой должна быть сумма Х, чтобы Роман выплатил долг тремя равными платежами (то есть за 3 года)?
31 декабря 2019 года Виктор взял в банке 3276000 рублей в кредит под 20 % годовых. Схема выплаты кредита следующая – 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 20 %), затем Виктор переводит в банк Х рублей. Какой должна быть сумма Х, чтобы Виктор выплатил долг тремя равными платежами (то есть за 3 года)?
31 декабря 2020 года Георгий взял в банке 2648000 рублей в кредит под 10 % годовых. Схема выплаты кредита следующая – 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 10 %), затем Георгий переводит в банк Х рублей. Какой должна быть сумма Х, чтобы Георгий выплатил долг тремя равными платежами (то есть за 3 года)?
IV.2. В августе 2020 года взяли кредит. Условия возврата таковы:
— каждый январь долг увеличивается на r %;
— с февраля по июль необходимо выплатить часть долга. Кредит можно выплатить за три года равными платежами по 56 595 рублей, или за два года равными платежами по 81 095 рублей. Найдите r.
Решение:
Пусть S рублей сумма кредита, ежегодные выплаты x руб., r % годовых,
к = 1 + r/100. Выплаты: b = 81095 руб., х = 56595 руб. По условию долг на июль меняется так:
год |
Долг (руб.) |
1 |
кS — b |
2 |
(кS – b)к — b |
Если долг выплачен двумя равными платежами b руб., то (кS – b)к – b = 0
к2 S – кb — b = 0; к2 S = (к + 1)b; S = ((к+1) b)/к2
Если долг выплачен тремя равными платежами х руб., то
год |
Долг (руб.) |
1 |
кS — х |
2 |
(кS – х)к — х |
3 |
((кS – х)к – х)к — х |
((кS – х)к – х)к – х = 0
к3 S – к2 х – кх — х = 0
S = ((к2 + к+1) х)/к3
Решим систему уравнений
=
(к+1)к b = х(к2 + к+1)
(к2 + к) b = х(к2 + к) + х
(к2 + к) b — х(к2 + к) – х = 0
(к2 + к)( b – х) –х = 0
(81095 – 56595) (к2 + к) – 56595 = 0
24500к2 + 24500к — 56595 = 0
100к2 + 100к – 231 = 0
D = 102400, к = 1,1 к = -21 не удовлетворяет условию
к = 1 + r/100, r = 10%
Ответ: 10
Реши самостоятельно:
31 декабря 2017 года Пётр взял в банке некоторую сумму в кредит под некоторый процент годовых. Схема выплаты кредита следующая — 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на а %), затем Пётр переводит очередной транш. Если он будет платить каждый год по 2 592 000 рублей, то выплатит долг за 4 года. Если по 4 392 000 рублей, то за 2 года. Под какой процент Пётр взял деньги в банке?
В августе 2017 года взяли кредит. Условия возврата таковы:
— каждый январь долг увеличивается на r %;
— с февраля по июль необходимо выплатить часть долга.
Кредит можно выплатить за три года равными платежами по 38 016 рублей, или за два года равными платежами по 52 416 рублей.
Найдите r.
В августе 2020 года взяли кредит. Условия возврата таковы: — каждый год долг увеличивается на r — процентов с февраля по июнь необходимо выплатить часть долга Кредит можно выплатить за 4 года равными платежами по 777600 руб. или за 2 года равными платежами по 1317600 руб. Найдите r.
В июле 2020 года планируется взять кредит в банке на некоторую сумму. Условия его возврата таковы:
— каждый январь долг увеличивается на r % по сравнению с концом предыдущего года;
— с февраля по июнь каждого года необходимо выплатить одним платежом часть долга.
Если ежегодно выплачивать по 58 564 рубля, то кредит будет полностью погашен за 4 года, а если ежегодно выплачивать по 106 964 рубля, то кредит будет полностью погашен за 2 года. Найдите r.
2. Дифференцированный платеж – представляет собой неравные ежемесячные транши, пропорционально уменьшающиеся в течение срока кредитования. Наибольшие платежи – в первой четверти срока, наименьшие – в четвертой четверти. «Срединные» платежи обычно сравнимы с аннуитетом. Ежемесячно тело кредита уменьшается на равную долю, процент же насчитывается на остаток задолженности. Поэтому сумма транша меняется от выплаты к выплате. Если в задаче присутствуют слова «равными платежами» или «долг уменьшается на одну и ту же величину», то речь идет о дифференцированном платеже.
V. Планируется выдать льготный кредит на целое число миллионов рублей на четыре года. В середине каждого года действия кредита долг заёмщика возрастает на 25 % по сравнению с началом года. В конце 1-го и 2-го годов заёмщик выплачивает только проценты по кредиту, оставляя долг неизменно равным первоначальному. В конце 3-го и 4-го годов заёмщик выплачивает одинаковые суммы, погашая весь долг полностью. Найдите наименьший размер кредита, при котором общая сумма выплат заёмщика превысит 9 млн. рублей.
Решение:
Пусть S млн. рублей сумма первоначального кредита. В середине каждого года действия кредита долг возрастает на 25 %, x млн.рублей заёмщик выплачивает в конце 3-го и 4-го годов. В конце 1-го и 2-го годов заёмщик выплачивает только проценты по кредиту, оставляя долг неизменно равным первоначальному.
1 год |
начало |
S млн. рублей |
2 год |
начало |
S млн. рублей |
середина |
S + 0,25 S = 1,25 S |
середина |
S + 0,25 S = 1,25 S |
||
конец |
1,25 S — 0,25 S = S |
конец |
1,25 S — 0,25 S = S |
В сумме за 2 года он погашает сумму 0,25S + 0,25S = 0,5S.
В последние два года (3-й и 4-й) сумма долга сначала возрастает в 1,25 раза, а затем, погашается равными долями в x млн.рублей.
3 год |
начало |
S млн. рублей |
4 год |
начало |
(1,25 S – х) млн. руб. |
середина |
S + 0,25 S = 1,25 S |
середина |
(1,25 S – х)1,25 |
||
конец |
1,25 S — х |
конец |
1,252 S — 1,25 х -х |
На конец 4-го года, сумма долга составляет 0 рублей. Отсюда получаем
1,252 S — 1,25 х –х = 0,
1,252 S — 2,25 х = 0, х = =
За 4 года сумма выплат составила 0,5S + 2х. По условию общая сумма выплат превышает 9 млн. рублей, то есть, 0,5S + 2>9, 4,5S + 12,5S > 81,
17S > 81, S > 4 . При минимальном целом значении S = 5 это неравенство выполняется, следовательно, размер кредита составил 5 млн. рублей.
Ответ: 5 000 000
Реши самостоятельно:
Планируется выдать льготный кредит на целое число миллионов рублей на четыре года. В середине каждого года действия кредита долг заемщика возрастает на 20% по сравнению с началом года. В конце 1-го и 2-го годов заемщик выплачивает только проценты по кредиту, оставляя долг неизменно равным первоначальному. В конце 3-го и 4-го годов заемщик выплачивает одинаковые суммы, погашая весь долг полностью. Найдите наименьший размер кредита, при котором общая сумма выплат заемщика превысит 10 млн. рублей.
Планируется выдать льготный кредит на целое число миллионов рублей на четыре года. В середине каждого года действия кредита долг заемщика возрастает на 25% по сравнению с началом года. В конце 1-го и 2-го годов заемщик выплачивает только проценты по кредиту, оставляя долг неизменно равным первоначальному. В конце 3-го и 4-го годов заемщик выплачивает одинаковые суммы, погашая весь долг полностью. Найдите наименьший размер кредита, при котором общая сумма выплат заемщика превысит 5 млн. рублей.
Планируется выдать льготный кредит на целое число миллионов рублей на четыре года. В середине каждого года действия кредита долг заемщика возрастает на 15% по сравнению с началом года. В конце 1-го и 2-го годов заемщик выплачивает только проценты по кредиту, оставляя долг неизменно равным первоначальному. В конце 3-го и 4-го годов заемщик выплачивает одинаковые суммы, погашая весь долг полностью. Найдите наименьший размер кредита, при котором общая сумма выплат заемщика превысит 7 млн. рублей.
Планируется выдать льготный кредит на целое число миллионов рублей на четыре года. В середине каждого года действия кредита долг заёмщика возрастает на 10 % по сравнению с началом года. По договоренности с банком в конце 1-го и 3 – го года заемщик выплачивает только проценты по кредиту, начисленные за соответствующий текущий год. В конце 2‐го и 4‐го годов заёмщик выплачивает одинаковые суммы, погашая к концу 4‐го года весь долг полностью. Найдите наименьший размер кредита, при котором общая сумма выплат заёмщика превысит 100 млн. рублей.
Планируется выдать льготный кредит на целое число миллионов рублей на пять лет. В середине каждого года действия кредита долг заемщика возрастает на 10% по сравнению с началом года. В конце 1-го и 2-го и 3-го годов заемщик выплачивает только проценты по кредиту, оставляя долг неизменно равным первоначальному. В конце 4-го и 5-го годов заемщик выплачивает одинаковые суммы, погашая весь долг полностью. Найдите наибольший размер кредита, при котором общая сумма выплат будет меньше 8 млн. рублей.
Решение банковских задач на нахождение суммы кредита
VI. В июле 2026 года планируется взять кредит в банке на три года в размере S млн. руб., где S — целое число. Условия его возврата таковы:
— каждый январь долг увеличивается на 25% по сравнению с концом предыдущего года;
— с февраля по июнь каждого года необходимо выплатить одним платежом часть долга;
-в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей.
Месяц, год |
Июль 2026 |
Июль 2027 |
Июль 2028 |
Июль 2029 |
Долг (в млн. руб.) |
S |
0,8S |
0,5S |
0 |
Найдите наибольшее значение S, при котором каждая из выплат будет меньше 4 млн. рублей.
Решение:
Долг перед банком (в млн. рублей) на июль каждого года должен уменьшаться до нуля следующим образом: S; 0,8S; 0,5S; 0
По условию, в январе каждого года долг увеличивается на 25%, значит, долг в январе каждого года равен: 1,25S; 1,25∙0,8S; 1,25∙0,5S
Следовательно, выплаты с февраля по июнь каждого года составляют:
1,25S — 0,8S = 0,45S 1,25∙0,8S — 0,5S = 0,5S 1,25∙0,5S – 0 = 0,725S
По условию, каждая из выплат должна быть меньше 4 млн. рублей. Это будет верно, если максимальная из выплат меньше 4 млн.рублей, т. е.
0,725S< 4; S< 6,4 S = 6
Наибольшее целое решение этого неравенства – число 6. Значит, искомый размер кредита 6 млн. рублей.
Ответ: 6 млн. рублей.
Реши самостоятельно:
В июле 2026 года планируется взять кредит в банке на три года в размере S млн. руб., где S — целое число. Условия его возврата таковы:
— каждый январь долг увеличивается на 25% по сравнению с концом предыдущего года;
— с февраля по июнь каждого года необходимо выплатить одним платежом часть долга;
-в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей.
Месяц, год |
Июль 2026 |
Июль 2027 |
Июль 2028 |
Июль 2029 |
Долг (в млн. руб.) |
S |
0,7S |
0,4S |
0 |
Найдите наименьшее значение S, при котором каждая из выплат будет больше 5 млн. рублей.
В июле 2020 года планируется взять кредит в банке на три года в размере S млн. руб., где S — целое число. Условия его возврата таковы:
— каждый январь долг увеличивается на 15% по сравнению с концом предыдущего года;
— с февраля по июнь каждого года необходимо выплатить одним платежом часть долга;
-в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей.
Месяц, год |
Июль 2020 |
Июль 2021 |
Июль 2022 |
Июль 2023 |
Долг (в тыс. руб.) |
S |
0,7S |
0,4S |
0 |
Найдите наименьшее значение S, при котором каждая из выплат будет составлять целое число тысяч рублей.
В июле планируется взять кредит в банке в размере S тыс. рублей (S – натуральное число) сроком на 3 года. Условия возврата кредита таковы: ‐ каждый январь долг увеличивается на 22,5% по сравнению с концом предыдущего года; ‐ в июне каждого года необходимо выплатить одним платежом часть долга; ‐ в июле каждого года величина долга задается таблицей
Месяц, год |
2018 |
2019 |
2020 |
2021 |
Долг (в тыс. руб.) |
S |
0,7S |
0,4S |
0 |
Найдите наименьшее значение S, при котором каждая из выплат будет составлять целое число тысяч рублей.
В июле 2016 года планируется взять кредит в банке на четыре года в размере S млн. рублей, где S — целое число. Условия его возврата таковы:
— каждый январь долг увеличивается на 15% по сравнению с концом предыдущего года;
— с февраля по июнь каждого года необходимо выплатить часть долга;
— в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей.
Месяц, год |
Июль 2016 |
Июль 2017 |
Июль 2018 |
Июль 2019 |
Июль 2020 |
Долг (в млн. руб.) |
S |
0,8S |
0,5S |
0,1 S |
0 |
Найдите наибольшее значение S, при котором общая сумма выплат будет меньше 50 млн. рублей.
В июле 2016 года планируется взять кредит в банке на четыре года в размере S млн. рублей, где S — натуральное число. Условия его возврата таковы:
— каждый январь долг увеличивается на 25% по сравнению с концом предыдущего года;
— с февраля по июнь каждого года необходимо выплатить часть долга;
— в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей.
Месяц, год |
Июль 2016 |
Июль 2017 |
Июль 2018 |
Июль 2019 |
Июль 2020 |
Долг (в млн. руб.) |
S |
0,7S |
0,5S |
0,3 S |
0 |
Найдите наименьшее значение S, при котором общая сумма выплат будет составлять целое число миллионов рублей.
Решение банковских задач на нахождение суммы вклада
VII. 15-го января планируется взять кредит в банке на 24 месяца. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.
Известно, что в течении первого года кредитования нужно вернуть банку 466,5 тыс. руб. Какую сумму планируется взять в кредит?
Решение:
Обозначим через Х размер кредита, взятого в банке. Во втором месяце долг увеличивается на 3% и, затем, осуществляется выплата так, чтобы долг уменьшался на одну и ту же величину, т.е. в первый раз выплата будет составлять , и сумма долга во втором месяце составит:
1,03х – () = х — = . Аналогично для следующего месяца, только долг теперь будет составлять получаем остаток долга в размере
1,03· – () = — = .
Вторая выплата будет равна:
Аналогично третья выплата:
Аналогично четвертая выплата: и т.п.
………………………………………………………..
12- тая выплата:
Сумма выплат за первые 12 месяцев составит:
… + 13) =
В скобках получилась арифметическая прогрессия сумму, которой находим по формуле =
= + = = .
По условию в течении первого года нужно выплатить 466,5 тыс. руб.
= 466,5 Х= Х= 600 тыс. руб. или это 600000 руб.
Ответ: 600000 руб.
Реши самостоятельно:
15-го января планируется взять кредит в банке на 20 месяца. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.
Известно, что за первые 10 месяцев нужно вернуть банку 1179 тыс. руб. Какую сумму планируется взять в кредит?
15-го января планируется взять кредит в банке на 24 месяца. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на 1% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.
Известно, что за последние 12 месяцев нужно вернуть банку 1597,5 тыс. руб. Какую сумму планируется взять в кредит?
15-го января планируется взять кредит в банке на 16 месяца. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на 4% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.
Известно, что за первые 8 месяцев нужно вернуть банку 900 тыс. руб. Какую сумму планируется взять в кредит?
5-го января планируется взять кредит в банке на 24 месяца. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.
Какую сумму следует взять в кредит, чтобы общая сумма выплат после полного его погашения равнялась 1 млн рублей?
5)15 января планируется взять кредит в банке на 24 месяца. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца.
Известно, что в течение второго года кредитования нужно вернуть банку 339 тыс. рублей. Какую сумму нужно вернуть банку в течение первого года кредитования?
VIII. 15-го января планируется взять кредит в банке на 26 месяцев. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца с 1- го по 25 – й месяц долг должен быть на 40 тыс. руб. меньше долга на 15-е число предыдущего месяца.
— к 15 – му числу 26 – го месяца кредит должен быть полностью погашен.
Какую сумму планируется взять в кредит, если общая сумма выплат после полного его погашения составит 1924 тыс. руб.
Решение:
Обозначим через S исходную сумму кредита. В течение первого месяца эта сумма возрастает на 3%, становится равной S+0,03S = 1,03 S. Выплату нужно сделать так, чтобы исходная сумма S уменьшилась на 40 тыс. рублей, то есть, нужно выплатить
0,03S+40 тыс. рублей.
Оставшаяся сумма S-40 в следующем месяце снова увеличивается на 3%, становится равной 1,03(S-40), и следует выплатить0,03(S-40) + 40 тыс. руб., Таким образом, в течении 25-ти месяцев, сумма выплат составит:
0,03S+40 + (0,03(S-40) + 40) + (0,03(S-2·40) + 40) + (0,03(S-2·40) + 40) +… + (0,03(S-24·40) + 40) = 0,03S·25 + 40·25 – 0,03·40·( 1 + 2 + 3 +… + 24) =
S24 = 1 + 2 + 3 +… + 24 = 24 = 25·12 = 300
= 0,75 S + 1000 – 360 =0,75 S + 640
В последний 26-й месяц выплачивается остаток 1,03(S -25·40) = 1,03(S – 1000)
В сумме за 26 месяцев имеем: 0,75 S + 640 +1,03(S – 1000). По условию общая сумма выплат после полного его погашения составит 1924 тыс. руб. Составим и решим уравнение: 0,75 S + 640 +1,03(S – 1000) = 1924
1,78 S = 1924 + 390
S = 2314/ 1,78
S = 1300 тыс.руб.
Ответ: 1300000 руб.
Реши самостоятельно:
15-го декабря планируется взять кредит в банке на 11 месяцев. Условия возврата таковы:
— 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца с 1-го по 10-й долг должен быть на 80 тысяч рублей меньше долга на 15-е число предыдущего месяца;
— к 15-му числу 11-го месяца кредит должен быть полностью погашен.
Какой долг будет 15-го числа 10-го месяца, если общая сумма выплат после полного погашения кредита составит 1198 тысяч рублей?
15-го декабря планируется взять кредит в банке на сумму 300 тысяч рублей на 21 месяц. Условия возврата таковы:
— 1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца с 1-го по 20-й долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца;
— 15-го числа 20-го месяца долг составит 100 тысяч рублей;
— к 15-му числу 21-го месяца кредит должен быть полностью погашен.
Найдите общую сумму выплат после полного погашения кредита.
15-го декабря планируется взять кредит в банке на 21 месяц. Условия возврата таковы:
— 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца с 1-го по 20-й долг должен быть на 30 тысяч рублей меньше долга на 15-е число предыдущего месяца;
— к 15-му числу 21-го месяца кредит должен быть полностью погашен.
Какую сумму планируется взять в кредит, если общая сумма выплат после полного его погашения составит 1604 тысяч рублей?
Ответы:
1) 84 млн. руб., 2) 69 млн. руб., 3) 90 млн. руб., 4)53500 руб., 5) 2685000 руб.
1) 125000 руб., 2)104500 руб. 3)86600 рублей.
1) 2 2) 25
III. l. 1) 2008 2) 2005
1) 6 месяцев 2) 6 месяцев 3) 9 месяцев 4) 6 месяцев
IV.1. 1) 3703860 рублей 2) 155520 рублей 3) 1064800 рублей
IV.2. 1) 20% 2) 20% 3) 20% 4) 10%
1) 6 млн. руб., 2) 3 млн. руб., 3) 5 млн. руб., 4) 77 млн. руб.,
5 млн. руб.
VI. 1) 11млн.руб. 2) 200 тыс. руб. 3) 400 тыс. руб. 4) 36 млн.руб.
5) 8 млн.руб.
VII. 1) 1200000руб. 2) 3000000 руб. 3) 1200000руб. 4) 0,8 млн. руб.
5) 411000 руб.
VIII. 1) 200000 руб. 2) 384000 руб. 3) 1100000 руб.
Используемая литература:
Шестаков С.А. ЕГЭ 2017. Математика. Задачи с экономическим содержанием. Задачи 17(профильный уровень)/Под ред.И.В.Ященко.-М.:МЦНМЩ, 2017
30 тренировочных вариантов ЕГЭ под редакцией И. В. Ященко» – 2021.