Комбинированные задачи
Версия для печати и копирования в MS Word
Гиперболы
Версия для печати и копирования в MS Word
1
Источник: А. Ларин: Тренировочный вариант № 110.
2
На рисунке изображён график функции Найдите, при каком значении x значение функции равно 0,8.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
На рисунке изображён график функции вида где числа a, b и c — целые. Найдите a.
21
На рисунке изображён график функции вида где числа a, b и c — целые. Найдите c.
22
На рисунке изображён график функции вида где числа a, b и c — целые. Найдите a.
23
На рисунке изображён график функции вида где числа a, b и c — целые. Найдите a.
24
На рисунке изображён график функции вида где числа a, b и c — целые. Найдите a.
25
На рисунке изображён график функции вида где числа a, b и c — целые. Найдите c.
26
На рисунке изображён график функции вида где числа a, b и c — целые. Найдите c.
27
На рисунке изображён график функции вида где числа a, b и c — целые. Найдите b.
28
На рисунке изображён график функции вида где числа a, b и c — целые. Найдите b.
29
На рисунке изображён график функции вида где числа a, b и c — целые. Найдите b.
30
31
32
33
Кусочно-линейная функция
Версия для печати и копирования в MS Word
1
2
3
4
5
6
7
8
9
10
11
12
13
Параболы
Версия для печати и копирования в MS Word
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
На рисунке изображён график функции вида где числа a, b и c — целые. Найдите абсциссу вершины параболы.
32
На рисунке изображён график функции Найдите значение f(−6).
33
На рисунке изображён график фуıкции вида где a, b и c — целые числа. Найдите значение f(4).
Источник: Пробный вариант ЕГЭ по математике 03.12.22 Москва.
Тригонометрические функции
Версия для печати и копирования в MS Word
1
На рисунке изображён график функции Найдите a.
2
На рисунке изображён график функции Найдите b.
3
На рисунке изображён график функции Найдите a.
4
На рисунке изображён график функции Найдите b.
5
На рисунке изображён график функции Найдите a.
6
На рисунке изображён график функции Найдите b.
7
На рисунке изображён график функции вида где числа a, b, c и d — целые. Найдите
8
9
Линейные функции
Версия для печати и копирования в MS Word
1
2
3
На рисунке изображены графики двух линейных функций. Найдите абсциссу точки пересечения графиков.
4
На рисунке изображены графики двух линейных функций. Найдите абсциссу точки пересечения графиков.
5
На рисунке изображены графики двух линейных функций. Найдите абсциссу точки пересечения графиков.
Показательные и логарифмические функции
Версия для печати и копирования в MS Word
- ЕГЭ по математике профиль
Новые задания №9 ЕГЭ 2022 по профильной математике — графики функций.
Для успешного результата необходимо уметь выполнять действия с функциями.
Задание №9 ЕГЭ 2022 математика профильный уровень Прототипы
Скачать задания | Источник |
Новые задания 9 | ФИПИ |
Прототипы задания №9 | vk.com/mathegeexam |
Скачать задания | vk.com/ekaterina_chekmareva |
→ Теория → Задачи → Шпаргалка |
vk.com/abel_mat |
Линейная функция | math100.ru |
Парабола | |
Гипербола | |
Логарифмическая и показательная функции | |
Иррациональные функции | |
Тригонометрические функции |
Из кодификатора 2022 года для выполнения 9 задания нужно изучить основные элементарные функции, их свойства и графики:
3.3.1 Линейная функция, её график
3.3.2 Функция, описывающая обратную пропорциональную зависимость, её график
3.3.3 Квадратичная функция, её график
3.3.4 Степенная функция с натуральным показателем, её график
3.3.5 Тригонометрические функции, их графики
3.3.6 Показательная функция, её график
3.3.7 Логарифмическая функция, её график
Уметь выполнять действия с функциями: определять значение функции по значению аргумента при различных способах задания функции; описывать по графику поведение и свойства функции, находить по графику функции наибольшее и наименьшее значения; строить графики изученных функций:
При отработке данного задания будут полезны книги:
Купить ЕГЭ. Математика. Графики функций, уравнения и неравенства, содержащие переменную под знаком модуля
Купить Задачи с параметрами. Применение свойств функций, преобразование неравенств
Связанные страницы:
Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи в разделе контакты
В ЕГЭ 2022 года добавили новую задачу на графики функций. Для решения этой задачи нужно сначала определить формулу функции, а затем вычислить ответ на вопрос задачи. И если вычисление ответа по известной формуле обычно не составляет труда, то вот определение самой формулы часто ставит школьников в тупик. Поэтому мы разберем три разных подхода к этому вопросу.
Замечание. Про то как определяется формула у прямой и параболы я написала в этой и этой статьях. Поэтому здесь в примерах я буду использовать другие функции – дробные, иррациональные, показательные и логарифмические, но все три описанных здесь способа работают и для линейных, и для квадратичных функций в том числе.
1 способ – находим формулу по точкам
Этот способ подходит вообще для любой девятой задачи, но занимает достаточно много времени и требует хорошего навыка решения систем уравнений.
Давайте разберем алгоритм на примере конкретной 9-ой задачи ЕГЭ:
Алгоритм:
1. Находим 2 точки с целыми координатами. Обычно они выделены жирно, но если это не так, то не проблема найти их самому.
Пример:
2. Подставляем эти координаты в «полуфабрикат» функции. Вместо (f(x))– координату игрек, вместо (x) – икс. Получается система.
3. Решаем эту систему и получаем готовую формулу.
4. Готово, функция найдена, можно переходить ко второму этапу – вычислению (f(-8)). Если вы вдруг не знаете, что это значит – в конце статьи я рассматриваю этот момент более подробно.
Давайте посмотрим метод еще раз на примере с логарифмической функцией.
Пример:
2 способ – преобразование графиков функций
Этот способ сильно быстрее первого, но требует больше знаний. Для использования преобразований функций нужно знать, как выглядят функции без изменения и как преобразования их меняют. Наиболее удобно использовать этот способ для иррациональной функции ((y=sqrt{x}) ) и функции обратной пропорциональности ((y=frac{1}{x})).
Вот как выглядит применение этого способа:
Для использования этого способа надо знать, как выглядят изначальные функции:
И понимать, как меняются функции от преобразований:
Часто даже по «полуфабрикату» функции понятно, какие преобразования сделали с функцией:
Пример:
3 способ – гибридный
Идеально подходит для логарифмических и показательных функций, так как обычно у таких функций неизвестно основание и с помощью преобразований его не найти. С другой стороны, независимо от оснований любая показательная функция должна проходить через точку ((0;1)), а любая логарифмическая — через точку ((1;0)).
По смещению этих точек легко понять, как именно двигали функцию, но только если ее не растягивали, а лишь перемещали вверх-вниз, влево-вправо (как обычно и бывает в задачах на ЕГЭ).
Основание же лучше находить уже следующим действием, используя подстановку координат точки в «полуфабрикат» функции.
Как отвечать на вопросы в задаче, когда уже определили функцию
— Если просят найти (f)(любое число), то нужно это число подставить в готовую функцию вместо икса.
Пример:
— Если просят найти «при каком значении x значение функции равно *любому числу*», то надо решить уравнение, в одной части которого будет функция, а в другой — то самое число. Аналогично надо поступить, если просят «найти корень уравнения (f(x)=) *любое число*».
Пример:
— Если просят найти абсциссу точки пересечения – надо приравнять 2 функции и решить получившееся уравнение. Корень уравнения и будет искомой абсциссой. Аналогично надо делать в задачах, где даны две точки пересечения (A)(*любое число*;*другое число*) и (B(x_0;y_0)) и просят найти (x_0).
Пример:
— Если просят найти ординату точки пересечения – надо приравнять 2 функции, найти иксы и подставить подходящий икс в любую функцию. Точно также решаем если просят найти (y_0) точки пересечения двух функций.
Пример:
— Иногда просят найти просто какой-либо из коэффициентов функции. Тогда надо просто восстановить функцию и записать в ответ то, о чем спросили:
Пример:
💡 Если Вы — учитель математики, то Вы можете создавать готовые карточки для учеников с индивидуальными заданиями и с ответами для отработки заданий на графики функций. Данные задачи доступны в Конструкторе бесплатно.
3. На рисунке изображён график функции y=3x^2+bx+c . Найдите f(6) . [Ответ: 10] |
Смотреть видеоразбор похожего >> |
4. На рисунке изображён график функции y=ax^2+12x+c . Найдите f(7) . [Ответ: -74] |
Смотреть видеоразбор похожего >> |
5. На рисунке изображён график функции y=ax^2+bx+12 . Найдите f(-7) . [Ответ: 19] |
Смотреть видеоразбор похожего >> |
6. На рисунке изображён график функции y=ax^2+bx+c . Найдите f(1) . [Ответ: 49] |
Смотреть видеоразбор похожего >> |
7. На рисунке изображён график функции y=ax^2+bx+c , где числа a , b и c — целые. Найдите f(-5) . [Ответ: -29] |
Смотреть видеоразбор похожего >> |
8. На рисунке изображён график функции f(x)=frac{k}{x}+a . Найдите f(0.1) . [Ответ: -17] |
Смотреть видеоразбор похожего >> |
9. На рисунке изображён график функции f(x)=frac{k}{x}+a . Найдите, при каком значении x значение функции равно -4.4 . [Ответ: -12.5] |
Смотреть видеоразбор похожего >> |
10. На рисунке изображён график функции f(x)=frac{k}{x+a} . Найдите f(-3.5) . [Ответ: 6] |
Смотреть видеоразбор похожего >> |
11. На рисунке изображён график функции f(x)=frac{k}{x+a} . Найдите значение x , при котором f(x) = 10 . [Ответ: 0.6] |
Смотреть видеоразбор похожего >> |
12. На рисунке изображён график функции f(x)=frac{kx+a}{x+b} . Найдите k . [Ответ: 1] |
Смотреть видеоразбор похожего >> |
13. На рисунке изображён график функции f(x)=frac{kx+a}{x+b} . Найдите a . [Ответ: 2] |
Смотреть видеоразбор похожего >> |
14. На рисунке изображён график функции f(x)=b+log_ax . Найдите f(frac{1}{9}) . [Ответ: 3] |
Смотреть видеоразбор похожего >> |
15. На рисунке изображён график функции f(x)=b+log_ax . Найдите значение x , при котором f(x)=-11 . [Ответ: 64] |
Смотреть видеоразбор похожего >> |
16. На рисунке изображён график функции f(x)=log_a(x+b) . Найдите f(26) . [Ответ: -2] |
Смотреть видеоразбор похожего >> |
17. На рисунке изображён график функции f(x)=log_a(x+b) . Найдите значение x , при котором f(x)=4 . [Ответ: 82] |
Смотреть видеоразбор похожего >> |
18. На рисунке изображён график функции f(x) = a^x+b . Найдите f(-2) . [Ответ: 22] |
Смотреть видеоразбор похожего >> |
19. На рисунке изображён график функции f(x) = a^x+b . Найдите значение x , при котором f(x) = 77 . [Ответ: -4] |
Смотреть видеоразбор похожего >> |
20. На рисунке изображён график функции f(x) = a^{x+b} . Найдите f(4) . [Ответ: 9] |
Смотреть видеоразбор похожего >> |
21. На рисунке изображён график функции f(x) = a^{x+b} . Найдите значение x , при котором f(x) = 64 . [Ответ: 8] |
Смотреть видеоразбор похожего >> |
22. На рисунке изображён график функции f(x) = ksqrt{x} . Найдите f(8.41) . [Ответ: 8.7] |
Смотреть видеоразбор похожего >> |
23. На рисунке изображён график функции f(x) = ksqrt{x} . Найдите значение x , при котором f(x)=-6.75 . [Ответ: 7.29] |
Смотреть видеоразбор похожего >> |
24. На рисунке изображены графики функций f(x)=-4x+22 и g(x)=ax^2+bx+c , которые пересекаются в точках A и B. Найдите абсциссу точки B. [Ответ: 9] |
Смотреть видеоразбор похожего >> |
25. На рисунке изображены графики функций f(x)=-6x-28 и g(x)=ax^2+bx+c , которые пересекаются в точках A и B. Найдите ординату точки B. [Ответ: 38] |
Смотреть видеоразбор похожего >> |
26. На рисунке изображены графики функций f(x)=frac{k}{x} и g(x)=ax+b , которые пересекаются в точках A и B. Найдите абсциссу точки B. [Ответ: 0.2] |
Смотреть видеоразбор похожего >> |
27. На рисунке изображены графики функций f(x)=frac{k}{x} и g(x)=ax+b , которые пересекаются в точках A и B. Найдите ординату точки B. [Ответ: 20] |
Смотреть видеоразбор похожего >> |
28. На рисунке изображены графики двух линейных функций. Найдите абсциссу точки пересечения графиков. [Ответ: -2.08] |
Смотреть видеоразбор похожего >> |
29. На рисунке изображены графики двух линейных функций. Найдите ординату точки пересечения графиков. [Ответ: -2.4] |
Смотреть видеоразбор похожего >> |
30. На рисунке изображены графики двух линейных функций. Найдите абсциссу точки пересечения графиков. [Ответ: -11.3] |
Смотреть видеоразбор похожего >> |
31. На рисунке изображены графики двух линейных функций. Найдите ординату точки пересечения графиков. [Ответ: 6.8] |
Смотреть видеоразбор похожего >> |
32. На рисунке изображены графики функций f(x) = 2x^2+16x+30 и g(x) = ax^2+bx+c , которые пересекаются в точках A и B. Найдите абсциссу точки B. [Ответ: -9] |
Смотреть видеоразбор похожего >> |
33. На рисунке изображены графики функций f(x) = -2x^2-3x+1 и g(x) = ax^2+bx+c , которые пересекаются в точках A и B. Найдите ординату точки B. [Ответ: -13] |
Смотреть видеоразбор похожего >> |
34. На рисунке изображены графики функций f(x)=asqrt{x} и g(x)=kx+b , которые пересекаются в точке A. Найдите абсциссу точки A. [Ответ: 3.24] |
Смотреть видеоразбор похожего >> |
35. На рисунке изображены графики функций f(x)=asqrt{x} и g(x)=kx+b , которые пересекаются в точке A. Найдите ординату точки A. [Ответ: 9] |
Смотреть видеоразбор похожего >> |
36. На рисунке изображён график функции f(x) = asin{x}+b . Найдите a . [Ответ: 2] |
Смотреть видеоразбор похожего >> |
37. На рисунке изображён график функции f(x) = asin{x}+b . Найдите b . [Ответ: 1,5] |
Смотреть видеоразбор похожего >> |
38. На рисунке изображён график функции f(x) = acos{x}+b . Найдите a . [Ответ: 1,5] |
Смотреть видеоразбор похожего >> |
39. На рисунке изображён график функции f(x) = acos{x}+b . Найдите b . [Ответ: −1] |
Смотреть видеоразбор похожего >> |
40. На рисунке изображён график функции f(x) = a;tg{x}+b . Найдите a . [Ответ: 2] |
Смотреть видеоразбор похожего >> |
41. На рисунке изображён график функции f(x) = a;tg{x}+b . Найдите b . [Ответ: −1,5] |
Смотреть видеоразбор похожего >> |
1.
Задание 9 ЕГЭ- 2022
профильного
уровня по
математике
Графики функций
Рубцова Т.Г.
МБОУ Калманская СОШ имени Г.А. Ударцева, Алтайский край
2022 г.
2.
Кодификатор ЕГЭ 2022
3.
4.
Раздел 1
ЭЛЕМЕНТАРНЫЕ
ФУНКЦИИ И ИХ ГРАФИКИ
5.
Степенные функции
6.
Степенные функции
7.
Показательная и логарифмическая
функции
8.
Тригонометрические функции
9.
Обратные тригонометрические функции
10.
Раздел 2
ПРЕОБРАЗОВАНИЯ
ГРАФИКОВ ФУНКЦИЙ
11.
Сдвиг по горизонтали
Пусть функция задана формулой y = f(x) и a>0. Тогда график функции
y = f(x — m) сдвинут относительно исходного на m вправо. График
функции y = f(x + m) сдвинут относительно исходной на m влево.
12.
Сдвиг по вертикали
Пусть функция задана формулой y = f(x) и a>0 и С — некоторое
положительное число. Тогда график функции y = f(x)+n сдвинут
относительно исходного на n вверх. График функции y = f(x)-n сдвинут
относительно исходного на n вниз.
13.
Растяжение (сжатие) по горизонтали
Пусть функция задана формулой y = f(x) и k>0. Тогда график
функции y=(kx) растянут относительно исходного в k раз по
горизонтали, если 0<k<1, и сжат относительно исходного в k раз по
горизонтали, если k>1.
14.
Растяжение (сжатие) по вертикали
Пусть функция задана формулой y = f(x) и M>0. Тогда график
функции y = M∙f(x) растянут относительно исходного в М раз по
вертикали, если M>1 , и сжат относительно исходного в М раз по
вертикали, если 0<M<1.
15.
Отражение по горизонтали
График функции y = f(-x) симметричен графику функции y = f(x)
относительно оси Y.
16.
Отражение по вертикали
График функции y = -f(x) симметричен графику функции y = f(x)
относительно оси Х.
17.
Графики функций y = f(|x|) и y = |f(x)|
18.
Раздел 3
ВИДЫ ЗАДАЧ
И СПОСОБЫ ИХ РЕШЕНИЯ
19.
Виды задач
Используя предложенный график функции,
найти:
значения коэффициентов в уравнении функции;
абсциссу или ординату вершины параболы;
значение функции по данному значению
аргумента или значение аргумента по
заданному значению функции;
абсциссу или ординату точки пересечения
графиков функций;
значение дискриминанта квадратного
уравнения f(x)=т;
корень уравнения ax+d=0 или bx+c=0 (для
кусочно-линейных функций).
20.
Способы решения:
1) Нахождение коэффициентов функции через
решение систем уравнений, используя
целочисленные координаты точек графика ( в том
числе и точек пересечения с осями).
2) Нахождение коэффициентов, используя
вспомогательные формулы. Например, формулу
тангенса угла наклона прямой, абсциссы вершины
параболы, периодичности функции и др.)
3) Преобразование формулы, задающую функцию.
4) Нахождение коэффициентов через
преобразования графиков функций.
21.
1 способ
22.
23.
24.
25.
26.
27.
28.
2 способ
29.
30.
3 способ
31.
32.
4 способ
33.
34.
35.
36.
37.
38.
39.
Кусочно-линейная функция
40.
41.
42.
ИСПОЛЬЗУЕМЫЕ
ИНТЕРНЕТ-РЕСУРСЫ
https://ege-study.ru/ru/ege/materialy/matematika/elementarnyefunkcii-i-ix-grafiki/
https://ege-study.ru/preobrazovanie-grafikov-funkcij/
https://ege-study.ru/ru/ege/podgotovka/matematika/zadanie-9-egepo-matematike-grafiki-funkcij/
https://ege.sdamgia.ru/test?theme=191
https://unikum.rudn.ru/blog/printsipy-resheniya-zadachi-9-ege-pomatematike-2022
https://zen.yandex.ru/media/shevkin/kusochnolineinaia-funkciiazadanie-9-v-ege2022-61894df122ed344ee28e551d