Фипи егэ математика профиль 2022 варианты ященко

ЕГЭ 2022, полный разбор 36 варианта Ященко ФИПИ школе 36 вариантов. Решаем типовые варианты от Ященко 2022 года ЕГЭ профиль!

Решаем 36 вариант Ященко 2022 года сборника ФИПИ школе 36 вариантов. Разбор 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19 задания.

Больше разборов на моем ютуб-канале

Задание 1

Найдите корень уравнения $$sqrt{frac{6}{4x-54}}=frac{1}{7}.$$

Ответ: 87

Скрыть

$$(sqrt{frac{6}{4x-54}})^2=(frac{1}{7})^2$$

$$frac{6}{4x-54}=frac{1}{49}$$

$$4x – 54 = 294$$

$$4x = 294 + 54$$

$$4x = 348$$

$$x = 87$$

Задание 2

На рок-фестивале выступают группы — по одной от каждой из заявленных стран, в том числе группы из Италии, Германии, Австрии и Испании. Порядок выступления определяется жребием. Какова вероятность того, что группа из Германии будет выступать позже групп из Италии, Австрии и Испании? Ответ округлите до сотых.

Ответ: 0,25

Скрыть

Если поставить Германию после трех групп, то количество перестановок без повторений из этих 3 групп (Италии, Австрии и Испании) будет равно 3! . Заметим, что это благоприятствующие исходы m.

А общее количество перестановок из всех 4 групп равно 4! это n.

Таким образом, вероятность того,  что группа из Германии будет выступать позже групп из Италии, Австрии и Испании будет равна

$$P(A)=frac{3!}{4!}=frac{1cdot2cdot3}{1cdot2cdot3cdot4}=frac{1}{4}=0,25$$

Задание 3

Основания равнобедренной трапеции равны 24 и 10. Радиус описанной окружности равен 13. Центр окружности лежит внутри трапеции. Найдите высоту трапеции.

Ответ: 17

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 4

Найдите значение выражения: $$3^{2+log_{3}7}$$

Ответ: 63

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 5

В основании прямой призмы лежит прямоугольный треугольник с катетами 5 и 6. Боковые рёбра призмы равны $$frac{4}{pi}$$. Найдите объём цилиндра, описанного около этой призмы.

Ответ: 61

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 6

Прямая $$y=-5x+6$$ является касательной к графику функции $$28x^2+23x+c$$. Найдите с.

Ответ: 13

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 7

Груз массой 0,58 кг колеблется на пружине. Его скорость $$v$$ (в м/с) меняется по закону $$v=v_{0}sin frac{2pi t}{T}$$, где t — время с момента начала колебаний в секундах, Т=6 с — период колебаний, $$v_{0}$$=2 м/с. Кинетическая энергия Е (в Дж) груза вычисляется по формуле $$E=frac{mv^{2}}{2}$$, где m —  масса груза (в кг), $$v$$ — скорость груза (в м/с). Найдите кинетическую энергию груза через 4 секунды после начала колебаний. Ответ дайте в джоулях.

Ответ: 0,87

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 8

Каждый из двух рабочих одинаковой квалификации может выполнить заказ за 21 час. Через 5 часов после того, как один из них приступил к выполнению заказа, к нему присоединился второй рабочий, и работу над заказом они довели до конца уже вместе. Сколько часов потребовалось на выполнение всего заказа?

Ответ: 13

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 9

На рисунке изображена часть графика функции $$f(x)=|kx+b|.$$ Найдите $$f(-15).$$

Ответ: 1,2

Скрыть

$$f(x)$$ проходит через $$(-2;4)$$ и $$(-7;2).$$

При этом изображено «положительное» раскрытие модуля, т. е. $$f(x)=kx+b,kgeq0.$$

Получим:

$$left{begin{matrix} 4=-2k+b\ 2=-7k+b end{matrix}right.Leftrightarrowleft{begin{matrix} k=0,4\ b=4,8 end{matrix}right.$$

Получим:

$$f(x)=|0,4x+4,8|, тогда: f(-15)=|0,4cdot(-15)+4,8|=|-1,2|=1,2.$$

Задание 10

В викторине участвуют 15 команд. Все команды разной силы, и в каждой встрече выигрывает та команда, которая сильнее. В первом раунде встречаются две случайно выбранные команды. Ничья невозможна. Проигравшая команда выбывает из викторины, а победившая команда играет со следующим случайно выбранным соперником. Известно, что в первых 8 играх победила команда А. Какова вероятность того, что эта команда выиграет девятый раунд?

Ответ: 0,9

Скрыть

Если команда «А» выиграла n раундов, то вероятность, что команда «А» выиграет в n+1 раунде:

$$1-frac{1}{n+2}$$

Тогда:

$$1-frac{1}{8+2}=1-frac{1}{10}=1-0,1=0,9$$

Задание 11

Найдите наименьшее значение функции $$y=6+frac{sqrt{3}pi}{2}-3sqrt{3}x-6sqrt{3}cos x$$ на отрезке $$[0;frac{pi}{2}]$$

Ответ: -3

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 12

а) Решите уравнение: $$cos 4x-sin 2x=0$$

б) Найдите все корни этого уравнения, принадлежащие отрезку $$[0;pi]$$

Ответ: а)$$frac{pi}{12}+frac{pi k}{3}, kin Z$$ б)$$frac{pi}{12};frac{5pi}{12};frac{3pi}{4}$$

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 13

В правильной четырёхугольной пирамиде SABCD все рёбра равны 1. Точка F — середина ребра SB, G — середина ребра SC.

а) Постройте прямую пересечения плоскостей ABG и GDF.

б) Найдите угол между плоскостями ABG и GDF.

Ответ: $$arccos frac{9}{11}$$

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 14

Решите неравенство: $$9^{x}-10cdot 3^{x+1}+81geq 0$$

Ответ: $$(-infty;1]cup[3;+infty)$$

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 15

31 декабря 2014 года Михаил взял в банке некоторую сумму в кредит под 10% годовых. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 10%), затем Михаил переводит в банк 2 928 200 рублей. Какую сумму взял Михаил в банке, если он выплатил долг четырьмя равными платежами (то есть за четыре года)?

Ответ: 9 282 000 рублей

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 16

Четырёхугольник ABCD вписан в окружность, причём сторона CD — диаметр этой окружности. Продолжение перпендикуляра AH к диагонали BD пересекает сторону CD в точке E, а окружность — в точке F, причём H — середина AE.

а) Докажите, что четырёхугольник BCFE — параллелограмм.

б) Найдите площадь четырёхугольника ABCD, если известно, что АВ=6 и АН=$$2sqrt{5}$$.

Ответ: $$48+18sqrt{5}$$

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 17

Найдите все значения а, при каждом из которых функция

$$f(x)=x^{2}-4|x-a^{2}|-8x$$

имеет хотя бы одну точку максимума.

Ответ: $$ain(-sqrt{6};-sqrt{2})cup(sqrt{2};sqrt{6})$$

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 18

Имеется 8 карточек. На них записывают по одному каждое из чисел -1, 3, 4, -5, 7, -9, -10, 11. Карточки переворачивают и перемешивают. На их чистых сторонах заново пишут по одному каждое из чисел -1, 3, 4, -5, 7, -9, -10, 11. После этого числа на каждой карточке складывают, а полученные восемь сумм перемножают.

а) Может ли в результате получиться 0?

б) Может ли в результате получиться 1?

в) Какое наименьшее целое неотрицательное число может в результате получиться?

Ответ: нет; нет; 16

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


3577 В основании четырёхугольной пирамиды SABCD лежит прямоугольник ABCD со сторонами AB=5 и BC=sqrt23. Длины боковых рёбер пирамиды SA = 2sqrt15, SB=sqrt85, SD=sqrt83. а) Докажите, что SA — высота пирамиды SABCD. б) Найдите угол между прямыми SC и BD
Решение
В основании четырёхугольной пирамиды SABCD лежит прямоугольник ABCD со сторонами AB=5 и BC=sqrt23 ! Тренировочная работа по математике №2 СтатГрад 11 класс 13.12.2022 Задание 13 Вариант МА2210209 #Задача-аналог   2525   ...X
3334 В правильной четырёхугольной пирамиде SABCD все рёбра равны 1. Точка F — середина ребра SB, точка G — середина ребра SC.
а) Постройте прямую пересечения плоскостей ABG и GDF.
б) Найдите угол между плоскостями ABG и GBF
Решение
а) Постройте прямую пересечения плоскостей ABG и GDF ! 36 вариантов ФИПИ Ященко 2022 Вариант 36 Задание 13 ...X
3309 Найдите наибольшее значение функции y=ln((x+9)^5)-5x на отрезке [-8,5; 0]
Решение     График
Найдите наибольшее значение функции y= ln(x+9)5 -5x на отрезке [-8,5; 0] ! 36 вариантов ФИПИ Ященко 2022 Вариант 34 Задание 11 ...X
3308 а) Решите уравнение ((0.25)^sin(x))^cos(x)=2^(-sqrt(2)sin(x)) б) Найдите все корни этого уравнения, принадлежащие промежутку [2pi; (7pi)/2].
Решение     График
а) Решите уравнение ((0,25) sinx) cosx = 2 -sqrt2 sinx ! 36 вариантов ФИПИ Ященко 2022 Вариант 34 Задание 12 ...X
3307 На рисунке изображён график функций f(x)=(kx+a)/(x+b). Найдите k

Решение

На рисунке изображён график функций f(x)= kx+a / (x+b). Найдите k ! 36 вариантов ФИПИ Ященко 2022 Вариант 33 Задание 9 ...X
3306 На рисунке изображены графики функций f(x)=asqrtx. и g(x)=kx+b., которые пересекаются в точках A(x0; y0) и B(4; 5). Найдите y0

Решение     График

На рисунке изображены графики функций, которые пересекаются в точках A(x0; y0) и B(4; 5) ! 36 вариантов ФИПИ Ященко 2022 Вариант 32 Задание 9 ...X
3305 Имеется два сосуда. Первый содержит 55 кг, а второй — 20 кг растворов кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 68 % кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 75 % кислоты. Сколько процентов кислоты содержится в первом сосуде?
Решение
Имеется два сосуда. Первый содержит 55 кг, а второй — 20 кг растворов кислоты различной концентрации ! 36 вариантов ФИПИ Ященко 2022 Вариант 31 Задание 8 ...X
3304 На рисунке изображены графики функций f(x)=asqrtx. и g(x)=kx+b., которые пересекаются в точке A. Найдите абсциссу точки A

Решение     График

На рисунке изображены графики функций. Найдите абсциссу точки A ! 36 вариантов ФИПИ Ященко 2022 Вариант 31 Задание 9 ...X
3303 За круглый стол на 6 стульев в случайном порядке рассаживаются 3 мальчика и 3 девочки. Найдите вероятность того, что рядом с любым мальчиком будут сидеть две девочки
Решение
За круглый стол на 6 стульев в случайном порядке рассаживаются 3 мальчика и 3 девочки ! 36 вариантов ФИПИ Ященко 2022 Вариант 31 Задание 10 ...X
3302 В кафе на одной полке в случайном порядке стоят 50 чайных чашек: 30 зелёных, 10 красных и 10 синих. На другой полке в случайном порядке стоят 50 блюдец: 30 зелёных, 10 красных и 10 синих. Найдите вероятность того, что случайно выбранные чашка и блюдце будут одинакового цвета
Решение
Найдите вероятность того, что случайно выбранные чашка и блюдце будут одинакового цвета ! 36 вариантов ФИПИ Ященко 2022 Вариант 30 Задание 10 ...X

К следующей страницеПоказать ещё…

Показана страница 1 из 27

Перейти к содержимому

ЕГЭ 2022 по математике, И.В. Ященко. 36 экзаменационных тренировочных вариантов (задания и ответы)И.В. Ященко, И.Р. Высоцкий, Е. А. Коновалов ЕГЭ-2022. Сборник тренировочных вариантов. Книга предназначена для подготовки учащихся к ЕГЭ по математике. В сборнике представлены: 36 типовых экзаменационных вариантов, составленных в соответствии с проектом демоверсии КИМ ЕГЭ 2022 года; ответы ко всем заданиям и критерии оценивания.

Читать онлайн и скачать сборник в формате PDF: Скачать


* Еще больше пособий ЕГЭ и ОГЭ
* Учебные материалы

Поделиться:

Главная » Математика » ЕГЭ 2022 Математика. Типовые тестовые задания. Профильный уровень. 14 вариантов — Ященко В.И.

ЕГЭ 2022 Математика. Типовые тестовые задания. Профильный уровень. 14 вариантов - Ященко В.И.

Авторы пособия — ведущие специалисты, принимающие непосредственное участие в разработке методических материалов для подготовки к выполнению контрольных измерительных материалов ЕГЭ. Пособие содержит 14 типовых вариантов экзаменационных заданий, составленных с учётом всех особенностей и требований Единого государственного экзамена по математике профильного уровня в 2022 году. Назначение пособия — предоставить читателям информацию о структуре и содержании контрольных измерительных материалов 2022 г. по математике профильного уровня, степени трудности заданий. В сборнике даны ответы на все варианты тестов и приводятся решения всех заданий одного из вариантов. Кроме того, приведены образцы бланков, используемых на ЕГЭ для записи ответов и решений. Пособие может быть использовано учителями для подготовки учащихся к экзамену по математике в форме ЕГЭ, а также старшеклассниками и выпускниками — для самоподготовки и самоконтроля.

  • Рубрика: Математика / ЕГЭ / ЕГЭ по математике
  • Автор: Ященко И.В.
  • Год: 2022
  • Для учеников: 11 класс
  • Язык учебника: Русский
  • Формат: PDF
  • Страниц: 73

Like this post? Please share to your friends:
  • Фипи егэ математика профиль 2020 фипи все задания
  • Фипи егэ математика геометрия
  • Фипи егэ математика 11 класс профильный
  • Фипи егэ матем профиль 2022
  • Фипи егэ матан профиль