Гидравлический пресс изготовлен с использованием двух вертикальных цилиндрических сообщающихся сосудов, заполненных жидкостью и закрытых лёгкими поршнями. Радиус большего поршня этого пресса превосходит радиус меньшего поршня в 5 раз. На малый поршень положили груз массой 20 кг, удерживая больший поршень неподвижным. Определите модуль силы давления жидкости на больший поршень. Атмосферным давлением пренебречь.
Спрятать решение
Решение.
Запишем закон гидравлического пресса:
где — площадь поршня, F — сила, действующая на соответствующий поршень.
На малый поршень действует сила тяжести груза, а на большой — сила, по модулю равная силе давления жидкости (согласно третьему закону Ньютона).
Найдем, чему равна сила давления жидкости на большой поршень:
Ответ: 5000 Н.
В задании №9 ЕГЭ по физике необходимо продемонстрировать знания в области такого раздела физики, как термодинамика. Работа идеального газа, КПД тепловых машин, циклы — вот, что ждет нас в девятом задании.
Теория к заданию № 9 ЕГЭ по физике
Работа идеального газа
Пусть газ находится в сосуде, в котором есть поршень. Работа равна произведению силы на перемещение: A=F(h
1 – h
2).
Сила давления на стенки сосуда и поршень равна произведению давления газа p на площадь поверхности S. Тогда работа газа равна
А=pS(h
1 – h
2) = p(Sh
1 – Sh
2) =p(V
1 – V 2)
Следовательно, газ выполняет работу, если изменяется его объём.
При постоянном давлении работа –это произведение давления и разности объёмов.
Молекулы газа обладают кинетической энергией и при сильном сжатии газа ведут себя как упругие тела. Это означает, что обладают ещё и потенциальной энергией. Кинетическая и потенциальная энергия молекул, из которых состоит газ, в сумме составляют внутреннюю энергию газа U.
Если изменять одновременно температуру Т и давление р с объёмом V, разобраться в закономерностях изменения состояния газа тяжело.
Газовые процессы
- Изобарный
процесс происходит при постоянном давлении, т.е. p = const.
При нем теплота Q затрачивается на увеличение объёма газа и повышение температуры. - Изохорный
процесс происходит при поддержании постоянного объема, т.е. при V = const. Работа в данном случае не выполняется, а теплота, получаемая газом, затрачивается на изменение внутренней энергии. - Изотермический
проходит при постоянной температуре (T=const). В этом случае теплота идёт на изменение объёма, то есть на выполнение работы. При изотермическом процессе Q = А.
Графики газовых процессов изображены на рисунках ниже.
Количество теплоты, которое необходимо затратить при нагревании тела массой т,
на Δt
градусов, определяется формулой
Q=cmΔt.
Здесь с – удельная теплоемкость материала, из которого изготовлено тело.
КПД тепловой машины
Здесь Q 1
– количество теплоты, полученное от нагревателя, Q 2
– количество теплоты,которое отдано холодильнику, A-
полезная работа.
Разбор типовых заданий №9 ЕГЭ по физике
Демонстрационный вариант 2018
На ТV-диаграмме показан процесс изменения состояния идеального одноатомного газа. Газ получил количество теплоты, равное 50 кДж. Какую работу совершил газ в этом процессе, если его масса не меняется?
Алгоритм решения:
- Анализируем условие задачи и график газового процесса.
- Устанавливаем, какой параметр не изменяется.
- Определяем работу,
Решение:
1. По условию задачи газ получил 50 кДж теплоты. После этого газ выполнил работу. Процесс, при котором выполнялась работа изображен на графике. Легко видно, что процесс, изображенный на рисунке, является изотермическим.
2. Температура при нем постоянная.
3. В данном случае все полученное количество теплоты уходит на выполнение работы. То есть А = Q. Следовательно, А = 50 кДж
Первый вариант задания (Демидова, №1)
На рТ-диаграмме показан процесс изменения состояния 4 моль идеального газа. Внутренняя энергия газа увеличилась на 40 кДж. Какую работу совершил газ в этом процессе?
Алгоритм решения:
- Анализируем задание и график, на котором изображен газовый процесс.
- Устанавливаем вид процесса.
- Определяем работу, которая выполняется в данном случае.
- Записываем ответ.
Решение:
1. Из рисунка видно, что давление прямо пропорционально зависит от температуры, т.е. p=αT
, Здесь α
– некоторый коэффициент. Согласно уравнению Менделеева – Клапейрона имеем:
2. Значит, процесс изохорный. При нем объем не меняется.
3. Работа газа всегда связана расширением или сжатием газа, чего в данном случае не происходит. Значит, работа при этом не производится. Она равна 0.
Второй вариант задания (Демидова, №8)
Кусок алюминия массой 5 кг нагрели от 20 °С до 100 °С. Какое количество теплоты было затрачено на его нагрев?
Алгоритм решения:
- Записываем формулу для определения количества теплоты.
- Вычисляем количество теплоты, подставив данный в условии значения величин.
- Записываем ответ.
Решение:
1. Количество теплоты Q, которое затрачивается на нагревание куска определяется по формуле: Q=cmΔt.
2. Масса тела по условию равна т=
5 кг, теплоемкость алюминия равна с = 900, а разность температур Δt = 100 0 -20 0 = 80 0 .
Имеем: Q=
0∙5∙80= 360000Дж =360 кДж.
Третий вариант задания (Демидова, №28)
Тепловая машина с КПД 40 % совершает за цикл полезную работу 60 Дж. Какое количество теплоты машина получает за цикл от нагревателя?
Алгоритм решения:
- Записываем формулу КПД для тепловой машины.
- Подставляем числовые значения и вычисляем требуемое количество теплоты.
- Записываем ответ.
Решение:
1. КПД тепловой машины вычисляется по формуле:
где Q1 – количество теплоты, которое получает тепловая машина от нагревателя; А – полезная работа. По условию A = 60 Дж. А коэффициент полезного действия равен 40%= 0,4. Из формулы получаем.
На этой странице размещены демонстрационные варианты ОГЭ по физике для 9 класса за 2009 — 2019 годы
.
Демонстрационные варианты ОГЭ по физике
содержат задания двух типов: задания, где нужно дать краткий ответ, и
задания, где нужно дать развернутый ответ.
Ко всем заданиям всех демонстрационных вариантов ОГЭ по физике
даны ответы, а задания с развернутым ответом снабжены подробными решениями и указаниями по оцениванию.
Для выполнения некоторых заданий требуется собрать экспериментальную установку на основе типовых наборов для фронтальных работ по физике. Размещаем также перечень необходимого лабораторного оборудования.
В демострационном варианте ОГЭ 2019 года по физике
по сравнению с демонстрационным вариантом 2018 года изменений нет.
Демонстрационные варианты ОГЭ по физике
Отметим, что демонстрационные варианты ОГЭ по физике
представлены в формате pdf, и для их
просмотра необходимо, чтобы на Вашем компьютере был установлен, например, свободно распространяемый программный пакет Adobe Reader.
Демонстрационный вариант ОГЭ по физике за 2009 год |
Демонстрационный вариант ОГЭ по физике за 2010 год |
Демонстрационный вариант ОГЭ по физике за 2011 год |
Демонстрационный вариант ОГЭ по физике за 2012 год |
Демонстрационный вариант ОГЭ по физике за 2013 год |
Демонстрационный вариант ОГЭ по физике за 2014 год |
Демонстрационный вариант ОГЭ по физике за 2015 год |
Демонстрационный вариант ОГЭ по физике за 2016 год |
Демонстрационный вариант ОГЭ по физике за 2017 год |
Демонстрационный вариант ОГЭ по физике за 2018 год |
Демонстрационный вариант ОГЭ по физике за 2019 год |
Перечень лабораторного оборудования |
Шкала пересчёта первичного балла за выполнение экзаменационной работы
в отметку по пятибалльной шкале
- шкалу пересчёта первичного балла за выполнение экзаменационной работы 2018 года в отметку по пятибалльной шкале ;
- шкалу пересчёта первичного балла за выполнение экзаменационной работы 2017 года в отметку по пятибалльной шкале ;
- шкалу пересчёта первичного балла за выполнение экзаменационной работы 2016 года в отметку по пятибалльной шкале .
- шкалу пересчёта первичного балла за выполнение экзаменационной работы 2015 года в отметку по пятибалльной шкале .
- шкалу пересчёта первичного балла за выполнение экзаменационной работы 2014 года в отметку по пятибалльной шкале .
- шкалу пересчёта первичного балла за выполнение экзаменационной работы 2013 года в отметку по пятибалльной шкале .
Изменения в демонстрационных вариантах по физике
Демонстрационные варианты ОГЭ по физике 2009 — 2014 годов
состояли из 3-х частей: задания с выбором ответа, задания с кратким ответом, задания с развернутым ответом.
В 2013 году в демонстрационный вариант ОГЭ по физике
были внесены следующие изменения
:
- было добавлено задание 8 с выбором ответа
– на тепловые вления, - было добавлено задание 23 с кратким ответом
– на понимание и анализ экспериментальных данных, представленных в виде таблицы, графика или рисунка (схемы), - было увеличено до пяти количество заданий с развернутым ответом
: к четырем заданиям с развернутым ответом части 3 было добавлено задание 19 части 1 – на применение информации из текста физического содержания.
В 2014 году демонстрационный вариант ОГЭ по физике 2014 года
по отношению к предыдущему году по структуре и содержанию не изменился
, однако были изменены критерии
оценивания заданий с развернутым ответом.
В 2015 году в была изменена структура варианта
:
- Вариант стал состоять из двух частей
. - Нумерация
заданий стала сквозной
по всему варианту без буквенных обозначений А, В, С. - Была изменена форма записи ответа в заданиях с выбором ответа: ответ стало нужно записывать цифрой с номером правильного ответа
(а не обводить кружком).
В 2016 году в демострационном варианте ОГЭ по физике
произошли существенные изменения
:
- Общее число заданий уменьшено до 26
. - Число заданий с кратким ответом увеличено до 8
- Максимальный балл
за всю работу не изменился
(по прежнему — 40 баллов
).
В демострационных вариантах ОГЭ 2017 — 2019 годов по физике
по сравнению с демонстрационным вариантом 2016 года изменений не было.
Для школьников 8 и 9 классов, желающих хорошо подготовиться и сдать ОГЭ по математике или русскому языку
на высокий балл, учебный центр «Резольвента» проводит
У нас также для школьников организованы
Государственная итоговая аттестация 2019 года по физике для выпускников 9 класса общеобразовательных учреждений проводится с целью оценки уровня общеобразовательной подготовки выпускников по данной дисциплине. В заданиях проверяются знания следующих разделов физики:
- Физические понятия. Физические величины, их единицы и приборы для измерения.
- Механическое движение. Равномерное и равноускоренное движение. Свободное падение. Движение по окружности. Механические колебания и волны.
- Законы Ньютона. Силы в природе.
- Закон сохранения импульса. Закон сохранения энергии. Механическая работа и мощность. Простые механизмы.
- Давление. Закон Паскаля. Закон Архимеда. Плотность вещества.
- Физические явления и законы в механике. Анализ процессов.
- Механические явления.
- Тепловые явления.
- Физические явления и законы. Анализ процессов.
- Электризация тел.
- Постоянный ток.
- Магнитное поле. Электромагнитная индукци.
- Электромагнитные колебания и волны. Элементы оптики.
- Физические явления и законы в электродинамике. Анализ процессов.
- Электромагнитные явления.
- Радиоактивность. Опыты Резерфорда. Состав атомного ядра. Ядерные реакции.
- Владение основами знаний о методах научного познания.
В данном разделе вы найдёте онлайн тесты, которые помогут вам подготовиться к сдаче ОГЭ (ГИА) по физике. Желаем успехов!
Стандартный тест ОГЭ (ГИА-9) формата 2019-го года по физике состоит из двух частей. Первая часть содержит 21 задание с кратким ответом, вторая часть содержит 4 задания с развёрнутым ответом. В связи с этим в данном тесте представлена только первая часть (т.е. 21 задание). Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 16. Однако для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Но для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.
Стандартный тест ОГЭ (ГИА-9) формата 2019-го года по физике состоит из двух частей. Первая часть содержит 21 задание с кратким ответом, вторая часть содержит 4 задания с развёрнутым ответом. В связи с этим в данном тесте представлена только первая часть (т.е. 21 задание). Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 16. Однако для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Но для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.
Стандартный тест ОГЭ (ГИА-9) формата 2018-го года по физике состоит из двух частей. Первая часть содержит 21 задание с кратким ответом, вторая часть содержит 4 задания с развёрнутым ответом. В связи с этим в данном тесте представлена только первая часть (т.е. 21 задание). Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 16. Однако для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Но для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.
Стандартный тест ОГЭ (ГИА-9) формата 2018-го года по физике состоит из двух частей. Первая часть содержит 21 задание с кратким ответом, вторая часть содержит 4 задания с развёрнутым ответом. В связи с этим в данном тесте представлена только первая часть (т.е. 21 задание). Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 16. Однако для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Но для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.
Стандартный тест ОГЭ (ГИА-9) формата 2017-го года по физике состоит из двух частей. Первая часть содержит 21 задание с кратким ответом, вторая часть содержит 4 задания с развёрнутым ответом. В связи с этим в данном тесте представлена только первая часть (т.е. 21 задание). Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 16. Однако для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Но для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.
Стандартный тест ОГЭ (ГИА-9) формата 2017-го года по физике состоит из двух частей. Первая часть содержит 21 задание с кратким ответом, вторая часть содержит 4 задания с развёрнутым ответом. В связи с этим в данном тесте представлена только первая часть (т.е. 21 задание). Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 16. Однако для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Но для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.
,
один правильный ответ
Ниже приведены справочные данные, которые могут понадобиться Вам при выполнении работы:
,
В тесте 18 вопросов, нужно выбрать только один правильный ответ
Подготовка к ОГЭ и ЕГЭ
Среднее общее образование
Линия УМК А. В. Грачева. Физика (10-11) (баз., углубл.)
Линия УМК А. В. Грачева. Физика (7-9)
Линия УМК А. В. Перышкина. Физика (7-9)
Разбираем задания ЕГЭ по физике (Вариант С) с учителем.
Лебедева Алевтина Сергеевна, учитель физики, стаж работы 27 лет. Почетная грамота Министерства образования Московской области (2013 год), Благодарность Главы Воскресенского муниципального района (2015 год), Грамота Президента Ассоциации учителей математики и физики Московской области (2015 год).
В работе представлены задания разных уровней сложности: базового, повышенного и высокого. Задания базового уровня, это простые задания, проверяющие усвоение наиболее важных физических понятий, моделей, явлений и законов. Задания повышенного уровня направлены на проверку умения использовать понятия и законы физики для анализа различных процессов и явлений, а также умения решать задачи на применение одного-двух законов (формул) по какой-либо из тем школьного курса физики. В работе 4 задания части 2 являются заданиями высокого уровня сложности и проверяют умение использовать законы и теории физики в измененной или новой ситуации. Выполнение таких заданий требует применения знаний сразу из двух трех разделов физики, т.е. высокого уровня подготовки. Данный вариант полностью соответствует демонстрационному варианту ЕГЭ 2017 года, задания взяты из открытого банка заданий ЕГЭ.
На рисунке представлен график зависимости модуля скорости от времени t
. Определите по графику путь, пройденный автомобилем в интервале времени от 0 до 30 с.
Решение.
Путь, пройденный автомобилем в интервале времени от 0 до 30 с проще всего определить как площадь трапеции, основаниями которой являются интервалы времени (30 – 0) = 30 c и (30 – 10) = 20 с, а высотой является скорость v
= 10 м/с, т.е.
S = |
(30 + 20) с |
10 м/с = 250 м. |
2 |
Ответ.
250 м.
Груз массой 100 кг поднимают вертикально вверх с помощью троса. На рисунке приведена зависимость проекции скорости V
груза на ось, направленную вверх, от времени t
. Определите модуль силы натяжения троса в течение подъема.
Решение.
По графику зависимости проекции скорости v
груза на ось, направленную вертикально вверх, от времени t
, можно определить проекцию ускорения груза
a
= |
∆v |
= | (8 – 2) м/с | = 2 м/с 2 . |
∆t |
3 с |
На груз действуют: сила тяжести , направленная вертикально вниз и сила натяжения троса , направленная вдоль троса вертикально вверх смотри рис. 2. Запишем основное уравнение динамики. Воспользуемся вторым законом Ньютона. Геометрическая сумма сил действующих на тело равна произведению массы тела на сообщаемое ему ускорение.
+ = (1)
Запишем уравнение для проекции векторов в системе отсчета, связанной с землей, ось OY направим вверх. Проекция силы натяжения положительная, так как направление силы совпадает с направлением оси OY, проекция силы тяжести отрицательная, так как вектор силы противоположно направлен оси OY, проекция вектора ускорения тоже положительная, так тело движется с ускорением вверх. Имеем
T
– mg
= ma
(2);
из формулы (2) модуль силы натяжения
Т
= m
(g
+ a
) = 100 кг (10 + 2) м/с 2 = 1200 Н.
Ответ
. 1200 Н.
Тело тащат по шероховатой горизонтальной поверхности с постоянной скоростью модуль которой равен 1, 5 м/с, прикладывая к нему силу так, как показано на рисунке (1). При этом модуль действующей на тело силы трения скольжения равен 16 Н. Чему равна мощность, развиваемая силой F
?
Решение.
Представим себе физический процесс, заданный в условии задачи и сделаем схематический чертеж с указанием всех сил, действующих на тело (рис.2). Запишем основное уравнение динамики.
Тр + + = (1)
Выбрав систему отсчета, связанную с неподвижной поверхностью, запишем уравнения для проекции векторов на выбранные координатные оси. По условию задачи тело движется равномерно, так как его скорость постоянна и равна 1,5 м/с. Это значит, ускорение тела равно нулю. По горизонтали на тело действуют две силы: сила трения скольжения тр. и сила , с которой тело тащат. Проекция силы трения отрицательная, так как вектор силы не совпадает с направлением оси Х
. Проекция силы F
положительная. Напоминаем, для нахождения проекции опускаем перпендикуляр из начала и конца вектора на выбранную ось. С учетом этого имеем: F
cosα – F
тр = 0; (1) выразим проекцию силы F
, это F
cosα = F
тр = 16 Н; (2) тогда мощность, развиваемая силой , будет равна N
= F
cosα V
(3) Сделаем замену, учитывая уравнение (2), и подставим соответствующие данные в уравнение (3):
N
= 16 Н · 1,5 м/с = 24 Вт.
Ответ.
24 Вт.
Груз, закрепленный на легкой пружине жесткостью 200 Н/м, совершает вертикальные колебания. На рисунке представлен график зависимости смещения x
груза от времени t
. Определите, чему равна масса груза. Ответ округлите до целого числа.
Решение.
Груз на пружине совершает вертикальные колебания. По графику зависимости смещения груза х
от времени t
, определим период колебаний груза. Период колебаний равен Т
= 4 с; из формулы Т
= 2π
выразим массу m
груза.
= | T | ; | m |
= | T 2 |
; m = k |
T 2 |
; m = 200 H/м |
(4 с) 2 | = 81,14 кг ≈ 81 кг. |
2π | k |
4π 2 |
4π 2 |
39,438 |
Ответ:
81 кг.
На рисунке показана система из двух легких блоков и невесомого троса, с помощью которого можно удерживать в равновесии или поднимать груз массой 10 кг. Трение пренебрежимо мало. На основании анализа приведенного рисунка выберите два
верных утверждения и укажите в ответе их номера.
- Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 100 Н.
- Изображенная на рисунке система блоков не дает выигрыша в силе.
- h
, нужно вытянуть участок веревки длиной 3h
. - Для того чтобы медленно поднять груз на высоту h
h
.
Решение.
В данной задаче необходимо вспомнить простые механизмы, а именно блоки: подвижный и неподвижный блок. Подвижный блок дает выигрыш в силе в два раза, при этом участок веревки нужно вытянуть в два раза длиннее, а неподвижный блок используют для перенаправления силы. В работе простые механизмы выигрыша не дают. После анализа задачи сразу выбираем нужные утверждения:
- Для того чтобы медленно поднять груз на высоту h
, нужно вытянуть участок веревки длиной 2h
. - Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 50 Н.
Ответ.
45.
В сосуд с водой полностью погружен алюминиевый груз, закрепленный на невесомой и нерастяжимой нити. Груз не касается стенок и дна сосуда. Затем в такой же сосуд с водой погружают железный груз, масса которого равна массе алюминиевого груза. Как в результате этого изменятся модуль силы натяжения нити и модуль действующей на груз силы тяжести?
- Увеличивается;
- Уменьшается;
- Не изменяется.
Решение.
Анализируем условие задачи и выделяем те параметры, которые не меняются в ходе исследования: это масса тела и жидкость, в которую погружают тело на нити. После этого лучше выполнить схематический рисунок и указать действующие на груз силы: сила натяжения нити F
упр, направленная вдоль нити вверх; сила тяжести , направленная вертикально вниз; архимедова сила a
, действующая со стороны жидкости на погруженное тело и направленная вверх. По условию задачи масса грузов одинакова, следовательно, модуль действующей на груз силы тяжести не меняется. Так как плотность грузов разная, то объем тоже будет разный
Плотность железа 7800 кг/м 3 , а алюминиевого груза 2700 кг/м 3 . Следовательно, V
ж V a
. Тело в равновесии, равнодействующая всех сил, действующих на тело равна нулю. Направим координатную ось OY вверх. Основное уравнение динамики с учетом проекции сил запишем в виде F
упр + F a
– mg
= 0; (1) Выразим силу натяжения F
упр = mg
– F a
(2); архимедова сила зависит от плотности жидкости и объема погруженной части тела F a
= ρgV
п.ч.т. (3); Плотность жидкости не меняется, а объем тела из железа меньше V
ж V a
, поэтому архимедова сила, действующая на железный груз будет меньше. Делаем вывод о модуле силы натяжения нити, работая с уравнение (2), он возрастет.
Ответ.
13.
Брусок массой m
соскальзывает с закрепленной шероховатой наклонной плоскости с углом α при основании. Модуль ускорения бруска равен a
, модуль скорости бруска возрастает. Сопротивлением воздуха можно пренебречь.
Установите соответствие между физическими величинами и формулами, при помощи которых их можно вычислить. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.
Б) Коэффициент трения бруска о наклонную плоскость
3) mg
cosα
Решение.
Данная задача требует применение законов Ньютона. Рекомендуем сделать схематический чертеж; указать все кинематические характеристики движения. Если возможно, изобразить вектор ускорения и векторы всех сил, приложенных к движущемуся телу; помнить, что силы, действующие на тело, – результат взаимодействия с другими телами. Затем записать основное уравнение динамики. Выбрать систему отсчета и записать полученное уравнение для проекции векторов сил и ускорений;
Следуя предложенному алгоритму, сделаем схематический чертеж (рис. 1). На рисунке изображены силы, приложенные к центру тяжести бруска, и координатные оси системы отсчета, связанной с поверхностью наклонной плоскости. Так как все силы постоянны, то движение бруска будет равнопеременным с увеличивающейся скоростью, т.е. вектор ускорения направлен в сторону движения. Выберем направление осей как указано на рисунке. Запишем проекции сил, на выбранные оси.
Запишем основное уравнение динамики:
Тр + = (1)
Запишем данное уравнение (1) для проекции сил и ускорения.
На ось OY: проекция силы реакции опоры положительная, так как вектор совпадает с направлением оси OY N y
= N
; проекция силы трения равна нулю так как вектор перпендикулярен оси; проекция силы тяжести будет отрицательная и равная mg y
=
–
mg
cosα
; проекция вектора ускорения a
y
= 0, так как вектор ускорения перпендикулярен оси. Имеем N
– mg
cosα
= 0 (2) из уравнения выразим силу реакции действующей на брусок, со стороны наклонной плоскости. N
= mg
cosα
(3). Запишем проекции на ось OX.
На ось OX: проекция силы N
равна нулю, так как вектор перпендикулярен оси ОХ; Проекция силы трения отрицательная (вектор направлен в противоположную сторону относительно выбранной оси); проекция силы тяжести положительная и равна mg x
= mg
sinα
(4) из прямоугольного треугольника. Проекция ускорения положительная a
x
= a
; Тогда уравнение (1) запишем с учетом проекции mg
sinα – F
тр = ma
(5); F
тр = m
(g
sinα
– a
) (6); Помним, что сила трения пропорциональна силе нормального давления N
.
По определению F
тр = μN
(7), выразим коэффициент трения бруска о наклонную плоскость.
μ = |
F тр |
= | m (g sinα – a ) |
= tgα – |
a | (8). |
N |
mg cosα |
g cosα |
Выбираем соответствующие позиции для каждой буквы.
Ответ.
A – 3; Б – 2.
Задание 8. Газообразный кислород находится в сосуде объемом 33,2 литра. Давление газа 150 кПа, его температура 127° С. Определите массу газа в этом сосуде. Ответ выразите в граммах и округлите до целого числа.
Решение.
Важно обратить внимание на перевод единиц в систему СИ. Температуру переводим в Кельвины T
= t
°С + 273, объем V
= 33,2 л = 33,2 · 10 –3 м 3 ; Давление переводим P
= 150 кПа = 150 000 Па. Используя уравнение состояния идеального газа
выразим массу газа.
Обязательно обращаем внимание, в каких единица просят записать ответ. Это очень важно.
Ответ.
48 г.
Задание 9.
Идеальный одноатомный газ в количестве 0,025 моль адиабатически расширился. При этом его температура понизилась с +103°С до +23°С. Какую работу совершил газ? Ответ выразите в Джоулях и округлите до целого числа.
Решение.
Во-первых, газ одноатомный число степеней свободы i
= 3, во-вторых, газ расширяется адиабатически – это значит без теплообмена Q
= 0. Газ совершает работу за счет уменьшения внутренней энергии. С учетом этого, первый закон термодинамики запишем в виде 0 = ∆U
+ A
г; (1) выразим работу газа A
г = –∆U
(2); Изменение внутренней энергии для одноатомного газа запишем как
Ответ.
25 Дж.
Относительная влажность порции воздуха при некоторой температуре равна 10 %. Во сколько раз следует изменить давление этой порции воздуха для того, чтобы при неизменной температуре его относительная влажность увеличилась на 25 %?
Решение.
Вопросы, связанные с насыщенным паром и влажностью воздуха, чаще всего вызывают затруднения у школьников. Воспользуемся формулой для расчета относительной влажности воздуха
По условию задачи температура не изменяется, значит, давление насыщенного пара остается тем же. Запишем формулу (1) для двух состояний воздуха.
φ
1 = 10 % ; φ
2 = 35 %
Выразим давления воздуха из формул (2), (3) и найдем отношение давлений.
P 2 |
= | φ 2 |
= | 35 | = 3,5 |
P 1 |
φ 1 |
10 |
Ответ.
Давление следует увеличить в 3,5 раза.
Горячее вещество в жидком состоянии медленно охлаждалось в плавильной печи с постоянной мощностью. В таблице приведены результаты измерений температуры вещества с течением времени.
Выберите из предложенного перечня два
утверждения, которые соответствуют результатам проведенных измерений и укажите их номера.
- Температура плавления вещества в данных условиях равна 232°С.
- Через 20 мин. после начала измерений вещество находилось только в твердом состоянии.
- Теплоемкость вещества в жидком и твердом состоянии одинакова.
- Через 30 мин. после начала измерений вещество находилось только в твердом состоянии.
- Процесс кристаллизации вещества занял более 25 минут.
Решение.
Так как вещество охлаждалось, то его внутренняя энергия уменьшалась. Результаты измерения температуры, позволяют определить температуру, при которой вещество начинает кристаллизоваться. Пока вещество переходит из жидкого состояния в твердое, температура не меняется. Зная, что температура плавления и температура кристаллизации одинаковы, выбираем утверждение:
1. Tемпература плавления вещества в данных условиях равна 232°С.
Второе верное утверждение это:
4. Через 30 мин. после начала измерений вещество находилось только в твердом состоянии. Так как температура в этот момент времени, уже ниже температуры кристаллизации.
Ответ.
14.
В изолированной системе тело А имеет температуру +40°С, а тело Б температуру +65°С. Эти тела привели в тепловой контакт друг с другом. Через некоторое время наступило тепловое равновесие. Как в результате изменилась температура тела Б и суммарная внутренняя энергия тела А и Б?
Для каждой величины определите соответствующий характер изменения:
- Увеличилась;
- Уменьшилась;
- Не изменилась.
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Решение.
Если в изолированной системе тел не происходит никаких превращений энергии кроме теплообмена, то количество теплоты, отданное телами, внутренняя энергия которых уменьшается, равно количеству теплоты, полученному телами, внутренняя энергия которых увеличивается. (По закону сохранения энергии.) При этом суммарная внутренняя энергия системы не меняется. Задачи такого типа решаются на основании уравнения теплового баланса.
∆U = ∑ |
n |
∆U i = 0 (1); |
i = 1 |
где ∆U
– изменение внутренней энергии.
В нашем случае в результате теплообмена внутренняя энергия тела Б уменьшается, а значит уменьшается температура этого тела. Внутренняя энергия тела А увеличивается, так как тело получило количество теплоты от тела Б, то температура его увеличится. Суммарная внутренняя энергия тел А и Б не изменяется.
Ответ.
23.
Протон p
, влетевший в зазор между полюсами электромагнита, имеет скорость , перпендикулярную вектору индукции магнитного поля, как показано на рисунке. Куда направлена действующая на протон сила Лоренца относительно рисунка (вверх, к наблюдателю, от наблюдателя, вниз, влево, вправо)
Решение.
На заряженную частицу магнитное поле действует с силой Лоренца. Для того чтобы определить направление этой силы, важно помнить мнемоническое правило левой руки, не забывать учитывать заряд частицы. Четыре пальца левой руки направляем по вектору скорости, для положительно заряженной частицы, вектор должен перпендикулярно входить в ладонь, большой палец отставленный на 90° показывает направление действующей на частицу силы Лоренца. В результате имеем, что вектор силы Лоренца направлен от наблюдателя относительно рисунка.
Ответ.
от наблюдателя.
Модуль напряженности электрического поля в плоском воздушном конденсаторе емкостью 50 мкФ равен 200 В/м. Расстояние между пластинами конденсатора 2 мм. Чему равен заряд конденсатора? Ответ запишите в мкКл.
Решение.
Переведем все единицы измерения в систему СИ. Емкость С = 50 мкФ = 50 · 10 –6 Ф, расстояние между пластинами d
= 2 · 10 –3 м. В задаче говорится о плоском воздушном конденсаторе – устройстве для накопления электрического заряда и энергии электрического поля. Из формулы электрической емкости
где d
– расстояние между пластинами.
Выразим напряжение U
= E · d
(4); Подставим (4) в (2) и рассчитаем заряд конденсатора.
q
= C
· Ed
= 50 · 10 –6 · 200 · 0,002 = 20 мкКл
Обращаем внимание, в каких единицах нужно записать ответ. Получили в кулонах, а представляем в мкКл.
Ответ.
20 мкКл.
Ученик провел опыт по преломлению света, представленный на фотографии. Как изменяется при увеличении угла падения угол преломления света, распространяющегося в стекле, и показатель преломления стекла?
- Увеличивается
- Уменьшается
- Не изменяется
- Запишите в таблицу выбранные цифры для каждого ответа. Цифры в ответе могут повторяться.
Решение.
В задачах такого плана вспоминаем, что такое преломление. Это изменение направления распространения волны при прохождении из одной среды в другую. Вызвано оно тем, что скорости распространения волн в этих средах различны. Разобравшись из какой среды в какую свет распространяется, запишем закона преломления в виде
где n
2 – абсолютный показатель преломления стекла, среда куда идет свет; n
1 – абсолютный показатель преломления первой среды, откуда свет идет. Для воздуха n
1 = 1. α
– угол падения луча на поверхность стеклянного полуцилиндра, β
– угол преломления луча в стекле. Причем, угол преломления будет меньше угла падения, так как стекло оптически более плотная среда – среда с большим показателем преломления. Скорость распространения света в стекле меньше. Обращаем внимание, что углы измеряем от перпендикуляра, восстановленного в точке падения луча. Если увеличивать угол падения, то и угол преломления будет расти. Показатель преломления стекла от этого меняться не будет.
Ответ.
Медная перемычка в момент времени t
0 = 0 начинает двигаться со скоростью 2 м/с по параллельным горизонтальным проводящим рельсам, к концам которых подсоединен резистор сопротивлением 10 Ом. Вся система находится в вертикальном однородном магнитном поле. Сопротивление перемычки и рельсов пренебрежимо мало, перемычка все время расположена перпендикулярно рельсам. Поток Ф
вектора магнитной индукции через контур, образованный перемычкой, рельсами и резистором, изменяется с течением времени t
так, как показано на графике.
Используя график, выберите два верных утверждения и укажите в ответе их номера.
- К моменту времени t
= 0,1 с изменение магнитного потока через контур равно 1 мВб. - Индукционный ток в перемычке в интервале от t
= 0,1 с t
= 0,3 с максимален. - Модуль ЭДС индукции, возникающей в контуре, равен 10 мВ.
- Сила индукционного тока, текущего в перемычке, равна 64 мА.
- Для поддержания движения перемычки к ней прикладывают силу, проекция которой на направление рельсов равна 0,2 Н.
Решение.
По графику зависимости потока вектора магнитной индукции через контур от времени определим участки, где поток Ф
меняется, и где изменение потока равно нулю. Это позволит нам определить интервалы времени, в которые в контуре будет возникать индукционный ток. Верное утверждение:
1) К моменту времени t
= 0,1 с изменение магнитного потока через контур равно 1 мВб ∆Ф
= (1 – 0) · 10 –3 Вб; Модуль ЭДС индукции, возникающей в контуре определим используя закон ЭМИ
Ответ.
13.
По графику зависимости силы тока от времени в электрической цепи, индуктивность которой равна 1 мГн, определите модуль ЭДС самоиндукции в интервале времени от 5 до 10 с. Ответ запишите в мкВ.
Решение.
Переведем все величины в систему СИ, т.е. индуктивность 1 мГн переведем в Гн, получим 10 –3 Гн. Силу тока, показанной на рисунке в мА также будем переводить в А путем умножения на величину 10 –3 .
Формула ЭДС самоиндукции имеет вид
при этом интервал времени дан по условию задачи
∆t
= 10 c – 5 c = 5 c
секунд и по графику определяем интервал изменения тока за это время:
∆I
= 30 · 10 –3 – 20 · 10 –3 = 10 · 10 –3 = 10 –2 A.
Подставляем числовые значения в формулу (2), получаем
|
Ɛ
|
= 2 ·10 –6 В, или 2 мкВ.
Ответ.
2.
Две прозрачные плоскопараллельные пластинки плотно прижаты друг к другу. Из воздуха на поверхность первой пластинки падает луч света (см. рисунок). Известно, что показатель преломления верхней пластинки равен n
2 = 1,77. Установите соответствие между физическими величинами и их значениями. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.
Решение.
Для решения задач о преломлении света на границе раздела двух сред, в частности задач на прохождение света через плоскопараллельные пластинки можно рекомендовать следующий порядок решения: сделать чертеж с указанием хода лучей, идущих из одной среды в другую; в точке падения луча на границе раздела двух сред провести нормаль к поверхности, отметить углы падения и преломления. Особо обратить внимание на оптическую плотность рассматриваемых сред и помнить, что при переходе луча света из оптически менее плотной среды в оптически более плотную среду угол преломления будет меньше угла падения. На рисунке дан угол между падающим лучом и поверхностью, а нам нужен угол падения. Помним, что углы определяются от перпендикуляра, восстановленного в точке падения. Определяем, что угол падения луча на поверхность 90° – 40° = 50°, показатель преломления n
2 = 1,77; n
1 = 1 (воздух).
Запишем закон преломления
sinβ = |
sin50 | = 0,4327 ≈ 0,433 |
1,77 |
Построим примерный ход луча через пластинки. Используем формулу (1) для границы 2–3 и 3–1. В ответе получаем
А) Синус угла падения луча на границу 2–3 между пластинками – это 2) ≈ 0,433;
Б) Угол преломления луча при переходе границы 3–1 (в радианах) – это 4) ≈ 0,873.
Ответ
. 24.
Определите, сколько α – частиц и сколько протонов получается в результате реакции термоядерного синтеза
+ → x
+ y
;
Решение.
При всех ядерных реакциях соблюдаются законы сохранения электрического заряда и числа нуклонов. Обозначим через x – количество альфа частиц, y– количество протонов. Составим уравнения
+ → x + y;
решая систему имеем, что x
= 1; y
= 2
Ответ.
1 – α
-частица; 2 – протона.
Модуль импульса первого фотона равен 1,32 · 10 –28 кг·м/с, что на 9,48 · 10 –28 кг·м/с меньше, чем модуль импульса второго фотона. Найдите отношение энергии E 2 /E 1 второго и первого фотонов. Ответ округлите до десятых долей.
Решение.
Импульс второго фотона больше импульса первого фотона по условию значит можно представить p
2 = p
1 + Δp
(1). Энергию фотона можно выразить через импульс фотона, используя следующие уравнения. Это E
= mc
2 (1) и p
= mc
(2), тогда
E
= pc
(3),
где E
– энергия фотона, p
– импульс фотона, m – масса фотона, c
= 3 · 10 8 м/с – скорость света. С учетом формулы (3) имеем:
E 2 |
= | p 2 |
= 8,18; |
E 1 |
p 1 |
Ответ округляем до десятых и получаем 8,2.
Ответ.
8,2.
Ядро атома претерпело радиоактивный позитронный β – распад. Как в результате этого изменялись электрический заряд ядра и количество нейтронов в нем?
Для каждой величины определите соответствующий характер изменения:
- Увеличилась;
- Уменьшилась;
- Не изменилась.
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Решение.
Позитронный β
– распад в атомном ядре происходит при превращений протона в нейтрон с испусканием позитрона. В результате этого число нейтронов в ядре увеличивается на единицу, электрический заряд уменьшается на единицу, а массовое число ядра остается неизменным. Таким образом, реакция превращения элемента следующая:
Ответ.
21.
В лаборатории было проведено пять экспериментов по наблюдению дифракции с помощью различных дифракционных решеток. Каждая из решеток освещалась параллельными пучками монохроматического света с определенной длиной волны. Свет во всех случаях падал перпендикулярно решетке. В двух из этих экспериментов наблюдалось одинаковое количество главных дифракционных максимумов. Укажите сначала номер эксперимента, в котором использовалась дифракционная решетка с меньшим периодом, а затем – номер эксперимента, в котором использовалась дифракционная решетка с большим периодом.
Решение.
Дифракцией света называется явление светового пучка в область геометрической тени. Дифракцию можно наблюдать в том случае, когда на пути световой волны встречаются непрозрачные участки или отверстия в больших по размерам и непрозрачных для света преградах, причем размеры этих участков или отверстий соизмеримы с длиной волны. Одним из важнейших дифракционных устройств является дифракционная решетка. Угловые направления на максимумы дифракционной картины определяются уравнением
d
sinφ
= k
λ
(1),
где d
– период дифракционной решетки, φ
– угол между нормалью к решетке и направлением на один из максимумов дифракционной картины, λ
– длина световой волны, k
– целое число, называемое порядком дифракционного максимума. Выразим из уравнения (1)
Подбирая пары согласно условию эксперимента, выбираем сначала 4 где использовалась дифракционная решетка с меньшим периодом, а затем – номер эксперимента, в котором использовалась дифракционная решетка с большим периодом – это 2.
Ответ.
42.
По проволочному резистору течет ток. Резистор заменили на другой, с проволокой из того же металла и той же длины, но имеющей вдвое меньшую площадь поперечного сечения, и пропустили через него вдвое меньший ток. Как изменятся при этом напряжение на резисторе и его сопротивление?
Для каждой величины определите соответствующий характер изменения:
- Увеличится;
- Уменьшится;
- Не изменится.
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Решение.
Важно помнить от каких величин зависит сопротивление проводника. Формула для расчета сопротивления имеет вид
закона Ома для участка цепи, из формулы (2), выразим напряжение
U
= I
R
(3).
По условию задачи второй резистор изготовлен из проволоки того же материала, той же длины, но разной площади поперечного сечения. Площадь в два раза меньшая. Подставляя в (1) получим, что сопротивление увеличивается в 2 раза, а сила тока уменьшается в 2 раза, следовательно, напряжение не изменяется.
Ответ.
13.
Период колебаний математического маятника на поверхности Земли в 1, 2 раза больше периода его колебаний на некоторой планете. Чему равен модуль ускорения свободного падения на этой планете? Влияние атмосферы в обоих случаях пренебрежимо мало.
Решение.
Математический маятник – это система, состоящая из нити, размеры которой много больше размеров шарика и самого шарика. Трудность может возникнуть если забыта формула Томсона для периода колебаний математического маятника.
T
= 2π (1);
l
– длина математического маятника; g
– ускорение свободного падения.
По условию
Выразим из (3) g
п = 14,4 м/с 2 . Надо отметить, что ускорение свободного падения зависит от массы планеты и радиуса
Ответ.
14,4 м/с 2 .
Прямолинейный проводник длиной 1 м, по которому течет ток 3 А, расположен в однородном магнитном поле с индукцией В
= 0,4 Тл под углом 30° к вектору . Каков модуль силы, действующей на проводник со стороны магнитного поля?
Решение.
Если в магнитное поле, поместить проводник с током, то поле на проводник с током будет действовать с силой Ампера. Запишем формулу модуля силы Ампера
F
А = I
LB
sinα
;
F
А = 0,6 Н
Ответ. F
А = 0,6 Н.
Энергия магнитного поля, запасенная в катушке при пропускании через нее постоянного тока, равна 120 Дж. Во сколько раз нужно увеличить силу тока, протекающего через обмотку катушки, для того, чтобы запасенная в ней энергия магнитного поля увеличилась на 5760 Дж.
Решение.
Энергия магнитного поля катушки рассчитывается по формуле
По условию W
1 = 120 Дж, тогда W
2 = 120 + 5760 = 5880 Дж.
I
1 2 = |
2W 1 |
; I 2 2 = |
2W 2 |
; |
L |
L |
Тогда отношение токов
I
2 2 |
= 49; | I
2 |
= 7 |
I 1 2 |
I
1 |
Ответ.
Силу тока нужно увеличить в 7 раз. В бланк ответов Вы вносите только цифру 7.
Электрическая цепь состоит из двух лампочек, двух диодов и витка провода, соединенных, как показано на рисунке. (Диод пропускает ток только в одном направлении, как показано на верхней части рисунка). Какая из лампочек загорится, если к витку приближать северный полюс магнита? Ответ объясните, указав, какие явления и закономерности вы использовали при объяснении.
Решение.
Линии магнитной индукции выходят из северного полюса магнита и расходятся. При приближении магнита магнитный поток через виток провода увеличивается. В соответствии с правило Ленца магнитное поле, создаваемое индукционным током витка, должно быть направлено вправо. По правилу буравчика ток должен идти по часовой стрелке (если смотреть слева). В этом направлении пропускает диод, стоящий в цепи второй лампы. Значит, загорится вторая лампа.
Ответ.
Загорится вторая лампа.
Алюминиевая спица длиной L
= 25 см и площадью поперечного сечения S
= 0,1 см 2 подвешена на нити за верхний конец. Нижний конец опирается на горизонтальное дно сосуда, в который налита вода. Длина погруженной в воду части спицы l
= 10 см. Найти силу F
, с которой спица давит на дно сосуда, если известно, что нить расположена вертикально. Плотность алюминия ρ
а = 2,7 г/см 3 , плотность воды ρ
в = 1,0 г/см 3 . Ускорение свободного падения g
= 10 м/с 2
Решение.
Выполним поясняющий рисунок.
– Сила натяжения нити;
– Сила реакции дна сосуда;
a – архимедова сила, действующая только на погруженную часть тела, и приложенная к центру погруженной части спицы;
– сила тяжести, действующая на спицу со стороны Земли и приложена к центу всей спицы.
По определению масса спицы m
и модуль архимедовой силы выражаются следующим образом: m
= SL
ρ
a (1);
F
a = Sl
ρ
в g
(2)
Рассмотрим моменты сил относительно точки подвеса спицы.
М
(Т
) = 0 – момент силы натяжения; (3)
М
(N) = NL
cosα
– момент силы реакции опоры; (4)
С учетом знаков моментов запишем уравнение
NL cosα + Sl ρ |
l | ) cosα = SL ρ a g |
L |
cosα (7) |
2 | 2 |
учитывая, что по третьему закону Ньютона сила реакции дна сосуда равна силе F
д с которой спица давит на дно сосуда запишем N
= F
д и из уравнения (7) выразим эту силу:
F д = [ | 1 | L ρ a – (1 – |
l | )l
ρ |
2 | 2L |
Подставим числовые данные и получим, что
F
д = 0,025 Н.
Ответ.
F
д = 0,025 Н.
Баллон, содержащий m
1 = 1 кг азота, при испытании на прочность взорвался при температуре t
1 = 327°С. Какую массу водорода m
2 можно было бы хранить в таком баллоне при температуре t
2 = 27°С, имея пятикратный запас прочности? Молярная масса азота M
1 = 28 г/моль, водорода M
2 = 2 г/моль.
Решение.
Запишем уравнение состояния идеального газа Менделеева – Клапейрона для азота
где V
– объем баллона, T
1 = t
1 + 273°C. По условию водород можно хранить при давлении p
2 = p 1 /5; (3) Учитывая, что
можем выразить массу водорода работая сразу с уравнениями (2), (3), (4). Конечная формула имеет вид:
m 2 = |
m 1 |
M 2 |
T 1 |
(5). | ||
5 | M 1 |
T 2 |
После подстановки числовых данных m
2 = 28 г.
Ответ.
m
2 = 28 г.
В идеальном колебательном контуре амплитуда колебаний силы тока в катушке индуктивности I
m
= 5 мА, а амплитуда напряжения на конденсаторе U m
= 2,0 В. В момент времени t
напряжение на конденсаторе равно 1,2 В. Найдите силу тока в катушке в этот момент.
Решение.
В идеальном колебательном контуре сохраняется энергия колебаний. Для момента времени t закон сохранения энергий имеет вид
C |
U 2 |
+ L |
I
2 |
= L |
I m 2 |
(1) |
2 | 2 | 2 |
Для амплитудных (максимальных) значений запишем
а из уравнения (2) выразим
Подставим (4) в (3). В результате получим:
I
= I m
(5)
Таким образом, сила тока в катушке в момент времени t
равна
I
= 4,0 мА.
Ответ.
I
= 4,0 мА.
На дне водоема глубиной 2 м лежит зеркало. Луч света, пройдя через воду, отражается от зеркала и выходит из воды. Показатель преломления воды равен 1,33. Найдите расстояние между точкой входа луча в воду и точкой выхода луча из воды, если угол падения луча равен 30°
Решение.
Сделаем поясняющий рисунок
α
– угол падения луча;
β
– угол преломления луча в воде;
АС – расстояние между точкой входа луча в воду и точкой выхода луча из воды.
По закону преломления света
Рассмотрим прямоугольный ΔАDВ. В нем АD = h
, тогда DВ = АD
tgβ = h tgβ = h |
sinα | = h |
sinβ | = h |
sinα | (4) |
cosβ |
Получаем следующее выражение:
Подставим числовые значения в полученную формулу (5)
Ответ.
1,63 м.
В рамках подготовки к ЕГЭ предлагаем вам ознакомиться с рабочей программой по физике для 7–9 класса к линии УМК Перышкина А. В.
и рабочей программой углубленного уровня для 10-11 классов к УМК Мякишева Г.Я.
Программы доступны для просмотра и бесплатного скачивания всем зарегистрированным пользователям.
Решенные варианты егэ по физике. Онлайн тест егэ по физике
Подготовка к ОГЭ и ЕГЭ
Среднее общее образование
Линия УМК А. В. Грачева. Физика (10-11) (баз., углубл.)
Линия УМК А. В. Грачева. Физика (7-9)
Линия УМК А. В. Перышкина. Физика (7-9)
Разбираем задания ЕГЭ по физике (Вариант С) с учителем.
Лебедева Алевтина Сергеевна, учитель физики, стаж работы 27 лет. Почетная грамота Министерства образования Московской области (2013 год), Благодарность Главы Воскресенского муниципального района (2015 год), Грамота Президента Ассоциации учителей математики и физики Московской области (2015 год).
В работе представлены задания разных уровней сложности: базового, повышенного и высокого. Задания базового уровня, это простые задания, проверяющие усвоение наиболее важных физических понятий, моделей, явлений и законов. Задания повышенного уровня направлены на проверку умения использовать понятия и законы физики для анализа различных процессов и явлений, а также умения решать задачи на применение одного-двух законов (формул) по какой-либо из тем школьного курса физики. В работе 4 задания части 2 являются заданиями высокого уровня сложности и проверяют умение использовать законы и теории физики в измененной или новой ситуации. Выполнение таких заданий требует применения знаний сразу из двух трех разделов физики, т.е. высокого уровня подготовки. Данный вариант полностью соответствует демонстрационному варианту ЕГЭ 2017 года, задания взяты из открытого банка заданий ЕГЭ.
На рисунке представлен график зависимости модуля скорости от времени t
. Определите по графику путь, пройденный автомобилем в интервале времени от 0 до 30 с.
Решение.
Путь, пройденный автомобилем в интервале времени от 0 до 30 с проще всего определить как площадь трапеции, основаниями которой являются интервалы времени (30 – 0) = 30 c и (30 – 10) = 20 с, а высотой является скорость v
= 10 м/с, т.е.
S = |
(30 + 20) с |
10 м/с = 250 м. |
2 |
Ответ.
250 м.
Груз массой 100 кг поднимают вертикально вверх с помощью троса. На рисунке приведена зависимость проекции скорости V
груза на ось, направленную вверх, от времени t
. Определите модуль силы натяжения троса в течение подъема.
Решение.
По графику зависимости проекции скорости v
груза на ось, направленную вертикально вверх, от времени t
, можно определить проекцию ускорения груза
a
= |
∆v |
= | (8 – 2) м/с | = 2 м/с 2 . |
∆t |
3 с |
На груз действуют: сила тяжести , направленная вертикально вниз и сила натяжения троса , направленная вдоль троса вертикально вверх смотри рис. 2. Запишем основное уравнение динамики. Воспользуемся вторым законом Ньютона. Геометрическая сумма сил действующих на тело равна произведению массы тела на сообщаемое ему ускорение.
+ = (1)
Запишем уравнение для проекции векторов в системе отсчета, связанной с землей, ось OY направим вверх. Проекция силы натяжения положительная, так как направление силы совпадает с направлением оси OY, проекция силы тяжести отрицательная, так как вектор силы противоположно направлен оси OY, проекция вектора ускорения тоже положительная, так тело движется с ускорением вверх. Имеем
T
– mg
= ma
(2);
из формулы (2) модуль силы натяжения
Т
= m
(g
+ a
) = 100 кг (10 + 2) м/с 2 = 1200 Н.
Ответ
. 1200 Н.
Тело тащат по шероховатой горизонтальной поверхности с постоянной скоростью модуль которой равен 1, 5 м/с, прикладывая к нему силу так, как показано на рисунке (1). При этом модуль действующей на тело силы трения скольжения равен 16 Н. Чему равна мощность, развиваемая силой F
?
Решение.
Представим себе физический процесс, заданный в условии задачи и сделаем схематический чертеж с указанием всех сил, действующих на тело (рис.2). Запишем основное уравнение динамики.
Тр + + = (1)
Выбрав систему отсчета, связанную с неподвижной поверхностью, запишем уравнения для проекции векторов на выбранные координатные оси. По условию задачи тело движется равномерно, так как его скорость постоянна и равна 1,5 м/с. Это значит, ускорение тела равно нулю. По горизонтали на тело действуют две силы: сила трения скольжения тр. и сила , с которой тело тащат. Проекция силы трения отрицательная, так как вектор силы не совпадает с направлением оси Х
. Проекция силы F
положительная. Напоминаем, для нахождения проекции опускаем перпендикуляр из начала и конца вектора на выбранную ось. С учетом этого имеем: F
cosα – F
тр = 0; (1) выразим проекцию силы F
, это F
cosα = F
тр = 16 Н; (2) тогда мощность, развиваемая силой , будет равна N
= F
cosα V
(3) Сделаем замену, учитывая уравнение (2), и подставим соответствующие данные в уравнение (3):
N
= 16 Н · 1,5 м/с = 24 Вт.
Ответ.
24 Вт.
Груз, закрепленный на легкой пружине жесткостью 200 Н/м, совершает вертикальные колебания. На рисунке представлен график зависимости смещения x
груза от времени t
. Определите, чему равна масса груза. Ответ округлите до целого числа.
Решение.
Груз на пружине совершает вертикальные колебания. По графику зависимости смещения груза х
от времени t
, определим период колебаний груза. Период колебаний равен Т
= 4 с; из формулы Т
= 2π
выразим массу m
груза.
= | T | ; | m |
= | T 2 |
; m = k |
T 2 |
; m = 200 H/м |
(4 с) 2 | = 81,14 кг ≈ 81 кг. |
2π | k |
4π 2 |
4π 2 |
39,438 |
Ответ:
81 кг.
На рисунке показана система из двух легких блоков и невесомого троса, с помощью которого можно удерживать в равновесии или поднимать груз массой 10 кг. Трение пренебрежимо мало. На основании анализа приведенного рисунка выберите два
верных утверждения и укажите в ответе их номера.
- Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 100 Н.
- Изображенная на рисунке система блоков не дает выигрыша в силе.
- h
, нужно вытянуть участок веревки длиной 3h
. - Для того чтобы медленно поднять груз на высоту h
h
.
Решение.
В данной задаче необходимо вспомнить простые механизмы, а именно блоки: подвижный и неподвижный блок. Подвижный блок дает выигрыш в силе в два раза, при этом участок веревки нужно вытянуть в два раза длиннее, а неподвижный блок используют для перенаправления силы. В работе простые механизмы выигрыша не дают. После анализа задачи сразу выбираем нужные утверждения:
- Для того чтобы медленно поднять груз на высоту h
, нужно вытянуть участок веревки длиной 2h
. - Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 50 Н.
Ответ.
45.
В сосуд с водой полностью погружен алюминиевый груз, закрепленный на невесомой и нерастяжимой нити. Груз не касается стенок и дна сосуда. Затем в такой же сосуд с водой погружают железный груз, масса которого равна массе алюминиевого груза. Как в результате этого изменятся модуль силы натяжения нити и модуль действующей на груз силы тяжести?
- Увеличивается;
- Уменьшается;
- Не изменяется.
Решение.
Анализируем условие задачи и выделяем те параметры, которые не меняются в ходе исследования: это масса тела и жидкость, в которую погружают тело на нити. После этого лучше выполнить схематический рисунок и указать действующие на груз силы: сила натяжения нити F
упр, направленная вдоль нити вверх; сила тяжести , направленная вертикально вниз; архимедова сила a
, действующая со стороны жидкости на погруженное тело и направленная вверх. По условию задачи масса грузов одинакова, следовательно, модуль действующей на груз силы тяжести не меняется. Так как плотность грузов разная, то объем тоже будет разный
Плотность железа 7800 кг/м 3 , а алюминиевого груза 2700 кг/м 3 . Следовательно, V
ж V a
. Тело в равновесии, равнодействующая всех сил, действующих на тело равна нулю. Направим координатную ось OY вверх. Основное уравнение динамики с учетом проекции сил запишем в виде F
упр + F a
– mg
= 0; (1) Выразим силу натяжения F
упр = mg
– F a
(2); архимедова сила зависит от плотности жидкости и объема погруженной части тела F a
= ρgV
п.ч.т. (3); Плотность жидкости не меняется, а объем тела из железа меньше V
ж V a
, поэтому архимедова сила, действующая на железный груз будет меньше. Делаем вывод о модуле силы натяжения нити, работая с уравнение (2), он возрастет.
Ответ.
13.
Брусок массой m
соскальзывает с закрепленной шероховатой наклонной плоскости с углом α при основании. Модуль ускорения бруска равен a
, модуль скорости бруска возрастает. Сопротивлением воздуха можно пренебречь.
Установите соответствие между физическими величинами и формулами, при помощи которых их можно вычислить. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.
Б) Коэффициент трения бруска о наклонную плоскость
3) mg
cosα
Решение.
Данная задача требует применение законов Ньютона. Рекомендуем сделать схематический чертеж; указать все кинематические характеристики движения. Если возможно, изобразить вектор ускорения и векторы всех сил, приложенных к движущемуся телу; помнить, что силы, действующие на тело, – результат взаимодействия с другими телами. Затем записать основное уравнение динамики. Выбрать систему отсчета и записать полученное уравнение для проекции векторов сил и ускорений;
Следуя предложенному алгоритму, сделаем схематический чертеж (рис. 1). На рисунке изображены силы, приложенные к центру тяжести бруска, и координатные оси системы отсчета, связанной с поверхностью наклонной плоскости. Так как все силы постоянны, то движение бруска будет равнопеременным с увеличивающейся скоростью, т.е. вектор ускорения направлен в сторону движения. Выберем направление осей как указано на рисунке. Запишем проекции сил, на выбранные оси.
Запишем основное уравнение динамики:
Тр + = (1)
Запишем данное уравнение (1) для проекции сил и ускорения.
На ось OY: проекция силы реакции опоры положительная, так как вектор совпадает с направлением оси OY N y
= N
; проекция силы трения равна нулю так как вектор перпендикулярен оси; проекция силы тяжести будет отрицательная и равная mg y
=
–
mg
cosα
; проекция вектора ускорения a
y
= 0, так как вектор ускорения перпендикулярен оси. Имеем N
– mg
cosα
= 0 (2) из уравнения выразим силу реакции действующей на брусок, со стороны наклонной плоскости. N
= mg
cosα
(3). Запишем проекции на ось OX.
На ось OX: проекция силы N
равна нулю, так как вектор перпендикулярен оси ОХ; Проекция силы трения отрицательная (вектор направлен в противоположную сторону относительно выбранной оси); проекция силы тяжести положительная и равна mg x
= mg
sinα
(4) из прямоугольного треугольника. Проекция ускорения положительная a
x
= a
; Тогда уравнение (1) запишем с учетом проекции mg
sinα – F
тр = ma
(5); F
тр = m
(g
sinα
– a
) (6); Помним, что сила трения пропорциональна силе нормального давления N
.
По определению F
тр = μN
(7), выразим коэффициент трения бруска о наклонную плоскость.
μ = |
F тр |
= | m (g sinα – a ) |
= tgα – |
a | (8). |
N |
mg cosα |
g cosα |
Выбираем соответствующие позиции для каждой буквы.
Ответ.
A – 3; Б – 2.
Задание 8. Газообразный кислород находится в сосуде объемом 33,2 литра. Давление газа 150 кПа, его температура 127° С. Определите массу газа в этом сосуде. Ответ выразите в граммах и округлите до целого числа.
Решение.
Важно обратить внимание на перевод единиц в систему СИ. Температуру переводим в Кельвины T
= t
°С + 273, объем V
= 33,2 л = 33,2 · 10 –3 м 3 ; Давление переводим P
= 150 кПа = 150 000 Па. Используя уравнение состояния идеального газа
выразим массу газа.
Обязательно обращаем внимание, в каких единица просят записать ответ. Это очень важно.
Ответ.
48 г.
Задание 9.
Идеальный одноатомный газ в количестве 0,025 моль адиабатически расширился. При этом его температура понизилась с +103°С до +23°С. Какую работу совершил газ? Ответ выразите в Джоулях и округлите до целого числа.
Решение.
Во-первых, газ одноатомный число степеней свободы i
= 3, во-вторых, газ расширяется адиабатически – это значит без теплообмена Q
= 0. Газ совершает работу за счет уменьшения внутренней энергии. С учетом этого, первый закон термодинамики запишем в виде 0 = ∆U
+ A
г; (1) выразим работу газа A
г = –∆U
(2); Изменение внутренней энергии для одноатомного газа запишем как
Ответ.
25 Дж.
Относительная влажность порции воздуха при некоторой температуре равна 10 %. Во сколько раз следует изменить давление этой порции воздуха для того, чтобы при неизменной температуре его относительная влажность увеличилась на 25 %?
Решение.
Вопросы, связанные с насыщенным паром и влажностью воздуха, чаще всего вызывают затруднения у школьников. Воспользуемся формулой для расчета относительной влажности воздуха
По условию задачи температура не изменяется, значит, давление насыщенного пара остается тем же. Запишем формулу (1) для двух состояний воздуха.
φ
1 = 10 % ; φ
2 = 35 %
Выразим давления воздуха из формул (2), (3) и найдем отношение давлений.
P 2 |
= | φ 2 |
= | 35 | = 3,5 |
P 1 |
φ 1 |
10 |
Ответ.
Давление следует увеличить в 3,5 раза.
Горячее вещество в жидком состоянии медленно охлаждалось в плавильной печи с постоянной мощностью. В таблице приведены результаты измерений температуры вещества с течением времени.
Выберите из предложенного перечня два
утверждения, которые соответствуют результатам проведенных измерений и укажите их номера.
- Температура плавления вещества в данных условиях равна 232°С.
- Через 20 мин. после начала измерений вещество находилось только в твердом состоянии.
- Теплоемкость вещества в жидком и твердом состоянии одинакова.
- Через 30 мин. после начала измерений вещество находилось только в твердом состоянии.
- Процесс кристаллизации вещества занял более 25 минут.
Решение.
Так как вещество охлаждалось, то его внутренняя энергия уменьшалась. Результаты измерения температуры, позволяют определить температуру, при которой вещество начинает кристаллизоваться. Пока вещество переходит из жидкого состояния в твердое, температура не меняется. Зная, что температура плавления и температура кристаллизации одинаковы, выбираем утверждение:
1. Tемпература плавления вещества в данных условиях равна 232°С.
Второе верное утверждение это:
4. Через 30 мин. после начала измерений вещество находилось только в твердом состоянии. Так как температура в этот момент времени, уже ниже температуры кристаллизации.
Ответ.
14.
В изолированной системе тело А имеет температуру +40°С, а тело Б температуру +65°С. Эти тела привели в тепловой контакт друг с другом. Через некоторое время наступило тепловое равновесие. Как в результате изменилась температура тела Б и суммарная внутренняя энергия тела А и Б?
Для каждой величины определите соответствующий характер изменения:
- Увеличилась;
- Уменьшилась;
- Не изменилась.
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Решение.
Если в изолированной системе тел не происходит никаких превращений энергии кроме теплообмена, то количество теплоты, отданное телами, внутренняя энергия которых уменьшается, равно количеству теплоты, полученному телами, внутренняя энергия которых увеличивается. (По закону сохранения энергии.) При этом суммарная внутренняя энергия системы не меняется. Задачи такого типа решаются на основании уравнения теплового баланса.
∆U = ∑ |
n |
∆U i = 0 (1); |
i = 1 |
где ∆U
– изменение внутренней энергии.
В нашем случае в результате теплообмена внутренняя энергия тела Б уменьшается, а значит уменьшается температура этого тела. Внутренняя энергия тела А увеличивается, так как тело получило количество теплоты от тела Б, то температура его увеличится. Суммарная внутренняя энергия тел А и Б не изменяется.
Ответ.
23.
Протон p
, влетевший в зазор между полюсами электромагнита, имеет скорость , перпендикулярную вектору индукции магнитного поля, как показано на рисунке. Куда направлена действующая на протон сила Лоренца относительно рисунка (вверх, к наблюдателю, от наблюдателя, вниз, влево, вправо)
Решение.
На заряженную частицу магнитное поле действует с силой Лоренца. Для того чтобы определить направление этой силы, важно помнить мнемоническое правило левой руки, не забывать учитывать заряд частицы. Четыре пальца левой руки направляем по вектору скорости, для положительно заряженной частицы, вектор должен перпендикулярно входить в ладонь, большой палец отставленный на 90° показывает направление действующей на частицу силы Лоренца. В результате имеем, что вектор силы Лоренца направлен от наблюдателя относительно рисунка.
Ответ.
от наблюдателя.
Модуль напряженности электрического поля в плоском воздушном конденсаторе емкостью 50 мкФ равен 200 В/м. Расстояние между пластинами конденсатора 2 мм. Чему равен заряд конденсатора? Ответ запишите в мкКл.
Решение.
Переведем все единицы измерения в систему СИ. Емкость С = 50 мкФ = 50 · 10 –6 Ф, расстояние между пластинами d
= 2 · 10 –3 м. В задаче говорится о плоском воздушном конденсаторе – устройстве для накопления электрического заряда и энергии электрического поля. Из формулы электрической емкости
где d
– расстояние между пластинами.
Выразим напряжение U
= E · d
(4); Подставим (4) в (2) и рассчитаем заряд конденсатора.
q
= C
· Ed
= 50 · 10 –6 · 200 · 0,002 = 20 мкКл
Обращаем внимание, в каких единицах нужно записать ответ. Получили в кулонах, а представляем в мкКл.
Ответ.
20 мкКл.
Ученик провел опыт по преломлению света, представленный на фотографии. Как изменяется при увеличении угла падения угол преломления света, распространяющегося в стекле, и показатель преломления стекла?
- Увеличивается
- Уменьшается
- Не изменяется
- Запишите в таблицу выбранные цифры для каждого ответа. Цифры в ответе могут повторяться.
Решение.
В задачах такого плана вспоминаем, что такое преломление. Это изменение направления распространения волны при прохождении из одной среды в другую. Вызвано оно тем, что скорости распространения волн в этих средах различны. Разобравшись из какой среды в какую свет распространяется, запишем закона преломления в виде
где n
2 – абсолютный показатель преломления стекла, среда куда идет свет; n
1 – абсолютный показатель преломления первой среды, откуда свет идет. Для воздуха n
1 = 1. α
– угол падения луча на поверхность стеклянного полуцилиндра, β
– угол преломления луча в стекле. Причем, угол преломления будет меньше угла падения, так как стекло оптически более плотная среда – среда с большим показателем преломления. Скорость распространения света в стекле меньше. Обращаем внимание, что углы измеряем от перпендикуляра, восстановленного в точке падения луча. Если увеличивать угол падения, то и угол преломления будет расти. Показатель преломления стекла от этого меняться не будет.
Ответ.
Медная перемычка в момент времени t
0 = 0 начинает двигаться со скоростью 2 м/с по параллельным горизонтальным проводящим рельсам, к концам которых подсоединен резистор сопротивлением 10 Ом. Вся система находится в вертикальном однородном магнитном поле. Сопротивление перемычки и рельсов пренебрежимо мало, перемычка все время расположена перпендикулярно рельсам. Поток Ф
вектора магнитной индукции через контур, образованный перемычкой, рельсами и резистором, изменяется с течением времени t
так, как показано на графике.
Используя график, выберите два верных утверждения и укажите в ответе их номера.
- К моменту времени t
= 0,1 с изменение магнитного потока через контур равно 1 мВб. - Индукционный ток в перемычке в интервале от t
= 0,1 с t
= 0,3 с максимален. - Модуль ЭДС индукции, возникающей в контуре, равен 10 мВ.
- Сила индукционного тока, текущего в перемычке, равна 64 мА.
- Для поддержания движения перемычки к ней прикладывают силу, проекция которой на направление рельсов равна 0,2 Н.
Решение.
По графику зависимости потока вектора магнитной индукции через контур от времени определим участки, где поток Ф
меняется, и где изменение потока равно нулю. Это позволит нам определить интервалы времени, в которые в контуре будет возникать индукционный ток. Верное утверждение:
1) К моменту времени t
= 0,1 с изменение магнитного потока через контур равно 1 мВб ∆Ф
= (1 – 0) · 10 –3 Вб; Модуль ЭДС индукции, возникающей в контуре определим используя закон ЭМИ
Ответ.
13.
По графику зависимости силы тока от времени в электрической цепи, индуктивность которой равна 1 мГн, определите модуль ЭДС самоиндукции в интервале времени от 5 до 10 с. Ответ запишите в мкВ.
Решение.
Переведем все величины в систему СИ, т.е. индуктивность 1 мГн переведем в Гн, получим 10 –3 Гн. Силу тока, показанной на рисунке в мА также будем переводить в А путем умножения на величину 10 –3 .
Формула ЭДС самоиндукции имеет вид
при этом интервал времени дан по условию задачи
∆t
= 10 c – 5 c = 5 c
секунд и по графику определяем интервал изменения тока за это время:
∆I
= 30 · 10 –3 – 20 · 10 –3 = 10 · 10 –3 = 10 –2 A.
Подставляем числовые значения в формулу (2), получаем
|
Ɛ
|
= 2 ·10 –6 В, или 2 мкВ.
Ответ.
2.
Две прозрачные плоскопараллельные пластинки плотно прижаты друг к другу. Из воздуха на поверхность первой пластинки падает луч света (см. рисунок). Известно, что показатель преломления верхней пластинки равен n
2 = 1,77. Установите соответствие между физическими величинами и их значениями. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.
Решение.
Для решения задач о преломлении света на границе раздела двух сред, в частности задач на прохождение света через плоскопараллельные пластинки можно рекомендовать следующий порядок решения: сделать чертеж с указанием хода лучей, идущих из одной среды в другую; в точке падения луча на границе раздела двух сред провести нормаль к поверхности, отметить углы падения и преломления. Особо обратить внимание на оптическую плотность рассматриваемых сред и помнить, что при переходе луча света из оптически менее плотной среды в оптически более плотную среду угол преломления будет меньше угла падения. На рисунке дан угол между падающим лучом и поверхностью, а нам нужен угол падения. Помним, что углы определяются от перпендикуляра, восстановленного в точке падения. Определяем, что угол падения луча на поверхность 90° – 40° = 50°, показатель преломления n
2 = 1,77; n
1 = 1 (воздух).
Запишем закон преломления
sinβ = |
sin50 | = 0,4327 ≈ 0,433 |
1,77 |
Построим примерный ход луча через пластинки. Используем формулу (1) для границы 2–3 и 3–1. В ответе получаем
А) Синус угла падения луча на границу 2–3 между пластинками – это 2) ≈ 0,433;
Б) Угол преломления луча при переходе границы 3–1 (в радианах) – это 4) ≈ 0,873.
Ответ
. 24.
Определите, сколько α – частиц и сколько протонов получается в результате реакции термоядерного синтеза
+ → x
+ y
;
Решение.
При всех ядерных реакциях соблюдаются законы сохранения электрического заряда и числа нуклонов. Обозначим через x – количество альфа частиц, y– количество протонов. Составим уравнения
+ → x + y;
решая систему имеем, что x
= 1; y
= 2
Ответ.
1 – α
-частица; 2 – протона.
Модуль импульса первого фотона равен 1,32 · 10 –28 кг·м/с, что на 9,48 · 10 –28 кг·м/с меньше, чем модуль импульса второго фотона. Найдите отношение энергии E 2 /E 1 второго и первого фотонов. Ответ округлите до десятых долей.
Решение.
Импульс второго фотона больше импульса первого фотона по условию значит можно представить p
2 = p
1 + Δp
(1). Энергию фотона можно выразить через импульс фотона, используя следующие уравнения. Это E
= mc
2 (1) и p
= mc
(2), тогда
E
= pc
(3),
где E
– энергия фотона, p
– импульс фотона, m – масса фотона, c
= 3 · 10 8 м/с – скорость света. С учетом формулы (3) имеем:
E 2 |
= | p 2 |
= 8,18; |
E 1 |
p 1 |
Ответ округляем до десятых и получаем 8,2.
Ответ.
8,2.
Ядро атома претерпело радиоактивный позитронный β – распад. Как в результате этого изменялись электрический заряд ядра и количество нейтронов в нем?
Для каждой величины определите соответствующий характер изменения:
- Увеличилась;
- Уменьшилась;
- Не изменилась.
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Решение.
Позитронный β
– распад в атомном ядре происходит при превращений протона в нейтрон с испусканием позитрона. В результате этого число нейтронов в ядре увеличивается на единицу, электрический заряд уменьшается на единицу, а массовое число ядра остается неизменным. Таким образом, реакция превращения элемента следующая:
Ответ.
21.
В лаборатории было проведено пять экспериментов по наблюдению дифракции с помощью различных дифракционных решеток. Каждая из решеток освещалась параллельными пучками монохроматического света с определенной длиной волны. Свет во всех случаях падал перпендикулярно решетке. В двух из этих экспериментов наблюдалось одинаковое количество главных дифракционных максимумов. Укажите сначала номер эксперимента, в котором использовалась дифракционная решетка с меньшим периодом, а затем – номер эксперимента, в котором использовалась дифракционная решетка с большим периодом.
Решение.
Дифракцией света называется явление светового пучка в область геометрической тени. Дифракцию можно наблюдать в том случае, когда на пути световой волны встречаются непрозрачные участки или отверстия в больших по размерам и непрозрачных для света преградах, причем размеры этих участков или отверстий соизмеримы с длиной волны. Одним из важнейших дифракционных устройств является дифракционная решетка. Угловые направления на максимумы дифракционной картины определяются уравнением
d
sinφ
= k
λ
(1),
где d
– период дифракционной решетки, φ
– угол между нормалью к решетке и направлением на один из максимумов дифракционной картины, λ
– длина световой волны, k
– целое число, называемое порядком дифракционного максимума. Выразим из уравнения (1)
Подбирая пары согласно условию эксперимента, выбираем сначала 4 где использовалась дифракционная решетка с меньшим периодом, а затем – номер эксперимента, в котором использовалась дифракционная решетка с большим периодом – это 2.
Ответ.
42.
По проволочному резистору течет ток. Резистор заменили на другой, с проволокой из того же металла и той же длины, но имеющей вдвое меньшую площадь поперечного сечения, и пропустили через него вдвое меньший ток. Как изменятся при этом напряжение на резисторе и его сопротивление?
Для каждой величины определите соответствующий характер изменения:
- Увеличится;
- Уменьшится;
- Не изменится.
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Решение.
Важно помнить от каких величин зависит сопротивление проводника. Формула для расчета сопротивления имеет вид
закона Ома для участка цепи, из формулы (2), выразим напряжение
U
= I
R
(3).
По условию задачи второй резистор изготовлен из проволоки того же материала, той же длины, но разной площади поперечного сечения. Площадь в два раза меньшая. Подставляя в (1) получим, что сопротивление увеличивается в 2 раза, а сила тока уменьшается в 2 раза, следовательно, напряжение не изменяется.
Ответ.
13.
Период колебаний математического маятника на поверхности Земли в 1, 2 раза больше периода его колебаний на некоторой планете. Чему равен модуль ускорения свободного падения на этой планете? Влияние атмосферы в обоих случаях пренебрежимо мало.
Решение.
Математический маятник – это система, состоящая из нити, размеры которой много больше размеров шарика и самого шарика. Трудность может возникнуть если забыта формула Томсона для периода колебаний математического маятника.
T
= 2π (1);
l
– длина математического маятника; g
– ускорение свободного падения.
По условию
Выразим из (3) g
п = 14,4 м/с 2 . Надо отметить, что ускорение свободного падения зависит от массы планеты и радиуса
Ответ.
14,4 м/с 2 .
Прямолинейный проводник длиной 1 м, по которому течет ток 3 А, расположен в однородном магнитном поле с индукцией В
= 0,4 Тл под углом 30° к вектору . Каков модуль силы, действующей на проводник со стороны магнитного поля?
Решение.
Если в магнитное поле, поместить проводник с током, то поле на проводник с током будет действовать с силой Ампера. Запишем формулу модуля силы Ампера
F
А = I
LB
sinα
;
F
А = 0,6 Н
Ответ. F
А = 0,6 Н.
Энергия магнитного поля, запасенная в катушке при пропускании через нее постоянного тока, равна 120 Дж. Во сколько раз нужно увеличить силу тока, протекающего через обмотку катушки, для того, чтобы запасенная в ней энергия магнитного поля увеличилась на 5760 Дж.
Решение.
Энергия магнитного поля катушки рассчитывается по формуле
По условию W
1 = 120 Дж, тогда W
2 = 120 + 5760 = 5880 Дж.
I
1 2 = |
2W 1 |
; I 2 2 = |
2W 2 |
; |
L |
L |
Тогда отношение токов
I
2 2 |
= 49; | I
2 |
= 7 |
I 1 2 |
I
1 |
Ответ.
Силу тока нужно увеличить в 7 раз. В бланк ответов Вы вносите только цифру 7.
Электрическая цепь состоит из двух лампочек, двух диодов и витка провода, соединенных, как показано на рисунке. (Диод пропускает ток только в одном направлении, как показано на верхней части рисунка). Какая из лампочек загорится, если к витку приближать северный полюс магнита? Ответ объясните, указав, какие явления и закономерности вы использовали при объяснении.
Решение.
Линии магнитной индукции выходят из северного полюса магнита и расходятся. При приближении магнита магнитный поток через виток провода увеличивается. В соответствии с правило Ленца магнитное поле, создаваемое индукционным током витка, должно быть направлено вправо. По правилу буравчика ток должен идти по часовой стрелке (если смотреть слева). В этом направлении пропускает диод, стоящий в цепи второй лампы. Значит, загорится вторая лампа.
Ответ.
Загорится вторая лампа.
Алюминиевая спица длиной L
= 25 см и площадью поперечного сечения S
= 0,1 см 2 подвешена на нити за верхний конец. Нижний конец опирается на горизонтальное дно сосуда, в который налита вода. Длина погруженной в воду части спицы l
= 10 см. Найти силу F
, с которой спица давит на дно сосуда, если известно, что нить расположена вертикально. Плотность алюминия ρ
а = 2,7 г/см 3 , плотность воды ρ
в = 1,0 г/см 3 . Ускорение свободного падения g
= 10 м/с 2
Решение.
Выполним поясняющий рисунок.
– Сила натяжения нити;
– Сила реакции дна сосуда;
a – архимедова сила, действующая только на погруженную часть тела, и приложенная к центру погруженной части спицы;
– сила тяжести, действующая на спицу со стороны Земли и приложена к центу всей спицы.
По определению масса спицы m
и модуль архимедовой силы выражаются следующим образом: m
= SL
ρ
a (1);
F
a = Sl
ρ
в g
(2)
Рассмотрим моменты сил относительно точки подвеса спицы.
М
(Т
) = 0 – момент силы натяжения; (3)
М
(N) = NL
cosα
– момент силы реакции опоры; (4)
С учетом знаков моментов запишем уравнение
NL cosα + Sl ρ |
l | ) cosα = SL ρ a g |
L |
cosα (7) |
2 | 2 |
учитывая, что по третьему закону Ньютона сила реакции дна сосуда равна силе F
д с которой спица давит на дно сосуда запишем N
= F
д и из уравнения (7) выразим эту силу:
F д = [ | 1 | L ρ a – (1 – |
l | )l
ρ |
2 | 2L |
Подставим числовые данные и получим, что
F
д = 0,025 Н.
Ответ.
F
д = 0,025 Н.
Баллон, содержащий m
1 = 1 кг азота, при испытании на прочность взорвался при температуре t
1 = 327°С. Какую массу водорода m
2 можно было бы хранить в таком баллоне при температуре t
2 = 27°С, имея пятикратный запас прочности? Молярная масса азота M
1 = 28 г/моль, водорода M
2 = 2 г/моль.
Решение.
Запишем уравнение состояния идеального газа Менделеева – Клапейрона для азота
где V
– объем баллона, T
1 = t
1 + 273°C. По условию водород можно хранить при давлении p
2 = p 1 /5; (3) Учитывая, что
можем выразить массу водорода работая сразу с уравнениями (2), (3), (4). Конечная формула имеет вид:
m 2 = |
m 1 |
M 2 |
T 1 |
(5). | ||
5 | M 1 |
T 2 |
После подстановки числовых данных m
2 = 28 г.
Ответ.
m
2 = 28 г.
В идеальном колебательном контуре амплитуда колебаний силы тока в катушке индуктивности I
m
= 5 мА, а амплитуда напряжения на конденсаторе U m
= 2,0 В. В момент времени t
напряжение на конденсаторе равно 1,2 В. Найдите силу тока в катушке в этот момент.
Решение.
В идеальном колебательном контуре сохраняется энергия колебаний. Для момента времени t закон сохранения энергий имеет вид
C |
U 2 |
+ L |
I
2 |
= L |
I m 2 |
(1) |
2 | 2 | 2 |
Для амплитудных (максимальных) значений запишем
а из уравнения (2) выразим
Подставим (4) в (3). В результате получим:
I
= I m
(5)
Таким образом, сила тока в катушке в момент времени t
равна
I
= 4,0 мА.
Ответ.
I
= 4,0 мА.
На дне водоема глубиной 2 м лежит зеркало. Луч света, пройдя через воду, отражается от зеркала и выходит из воды. Показатель преломления воды равен 1,33. Найдите расстояние между точкой входа луча в воду и точкой выхода луча из воды, если угол падения луча равен 30°
Решение.
Сделаем поясняющий рисунок
α
– угол падения луча;
β
– угол преломления луча в воде;
АС – расстояние между точкой входа луча в воду и точкой выхода луча из воды.
По закону преломления света
Рассмотрим прямоугольный ΔАDВ. В нем АD = h
, тогда DВ = АD
tgβ = h tgβ = h |
sinα | = h |
sinβ | = h |
sinα | (4) |
cosβ |
Получаем следующее выражение:
Подставим числовые значения в полученную формулу (5)
Ответ.
1,63 м.
В рамках подготовки к ЕГЭ предлагаем вам ознакомиться с рабочей программой по физике для 7–9 класса к линии УМК Перышкина А. В.
и рабочей программой углубленного уровня для 10-11 классов к УМК Мякишева Г.Я.
Программы доступны для просмотра и бесплатного скачивания всем зарегистрированным пользователям.
Изменения в ЕГЭ по физике, принятые Рособрнадзором не так давно, вступят в силу в 2017 году. Основное нововведение — полное исключение тестовой части. Начиная с 2017-ого это также затронет химию и биологию.
ЕГЭ-2017: основные изменения
Ранее стало известно, что почти наверняка в 2017 году в программу сдачи ЕГЭ — Единого государственного экзамена — в России будет добавлен третий обязательный предмет. До этого обязательными учебными дисциплинами, которые служили проверкой знаний всех без исключения школьников, были две: русский язык и математика. Начиная с 2017-ого, и в последнее время слухи об этом не утихают, к ним добавится история.
Чиновники, по чьим указаниям и были внесены соответствующие поправки в экзамен, указывают на то, что в настоящий момент времени много молодежи не интересуется прошлым и не знает, как жили их предки, что, по их утверждениям, очень плохо. Так, они полагают, что знать это обязательно, поэтому теперь будущих студентов станут проверять и на предмет их познаний в контексте истории России и мира.
ЕГЭ-2017 по физике: что изменится?
Вернемся к физике. ЕГЭ по физике 2017 года сдачи, как мы уже сказали, изменится лишь в том, что тестовая часть останется за бортом. На смену ей придет устная и письменная. Конкретных деталей по тому, что именно изменится в заданиях, к нам пока что не поступало.
Отмена тестовой части — результат долговременного обсуждения чиновников, в течение которого они рассматривали плюсы и минусы принятия того или иного решения. В итоге сошлись на том, чтобы утвердить положительный ответ. Одной из особенностей такого подхода, как они считают, станет полное исключение возможного угадывания ответов. В то же время устные и письменные ответы абитуриента отчетливо покажут его состоятельность и способность к обучению.
Перспективы экзамена в России в скором будущем
В скором времени отмена тестов затронет и другие предметы. Дополнительно хотим заметить, что к 2022 году Рособрнадзор планирует включить в сдачу ЕГЭ четвертый обязательный предмет. К тому времени им станет иностранный язык. Среди предложенных вариантов сдачи этой учебной дисциплины на сегодняшний день чиновниками утверждены английский, немецкий, французский и испанский языки.
В какую сторону направит развитие образования в РФ такой ход дела, догадаться нетрудно. Сегодня невооруженным глазом видно, как быстро меняется мир, при этом одной из особенностей этого процесса является коммуникация людей, представляющих интересы самых разных государств мира. Чтобы наладить тесные отношения с единомышленниками, которые говорят на другом языке, нужно выучить тот, который роднит большинство людей. Собственно, четыре перечисленные в тексте ранее как раз таки и относятся к их числу.
Подготовка к ЕГЭ
Подготовка в по предмету Физика должна занимать у школьника чуточку больше времени, в отличие от того, сколько часов в день он уделяет пониманию химии и биологии, русского языка и математики. Да, математика в чем-то схожа с физикой, — и быть может, главное, что их объединяет, — это формулы, — но ее нужно сдавать обязательно, а физику — по требованию — по желанию, чтобы впоследствии поступить в соответствующий ВУЗ, который непременно потребует положительного результата, достигнутого студентом на экзамене.
Хочется сразу сказать всем скептикам, которые относятся к числу людей, кто свято верит в то, что ЕГЭ будет отменен в 2017 году, что они ошибаются в своих суждениях. Такого не случится, по крайней мере, еще лет 5-6. Да и потом, на что променяют экзамен, а? Ведь это единственная проверка знаний, которая хоть и строга, но в то же время во многом показательна.
Где брать знания?
Готовиться к ЕГЭ по физике нужно будет по следующим учебным материалам: книгам и справочникам. Школьная программа дает школьнику многое из того, что нужно знать ему в первую очередь, поэтому пренебрегать ей не стоит — стоит внимательно слушать учителя и попытаться понять все, что он говорит.
Помимо перечисленных учебных материалов, не лишним будет прибегнуть и к изучению сборников с формулами, чтобы проверить себя на предмет достаточного количества знаний в этой части экзамена.
Также, как вы сами понимаете, перед ЕГЭ по физике в 2017 году просто со 100%-ой необходимостью нужно приобрести сборники задач. Если в них уже будут указаны решения, не пугайтесь, наоборот, этим вы сможете понять, как получить желаемый результат в том или ином задания. Во всяком случае на экзамене будут совершенно другие задачи, требующие, вполне возможно, нестандартного подхода к их решению. Поэтому, так сказать, набить руку в этом деле явно не будет лишним.
Можно ходить на консультации, если таковые есть в вашей школе, можно нанять репетитора. И не стоит стесняться этого. Этим вы показываете свою готовность к обучению и то, что вы решительно настроены на то, чтобы поступить в ВУЗ, обучаться в котором мечтали с детства.
Онлайн тест ЕГЭ по физике, который вы можете пройти на образовательном портале сайт, поможет вам лучше подготовиться к единому государственному экзамену. ЕГЭ – это очень ответственное мероприятие, от которого будет завесить поступление в институт. А от будет зависеть ваша будущая профессия. Поэтому следует ответственно подойти к вопросу подготовки к ЕГЭ. Лучше всего воспользоваться всеми доступными средствами, что бы улучшить свой результат по такому ответственному экзамену.
Различные варианты подготовки к ЕГЭ
Каждый сам решает, каким образом готовить к ЕГЭ. Кто-то полностью надеются на школьные знания. И некоторым удаётся показать отличные результаты благодаря исключительно школьной подготовке. Но тут определяющую роль играет не конкретная школа, а школьник, который ответственно относился к занятиям и занимался саморазвитием. Другие прибегают к помощи репетиторов, которые в короткие сроки могут натаскать школьника на решений типовых задач из ЕГЭ. Но к выбору репетитора стоит отнестись ответственно, ведь многие рассматривают репетиторство как источник заработка и не заботятся о будущем своего подопечного. Кто-то поступают на специализированные курсы подготовке к ЕГЭ. Тут опытные специалисты учат детей справляться с различными задачами и готовя не только к ЕГЭ, но и поступлению в институт. Лучше всего если такие курсы действуют при . Тогда профессора из университета будут учить ребёнка. Но есть и самостоятельные способы подготовки к ЕГЭ – онлайн тесты.
Пробные онлайн тесты ЕГЭ по физике
На образовательном портале Uchistut.ru можно пройти пробные онлайн тесты ЕГЭ по физике, что бы лучше подготовиться к реальному ЕГЭ. Тренировка в интернете позволит понять, какие бывают вопросы на ЕГЭ. Так же можно выявить свои слабые и сильные стороны. Так как на пробных онлайн тестах не ограничено время, то можно найти в учебниках ответ на задачу, решение которого не известно. Постоянные тренировки помогут снизить уровень стреса на реальном экзамене. А специалисты утверждают, что более тридцати процентов неудач на ЕГЭ связано именно со стрессом и растерянностью во время ЕГЭ. Для ребёнка это очень большая нагрузка, ответственность, которая сильно давит на школьника и мешает ему сосредоточиться на поставленных заданиях. А ЕГЭ по физики считается одним из самых сложных, поэтому подготовиться к нему необходимо как можно лучше. Ведь от результатов ЕГЭ по физике зависит поступлении в лучшие технические ВУЗы Москвы. А это очень престижные учебные заведения, попасть в которые мечтают многие.
В 2017 г. контрольные измерительные материалы по физике претерпят существенные изменения.
Из вариантов исключены задания с выбором одного верного ответа и добавлены задания с кратким ответом. В связи с этим предложена новая структура части 1 экзаменационной работы, а часть 2 оставлена без изменений.
При внесении изменений в структуру экзаменационной работы сохранены общие концептуальные подходы к оценке учебных достижений. В том числе остался без изменений суммарный балл за выполнение всех заданий экзаменационной работы, сохранено распределение максимальных баллов за выполнение заданий разных уровней сложности и примерное распределение числа заданий по разделам школьного курса физики и способам деятельности. Каждый вариант экзаменационной работы проверяет элементы содержания из всех разделов школьного курса физики, при этом для каждого раздела предлагаются задания разных уровней сложности. Приоритетом при конструировании КИМ является необходимость проверки предусмотренных стандартом видов деятельности: усвоение понятийного аппарата курса физики, овладение методологическими умениями, применение знаний при объяснении физических процессов и решении задач.
Вариант экзаменационной работы будет состоять из двух частей и включит в себя 31 задание. Часть 1 будет содержать 23 задания с кратким ответом, в том числе задания с самостоятельной записью ответа в виде числа, двух чисел или слова, а также задания на установление соответствия и множественный выбор, в которых ответы необходимо записать в виде последовательности цифр. Часть 2 будет содержать 8 заданий, объединенных общим видом деятельности – решение задач. Из них 3 задания с кратким ответом (24–26) и 5 заданий (29–31), для которых необходимо привести развернутый ответ.
В работу будут включены задания трех уровней сложности. Задания базового уровня включены в часть 1 работы (18 заданий, из которых 13 заданий с записью ответа в виде числа, двух чисел или слова и 5 заданий на соответствие и множественный выбор). Среди заданий базового уровня выделяются задания, содержание которых соответствует стандарту базового уровня. Минимальное количество баллов ЕГЭ по физике, подтверждающее освоение выпускником программы среднего (полного) общего образования по физике, устанавливается, исходя из требований освоения стандарта базового уровня.
Использование в экзаменационной работе заданий повышенного и высокого уровней сложности позволяет оценить степень подготовленности учащегося к продолжению образования в вузе. Задания повышенного уровня распределены между частями 1 и 2 экзаменационной работы: 5 заданий с кратким ответом в части 1, 3 задания с кратким ответом и 1 задание с развернутым ответом в части 2. Последние четыре задачи части 2 являются заданиями высокого уровня сложности.
Часть 1
экзаменационной работы будет включать два блока заданий: первый проверяет освоение понятийного аппарата школьного курса физики, а второй – овладение методологическими умениями. Первый блок включает 21 задание, которые группируются, исходя из тематической принадлежности: 7 заданий по механике, 5 заданий по МКТ и термодинамике, 6 заданий по электродинамике и 3 по квантовой физике.
Группа заданий по каждому разделу начинается с заданий с самостоятельной формулировкой ответа в виде числа, двух чисел или слова, затем идет задание на множественный выбор (двух верных ответов из пяти предложенных), а в конце – задания на изменение физических величин в различных процессах и на установление соответствия между физическими величинами и графиками или формулами, в которых ответ записывается в виде набора из двух цифр.
Задания на множественный выбор и на соответствие 2-балльные и могут конструироваться на любых элементах содержания по данному разделу. Понятно, что в одном и том же варианте все задания, относящиеся к одному разделу, будут проверять разные элементы содержания и относиться к разным темам данного раздела.
В тематических разделах по механике и электродинамике представлены все три типа этих заданий; в разделе по молекулярной физике – 2 задания (одно из них на множественный выбор, а другое – либо на изменение физических величин в процессах, либо на соответствие); в разделе по квантовой физике – только 1 задание на изменение физических величин или на соответствие. Особое внимание следует обратить на задания 5, 11 и 16 на множественный выбор, которые оценивают умения объяснять изученные явления и процессы и интерпретировать результаты различных исследований, представленные в виде таблицы или графиков. Ниже приведен пример такого задания по механике.
Следует обратить внимание на изменение форм отдельных линий заданий. Задание 13 на определение направления векторных физических величин (силы Кулона, напряженности электрического поля, магнитной индукции, силы Ампера, силы Лоренца и т.д.) предлагается с кратким ответом в виде слова. При этом возможные варианты ответа указаны в тексте задания. Пример такого задания приведен ниже.
В разделе по квантовой физике хочется обратить внимание на задание 19, которое проверяет знания о строении атома, атомного ядра или ядерных реакциях. У этого задания изменилась форма представления. Ответ, представляющий собой два числа, необходимо сначала записать в предложенную таблицу, а затем перенести в бланк ответов № 1 без пробелов и дополнительных знаков. Ниже приведен пример такой формы задания.
В конце части 1 будут предлагаться 2 задания базового уровня сложности, проверяющие различные методологические умения и относящиеся к разным разделам физики. Задание 22 с использованием фотографий или рисунков измерительных приборов направлено на проверку умения записывать показания приборов при измерении физических величин с учетом абсолютной погрешности измерений. Абсолютная погрешность измерений задается в тексте задания: либо в виде половины цены деления, либо в виде цены деления (в зависимости от точности прибора). Пример такого задания приведен ниже.
Задание 23 проверяет умение выбирать оборудование для проведения опыта по заданной гипотезе. В этой модели изменилась форма представления задания, и теперь оно представляет собой задание на множественный выбор (двух элементов из пяти предложенных), но оценивается в 1 балл, если верно указаны оба элемента ответа. Могут предлагаться три различные модели заданий: на выбор двух рисунков, графически представляющих соответствующие установки для опытов; на выбор двух строк в таблице, которая описывает характеристики установок для опытов, и на выбор названия двух элементов оборудования или приборов, которые необходимы для проведения указанного опыта. Ниже приведен пример одного из таких заданий.
Часть 2
работы посвящена решению задач. Это традиционно наиболее значимый ре-зультат освоения курса физики средней школы и наиболее востребованная деятельность при дальнейшем изучении предмета в вузе.
В этой части в КИМ 2017 г. будет 8 различных задач: 3 расчетные задачи с самостоятельной записью числового ответа повышенного уровня сложности и 5 задач с развернутым ответом, из которых одна качественная и четыре расчетные.
При этом, с одной стороны, в разных задачах в одном варианте не используются одинаковые не слишком значимые содержательные элементы, с другой – применение фундаментальных законов сохранения может встретиться в двух-трех задачах. Если рассматривать «привязку» тематики заданий к их позиции в варианте, то на позиции 28 всегда будет задача по механике, на позиции 29 – по МКТ и термодинамике, на позиции 30 – по электродинамике, а на позиции 31 – преимущественно по квантовой физике (если только материал квантовой физики не будет задействован в качественной задаче на позиции 27).
Сложность задач определяется как характером деятельности, так и контекстом. В расчетных задачах повышенного уровня сложности (24–26) предполагается использование изученного алгоритма решения задачи и предлагаются типовые учебные ситуации, с которыми учащиеся встречались в процессе обучения и в которых используются явно заданные физические модели. В этих задачах предпочтение отдается стандартным формулировкам, а их подбор будет осуществляться преимущественно с ориентацией на открытый банк заданий.
Первое из заданий с развернутым ответом – качественная задача, решение которой представляет собой логически выстроенное объяснение с опорой на физические законы и закономерности. Для расчетных задач высокого уровня сложности необходим анализ всех этапов решения, поэтому они предлагаются в виде заданий 28–31 с развернутым ответом. Здесь используются измененные ситуации, в которых необходимо оперировать бόльшим, чем в типовых задачах, количеством законов и формул, вводить дополнительные обосно-вания в процессе решения или совершенно новые ситуации, которые не встречались ранее в учебной литературе и предполагают серьезную деятельность по анализу физических процессов и самостоятельному выбору физической модели для решения задачи.
Спецификация
контрольных измерительных материалов
для проведения в 2017 году единого государственного экзамена
по ФИЗИКЕ
1. Назначение КИМ ЕГЭ
Единый государственный экзамен (далее — ЕГЭ) представляет собой форму объективной оценки качества подготовки лиц, освоивших образовательные программы среднего общего образования, с использованием заданий стандартизированной формы (контрольных измерительных материалов).
ЕГЭ проводится в соответствии с Федеральным законом от 29.12.2012 г. № 273-ФЗ «Об образовании в Российской Федерации».
Контрольные измерительные материалы позволяют установить уровень освоения выпускниками Федерального компонента государственного образовательного стандарта среднего (полного) общего образования по физике, базовый и профильный уровни.
Результаты единого государственного экзамена по физике признаются образовательными организациями среднего профессионального образования и образовательными организациями высшего профессионального образования как результаты вступительных испытаний по физике.
2. Документы, определяющие содержание КИМ ЕГЭ
3. Подходы к отбору содержания, разработке структуры КИМ ЕГЭ
Каждый вариант экзаменационной работы включает в себя контролируемые элементы содержания из всех разделов школьного курса физики, при этом для каждого раздела предлагаются задания всех таксономических уровней. Наиболее важные с точки зрения продолжения образования в высших учебных заведениях содержательные элементы контролируются в одном и том же варианте заданиями разных уровней сложности. Количество заданий по тому или иному разделу определяется его содержательным наполнением и пропорционально учебному времени, отводимому на его изучение в соответствии с примерной программой по физике. Различные планы, по которым конструируются экзаменационные варианты, строятся по принципу содержательного дополнения так, что в целом все серии вариантов обеспечивают диагностику освоения всех включенных в кодификатор содержательных элементов.
Приоритетом при конструировании КИМ является необходимость проверки предусмотренных стандартом видов деятельности (с учетом ограничений в условиях массовой письменной проверки знаний и умений обучающихся): усвоение понятийного аппарата курса физики, овладение методологическими знаниями, применение знаний при объяснении физических явлений и решении задач. Овладение умениями по работе с информацией физического содержания проверяется опосредованно при использовании различных способов представления информации в текстах (графики, таблицы, схемы и схематические рисунки).
Наиболее важным видом деятельности с точки зрения успешного продолжения образования в вузе является решение задач. Каждый вариант включает в себя задачи по всем разделам разного уровня сложности, позволяющие проверить умение применять физические законы и формулы как в типовых учебных ситуациях, так и в нетрадиционных ситуациях, требующих проявления достаточно высокой степени самостоятельности при комбинировании известных алгоритмов действий или создании собственного плана выполнения задания.
Объективность проверки заданий с развернутым ответом обеспечивается едиными критериями оценивания, участием двух независимых экспертов, оценивающих одну работу, возможностью назначения третьего эксперта и наличием процедуры апелляции.
Единый государственный экзамен по физике является экзаменом по выбору выпускников и предназначен для дифференциации при поступлении в высшие учебные заведения. Для этих целей в работу включены задания трех уровней сложности. Выполнение заданий базового уровня сложности позволяет оценить уровень освоения наиболее значимых содержательных элементов курса физики средней школы и овладение наиболее важными видами деятельности.
Среди заданий базового уровня выделяются задания, содержание которых соответствует стандарту базового уровня. Минимальное количество баллов ЕГЭ по физике, подтверждающее освоение выпускником программы среднего (полного) общего образования по физике, устанавливается исходя из требований освоения стандарта базового уровня. Использование в экзаменационной работе заданий повышенного и высокого уровней сложности позволяет оценить степень подготовленности учащегося к продолжению образования в вузе.
4. Структура КИМ ЕГЭ
Каждый вариант экзаменационной работы состоит из 2 частей и включает в себя 32 задания, различающихся формой и уровнем сложности (таблица 1).
Часть 1 содержит 24 задания, из которых 9 заданий с выбором и записью номера правильного ответа и 15 заданий с кратким ответом, в том числе задания с самостоятельной записью ответа в виде числа, а также задания на установление соответствия и множественный выбор, в которых ответы необходимо записать в виде последовательности цифр.
Часть 2 содержит 8 заданий, объединенных общим видом деятельности -решение задач. Из них 3 задания с кратким ответом (25-27) и 5 заданий (28-32), для которых необходимо привести развернутый ответ.
Подборка тренировочных вариантов ЕГЭ 2022 по физике для 11 класса с ответами из различных источников.
Соответствуют демоверсии ЕГЭ 2022 по физике
Структура варианта КИМ ЕГЭ 2022 по физике
Каждый вариант экзаменационной работы состоит из двух частей и включает в себя 30 заданий, различающихся формой и уровнем сложности.
Часть 1 содержит 23 задания с кратким ответом, из них 11 заданий с записью ответа в виде числа или двух чисел и 12 заданий на установление соответствия и множественный выбор, в которых ответы необходимо записать в виде последовательности цифр.
Часть 2 содержит 7 заданий с развёрнутым ответом, в которых необходимо представить решение задачи или ответ в виде объяснения с опорой на изученные явления или законы.
При разработке содержания КИМ учитывается необходимость проверки усвоения элементов знаний, представленных в разделе 2 кодификатора.
Продолжительность ЕГЭ по физике
На выполнение всей экзаменационной работы отводится 235 минут. Примерное время на выполнение заданий экзаменационной работы составляет:
− для каждого задания с кратким ответом – 2–5 минут;
− для каждого задания с развёрнутым ответом – от 5 до 20 минут.
Дополнительные материалы и оборудование
Перечень дополнительных устройств и материалов, пользование которыми разрешено на ЕГЭ, утверждён приказом Минпросвещения России и Рособрнадзора. Используется непрограммируемый калькулятор (на каждого участника экзамена) с возможностью вычисления тригонометрических функций (cos, sin, tg) и линейка
Связанные страницы:
Подготовка к ОГЭ и ЕГЭ
Среднее общее образование
Линия УМК А. В. Грачева. Физика (10-11) (баз., углубл.)
Линия УМК А. В. Грачева. Физика (7-9)
Линия УМК А. В. Перышкина. Физика (7-9)
Разбираем задания ЕГЭ по физике (Вариант С) с учителем.
Лебедева Алевтина Сергеевна, учитель физики, стаж работы 27 лет. Почетная грамота Министерства образования Московской области (2013 год), Благодарность Главы Воскресенского муниципального района (2015 год), Грамота Президента Ассоциации учителей математики и физики Московской области (2015 год).
В работе представлены задания разных уровней сложности: базового, повышенного и высокого. Задания базового уровня, это простые задания, проверяющие усвоение наиболее важных физических понятий, моделей, явлений и законов. Задания повышенного уровня направлены на проверку умения использовать понятия и законы физики для анализа различных процессов и явлений, а также умения решать задачи на применение одного-двух законов (формул) по какой-либо из тем школьного курса физики. В работе 4 задания части 2 являются заданиями высокого уровня сложности и проверяют умение использовать законы и теории физики в измененной или новой ситуации. Выполнение таких заданий требует применения знаний сразу из двух трех разделов физики, т.е. высокого уровня подготовки. Данный вариант полностью соответствует демонстрационному варианту ЕГЭ 2017 года, задания взяты из открытого банка заданий ЕГЭ.
На рисунке представлен график зависимости модуля скорости от времени t
. Определите по графику путь, пройденный автомобилем в интервале времени от 0 до 30 с.
Решение.
Путь, пройденный автомобилем в интервале времени от 0 до 30 с проще всего определить как площадь трапеции, основаниями которой являются интервалы времени (30 – 0) = 30 c и (30 – 10) = 20 с, а высотой является скорость v
= 10 м/с, т.е.
S = |
(30 + 20) с |
10 м/с = 250 м. |
2 |
Ответ.
250 м.
Груз массой 100 кг поднимают вертикально вверх с помощью троса. На рисунке приведена зависимость проекции скорости V
груза на ось, направленную вверх, от времени t
. Определите модуль силы натяжения троса в течение подъема.
Решение.
По графику зависимости проекции скорости v
груза на ось, направленную вертикально вверх, от времени t
, можно определить проекцию ускорения груза
a
= |
∆v |
= | (8 – 2) м/с | = 2 м/с 2 . |
∆t |
3 с |
На груз действуют: сила тяжести , направленная вертикально вниз и сила натяжения троса , направленная вдоль троса вертикально вверх смотри рис. 2. Запишем основное уравнение динамики. Воспользуемся вторым законом Ньютона. Геометрическая сумма сил действующих на тело равна произведению массы тела на сообщаемое ему ускорение.
+ = (1)
Запишем уравнение для проекции векторов в системе отсчета, связанной с землей, ось OY направим вверх. Проекция силы натяжения положительная, так как направление силы совпадает с направлением оси OY, проекция силы тяжести отрицательная, так как вектор силы противоположно направлен оси OY, проекция вектора ускорения тоже положительная, так тело движется с ускорением вверх. Имеем
T
– mg
= ma
(2);
из формулы (2) модуль силы натяжения
Т
= m
(g
+ a
) = 100 кг (10 + 2) м/с 2 = 1200 Н.
Ответ
. 1200 Н.
Тело тащат по шероховатой горизонтальной поверхности с постоянной скоростью модуль которой равен 1, 5 м/с, прикладывая к нему силу так, как показано на рисунке (1). При этом модуль действующей на тело силы трения скольжения равен 16 Н. Чему равна мощность, развиваемая силой F
?
Решение.
Представим себе физический процесс, заданный в условии задачи и сделаем схематический чертеж с указанием всех сил, действующих на тело (рис.2). Запишем основное уравнение динамики.
Тр + + = (1)
Выбрав систему отсчета, связанную с неподвижной поверхностью, запишем уравнения для проекции векторов на выбранные координатные оси. По условию задачи тело движется равномерно, так как его скорость постоянна и равна 1,5 м/с. Это значит, ускорение тела равно нулю. По горизонтали на тело действуют две силы: сила трения скольжения тр. и сила , с которой тело тащат. Проекция силы трения отрицательная, так как вектор силы не совпадает с направлением оси Х
. Проекция силы F
положительная. Напоминаем, для нахождения проекции опускаем перпендикуляр из начала и конца вектора на выбранную ось. С учетом этого имеем: F
cosα – F
тр = 0; (1) выразим проекцию силы F
, это F
cosα = F
тр = 16 Н; (2) тогда мощность, развиваемая силой , будет равна N
= F
cosα V
(3) Сделаем замену, учитывая уравнение (2), и подставим соответствующие данные в уравнение (3):
N
= 16 Н · 1,5 м/с = 24 Вт.
Ответ.
24 Вт.
Груз, закрепленный на легкой пружине жесткостью 200 Н/м, совершает вертикальные колебания. На рисунке представлен график зависимости смещения x
груза от времени t
. Определите, чему равна масса груза. Ответ округлите до целого числа.
Решение.
Груз на пружине совершает вертикальные колебания. По графику зависимости смещения груза х
от времени t
, определим период колебаний груза. Период колебаний равен Т
= 4 с; из формулы Т
= 2π
выразим массу m
груза.
= | T | ; | m |
= | T 2 |
; m = k |
T 2 |
; m = 200 H/м |
(4 с) 2 | = 81,14 кг ≈ 81 кг. |
2π | k |
4π 2 |
4π 2 |
39,438 |
Ответ:
81 кг.
На рисунке показана система из двух легких блоков и невесомого троса, с помощью которого можно удерживать в равновесии или поднимать груз массой 10 кг. Трение пренебрежимо мало. На основании анализа приведенного рисунка выберите два
верных утверждения и укажите в ответе их номера.
- Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 100 Н.
- Изображенная на рисунке система блоков не дает выигрыша в силе.
- h
, нужно вытянуть участок веревки длиной 3h
. - Для того чтобы медленно поднять груз на высоту h
h
.
Решение.
В данной задаче необходимо вспомнить простые механизмы, а именно блоки: подвижный и неподвижный блок. Подвижный блок дает выигрыш в силе в два раза, при этом участок веревки нужно вытянуть в два раза длиннее, а неподвижный блок используют для перенаправления силы. В работе простые механизмы выигрыша не дают. После анализа задачи сразу выбираем нужные утверждения:
- Для того чтобы медленно поднять груз на высоту h
, нужно вытянуть участок веревки длиной 2h
. - Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 50 Н.
Ответ.
45.
В сосуд с водой полностью погружен алюминиевый груз, закрепленный на невесомой и нерастяжимой нити. Груз не касается стенок и дна сосуда. Затем в такой же сосуд с водой погружают железный груз, масса которого равна массе алюминиевого груза. Как в результате этого изменятся модуль силы натяжения нити и модуль действующей на груз силы тяжести?
- Увеличивается;
- Уменьшается;
- Не изменяется.
Решение.
Анализируем условие задачи и выделяем те параметры, которые не меняются в ходе исследования: это масса тела и жидкость, в которую погружают тело на нити. После этого лучше выполнить схематический рисунок и указать действующие на груз силы: сила натяжения нити F
упр, направленная вдоль нити вверх; сила тяжести , направленная вертикально вниз; архимедова сила a
, действующая со стороны жидкости на погруженное тело и направленная вверх. По условию задачи масса грузов одинакова, следовательно, модуль действующей на груз силы тяжести не меняется. Так как плотность грузов разная, то объем тоже будет разный
Плотность железа 7800 кг/м 3 , а алюминиевого груза 2700 кг/м 3 . Следовательно, V
ж V a
. Тело в равновесии, равнодействующая всех сил, действующих на тело равна нулю. Направим координатную ось OY вверх. Основное уравнение динамики с учетом проекции сил запишем в виде F
упр + F a
– mg
= 0; (1) Выразим силу натяжения F
упр = mg
– F a
(2); архимедова сила зависит от плотности жидкости и объема погруженной части тела F a
= ρgV
п.ч.т. (3); Плотность жидкости не меняется, а объем тела из железа меньше V
ж V a
, поэтому архимедова сила, действующая на железный груз будет меньше. Делаем вывод о модуле силы натяжения нити, работая с уравнение (2), он возрастет.
Ответ.
13.
Брусок массой m
соскальзывает с закрепленной шероховатой наклонной плоскости с углом α при основании. Модуль ускорения бруска равен a
, модуль скорости бруска возрастает. Сопротивлением воздуха можно пренебречь.
Установите соответствие между физическими величинами и формулами, при помощи которых их можно вычислить. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.
Б) Коэффициент трения бруска о наклонную плоскость
3) mg
cosα
Решение.
Данная задача требует применение законов Ньютона. Рекомендуем сделать схематический чертеж; указать все кинематические характеристики движения. Если возможно, изобразить вектор ускорения и векторы всех сил, приложенных к движущемуся телу; помнить, что силы, действующие на тело, – результат взаимодействия с другими телами. Затем записать основное уравнение динамики. Выбрать систему отсчета и записать полученное уравнение для проекции векторов сил и ускорений;
Следуя предложенному алгоритму, сделаем схематический чертеж (рис. 1). На рисунке изображены силы, приложенные к центру тяжести бруска, и координатные оси системы отсчета, связанной с поверхностью наклонной плоскости. Так как все силы постоянны, то движение бруска будет равнопеременным с увеличивающейся скоростью, т.е. вектор ускорения направлен в сторону движения. Выберем направление осей как указано на рисунке. Запишем проекции сил, на выбранные оси.
Запишем основное уравнение динамики:
Тр + = (1)
Запишем данное уравнение (1) для проекции сил и ускорения.
На ось OY: проекция силы реакции опоры положительная, так как вектор совпадает с направлением оси OY N y
= N
; проекция силы трения равна нулю так как вектор перпендикулярен оси; проекция силы тяжести будет отрицательная и равная mg y
=
–
mg
cosα
; проекция вектора ускорения a
y
= 0, так как вектор ускорения перпендикулярен оси. Имеем N
– mg
cosα
= 0 (2) из уравнения выразим силу реакции действующей на брусок, со стороны наклонной плоскости. N
= mg
cosα
(3). Запишем проекции на ось OX.
На ось OX: проекция силы N
равна нулю, так как вектор перпендикулярен оси ОХ; Проекция силы трения отрицательная (вектор направлен в противоположную сторону относительно выбранной оси); проекция силы тяжести положительная и равна mg x
= mg
sinα
(4) из прямоугольного треугольника. Проекция ускорения положительная a
x
= a
; Тогда уравнение (1) запишем с учетом проекции mg
sinα – F
тр = ma
(5); F
тр = m
(g
sinα
– a
) (6); Помним, что сила трения пропорциональна силе нормального давления N
.
По определению F
тр = μN
(7), выразим коэффициент трения бруска о наклонную плоскость.
μ = |
F тр |
= | m (g sinα – a ) |
= tgα – |
a | (8). |
N |
mg cosα |
g cosα |
Выбираем соответствующие позиции для каждой буквы.
Ответ.
A – 3; Б – 2.
Задание 8. Газообразный кислород находится в сосуде объемом 33,2 литра. Давление газа 150 кПа, его температура 127° С. Определите массу газа в этом сосуде. Ответ выразите в граммах и округлите до целого числа.
Решение.
Важно обратить внимание на перевод единиц в систему СИ. Температуру переводим в Кельвины T
= t
°С + 273, объем V
= 33,2 л = 33,2 · 10 –3 м 3 ; Давление переводим P
= 150 кПа = 150 000 Па. Используя уравнение состояния идеального газа
выразим массу газа.
Обязательно обращаем внимание, в каких единица просят записать ответ. Это очень важно.
Ответ.
48 г.
Задание 9.
Идеальный одноатомный газ в количестве 0,025 моль адиабатически расширился. При этом его температура понизилась с +103°С до +23°С. Какую работу совершил газ? Ответ выразите в Джоулях и округлите до целого числа.
Решение.
Во-первых, газ одноатомный число степеней свободы i
= 3, во-вторых, газ расширяется адиабатически – это значит без теплообмена Q
= 0. Газ совершает работу за счет уменьшения внутренней энергии. С учетом этого, первый закон термодинамики запишем в виде 0 = ∆U
+ A
г; (1) выразим работу газа A
г = –∆U
(2); Изменение внутренней энергии для одноатомного газа запишем как
Ответ.
25 Дж.
Относительная влажность порции воздуха при некоторой температуре равна 10 %. Во сколько раз следует изменить давление этой порции воздуха для того, чтобы при неизменной температуре его относительная влажность увеличилась на 25 %?
Решение.
Вопросы, связанные с насыщенным паром и влажностью воздуха, чаще всего вызывают затруднения у школьников. Воспользуемся формулой для расчета относительной влажности воздуха
По условию задачи температура не изменяется, значит, давление насыщенного пара остается тем же. Запишем формулу (1) для двух состояний воздуха.
φ
1 = 10 % ; φ
2 = 35 %
Выразим давления воздуха из формул (2), (3) и найдем отношение давлений.
P 2 |
= | φ 2 |
= | 35 | = 3,5 |
P 1 |
φ 1 |
10 |
Ответ.
Давление следует увеличить в 3,5 раза.
Горячее вещество в жидком состоянии медленно охлаждалось в плавильной печи с постоянной мощностью. В таблице приведены результаты измерений температуры вещества с течением времени.
Выберите из предложенного перечня два
утверждения, которые соответствуют результатам проведенных измерений и укажите их номера.
- Температура плавления вещества в данных условиях равна 232°С.
- Через 20 мин. после начала измерений вещество находилось только в твердом состоянии.
- Теплоемкость вещества в жидком и твердом состоянии одинакова.
- Через 30 мин. после начала измерений вещество находилось только в твердом состоянии.
- Процесс кристаллизации вещества занял более 25 минут.
Решение.
Так как вещество охлаждалось, то его внутренняя энергия уменьшалась. Результаты измерения температуры, позволяют определить температуру, при которой вещество начинает кристаллизоваться. Пока вещество переходит из жидкого состояния в твердое, температура не меняется. Зная, что температура плавления и температура кристаллизации одинаковы, выбираем утверждение:
1. Tемпература плавления вещества в данных условиях равна 232°С.
Второе верное утверждение это:
4. Через 30 мин. после начала измерений вещество находилось только в твердом состоянии. Так как температура в этот момент времени, уже ниже температуры кристаллизации.
Ответ.
14.
В изолированной системе тело А имеет температуру +40°С, а тело Б температуру +65°С. Эти тела привели в тепловой контакт друг с другом. Через некоторое время наступило тепловое равновесие. Как в результате изменилась температура тела Б и суммарная внутренняя энергия тела А и Б?
Для каждой величины определите соответствующий характер изменения:
- Увеличилась;
- Уменьшилась;
- Не изменилась.
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Решение.
Если в изолированной системе тел не происходит никаких превращений энергии кроме теплообмена, то количество теплоты, отданное телами, внутренняя энергия которых уменьшается, равно количеству теплоты, полученному телами, внутренняя энергия которых увеличивается. (По закону сохранения энергии.) При этом суммарная внутренняя энергия системы не меняется. Задачи такого типа решаются на основании уравнения теплового баланса.
∆U = ∑ |
n |
∆U i = 0 (1); |
i = 1 |
где ∆U
– изменение внутренней энергии.
В нашем случае в результате теплообмена внутренняя энергия тела Б уменьшается, а значит уменьшается температура этого тела. Внутренняя энергия тела А увеличивается, так как тело получило количество теплоты от тела Б, то температура его увеличится. Суммарная внутренняя энергия тел А и Б не изменяется.
Ответ.
23.
Протон p
, влетевший в зазор между полюсами электромагнита, имеет скорость , перпендикулярную вектору индукции магнитного поля, как показано на рисунке. Куда направлена действующая на протон сила Лоренца относительно рисунка (вверх, к наблюдателю, от наблюдателя, вниз, влево, вправо)
Решение.
На заряженную частицу магнитное поле действует с силой Лоренца. Для того чтобы определить направление этой силы, важно помнить мнемоническое правило левой руки, не забывать учитывать заряд частицы. Четыре пальца левой руки направляем по вектору скорости, для положительно заряженной частицы, вектор должен перпендикулярно входить в ладонь, большой палец отставленный на 90° показывает направление действующей на частицу силы Лоренца. В результате имеем, что вектор силы Лоренца направлен от наблюдателя относительно рисунка.
Ответ.
от наблюдателя.
Модуль напряженности электрического поля в плоском воздушном конденсаторе емкостью 50 мкФ равен 200 В/м. Расстояние между пластинами конденсатора 2 мм. Чему равен заряд конденсатора? Ответ запишите в мкКл.
Решение.
Переведем все единицы измерения в систему СИ. Емкость С = 50 мкФ = 50 · 10 –6 Ф, расстояние между пластинами d
= 2 · 10 –3 м. В задаче говорится о плоском воздушном конденсаторе – устройстве для накопления электрического заряда и энергии электрического поля. Из формулы электрической емкости
где d
– расстояние между пластинами.
Выразим напряжение U
= E · d
(4); Подставим (4) в (2) и рассчитаем заряд конденсатора.
q
= C
· Ed
= 50 · 10 –6 · 200 · 0,002 = 20 мкКл
Обращаем внимание, в каких единицах нужно записать ответ. Получили в кулонах, а представляем в мкКл.
Ответ.
20 мкКл.
Ученик провел опыт по преломлению света, представленный на фотографии. Как изменяется при увеличении угла падения угол преломления света, распространяющегося в стекле, и показатель преломления стекла?
- Увеличивается
- Уменьшается
- Не изменяется
- Запишите в таблицу выбранные цифры для каждого ответа. Цифры в ответе могут повторяться.
Решение.
В задачах такого плана вспоминаем, что такое преломление. Это изменение направления распространения волны при прохождении из одной среды в другую. Вызвано оно тем, что скорости распространения волн в этих средах различны. Разобравшись из какой среды в какую свет распространяется, запишем закона преломления в виде
где n
2 – абсолютный показатель преломления стекла, среда куда идет свет; n
1 – абсолютный показатель преломления первой среды, откуда свет идет. Для воздуха n
1 = 1. α
– угол падения луча на поверхность стеклянного полуцилиндра, β
– угол преломления луча в стекле. Причем, угол преломления будет меньше угла падения, так как стекло оптически более плотная среда – среда с большим показателем преломления. Скорость распространения света в стекле меньше. Обращаем внимание, что углы измеряем от перпендикуляра, восстановленного в точке падения луча. Если увеличивать угол падения, то и угол преломления будет расти. Показатель преломления стекла от этого меняться не будет.
Ответ.
Медная перемычка в момент времени t
0 = 0 начинает двигаться со скоростью 2 м/с по параллельным горизонтальным проводящим рельсам, к концам которых подсоединен резистор сопротивлением 10 Ом. Вся система находится в вертикальном однородном магнитном поле. Сопротивление перемычки и рельсов пренебрежимо мало, перемычка все время расположена перпендикулярно рельсам. Поток Ф
вектора магнитной индукции через контур, образованный перемычкой, рельсами и резистором, изменяется с течением времени t
так, как показано на графике.
Используя график, выберите два верных утверждения и укажите в ответе их номера.
- К моменту времени t
= 0,1 с изменение магнитного потока через контур равно 1 мВб. - Индукционный ток в перемычке в интервале от t
= 0,1 с t
= 0,3 с максимален. - Модуль ЭДС индукции, возникающей в контуре, равен 10 мВ.
- Сила индукционного тока, текущего в перемычке, равна 64 мА.
- Для поддержания движения перемычки к ней прикладывают силу, проекция которой на направление рельсов равна 0,2 Н.
Решение.
По графику зависимости потока вектора магнитной индукции через контур от времени определим участки, где поток Ф
меняется, и где изменение потока равно нулю. Это позволит нам определить интервалы времени, в которые в контуре будет возникать индукционный ток. Верное утверждение:
1) К моменту времени t
= 0,1 с изменение магнитного потока через контур равно 1 мВб ∆Ф
= (1 – 0) · 10 –3 Вб; Модуль ЭДС индукции, возникающей в контуре определим используя закон ЭМИ
Ответ.
13.
По графику зависимости силы тока от времени в электрической цепи, индуктивность которой равна 1 мГн, определите модуль ЭДС самоиндукции в интервале времени от 5 до 10 с. Ответ запишите в мкВ.
Решение.
Переведем все величины в систему СИ, т.е. индуктивность 1 мГн переведем в Гн, получим 10 –3 Гн. Силу тока, показанной на рисунке в мА также будем переводить в А путем умножения на величину 10 –3 .
Формула ЭДС самоиндукции имеет вид
при этом интервал времени дан по условию задачи
∆t
= 10 c – 5 c = 5 c
секунд и по графику определяем интервал изменения тока за это время:
∆I
= 30 · 10 –3 – 20 · 10 –3 = 10 · 10 –3 = 10 –2 A.
Подставляем числовые значения в формулу (2), получаем
|
Ɛ
|
= 2 ·10 –6 В, или 2 мкВ.
Ответ.
2.
Две прозрачные плоскопараллельные пластинки плотно прижаты друг к другу. Из воздуха на поверхность первой пластинки падает луч света (см. рисунок). Известно, что показатель преломления верхней пластинки равен n
2 = 1,77. Установите соответствие между физическими величинами и их значениями. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.
Решение.
Для решения задач о преломлении света на границе раздела двух сред, в частности задач на прохождение света через плоскопараллельные пластинки можно рекомендовать следующий порядок решения: сделать чертеж с указанием хода лучей, идущих из одной среды в другую; в точке падения луча на границе раздела двух сред провести нормаль к поверхности, отметить углы падения и преломления. Особо обратить внимание на оптическую плотность рассматриваемых сред и помнить, что при переходе луча света из оптически менее плотной среды в оптически более плотную среду угол преломления будет меньше угла падения. На рисунке дан угол между падающим лучом и поверхностью, а нам нужен угол падения. Помним, что углы определяются от перпендикуляра, восстановленного в точке падения. Определяем, что угол падения луча на поверхность 90° – 40° = 50°, показатель преломления n
2 = 1,77; n
1 = 1 (воздух).
Запишем закон преломления
sinβ = |
sin50 | = 0,4327 ≈ 0,433 |
1,77 |
Построим примерный ход луча через пластинки. Используем формулу (1) для границы 2–3 и 3–1. В ответе получаем
А) Синус угла падения луча на границу 2–3 между пластинками – это 2) ≈ 0,433;
Б) Угол преломления луча при переходе границы 3–1 (в радианах) – это 4) ≈ 0,873.
Ответ
. 24.
Определите, сколько α – частиц и сколько протонов получается в результате реакции термоядерного синтеза
+ → x
+ y
;
Решение.
При всех ядерных реакциях соблюдаются законы сохранения электрического заряда и числа нуклонов. Обозначим через x – количество альфа частиц, y– количество протонов. Составим уравнения
+ → x + y;
решая систему имеем, что x
= 1; y
= 2
Ответ.
1 – α
-частица; 2 – протона.
Модуль импульса первого фотона равен 1,32 · 10 –28 кг·м/с, что на 9,48 · 10 –28 кг·м/с меньше, чем модуль импульса второго фотона. Найдите отношение энергии E 2 /E 1 второго и первого фотонов. Ответ округлите до десятых долей.
Решение.
Импульс второго фотона больше импульса первого фотона по условию значит можно представить p
2 = p
1 + Δp
(1). Энергию фотона можно выразить через импульс фотона, используя следующие уравнения. Это E
= mc
2 (1) и p
= mc
(2), тогда
E
= pc
(3),
где E
– энергия фотона, p
– импульс фотона, m – масса фотона, c
= 3 · 10 8 м/с – скорость света. С учетом формулы (3) имеем:
E 2 |
= | p 2 |
= 8,18; |
E 1 |
p 1 |
Ответ округляем до десятых и получаем 8,2.
Ответ.
8,2.
Ядро атома претерпело радиоактивный позитронный β – распад. Как в результате этого изменялись электрический заряд ядра и количество нейтронов в нем?
Для каждой величины определите соответствующий характер изменения:
- Увеличилась;
- Уменьшилась;
- Не изменилась.
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Решение.
Позитронный β
– распад в атомном ядре происходит при превращений протона в нейтрон с испусканием позитрона. В результате этого число нейтронов в ядре увеличивается на единицу, электрический заряд уменьшается на единицу, а массовое число ядра остается неизменным. Таким образом, реакция превращения элемента следующая:
Ответ.
21.
В лаборатории было проведено пять экспериментов по наблюдению дифракции с помощью различных дифракционных решеток. Каждая из решеток освещалась параллельными пучками монохроматического света с определенной длиной волны. Свет во всех случаях падал перпендикулярно решетке. В двух из этих экспериментов наблюдалось одинаковое количество главных дифракционных максимумов. Укажите сначала номер эксперимента, в котором использовалась дифракционная решетка с меньшим периодом, а затем – номер эксперимента, в котором использовалась дифракционная решетка с большим периодом.
Решение.
Дифракцией света называется явление светового пучка в область геометрической тени. Дифракцию можно наблюдать в том случае, когда на пути световой волны встречаются непрозрачные участки или отверстия в больших по размерам и непрозрачных для света преградах, причем размеры этих участков или отверстий соизмеримы с длиной волны. Одним из важнейших дифракционных устройств является дифракционная решетка. Угловые направления на максимумы дифракционной картины определяются уравнением
d
sinφ
= k
λ
(1),
где d
– период дифракционной решетки, φ
– угол между нормалью к решетке и направлением на один из максимумов дифракционной картины, λ
– длина световой волны, k
– целое число, называемое порядком дифракционного максимума. Выразим из уравнения (1)
Подбирая пары согласно условию эксперимента, выбираем сначала 4 где использовалась дифракционная решетка с меньшим периодом, а затем – номер эксперимента, в котором использовалась дифракционная решетка с большим периодом – это 2.
Ответ.
42.
По проволочному резистору течет ток. Резистор заменили на другой, с проволокой из того же металла и той же длины, но имеющей вдвое меньшую площадь поперечного сечения, и пропустили через него вдвое меньший ток. Как изменятся при этом напряжение на резисторе и его сопротивление?
Для каждой величины определите соответствующий характер изменения:
- Увеличится;
- Уменьшится;
- Не изменится.
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Решение.
Важно помнить от каких величин зависит сопротивление проводника. Формула для расчета сопротивления имеет вид
закона Ома для участка цепи, из формулы (2), выразим напряжение
U
= I
R
(3).
По условию задачи второй резистор изготовлен из проволоки того же материала, той же длины, но разной площади поперечного сечения. Площадь в два раза меньшая. Подставляя в (1) получим, что сопротивление увеличивается в 2 раза, а сила тока уменьшается в 2 раза, следовательно, напряжение не изменяется.
Ответ.
13.
Период колебаний математического маятника на поверхности Земли в 1, 2 раза больше периода его колебаний на некоторой планете. Чему равен модуль ускорения свободного падения на этой планете? Влияние атмосферы в обоих случаях пренебрежимо мало.
Решение.
Математический маятник – это система, состоящая из нити, размеры которой много больше размеров шарика и самого шарика. Трудность может возникнуть если забыта формула Томсона для периода колебаний математического маятника.
T
= 2π (1);
l
– длина математического маятника; g
– ускорение свободного падения.
По условию
Выразим из (3) g
п = 14,4 м/с 2 . Надо отметить, что ускорение свободного падения зависит от массы планеты и радиуса
Ответ.
14,4 м/с 2 .
Прямолинейный проводник длиной 1 м, по которому течет ток 3 А, расположен в однородном магнитном поле с индукцией В
= 0,4 Тл под углом 30° к вектору . Каков модуль силы, действующей на проводник со стороны магнитного поля?
Решение.
Если в магнитное поле, поместить проводник с током, то поле на проводник с током будет действовать с силой Ампера. Запишем формулу модуля силы Ампера
F
А = I
LB
sinα
;
F
А = 0,6 Н
Ответ. F
А = 0,6 Н.
Энергия магнитного поля, запасенная в катушке при пропускании через нее постоянного тока, равна 120 Дж. Во сколько раз нужно увеличить силу тока, протекающего через обмотку катушки, для того, чтобы запасенная в ней энергия магнитного поля увеличилась на 5760 Дж.
Решение.
Энергия магнитного поля катушки рассчитывается по формуле
По условию W
1 = 120 Дж, тогда W
2 = 120 + 5760 = 5880 Дж.
I
1 2 = |
2W 1 |
; I 2 2 = |
2W 2 |
; |
L |
L |
Тогда отношение токов
I
2 2 |
= 49; | I
2 |
= 7 |
I 1 2 |
I
1 |
Ответ.
Силу тока нужно увеличить в 7 раз. В бланк ответов Вы вносите только цифру 7.
Электрическая цепь состоит из двух лампочек, двух диодов и витка провода, соединенных, как показано на рисунке. (Диод пропускает ток только в одном направлении, как показано на верхней части рисунка). Какая из лампочек загорится, если к витку приближать северный полюс магнита? Ответ объясните, указав, какие явления и закономерности вы использовали при объяснении.
Решение.
Линии магнитной индукции выходят из северного полюса магнита и расходятся. При приближении магнита магнитный поток через виток провода увеличивается. В соответствии с правило Ленца магнитное поле, создаваемое индукционным током витка, должно быть направлено вправо. По правилу буравчика ток должен идти по часовой стрелке (если смотреть слева). В этом направлении пропускает диод, стоящий в цепи второй лампы. Значит, загорится вторая лампа.
Ответ.
Загорится вторая лампа.
Алюминиевая спица длиной L
= 25 см и площадью поперечного сечения S
= 0,1 см 2 подвешена на нити за верхний конец. Нижний конец опирается на горизонтальное дно сосуда, в который налита вода. Длина погруженной в воду части спицы l
= 10 см. Найти силу F
, с которой спица давит на дно сосуда, если известно, что нить расположена вертикально. Плотность алюминия ρ
а = 2,7 г/см 3 , плотность воды ρ
в = 1,0 г/см 3 . Ускорение свободного падения g
= 10 м/с 2
Решение.
Выполним поясняющий рисунок.
– Сила натяжения нити;
– Сила реакции дна сосуда;
a – архимедова сила, действующая только на погруженную часть тела, и приложенная к центру погруженной части спицы;
– сила тяжести, действующая на спицу со стороны Земли и приложена к центу всей спицы.
По определению масса спицы m
и модуль архимедовой силы выражаются следующим образом: m
= SL
ρ
a (1);
F
a = Sl
ρ
в g
(2)
Рассмотрим моменты сил относительно точки подвеса спицы.
М
(Т
) = 0 – момент силы натяжения; (3)
М
(N) = NL
cosα
– момент силы реакции опоры; (4)
С учетом знаков моментов запишем уравнение
NL cosα + Sl ρ |
l | ) cosα = SL ρ a g |
L |
cosα (7) |
2 | 2 |
учитывая, что по третьему закону Ньютона сила реакции дна сосуда равна силе F
д с которой спица давит на дно сосуда запишем N
= F
д и из уравнения (7) выразим эту силу:
F д = [ | 1 | L ρ a – (1 – |
l | )l
ρ |
2 | 2L |
Подставим числовые данные и получим, что
F
д = 0,025 Н.
Ответ.
F
д = 0,025 Н.
Баллон, содержащий m
1 = 1 кг азота, при испытании на прочность взорвался при температуре t
1 = 327°С. Какую массу водорода m
2 можно было бы хранить в таком баллоне при температуре t
2 = 27°С, имея пятикратный запас прочности? Молярная масса азота M
1 = 28 г/моль, водорода M
2 = 2 г/моль.
Решение.
Запишем уравнение состояния идеального газа Менделеева – Клапейрона для азота
где V
– объем баллона, T
1 = t
1 + 273°C. По условию водород можно хранить при давлении p
2 = p 1 /5; (3) Учитывая, что
можем выразить массу водорода работая сразу с уравнениями (2), (3), (4). Конечная формула имеет вид:
m 2 = |
m 1 |
M 2 |
T 1 |
(5). | ||
5 | M 1 |
T 2 |
После подстановки числовых данных m
2 = 28 г.
Ответ.
m
2 = 28 г.
В идеальном колебательном контуре амплитуда колебаний силы тока в катушке индуктивности I
m
= 5 мА, а амплитуда напряжения на конденсаторе U m
= 2,0 В. В момент времени t
напряжение на конденсаторе равно 1,2 В. Найдите силу тока в катушке в этот момент.
Решение.
В идеальном колебательном контуре сохраняется энергия колебаний. Для момента времени t закон сохранения энергий имеет вид
C |
U 2 |
+ L |
I
2 |
= L |
I m 2 |
(1) |
2 | 2 | 2 |
Для амплитудных (максимальных) значений запишем
а из уравнения (2) выразим
Подставим (4) в (3). В результате получим:
I
= I m
(5)
Таким образом, сила тока в катушке в момент времени t
равна
I
= 4,0 мА.
Ответ.
I
= 4,0 мА.
На дне водоема глубиной 2 м лежит зеркало. Луч света, пройдя через воду, отражается от зеркала и выходит из воды. Показатель преломления воды равен 1,33. Найдите расстояние между точкой входа луча в воду и точкой выхода луча из воды, если угол падения луча равен 30°
Решение.
Сделаем поясняющий рисунок
α
– угол падения луча;
β
– угол преломления луча в воде;
АС – расстояние между точкой входа луча в воду и точкой выхода луча из воды.
По закону преломления света
Рассмотрим прямоугольный ΔАDВ. В нем АD = h
, тогда DВ = АD
tgβ = h tgβ = h |
sinα | = h |
sinβ | = h |
sinα | (4) |
cosβ |
Получаем следующее выражение:
Подставим числовые значения в полученную формулу (5)
Ответ.
1,63 м.
В рамках подготовки к ЕГЭ предлагаем вам ознакомиться с рабочей программой по физике для 7–9 класса к линии УМК Перышкина А. В.
и рабочей программой углубленного уровня для 10-11 классов к УМК Мякишева Г.Я.
Программы доступны для просмотра и бесплатного скачивания всем зарегистрированным пользователям.
Подготовка к ОГЭ и ЕГЭ
Среднее общее образование
Линия УМК А. В. Грачева. Физика (10-11) (баз., углубл.)
Линия УМК А. В. Грачева. Физика (7-9)
Линия УМК А. В. Перышкина. Физика (7-9)
Разбираем задания ЕГЭ по физике (Вариант С) с учителем.
Лебедева Алевтина Сергеевна, учитель физики, стаж работы 27 лет. Почетная грамота Министерства образования Московской области (2013 год), Благодарность Главы Воскресенского муниципального района (2015 год), Грамота Президента Ассоциации учителей математики и физики Московской области (2015 год).
В работе представлены задания разных уровней сложности: базового, повышенного и высокого. Задания базового уровня, это простые задания, проверяющие усвоение наиболее важных физических понятий, моделей, явлений и законов. Задания повышенного уровня направлены на проверку умения использовать понятия и законы физики для анализа различных процессов и явлений, а также умения решать задачи на применение одного-двух законов (формул) по какой-либо из тем школьного курса физики. В работе 4 задания части 2 являются заданиями высокого уровня сложности и проверяют умение использовать законы и теории физики в измененной или новой ситуации. Выполнение таких заданий требует применения знаний сразу из двух трех разделов физики, т.е. высокого уровня подготовки. Данный вариант полностью соответствует демонстрационному варианту ЕГЭ 2017 года, задания взяты из открытого банка заданий ЕГЭ.
На рисунке представлен график зависимости модуля скорости от времени t
. Определите по графику путь, пройденный автомобилем в интервале времени от 0 до 30 с.
Решение.
Путь, пройденный автомобилем в интервале времени от 0 до 30 с проще всего определить как площадь трапеции, основаниями которой являются интервалы времени (30 – 0) = 30 c и (30 – 10) = 20 с, а высотой является скорость v
= 10 м/с, т.е.
S = |
(30 + 20) с |
10 м/с = 250 м. |
2 |
Ответ.
250 м.
Груз массой 100 кг поднимают вертикально вверх с помощью троса. На рисунке приведена зависимость проекции скорости V
груза на ось, направленную вверх, от времени t
. Определите модуль силы натяжения троса в течение подъема.
Решение.
По графику зависимости проекции скорости v
груза на ось, направленную вертикально вверх, от времени t
, можно определить проекцию ускорения груза
a
= |
∆v |
= | (8 – 2) м/с | = 2 м/с 2 . |
∆t |
3 с |
На груз действуют: сила тяжести , направленная вертикально вниз и сила натяжения троса , направленная вдоль троса вертикально вверх смотри рис. 2. Запишем основное уравнение динамики. Воспользуемся вторым законом Ньютона. Геометрическая сумма сил действующих на тело равна произведению массы тела на сообщаемое ему ускорение.
+ = (1)
Запишем уравнение для проекции векторов в системе отсчета, связанной с землей, ось OY направим вверх. Проекция силы натяжения положительная, так как направление силы совпадает с направлением оси OY, проекция силы тяжести отрицательная, так как вектор силы противоположно направлен оси OY, проекция вектора ускорения тоже положительная, так тело движется с ускорением вверх. Имеем
T
– mg
= ma
(2);
из формулы (2) модуль силы натяжения
Т
= m
(g
+ a
) = 100 кг (10 + 2) м/с 2 = 1200 Н.
Ответ
. 1200 Н.
Тело тащат по шероховатой горизонтальной поверхности с постоянной скоростью модуль которой равен 1, 5 м/с, прикладывая к нему силу так, как показано на рисунке (1). При этом модуль действующей на тело силы трения скольжения равен 16 Н. Чему равна мощность, развиваемая силой F
?
Решение.
Представим себе физический процесс, заданный в условии задачи и сделаем схематический чертеж с указанием всех сил, действующих на тело (рис.2). Запишем основное уравнение динамики.
Тр + + = (1)
Выбрав систему отсчета, связанную с неподвижной поверхностью, запишем уравнения для проекции векторов на выбранные координатные оси. По условию задачи тело движется равномерно, так как его скорость постоянна и равна 1,5 м/с. Это значит, ускорение тела равно нулю. По горизонтали на тело действуют две силы: сила трения скольжения тр. и сила , с которой тело тащат. Проекция силы трения отрицательная, так как вектор силы не совпадает с направлением оси Х
. Проекция силы F
положительная. Напоминаем, для нахождения проекции опускаем перпендикуляр из начала и конца вектора на выбранную ось. С учетом этого имеем: F
cosα – F
тр = 0; (1) выразим проекцию силы F
, это F
cosα = F
тр = 16 Н; (2) тогда мощность, развиваемая силой , будет равна N
= F
cosα V
(3) Сделаем замену, учитывая уравнение (2), и подставим соответствующие данные в уравнение (3):
N
= 16 Н · 1,5 м/с = 24 Вт.
Ответ.
24 Вт.
Груз, закрепленный на легкой пружине жесткостью 200 Н/м, совершает вертикальные колебания. На рисунке представлен график зависимости смещения x
груза от времени t
. Определите, чему равна масса груза. Ответ округлите до целого числа.
Решение.
Груз на пружине совершает вертикальные колебания. По графику зависимости смещения груза х
от времени t
, определим период колебаний груза. Период колебаний равен Т
= 4 с; из формулы Т
= 2π
выразим массу m
груза.
= | T | ; | m |
= | T 2 |
; m = k |
T 2 |
; m = 200 H/м |
(4 с) 2 | = 81,14 кг ≈ 81 кг. |
2π | k |
4π 2 |
4π 2 |
39,438 |
Ответ:
81 кг.
На рисунке показана система из двух легких блоков и невесомого троса, с помощью которого можно удерживать в равновесии или поднимать груз массой 10 кг. Трение пренебрежимо мало. На основании анализа приведенного рисунка выберите два
верных утверждения и укажите в ответе их номера.
- Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 100 Н.
- Изображенная на рисунке система блоков не дает выигрыша в силе.
- h
, нужно вытянуть участок веревки длиной 3h
. - Для того чтобы медленно поднять груз на высоту h
h
.
Решение.
В данной задаче необходимо вспомнить простые механизмы, а именно блоки: подвижный и неподвижный блок. Подвижный блок дает выигрыш в силе в два раза, при этом участок веревки нужно вытянуть в два раза длиннее, а неподвижный блок используют для перенаправления силы. В работе простые механизмы выигрыша не дают. После анализа задачи сразу выбираем нужные утверждения:
- Для того чтобы медленно поднять груз на высоту h
, нужно вытянуть участок веревки длиной 2h
. - Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 50 Н.
Ответ.
45.
В сосуд с водой полностью погружен алюминиевый груз, закрепленный на невесомой и нерастяжимой нити. Груз не касается стенок и дна сосуда. Затем в такой же сосуд с водой погружают железный груз, масса которого равна массе алюминиевого груза. Как в результате этого изменятся модуль силы натяжения нити и модуль действующей на груз силы тяжести?
- Увеличивается;
- Уменьшается;
- Не изменяется.
Решение.
Анализируем условие задачи и выделяем те параметры, которые не меняются в ходе исследования: это масса тела и жидкость, в которую погружают тело на нити. После этого лучше выполнить схематический рисунок и указать действующие на груз силы: сила натяжения нити F
упр, направленная вдоль нити вверх; сила тяжести , направленная вертикально вниз; архимедова сила a
, действующая со стороны жидкости на погруженное тело и направленная вверх. По условию задачи масса грузов одинакова, следовательно, модуль действующей на груз силы тяжести не меняется. Так как плотность грузов разная, то объем тоже будет разный
Плотность железа 7800 кг/м 3 , а алюминиевого груза 2700 кг/м 3 . Следовательно, V
ж V a
. Тело в равновесии, равнодействующая всех сил, действующих на тело равна нулю. Направим координатную ось OY вверх. Основное уравнение динамики с учетом проекции сил запишем в виде F
упр + F a
– mg
= 0; (1) Выразим силу натяжения F
упр = mg
– F a
(2); архимедова сила зависит от плотности жидкости и объема погруженной части тела F a
= ρgV
п.ч.т. (3); Плотность жидкости не меняется, а объем тела из железа меньше V
ж V a
, поэтому архимедова сила, действующая на железный груз будет меньше. Делаем вывод о модуле силы натяжения нити, работая с уравнение (2), он возрастет.
Ответ.
13.
Брусок массой m
соскальзывает с закрепленной шероховатой наклонной плоскости с углом α при основании. Модуль ускорения бруска равен a
, модуль скорости бруска возрастает. Сопротивлением воздуха можно пренебречь.
Установите соответствие между физическими величинами и формулами, при помощи которых их можно вычислить. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.
Б) Коэффициент трения бруска о наклонную плоскость
3) mg
cosα
Решение.
Данная задача требует применение законов Ньютона. Рекомендуем сделать схематический чертеж; указать все кинематические характеристики движения. Если возможно, изобразить вектор ускорения и векторы всех сил, приложенных к движущемуся телу; помнить, что силы, действующие на тело, – результат взаимодействия с другими телами. Затем записать основное уравнение динамики. Выбрать систему отсчета и записать полученное уравнение для проекции векторов сил и ускорений;
Следуя предложенному алгоритму, сделаем схематический чертеж (рис. 1). На рисунке изображены силы, приложенные к центру тяжести бруска, и координатные оси системы отсчета, связанной с поверхностью наклонной плоскости. Так как все силы постоянны, то движение бруска будет равнопеременным с увеличивающейся скоростью, т.е. вектор ускорения направлен в сторону движения. Выберем направление осей как указано на рисунке. Запишем проекции сил, на выбранные оси.
Запишем основное уравнение динамики:
Тр + = (1)
Запишем данное уравнение (1) для проекции сил и ускорения.
На ось OY: проекция силы реакции опоры положительная, так как вектор совпадает с направлением оси OY N y
= N
; проекция силы трения равна нулю так как вектор перпендикулярен оси; проекция силы тяжести будет отрицательная и равная mg y
=
–
mg
cosα
; проекция вектора ускорения a
y
= 0, так как вектор ускорения перпендикулярен оси. Имеем N
– mg
cosα
= 0 (2) из уравнения выразим силу реакции действующей на брусок, со стороны наклонной плоскости. N
= mg
cosα
(3). Запишем проекции на ось OX.
На ось OX: проекция силы N
равна нулю, так как вектор перпендикулярен оси ОХ; Проекция силы трения отрицательная (вектор направлен в противоположную сторону относительно выбранной оси); проекция силы тяжести положительная и равна mg x
= mg
sinα
(4) из прямоугольного треугольника. Проекция ускорения положительная a
x
= a
; Тогда уравнение (1) запишем с учетом проекции mg
sinα – F
тр = ma
(5); F
тр = m
(g
sinα
– a
) (6); Помним, что сила трения пропорциональна силе нормального давления N
.
По определению F
тр = μN
(7), выразим коэффициент трения бруска о наклонную плоскость.
μ = |
F тр |
= | m (g sinα – a ) |
= tgα – |
a | (8). |
N |
mg cosα |
g cosα |
Выбираем соответствующие позиции для каждой буквы.
Ответ.
A – 3; Б – 2.
Задание 8. Газообразный кислород находится в сосуде объемом 33,2 литра. Давление газа 150 кПа, его температура 127° С. Определите массу газа в этом сосуде. Ответ выразите в граммах и округлите до целого числа.
Решение.
Важно обратить внимание на перевод единиц в систему СИ. Температуру переводим в Кельвины T
= t
°С + 273, объем V
= 33,2 л = 33,2 · 10 –3 м 3 ; Давление переводим P
= 150 кПа = 150 000 Па. Используя уравнение состояния идеального газа
выразим массу газа.
Обязательно обращаем внимание, в каких единица просят записать ответ. Это очень важно.
Ответ.
48 г.
Задание 9.
Идеальный одноатомный газ в количестве 0,025 моль адиабатически расширился. При этом его температура понизилась с +103°С до +23°С. Какую работу совершил газ? Ответ выразите в Джоулях и округлите до целого числа.
Решение.
Во-первых, газ одноатомный число степеней свободы i
= 3, во-вторых, газ расширяется адиабатически – это значит без теплообмена Q
= 0. Газ совершает работу за счет уменьшения внутренней энергии. С учетом этого, первый закон термодинамики запишем в виде 0 = ∆U
+ A
г; (1) выразим работу газа A
г = –∆U
(2); Изменение внутренней энергии для одноатомного газа запишем как
Ответ.
25 Дж.
Относительная влажность порции воздуха при некоторой температуре равна 10 %. Во сколько раз следует изменить давление этой порции воздуха для того, чтобы при неизменной температуре его относительная влажность увеличилась на 25 %?
Решение.
Вопросы, связанные с насыщенным паром и влажностью воздуха, чаще всего вызывают затруднения у школьников. Воспользуемся формулой для расчета относительной влажности воздуха
По условию задачи температура не изменяется, значит, давление насыщенного пара остается тем же. Запишем формулу (1) для двух состояний воздуха.
φ
1 = 10 % ; φ
2 = 35 %
Выразим давления воздуха из формул (2), (3) и найдем отношение давлений.
P 2 |
= | φ 2 |
= | 35 | = 3,5 |
P 1 |
φ 1 |
10 |
Ответ.
Давление следует увеличить в 3,5 раза.
Горячее вещество в жидком состоянии медленно охлаждалось в плавильной печи с постоянной мощностью. В таблице приведены результаты измерений температуры вещества с течением времени.
Выберите из предложенного перечня два
утверждения, которые соответствуют результатам проведенных измерений и укажите их номера.
- Температура плавления вещества в данных условиях равна 232°С.
- Через 20 мин. после начала измерений вещество находилось только в твердом состоянии.
- Теплоемкость вещества в жидком и твердом состоянии одинакова.
- Через 30 мин. после начала измерений вещество находилось только в твердом состоянии.
- Процесс кристаллизации вещества занял более 25 минут.
Решение.
Так как вещество охлаждалось, то его внутренняя энергия уменьшалась. Результаты измерения температуры, позволяют определить температуру, при которой вещество начинает кристаллизоваться. Пока вещество переходит из жидкого состояния в твердое, температура не меняется. Зная, что температура плавления и температура кристаллизации одинаковы, выбираем утверждение:
1. Tемпература плавления вещества в данных условиях равна 232°С.
Второе верное утверждение это:
4. Через 30 мин. после начала измерений вещество находилось только в твердом состоянии. Так как температура в этот момент времени, уже ниже температуры кристаллизации.
Ответ.
14.
В изолированной системе тело А имеет температуру +40°С, а тело Б температуру +65°С. Эти тела привели в тепловой контакт друг с другом. Через некоторое время наступило тепловое равновесие. Как в результате изменилась температура тела Б и суммарная внутренняя энергия тела А и Б?
Для каждой величины определите соответствующий характер изменения:
- Увеличилась;
- Уменьшилась;
- Не изменилась.
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Решение.
Если в изолированной системе тел не происходит никаких превращений энергии кроме теплообмена, то количество теплоты, отданное телами, внутренняя энергия которых уменьшается, равно количеству теплоты, полученному телами, внутренняя энергия которых увеличивается. (По закону сохранения энергии.) При этом суммарная внутренняя энергия системы не меняется. Задачи такого типа решаются на основании уравнения теплового баланса.
∆U = ∑ |
n |
∆U i = 0 (1); |
i = 1 |
где ∆U
– изменение внутренней энергии.
В нашем случае в результате теплообмена внутренняя энергия тела Б уменьшается, а значит уменьшается температура этого тела. Внутренняя энергия тела А увеличивается, так как тело получило количество теплоты от тела Б, то температура его увеличится. Суммарная внутренняя энергия тел А и Б не изменяется.
Ответ.
23.
Протон p
, влетевший в зазор между полюсами электромагнита, имеет скорость , перпендикулярную вектору индукции магнитного поля, как показано на рисунке. Куда направлена действующая на протон сила Лоренца относительно рисунка (вверх, к наблюдателю, от наблюдателя, вниз, влево, вправо)
Решение.
На заряженную частицу магнитное поле действует с силой Лоренца. Для того чтобы определить направление этой силы, важно помнить мнемоническое правило левой руки, не забывать учитывать заряд частицы. Четыре пальца левой руки направляем по вектору скорости, для положительно заряженной частицы, вектор должен перпендикулярно входить в ладонь, большой палец отставленный на 90° показывает направление действующей на частицу силы Лоренца. В результате имеем, что вектор силы Лоренца направлен от наблюдателя относительно рисунка.
Ответ.
от наблюдателя.
Модуль напряженности электрического поля в плоском воздушном конденсаторе емкостью 50 мкФ равен 200 В/м. Расстояние между пластинами конденсатора 2 мм. Чему равен заряд конденсатора? Ответ запишите в мкКл.
Решение.
Переведем все единицы измерения в систему СИ. Емкость С = 50 мкФ = 50 · 10 –6 Ф, расстояние между пластинами d
= 2 · 10 –3 м. В задаче говорится о плоском воздушном конденсаторе – устройстве для накопления электрического заряда и энергии электрического поля. Из формулы электрической емкости
где d
– расстояние между пластинами.
Выразим напряжение U
= E · d
(4); Подставим (4) в (2) и рассчитаем заряд конденсатора.
q
= C
· Ed
= 50 · 10 –6 · 200 · 0,002 = 20 мкКл
Обращаем внимание, в каких единицах нужно записать ответ. Получили в кулонах, а представляем в мкКл.
Ответ.
20 мкКл.
Ученик провел опыт по преломлению света, представленный на фотографии. Как изменяется при увеличении угла падения угол преломления света, распространяющегося в стекле, и показатель преломления стекла?
- Увеличивается
- Уменьшается
- Не изменяется
- Запишите в таблицу выбранные цифры для каждого ответа. Цифры в ответе могут повторяться.
Решение.
В задачах такого плана вспоминаем, что такое преломление. Это изменение направления распространения волны при прохождении из одной среды в другую. Вызвано оно тем, что скорости распространения волн в этих средах различны. Разобравшись из какой среды в какую свет распространяется, запишем закона преломления в виде
где n
2 – абсолютный показатель преломления стекла, среда куда идет свет; n
1 – абсолютный показатель преломления первой среды, откуда свет идет. Для воздуха n
1 = 1. α
– угол падения луча на поверхность стеклянного полуцилиндра, β
– угол преломления луча в стекле. Причем, угол преломления будет меньше угла падения, так как стекло оптически более плотная среда – среда с большим показателем преломления. Скорость распространения света в стекле меньше. Обращаем внимание, что углы измеряем от перпендикуляра, восстановленного в точке падения луча. Если увеличивать угол падения, то и угол преломления будет расти. Показатель преломления стекла от этого меняться не будет.
Ответ.
Медная перемычка в момент времени t
0 = 0 начинает двигаться со скоростью 2 м/с по параллельным горизонтальным проводящим рельсам, к концам которых подсоединен резистор сопротивлением 10 Ом. Вся система находится в вертикальном однородном магнитном поле. Сопротивление перемычки и рельсов пренебрежимо мало, перемычка все время расположена перпендикулярно рельсам. Поток Ф
вектора магнитной индукции через контур, образованный перемычкой, рельсами и резистором, изменяется с течением времени t
так, как показано на графике.
Используя график, выберите два верных утверждения и укажите в ответе их номера.
- К моменту времени t
= 0,1 с изменение магнитного потока через контур равно 1 мВб. - Индукционный ток в перемычке в интервале от t
= 0,1 с t
= 0,3 с максимален. - Модуль ЭДС индукции, возникающей в контуре, равен 10 мВ.
- Сила индукционного тока, текущего в перемычке, равна 64 мА.
- Для поддержания движения перемычки к ней прикладывают силу, проекция которой на направление рельсов равна 0,2 Н.
Решение.
По графику зависимости потока вектора магнитной индукции через контур от времени определим участки, где поток Ф
меняется, и где изменение потока равно нулю. Это позволит нам определить интервалы времени, в которые в контуре будет возникать индукционный ток. Верное утверждение:
1) К моменту времени t
= 0,1 с изменение магнитного потока через контур равно 1 мВб ∆Ф
= (1 – 0) · 10 –3 Вб; Модуль ЭДС индукции, возникающей в контуре определим используя закон ЭМИ
Ответ.
13.
По графику зависимости силы тока от времени в электрической цепи, индуктивность которой равна 1 мГн, определите модуль ЭДС самоиндукции в интервале времени от 5 до 10 с. Ответ запишите в мкВ.
Решение.
Переведем все величины в систему СИ, т.е. индуктивность 1 мГн переведем в Гн, получим 10 –3 Гн. Силу тока, показанной на рисунке в мА также будем переводить в А путем умножения на величину 10 –3 .
Формула ЭДС самоиндукции имеет вид
при этом интервал времени дан по условию задачи
∆t
= 10 c – 5 c = 5 c
секунд и по графику определяем интервал изменения тока за это время:
∆I
= 30 · 10 –3 – 20 · 10 –3 = 10 · 10 –3 = 10 –2 A.
Подставляем числовые значения в формулу (2), получаем
|
Ɛ
|
= 2 ·10 –6 В, или 2 мкВ.
Ответ.
2.
Две прозрачные плоскопараллельные пластинки плотно прижаты друг к другу. Из воздуха на поверхность первой пластинки падает луч света (см. рисунок). Известно, что показатель преломления верхней пластинки равен n
2 = 1,77. Установите соответствие между физическими величинами и их значениями. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.
Решение.
Для решения задач о преломлении света на границе раздела двух сред, в частности задач на прохождение света через плоскопараллельные пластинки можно рекомендовать следующий порядок решения: сделать чертеж с указанием хода лучей, идущих из одной среды в другую; в точке падения луча на границе раздела двух сред провести нормаль к поверхности, отметить углы падения и преломления. Особо обратить внимание на оптическую плотность рассматриваемых сред и помнить, что при переходе луча света из оптически менее плотной среды в оптически более плотную среду угол преломления будет меньше угла падения. На рисунке дан угол между падающим лучом и поверхностью, а нам нужен угол падения. Помним, что углы определяются от перпендикуляра, восстановленного в точке падения. Определяем, что угол падения луча на поверхность 90° – 40° = 50°, показатель преломления n
2 = 1,77; n
1 = 1 (воздух).
Запишем закон преломления
sinβ = |
sin50 | = 0,4327 ≈ 0,433 |
1,77 |
Построим примерный ход луча через пластинки. Используем формулу (1) для границы 2–3 и 3–1. В ответе получаем
А) Синус угла падения луча на границу 2–3 между пластинками – это 2) ≈ 0,433;
Б) Угол преломления луча при переходе границы 3–1 (в радианах) – это 4) ≈ 0,873.
Ответ
. 24.
Определите, сколько α – частиц и сколько протонов получается в результате реакции термоядерного синтеза
+ → x
+ y
;
Решение.
При всех ядерных реакциях соблюдаются законы сохранения электрического заряда и числа нуклонов. Обозначим через x – количество альфа частиц, y– количество протонов. Составим уравнения
+ → x + y;
решая систему имеем, что x
= 1; y
= 2
Ответ.
1 – α
-частица; 2 – протона.
Модуль импульса первого фотона равен 1,32 · 10 –28 кг·м/с, что на 9,48 · 10 –28 кг·м/с меньше, чем модуль импульса второго фотона. Найдите отношение энергии E 2 /E 1 второго и первого фотонов. Ответ округлите до десятых долей.
Решение.
Импульс второго фотона больше импульса первого фотона по условию значит можно представить p
2 = p
1 + Δp
(1). Энергию фотона можно выразить через импульс фотона, используя следующие уравнения. Это E
= mc
2 (1) и p
= mc
(2), тогда
E
= pc
(3),
где E
– энергия фотона, p
– импульс фотона, m – масса фотона, c
= 3 · 10 8 м/с – скорость света. С учетом формулы (3) имеем:
E 2 |
= | p 2 |
= 8,18; |
E 1 |
p 1 |
Ответ округляем до десятых и получаем 8,2.
Ответ.
8,2.
Ядро атома претерпело радиоактивный позитронный β – распад. Как в результате этого изменялись электрический заряд ядра и количество нейтронов в нем?
Для каждой величины определите соответствующий характер изменения:
- Увеличилась;
- Уменьшилась;
- Не изменилась.
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Решение.
Позитронный β
– распад в атомном ядре происходит при превращений протона в нейтрон с испусканием позитрона. В результате этого число нейтронов в ядре увеличивается на единицу, электрический заряд уменьшается на единицу, а массовое число ядра остается неизменным. Таким образом, реакция превращения элемента следующая:
Ответ.
21.
В лаборатории было проведено пять экспериментов по наблюдению дифракции с помощью различных дифракционных решеток. Каждая из решеток освещалась параллельными пучками монохроматического света с определенной длиной волны. Свет во всех случаях падал перпендикулярно решетке. В двух из этих экспериментов наблюдалось одинаковое количество главных дифракционных максимумов. Укажите сначала номер эксперимента, в котором использовалась дифракционная решетка с меньшим периодом, а затем – номер эксперимента, в котором использовалась дифракционная решетка с большим периодом.
Решение.
Дифракцией света называется явление светового пучка в область геометрической тени. Дифракцию можно наблюдать в том случае, когда на пути световой волны встречаются непрозрачные участки или отверстия в больших по размерам и непрозрачных для света преградах, причем размеры этих участков или отверстий соизмеримы с длиной волны. Одним из важнейших дифракционных устройств является дифракционная решетка. Угловые направления на максимумы дифракционной картины определяются уравнением
d
sinφ
= k
λ
(1),
где d
– период дифракционной решетки, φ
– угол между нормалью к решетке и направлением на один из максимумов дифракционной картины, λ
– длина световой волны, k
– целое число, называемое порядком дифракционного максимума. Выразим из уравнения (1)
Подбирая пары согласно условию эксперимента, выбираем сначала 4 где использовалась дифракционная решетка с меньшим периодом, а затем – номер эксперимента, в котором использовалась дифракционная решетка с большим периодом – это 2.
Ответ.
42.
По проволочному резистору течет ток. Резистор заменили на другой, с проволокой из того же металла и той же длины, но имеющей вдвое меньшую площадь поперечного сечения, и пропустили через него вдвое меньший ток. Как изменятся при этом напряжение на резисторе и его сопротивление?
Для каждой величины определите соответствующий характер изменения:
- Увеличится;
- Уменьшится;
- Не изменится.
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Решение.
Важно помнить от каких величин зависит сопротивление проводника. Формула для расчета сопротивления имеет вид
закона Ома для участка цепи, из формулы (2), выразим напряжение
U
= I
R
(3).
По условию задачи второй резистор изготовлен из проволоки того же материала, той же длины, но разной площади поперечного сечения. Площадь в два раза меньшая. Подставляя в (1) получим, что сопротивление увеличивается в 2 раза, а сила тока уменьшается в 2 раза, следовательно, напряжение не изменяется.
Ответ.
13.
Период колебаний математического маятника на поверхности Земли в 1, 2 раза больше периода его колебаний на некоторой планете. Чему равен модуль ускорения свободного падения на этой планете? Влияние атмосферы в обоих случаях пренебрежимо мало.
Решение.
Математический маятник – это система, состоящая из нити, размеры которой много больше размеров шарика и самого шарика. Трудность может возникнуть если забыта формула Томсона для периода колебаний математического маятника.
T
= 2π (1);
l
– длина математического маятника; g
– ускорение свободного падения.
По условию
Выразим из (3) g
п = 14,4 м/с 2 . Надо отметить, что ускорение свободного падения зависит от массы планеты и радиуса
Ответ.
14,4 м/с 2 .
Прямолинейный проводник длиной 1 м, по которому течет ток 3 А, расположен в однородном магнитном поле с индукцией В
= 0,4 Тл под углом 30° к вектору . Каков модуль силы, действующей на проводник со стороны магнитного поля?
Решение.
Если в магнитное поле, поместить проводник с током, то поле на проводник с током будет действовать с силой Ампера. Запишем формулу модуля силы Ампера
F
А = I
LB
sinα
;
F
А = 0,6 Н
Ответ. F
А = 0,6 Н.
Энергия магнитного поля, запасенная в катушке при пропускании через нее постоянного тока, равна 120 Дж. Во сколько раз нужно увеличить силу тока, протекающего через обмотку катушки, для того, чтобы запасенная в ней энергия магнитного поля увеличилась на 5760 Дж.
Решение.
Энергия магнитного поля катушки рассчитывается по формуле
По условию W
1 = 120 Дж, тогда W
2 = 120 + 5760 = 5880 Дж.
I
1 2 = |
2W 1 |
; I 2 2 = |
2W 2 |
; |
L |
L |
Тогда отношение токов
I
2 2 |
= 49; | I
2 |
= 7 |
I 1 2 |
I
1 |
Ответ.
Силу тока нужно увеличить в 7 раз. В бланк ответов Вы вносите только цифру 7.
Электрическая цепь состоит из двух лампочек, двух диодов и витка провода, соединенных, как показано на рисунке. (Диод пропускает ток только в одном направлении, как показано на верхней части рисунка). Какая из лампочек загорится, если к витку приближать северный полюс магнита? Ответ объясните, указав, какие явления и закономерности вы использовали при объяснении.
Решение.
Линии магнитной индукции выходят из северного полюса магнита и расходятся. При приближении магнита магнитный поток через виток провода увеличивается. В соответствии с правило Ленца магнитное поле, создаваемое индукционным током витка, должно быть направлено вправо. По правилу буравчика ток должен идти по часовой стрелке (если смотреть слева). В этом направлении пропускает диод, стоящий в цепи второй лампы. Значит, загорится вторая лампа.
Ответ.
Загорится вторая лампа.
Алюминиевая спица длиной L
= 25 см и площадью поперечного сечения S
= 0,1 см 2 подвешена на нити за верхний конец. Нижний конец опирается на горизонтальное дно сосуда, в который налита вода. Длина погруженной в воду части спицы l
= 10 см. Найти силу F
, с которой спица давит на дно сосуда, если известно, что нить расположена вертикально. Плотность алюминия ρ
а = 2,7 г/см 3 , плотность воды ρ
в = 1,0 г/см 3 . Ускорение свободного падения g
= 10 м/с 2
Решение.
Выполним поясняющий рисунок.
– Сила натяжения нити;
– Сила реакции дна сосуда;
a – архимедова сила, действующая только на погруженную часть тела, и приложенная к центру погруженной части спицы;
– сила тяжести, действующая на спицу со стороны Земли и приложена к центу всей спицы.
По определению масса спицы m
и модуль архимедовой силы выражаются следующим образом: m
= SL
ρ
a (1);
F
a = Sl
ρ
в g
(2)
Рассмотрим моменты сил относительно точки подвеса спицы.
М
(Т
) = 0 – момент силы натяжения; (3)
М
(N) = NL
cosα
– момент силы реакции опоры; (4)
С учетом знаков моментов запишем уравнение
NL cosα + Sl ρ |
l | ) cosα = SL ρ a g |
L |
cosα (7) |
2 | 2 |
учитывая, что по третьему закону Ньютона сила реакции дна сосуда равна силе F
д с которой спица давит на дно сосуда запишем N
= F
д и из уравнения (7) выразим эту силу:
F д = [ | 1 | L ρ a – (1 – |
l | )l
ρ |
2 | 2L |
Подставим числовые данные и получим, что
F
д = 0,025 Н.
Ответ.
F
д = 0,025 Н.
Баллон, содержащий m
1 = 1 кг азота, при испытании на прочность взорвался при температуре t
1 = 327°С. Какую массу водорода m
2 можно было бы хранить в таком баллоне при температуре t
2 = 27°С, имея пятикратный запас прочности? Молярная масса азота M
1 = 28 г/моль, водорода M
2 = 2 г/моль.
Решение.
Запишем уравнение состояния идеального газа Менделеева – Клапейрона для азота
где V
– объем баллона, T
1 = t
1 + 273°C. По условию водород можно хранить при давлении p
2 = p 1 /5; (3) Учитывая, что
можем выразить массу водорода работая сразу с уравнениями (2), (3), (4). Конечная формула имеет вид:
m 2 = |
m 1 |
M 2 |
T 1 |
(5). | ||
5 | M 1 |
T 2 |
После подстановки числовых данных m
2 = 28 г.
Ответ.
m
2 = 28 г.
В идеальном колебательном контуре амплитуда колебаний силы тока в катушке индуктивности I
m
= 5 мА, а амплитуда напряжения на конденсаторе U m
= 2,0 В. В момент времени t
напряжение на конденсаторе равно 1,2 В. Найдите силу тока в катушке в этот момент.
Решение.
В идеальном колебательном контуре сохраняется энергия колебаний. Для момента времени t закон сохранения энергий имеет вид
C |
U 2 |
+ L |
I
2 |
= L |
I m 2 |
(1) |
2 | 2 | 2 |
Для амплитудных (максимальных) значений запишем
а из уравнения (2) выразим
Подставим (4) в (3). В результате получим:
I
= I m
(5)
Таким образом, сила тока в катушке в момент времени t
равна
I
= 4,0 мА.
Ответ.
I
= 4,0 мА.
На дне водоема глубиной 2 м лежит зеркало. Луч света, пройдя через воду, отражается от зеркала и выходит из воды. Показатель преломления воды равен 1,33. Найдите расстояние между точкой входа луча в воду и точкой выхода луча из воды, если угол падения луча равен 30°
Решение.
Сделаем поясняющий рисунок
α
– угол падения луча;
β
– угол преломления луча в воде;
АС – расстояние между точкой входа луча в воду и точкой выхода луча из воды.
По закону преломления света
Рассмотрим прямоугольный ΔАDВ. В нем АD = h
, тогда DВ = АD
tgβ = h tgβ = h |
sinα | = h |
sinβ | = h |
sinα | (4) |
cosβ |
Получаем следующее выражение:
Подставим числовые значения в полученную формулу (5)
Ответ.
1,63 м.
В рамках подготовки к ЕГЭ предлагаем вам ознакомиться с рабочей программой по физике для 7–9 класса к линии УМК Перышкина А. В.
и рабочей программой углубленного уровня для 10-11 классов к УМК Мякишева Г.Я.
Программы доступны для просмотра и бесплатного скачивания всем зарегистрированным пользователям.
1)
ЕДИНЫЙ ГОСУДАРСТВЕННЫЙ ЭКЗАМЕН ПО ФИЗИКЕ ДЛИТСЯ
235
мин
2) СТРУКТУРА КИМов — 2018 и 2019 по сравнению с 2017г. несколько ИЗМЕНИЛАСЬ:
Вариант экзаменационной работы будет состоять из двух частей и включит в себя
32 задания. Часть 1 будет содержать 24 задания с кратким ответом, в том числе задания с самостоятельной записью ответа в виде числа, двух чисел или слова, а также задания на установление
соответствия и множественный выбор, в которых ответы необходимо записать в виде последовательности цифр. Часть 2 будет содержать 8 заданий, объединенных общим видом деятельности – решение задач.
Из них 3 задания с кратким ответом (25–27) и 5 заданий (28–32), для которых необходимо привести развернутый ответ. В работу будут включены задания трех уровней сложности. Задания базового уровня
включены в часть 1 работы (18 заданий, из которых 13 заданий с записью ответа в виде числа, двух чисел или слова и 5 заданий на соответствие и множественный выбор). Задания повышенного
уровня распределены между частями 1 и 2 экзаменационной работы: 5 заданий с кратким ответом в части 1, 3 задания с кратким ответом и 1 задание с развернутым ответом в части 2. Последние четыре
задачи части 2 являются заданиями высокого уровня сложности. Часть 1 экзаменационной работы будет включать два блока заданий: первый проверяет освоение понятийного аппарата школьного курса
физики, а второй – овладение методологическими умениями. Первый блок включает 21 задание, которые группируются, исходя из тематической принадлежности: 7 заданий по механике, 5 заданий по МКТ и
термодинамике, 6 заданий по электродинамике и 3 по квантовой физике.
Новым заданием базового уровня сложности является последнее задание первой части (24 позиция), приуроченное к возвращению курса астрономии в школьную программу. Задание имеет
характеристику типа «выбор 2 суждений из 5».
Задание 24, как и другие аналогичные задания в
экзаменационной работе, оценивается максимально в 2 балла, если верно указаны оба элемента ответа, и в 1 балл, если в одном из элементов допущена ошибка. Порядок записи цифр в ответе значения не
имеет. Как правило, задания будут иметь контекстный характер, т.е. часть данных, необходимых для выполнения задания будут приводиться в виде таблицы, схемы или графика.
В соответствии с этим заданием в кодификаторе добавился подраздел «Элементы астрофизики» раздела «Квантовая физика и элементы астрофизики», включающий следующие пункты:
·
Солнечная система: планеты земной
группы и планеты-гиганты, малые тела Солнечной системы.
·
Звёзды: разнообразие звездных
характеристик и их закономерности. Источники энергии звезд.
·
Современные представления о
происхождении и эволюции Солнца и звёзд. Наша галактика. Другие галактики. Пространственные масштабы наблюдаемой Вселенной.
·
Современные взгляды на строение и
эволюцию Вселенной.
подробнее о структуре КИМ-2018 Вы можете узнать, посмотрев вебинар с участием М.Ю. Демидовой https://www.youtube.com/watch?v=JXeB6OzLokU либо в документе, приведенном ниже.
Изменений в заданиях ЕГЭ по физике на 2019
год нет.
Структура заданий ЕГЭ по физике-2019
Экзаменационная работа состоит из двух частей, включающих в себя 32 задания
.
Часть 1
содержит 27 заданий.
- В заданиях 1–4, 8–10, 14, 15, 20, 25–27 ответом является целое число или конечная десятичная дробь.
- Ответом к заданиям 5–7, 11, 12, 16–18, 21, 23 и 24 является последовательность двух цифр.
- Ответом к заданиям 19 и 22 являются два числа.
Часть 2
содержит 5 заданий. Ответ к заданиям 28–32 включает в себя подробное описание всего хода выполнения задания. Вторая часть заданий (с развёрнутым ответом) оцениваются экспертной комиссией на основе .
Темы ЕГЭ по физике, которые будут в экзаменационной работе
- Механика
(кинематика, динамика, статика, законы сохранения в механике, механические колебания и волны). - Молекулярная физика
(молекулярно-кинетическая теория, термодинамика). - Электродинамика и основы СТО
(электрическое поле, постоянный ток, магнитное поле, электромагнитная индукция, электромагнитные колебания и волны, оптика, основы СТО). - Квантовая физика и элементы астрофизики
(корпускулярноволновой дуализм, физика атома, физика атомного ядра, элементы астрофизики).
Продолжительность ЕГЭ по физике
На выполнение всей экзаменационной работы отводится 235 минут
.
Примерное время на выполнение заданий различных частей работы составляет:
- для каждого задания с кратким ответом – 3–5 минут;
- для каждого задания с развернутым ответом – 15–20 минут.
Что можно брать на экзамен:
- Используется непрограммируемый калькулятор (на каждого ученика) с возможностью вычисления тригонометрических функций (cos, sin, tg) и линейка.
- Перечень дополнительных устройств и , использование которых разрешено на ЕГЭ, утверждается Рособрнадзором.
Важно!!!
не стоит рассчитывать на шпаргалки, подсказки и использование технических средств (телефонов, планшетов) на экзамене. Видеонаблюдение на ЕГЭ-2019 усилят дополнительными камерами.
Баллы ЕГЭ по физике
- 1 балл — за 1-4, 8, 9, 10, 13, 14, 15, 19, 20, 22, 23, 25, 26, 27 задания.
- 2 балла — 5, 6, 7, 11, 12, 16, 17, 18, 21, 24.
- З балла — 28, 29, 30, 31, 32.
Всего: 52 баллов
(максимальный первичный балл).
Что необходимо знать при подготовки заданий в ЕГЭ:
- Знать/понимать смысл физических понятий, величин, законов, принципов, постулатов.
- Уметь описывать и объяснять физические явления и свойства тел (включая космические объекты), результаты экспериментов… приводить примеры практического использования физических знаний
- Отличать гипотезы от научной теории, делать выводы на основе эксперимента и т.д.
- Уметь применять полученные знания при решении физических задач.
- Использовать приобретенные знания и умения в практической деятельности и повседневной жизни.
С чего начать подготовку к ЕГЭ по физике:
- Изучать теорию, необходимую для каждого заданий.
- Тренироваться в тестовых заданиях по физике, разработанные на основе ЕГЭ. На нашем сайте задания и варианты по физике будут пополняться.
- Правильно распределяй время.
Желаем успеха!
ЕГЭ по физике
– экзамен, который не входит в перечень испытаний обязательных для сдачи всеми выпускниками. Физику выбирают потенциальные студенты инженерных специальностей. Причем, каждый ВУЗ устанавливает свою планку – в престижных учебных заведениях она может быть очень высокой. Это должен понимать выпускник, начиная подготовку к экзамену.
Цель экзамена
– проверка уровня знаний и умений, полученных в ходе школьного обучения, на соответствие нормам и стандартам, указанным в программе.
- На экзамен отводится практически 4 часа – 235 минут, это время необходимо правильно распределить между заданиями, чтобы успешно справиться со всеми, не теряя ни одной минуты.
- Разрешается брать с собой калькулятор, поскольку для выполнения заданий требуется множество сложных расчетов. Также можно взять линейку.
- Работа состоит из трех частей, каждая имеет свои особенности, состоит из заданий разного уровня сложности.
Первая часть
экзаменационной работы состоит из обычных тестов с несколькими вариантами ответов, из которых требуется выбрать правильный. Цель первой части – проверка базовых знаний, умения применять теорию на практике на начальном уровне. При изучении новой темы в классе, подобные задания могли даваться для закрепления нового материала. Для успешного прохождения этого уровня, требуется выучить и повторить законы, теории, формулы, определения, чтобы иметь возможность воспроизвести их на экзамене. Также эта часть содержит задания, в которых требуется правильно установить соответствия. Формулируется задача и предлагается несколько вопросов к ней. К каждому вопросу необходимо подобрать правильный ответ из предложенных, и указать в бланке. Цель данной части испытания — проверка умения устанавливать связи между величинами, применять несколько формул и теорий, проводить вычисления на основе теоретических данных.
Вторая часть
делится на 2 блока. В первом блоке необходимо применять формулы, законы и теории для решения заданий и получения ответа. Экзаменуемому предлагаются варианты, из которых нужно выбрать правильный.
Во втором блоке – задачи, требуется предоставить детальное решение, полное объяснение каждого действия. Лица, проверяющие задание, должны также увидеть здесь формулы, законы, которые используются для решения – с них нужно начать детальный разбор задания.
Физика относится к сложным предметам, приблизительно каждый 15-1 сдает этот экзамен ежегодно, чтобы поступить в технический ВУЗ. Предполагается, что выпускник с такими целями не будет учить предмет «с нуля», чтобы подготовиться к ЕГЭ.
Чтобы удачно пройти испытание, необходимо:
- Начинать повторение материала заранее, подходить к вопросу комплексно;
- Активно применять теорию на практике – решать много заданий разного уровня сложности;
- Заниматься самообразованием;
- Проходить онлайн тестирование по вопросам за прошлые годы.
Эффективные помощники в подготовке – онлайн курсы, репетиторы. При помощи профессионального репетитора можно анализировать ошибки, быстро получать обратную связь. Онлайн курсы и ресурсы с заданиями помогут накопить опыт в решении различных заданий. «Решу ЕГЭ по физике» – возможность результативно тренироваться перед тестированием.
Решение 26 задания ЕГЭ 2019 по физике из демонстрационного варианта. Проверяемые элементы содержания: молекулярная физика, электродинамика (расчетная задача).
Тепловая машина с максимально возможным КПД имеет в качестве нагревателя резервуар с водой, а в качестве холодильника – сосуд со льдом при 0 °С. При совершении машиной работы 1 МДж растаяло 12,1 кг льда. Определите температуру воды в резервуаре. Ответ округлите до целых.
Дано:
T1 = 0 °С = 273 К
А = 10 МДж = 106 Дж
mльда = 12,1 кг
λ = 3,3 · 105 Дж/кг
Найти:
Т2 — ?
Решение:
Для тепловых машин КПД вычисляется по формуле
η = 1 – Т1/Т2
«Затраченная» полная энергия (т. е. энергия, полученная от нагревателя Т2)
Е1 = А/η = А/(1 – Т1/Т2)
Энергия, полученная льдом для расплавления: Е2 = λ · m
«Затраченная» энергия расходуется на выполнение работы А и на расплавление льда
Е1 = Е2 + А
А/(1 – Т1/Т2) = λ · m + A
A = (λ · m + A) · (1 – Т1/Т2)
A = λ · m + A – (λ · m + A) · Т1/Т2
T2 = (λ · m + A) · T1/(λ · m)
T2 = (3,3 · 105 Дж/кг · 12,1 кг + 106 Дж) · 273 К/(3,3 · 105 Дж/кг · 12,2 кг) = 341,37 K ≈ 341 K
Ответ:
341 К
Опубликовано: 01.02.2019
Обновлено: 01.02.2019
Решу егэ физика 9496
Решение 26 задания ЕГЭ 2019 по физике из демонстрационного варианта. Проверяемые элементы содержания: молекулярная физика, электродинамика (расчетная задача).
Тепловая машина с максимально возможным КПД имеет в качестве нагревателя резервуар с водой, а в качестве холодильника – сосуд со льдом при 0 °С. При совершении машиной работы 1 МДж растаяло 12,1 кг льда. Определите температуру воды в резервуаре. Ответ округлите до целых.
Решение 26 задания ЕГЭ 2019 по физике из демоверсии
Дано:
T1 = 0 °С = 273 К
А = 10 МДж = 10 6 Дж
Mльда = 12,1 кг
Λ = 3,3 · 10 5 Дж/кг
Найти:
Решение:
Для тепловых машин КПД вычисляется по формуле
«Затраченная» полная энергия (т. е. энергия, полученная от нагревателя Т2)
Энергия, полученная льдом для расплавления: Е2 = λ · m
«Затраченная» энергия расходуется на выполнение работы А и на расплавление льда
T2 = (3,3 · 10 5 Дж/кг · 12,1 кг + 10 6 Дж) · 273 К/(3,3 · 10 5 Дж/кг · 12,2 кг) = 341,37 K ≈ 341 K
Энергия, полученная льдом для расплавления Е 2 λ m.
Schoolotvety. ru
19.04.2018 1:18:00
2018-04-19 01:18:00
Источники:
Http://schoolotvety. ru/2019/02/01/reshenie-26-zadaniya-ege-2019-po-fizike/
ЕГЭ–2022, физика: задания, ответы, решения. Обучающая система Дмитрия Гущина. » /> » /> .keyword { color: red; } Решу егэ физика 9496
Решу егэ физика 9496
Решу егэ физика 9496
Ускоренная подготовка к ЕГЭ с репетиторами Учи. Дома. Записывайтесь на бесплатное занятие!
—>
Задание 5 № 9496
Гидравлический пресс изготовлен с использованием двух вертикальных цилиндрических сообщающихся сосудов, заполненных жидкостью и закрытых лёгкими поршнями. Радиус большего поршня этого пресса превосходит радиус меньшего поршня в 5 раз. На малый поршень положили груз массой 20 кг, удерживая больший поршень неподвижным. Определите модуль силы давления жидкости на больший поршень. Атмосферным давлением пренебречь.
Запишем закон гидравлического пресса:
Где — площадь поршня, F — сила, действующая на соответствующий поршень.
На малый поршень действует сила тяжести груза, а на большой — сила, по модулю равная силе давления жидкости (согласно третьему закону Ньютона).
Задание 5 № 9496
—>
Решу егэ физика 9496.
Phys-ege. sdamgia. ru
07.03.2017 20:20:55
2017-03-07 20:20:55
Источники:
Http://phys-ege. sdamgia. ru/problem? id=9496
Тренировочные варианты ЕГЭ 2022 по физике » /> » /> .keyword { color: red; } Решу егэ физика 9496
Тренировочные варианты ЕГЭ 2022 по физике
Тренировочные варианты ЕГЭ 2022 по физике
Подборка тренировочных вариантов ЕГЭ 2022 по физике для 11 класса с ответами из различных источников.
Easy-physic. ru | |
Вариант 101 | Ответы |
Вариант 102 | Ответы |
Вариант 103 | Ответы |
Вариант 104 | Ответы |
Вариант 105 | Ответы |
Вариант 106 | Ответы |
Вариант 107 | Ответы |
Вариант 108 | Ответы |
Вариант 109 | Ответы |
СтатГрад | |
Тренировочная работа в формате ЕГЭ 2022 | Ответы |
ЕГЭ 100 баллов (с ответами) | |
Вариант 2 | Скачать |
Вариант 3 | Скачать |
Вариант 5 | Скачать |
Вариант 6 | Скачать |
Вариант 7 | Скачать |
Вариант 10 | Скачать |
Вариант 12 | Скачать |
Вариант 13 | Скачать |
→ купить сборник тренировочных вариантов ЕГЭ по физике |
Структура варианта КИМ ЕГЭ 2022 по физике
Каждый вариант экзаменационной работы состоит из двух частей и включает в себя 30 заданий, различающихся формой и уровнем сложности.
Часть 1 содержит 23 задания с кратким ответом, из них 11 заданий с записью ответа в виде числа или двух чисел и 12 заданий на установление соответствия и множественный выбор, в которых ответы необходимо записать в виде последовательности цифр.
Часть 2 содержит 7 заданий с развёрнутым ответом, в которых необходимо представить решение задачи или ответ в виде объяснения с опорой на изученные явления или законы.
При разработке содержания КИМ учитывается необходимость проверки усвоения элементов знаний, представленных в разделе 2 кодификатора.
Продолжительность ЕГЭ по физике
На выполнение всей экзаменационной работы отводится 235 минут. Примерное время на выполнение заданий экзаменационной работы составляет:
− для каждого задания с кратким ответом – 2–5 минут;
− для каждого задания с развёрнутым ответом – от 5 до 20 минут.
Дополнительные материалы и оборудование
Перечень дополнительных устройств и материалов, пользование которыми разрешено на ЕГЭ, утверждён приказом Минпросвещения России и Рособрнадзора. Используется непрограммируемый калькулятор (на каждого участника экзамена) с возможностью вычисления тригонометрических функций (cos, sin, tg) и линейка
Структура варианта КИМ ЕГЭ 2022 по физике.
Vpr-ege. ru
25.06.2020 21:46:40
2020-06-25 21:46:40
Источники:
Http://vpr-ege. ru/ege/fizika/1428-trenirovochnye-varianty-ege-2022-po-fizike
Варианты, ответы и решения ФИ2210401, ФИ2210402, ФИ2210403, ФИ2210404 тренировочная работа №4 статград пробник ЕГЭ 2023 по физике 11 класс в формате реального экзамена ЕГЭ 2023 года, которая прошла 7 марта 2023 года.
Скачать тренировочные варианты
Скачать ответы для вариантов
ФИ2210401_ФИ2210402_ФИ2210403_ФИ2210404
Вариант ФИ2210401 с ответами
1. Два маленьких тела, находившиеся в состоянии покоя, одновременно начинают двигаться из одной точки по плоскости YOX с разными по модулю постоянными ускорениями. На рисунке изображены векторы 1 a и 2 a ускорений этих тел (масштабы координатной сетки вдоль горизонтальной и вертикальной осей одинаковы). Чему равно отношение путей S1/S2, пройденных этими телами за первые 2 секунды их движения?
2. Ускорение свободного падения на поверхности Юпитера в 2,6 раза больше, чем на поверхности Земли. Первая космическая скорость для Юпитера в 5,4 раза больше, чем для Земли. Во сколько раз радиус Юпитера больше радиуса Земли? Ответ округлите до целого числа.
3. На горизонтальном столе лежит лист бумаги, на котором нарисован равнобедренный треугольник с длиной боковой стороны 12 см и углом 30° при основании. В его вершинах расположены одинаковые маленькие тяжёлые бусинки. На каком расстоянии от основания данного треугольника расположен центр тяжести системы, состоящей из этих трёх бусинок?
4. Небольшая шайба массой 50 г соскальзывает с наклонной плоскости с углом при основании 30°. Сопротивление воздуха пренебрежимо мало. В таблице приведены значения модуля скорости V шайбы в различные моменты времени t. Выберите все верные утверждения о результатах этого опыта на основании данных, содержащихся в таблице.
1) Сухое трение между шайбой и плоскостью отсутствует.
2) Модуль ускорения шайбы приблизительно равен 3 м/с2 .
3) За первую секунду движения шайба прошла путь менее 1 м.
4) В момент времени t = 0,4 с модуль импульса шайбы примерно равен 0,06 кг⋅м/с.
5) Если в момент времени t = 1,4 с шайба столкнётся с абсолютно неупругим препятствием, то выделится количество теплоты ≈ 0,44 Дж.
5. На двух узких опорах покоится тяжёлая горизонтальная однородная доска. На доске посередине между опорами лежит гиря. Гирю перекладывают так, что она оказывается лежащей на доске ближе к правой опоре. Как после перекладывания гири изменяются модуль силы реакции правой опоры и момент силы тяжести гири относительно левой опоры? Для каждой величины определите соответствующий характер изменения:
1) увеличивается
2) уменьшается
3) не изменяется
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
6. На горизонтальном столе установлена в вертикальном положении лёгкая пружина жёсткостью k. Её нижний конец прикреплён к столу, а к верхнему концу прикреплена горизонтальная платформа массой M. На высоте H над платформой удерживают маленький пластилиновый шарик массой m. Шарик отпускают без начальной скорости, после чего он свободно падает и прилипает к покоившейся платформе. В результате этого платформа с шариком начинают совершать колебания, в ходе которых ось пружины остаётся вертикальной, а платформа не касается стола. Установите соответствие между физическими величинами и формулами, выражающими их в рассматриваемой задаче (g – ускорение свободного падения). К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.
7. В сосуде объёмом 8,31 л находится 0,35 моль идеального газа при давлении 100 кПа. Газ сначала изотермически расширяют в 2 раза, а затем изохорически нагревают на 120 К. Чему равно давление газа в конечном состоянии? Ответ выразите в кПа и округлите до целого числа.
8. На рисунке приведена зависимость температуры T однородного твёрдого тела массой 2 кг от времени t в процессе нагревания. Чему равна удельная теплоёмкость вещества этого тела? Подводимую к телу тепловую мощность можно считать постоянной и равной 450 Вт.
9. На Т–р-диаграмме показан процесс изменения состояния идеального одноатомного газа. Газ отдал в этом процессе количество теплоты 80 кДж. Масса газа не менялась. Определите работу, совершённую внешними силами над газом в этом процессе, если р1 = 80 кПа, р2 = 200 кПа, Т0 =300 К.
10. С постоянной массой идеального одноатомного газа происходит циклический процесс 1−2−3−4−1, p–V-диаграмма которого представлена на рисунке. Максимальная температура газа в этом процессе составляет 400 К. На основании анализа этого циклического процесса выберите все верные утверждения.
1) Работа, совершённая газом при его изобарическом расширении, равна 200 Дж.
2) Количество вещества газа, участвующего в циклическом процессе, больше 0,45 моль.
3) Работа, совершённая над газом при его изобарическом сжатии, равна 200 Дж.
4) Изменение внутренней энергии газа в процессе 1–2–3–4–1 равно нулю.
5) Количество теплоты, переданное газу при изохорическом нагревании, равно 400 Дж.
11. В закрытом сосуде под подвижным поршнем находятся влажный воздух и немного воды. Перемещая поршень, объём сосуда медленно увеличивают при постоянной температуре. Как изменяются в этом процессе относительная влажность воздуха и концентрация пара? Известно, что в конечном состоянии в сосуде остаётся вода. Для каждой величины определите соответствующий характер изменения:
1) увеличивается
2) уменьшается
3) не изменяется
12. Участок электрической цепи состоит из трёх резисторов, соединённых так, как показано на рисунке. Сила тока I = 3 А. Сопротивления резисторов равны R1 = 20 Ом и R2 = 30 Ом. Каким должно быть сопротивление резистора R, чтобы сила текущего через него тока была равна 2 А?
13. На рисунке показан график зависимости магнитного потока Φ, пронизывающего проводящий контур, от времени t. Сопротивление контура равно 5 Ом. Чему равна сила тока, текущего в контуре, в промежутке времени от 0 до 10 с?
15. Две маленькие закреплённые бусинки, расположенные в точках А и В, несут на себе заряды +q > 0 и +4q соответственно (см. рисунок). Расстояние от точки С до точки А в два раза меньше, чем расстояние от точки С до точки В: СВ = 2 АС . Выберите все верные утверждения, соответствующие приведённым данным.
1) Модуль силы Кулона, действующей на бусинку в точке А, в 4 раза больше, чем модуль силы Кулона, действующей на бусинку в точке В.
2) Если бусинки соединить тонким проводником, то они будут притягиваться друг к другу.
3) Напряжённость результирующего электростатического поля в точке С равна нулю.
4) Если бусинки соединить стеклянной палочкой, то их заряды не изменятся.
5) Если бусинку с зарядом +4q заменить на бусинку с зарядом –4q, то напряжённость результирующего электростатического поля в точке С будет направлена вправо.
16. В первом опыте лазерный луч красного цвета падает перпендикулярно на дифракционную решётку, содержащую 50 штрихов на 1 мм. При этом на удалённом экране наблюдают дифракционную картину. Во втором опыте проводят эксперимент с тем же лазером, заменив решётку на другую, содержащую 100 штрихов на 1 мм, и оставив угол падения лазерного луча на решётку тем же. Как изменяются во втором опыте по сравнению с первым расстояние между дифракционными максимумами первого порядка на экране и количество наблюдаемых дифракционных максимумов? Для каждой величины определите соответствующий характер изменения:
- 1) увеличивается
- 2) уменьшается
- 3) не изменяется
17. В однородном вертикальном магнитном поле находится наклонная плоскость с углом α при основании. На этой плоскости закреплён П-образный проводник, по которому скользит вниз с постоянной скоростью V проводящая перемычка длиной L. Взаимное расположение наклонной плоскости, проводника и перемычки показано на рисунке. Сопротивление перемычки равно R, сопротивление П-образного проводника мало. Модуль индукции магнитного поля равен В. Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать.
К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.
18. Какая доля радиоактивных ядер (в процентах от первоначального числа ядер) остаётся нераспавшейся через интервал времени, равный двум периодам полураспада?
19. В опыте по изучению фотоэффекта металлическая пластина облучалась светом с частотой ν. Работа выхода электронов из металла равна Авых. Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать (h – постоянная Планка, с – скорость света в вакууме, me – масса электрона). К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.
20. Выберите все верные утверждения о физических явлениях, величинах и закономерностях. Запишите цифры, под которыми они указаны.
- 1) При равномерном прямолинейном движении за любые равные промежутки времени тело совершает одинаковые перемещения.
- 2) Средняя кинетическая энергия теплового движения молекул гелия уменьшается при увеличении абсолютной температуры газа.
- 3) В однородном электростатическом поле работа по перемещению электрического заряда между двумя положениями в пространстве не зависит от траектории.
- 4) При переходе электромагнитной волны из воды в воздух период колебаний вектора напряжённости электрического поля в волне уменьшается.
- 5) При испускании протона электрический заряд ядра уменьшается.
21. Даны следующие зависимости величин:
- А) зависимость модуля импульса материальной точки от её кинетической энергии при неизменной массе;
- Б) зависимость количества теплоты, выделяющегося при конденсации пара, от его массы;
- В) зависимость периода колебаний силы тока в идеальном колебательном контуре от индуктивности катушки.
Установите соответствие между этими зависимостями и графиками, обозначенными цифрами 1–5. Для каждой зависимости А–В подберите соответствующий вид графика и запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.
22. Для определения массы порции подсолнечного масла ученик измерил её объём с использованием мерного цилиндра и получил результат: V = (12 ±1) см3 . Чему равна масса данной порции масла с учётом погрешности измерений?
23. Ученик изучает свойства силы трения скольжения. В его распоряжении имеются установки, состоящие из горизонтальной опоры и сплошного бруска. Площадь соприкосновения бруска с опорой при проведении всех опытов одинакова. Параметры установок приведены в таблице. Какие из этих установок нужно использовать для того, чтобы на опыте обнаружить зависимость коэффициента трения от модуля силы нормального давления тела на опору?
24. В боковой стенке покоящейся на столе бутылки проделано маленькое отверстие, в которое вставлена затычка. В бутылку налита вода, а горлышко бутылки закрыто резиновой пробкой, через которую пропущена вертикальная тонкая трубка. Нижний конец трубки находится выше отверстия в стенке бутылки, но ниже поверхности воды, а верхний конец сообщается с атмосферой (см. рис.). Затычку из отверстия в боковой стенке вынимают, и вода вытекает из бутылки через отверстие. При этом через трубку в бутылку входят пузырьки воздуха. Затем трубку начинают медленно опускать вниз и делают это до тех пор, пока нижний конец трубки не окажется на одном уровне с отверстием. Опишите, как будет изменяться скорость вытекания воды из отверстия по мере опускания трубки. Считайте, что уровень воды всегда находится выше нижнего конца трубки и выше отверстия в стенке. Ответ обоснуйте, указав, какие физические закономерности Вы использовали для объяснения.
25. В механической системе, изображённой на рисунке, все блоки, пружины и нити невесомые, нити нерастяжимые, трения в осях блоков нет, все участки нитей, не лежащие на блоках, вертикальны. Известно, что после подвешивания груза массой M = 40 кг к оси самого правого блока левая пружина в состоянии равновесия растянулась на величину Δx1 = 10 см. Найдите коэффициент жёсткости k1 левой пружины.
26. В центре металлической сферической оболочки толщиной 0,5 см поместили точечный заряд q = 2 мкКл, а на её внешнюю поверхность радиусом R = 10 см – заряд Q = – 1 мкКл. Найдите для равновесного состояния модуль напряжённости E электрического поля на расстоянии r = 1 м от центра оболочки и укажите, куда направлен вектор E – к центру оболочки или от неё.
27. В большом помещении с размерами 6 × 10 × 3 м3 в зимние холода при температуре Т1 парциальное давление водяного пара в воздухе составляло pп1 = 700 Па, а относительная влажность воздуха равнялась при этом φ1 = 50 %. После обогрева помещения температура в нём поднялась до значения T2 = 25 °С, а относительная влажность снизилась до φ2 = 25 %. Используя приведённый на рисунке график, найдите, как и на сколько в результате обогрева изменилась масса m паров воды в данном помещении.
28. Иногда для измерения индукции магнитного поля используют следующий способ: маленькую плоскую круглую катушку с большим числом витков быстро вводят в область измеряемого поля так, что её плоскость перпендикулярна линиям индукции. Катушка присоединена к входным клеммам баллистического гальванометра, который может измерять электрический заряд Δq, протекший по образовавшейся замкнутой цепи за время ввода измерительной катушки в исследуемое магнитное поле. Этот заряд связан с изменением магнитного потока Ф через катушку, поэтому данный гальванометр часто используют в качестве «флюксметра». Зная поток магнитной индукции и параметры катушки, можно найти величину В проекции индукции на ось катушки. Пусть измеренное таким способом значение В = 0,5 Тл, входное сопротивление гальванометра rф = 0,1 кОм, сопротивление измерительной катушки rк = 900 Ом, диаметр её витков d = 1 см. Определите число N витков в катушке, если протекший через цепь суммарный заряд qΣ = 15 мкКл.
29. Вдоль оптической оси тонкой выпуклой собирающей линзы распространяется в воздухе параллельный приосевой пучок света, собирающийся в точку справа от неё на расстоянии F1. Линза изготовлена из стекла с показателем преломления n1 = 1,4 и ограничена справа и слева сферическими поверхностями радиусами R1 = 15 см. На какое расстояние и в какую сторону сместится точка схождения лучей этого пучка, если заменить линзу на другую, с показателем преломления стекла n2 = 1,6 и радиусами поверхностей R2 = 24 см? Положения обеих линз относительно пучка света одинаковые. Все углы падения и преломления можно считать малыми и использовать для них приближённую формулу sin α ≈ α.
30. На даче у школьника на горизонтальном полу террасы стояла пластмассовая кубическая ёмкость для воды, иногда протекающей с крыши. Когда ёмкость заполнилась наполовину, дедушка попросил внука вылить воду из неё, наклонив вокруг одного из нижних рёбер куба, чтобы вода переливалась через соседнее верхнее ребро. Какую работу А совершил внук к моменту начала вытекания воды из ёмкости, если процесс подъёма был очень медленным, так что поверхность воды всё время оставалась горизонтальной? Объём воды вначале был равен V = 108 л, квадратные стенки ёмкости и её днище тонкие, однородные, массой m = 4 кг каждая (сверху ёмкость открыта). Сделайте рисунки с указанием положения центров масс воды, днища и стенок ёмкости до начала наклона ёмкости и в момент, когда вода начинает выливаться. Обоснуйте применимость используемых законов к решению задачи.
Вариант ФИ2210402 с ответами
1. Два маленьких тела, находившиеся в состоянии покоя, одновременно начинают двигаться из одной точки по плоскости YOX с разными по модулю постоянными ускорениями. На рисунке изображены векторы 1 a и 2 a ускорений этих тел (масштабы координатной сетки вдоль горизонтальной и вертикальной осей одинаковы). Чему равно отношение путей S1/S2, пройденных этими телами за первые 3 секунды их движения?
2. Ускорение свободного падения на поверхности Земли в 2,65 раза больше, чем на поверхности Марса. Вторая космическая скорость для Земли в 2,24 раза больше, чем для Марса. Во сколько раз радиус Земли больше радиуса Марса? Ответ округлите до целого числа.
3. На горизонтальном столе лежит лист бумаги, на котором нарисован равнобедренный треугольник ABC с основанием BC. Длина боковой стороны этого треугольника 18 см, угол при основании 30°. В его вершинах расположены одинаковые маленькие тяжёлые бусинки. На каком расстоянии от вершины A расположен центр тяжести системы, состоящей из этих трёх бусинок?
4. Небольшая шайба массой 100 г соскальзывает с наклонной плоскости с углом при основании 45°. Сопротивление воздуха пренебрежимо мало. В таблице приведены значения модуля скорости V шайбы в различные моменты времени t. Выберите все верные утверждения о результатах этого опыта на основании данных, содержащихся в таблице.
- 1) Между шайбой и плоскостью есть сухое трение.
- 2) Модуль ускорения шайбы приблизительно равен 7 м/с2 .
- 3) За первую секунду движения шайба прошла путь менее 2 м.
- 4) В момент времени t = 0,6 с модуль импульса шайбы примерно равен 0,36 кг⋅м/с.
- 5) Если в момент времени t = 1,2 с шайба столкнётся с абсолютно неупругим препятствием, то выделится количество теплоты ≈ 2,6 Дж.
5. На двух узких опорах покоится тяжёлая горизонтальная однородная доска. На доске посередине между опорами лежит гиря. Гирю перекладывают так, что она оказывается лежащей на доске ближе к правой опоре. Как после перекладывания гири изменяются модуль силы реакции левой опоры и момент силы тяжести гири относительно правой опоры? Для каждой величины определите соответствующий характер изменения:
- 1) увеличивается
- 2) уменьшается
- 3) не изменяется
6. На горизонтальном столе установлена в вертикальном положении лёгкая пружина жёсткостью k. Её нижний конец прикреплён к столу, а к верхнему концу прикреплена горизонтальная платформа массой M. На высоте H над платформой удерживают маленький пластилиновый шарик массой m. Шарик отпускают без начальной скорости, после чего он свободно падает и прилипает к покоившейся платформе. В результате этого платформа с шариком начинают совершать колебания, в ходе которых ось пружины остаётся вертикальной, а платформа не касается стола. Установите соответствие между физическими величинами и формулами, выражающими их в рассматриваемой задаче (g – ускорение свободного падения). К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.
7. В сосуде объёмом 8,31 л находится 0,35 моля идеального газа при давлении 100 кПа. Газ сначала изотермически расширяют в 2 раза, а затем изобарически нагревают на 24 К. Чему равен объём газа в конечном состоянии?
8. На рисунке приведена зависимость температуры t однородного твёрдого тела массой 5 кг от времени τ в процессе нагревания. Чему равна удельная теплоёмкость вещества этого тела? Подводимую к телу тепловую мощность можно считать постоянной и равной 520 Вт.
9. На Т–V-диаграмме показан процесс изменения состояния идеального одноатомного газа. Газ получил в этом процессе количество теплоты 120 кДж. Масса газа не менялась. Определите работу, совершённую газом в этом процессе, если V1 = 8 л, V2 = 20 л, Т0 = 300 К.
10. С постоянной массой идеального одноатомного газа происходит циклический процесс 1−2−3−4−1, p–V-диаграмма которого представлена на рисунке. Максимальная температура газа в этом процессе составляет 600 К. На основании анализа этого циклического процесса выберите все верные утверждения.
- 1) Работа, совершённая газом при его изобарическом расширении, равна 400 Дж.
- 2) Количество вещества газа, участвующего в циклическом процессе, больше 0,45 моля.
- 3) Суммарное количество теплоты, которым газ обменялся с окружающими телами в процессе 1–2–3–4–1, равно 200 Дж.
- 4) Изменение внутренней энергии газа в процессе 4–1 равно 600 Дж.
- 5) Температура газа в состоянии 4 равна 225 К.
11. В закрытом сосуде под подвижным поршнем находятся влажный воздух и немного воды. Перемещая поршень, объём сосуда медленно уменьшают при постоянной температуре. Как изменяются в этом процессе относительная влажность воздуха и плотность пара? Для каждой величины определите соответствующий характер изменения:
- 1) увеличивается
- 2) уменьшается
- 3) не изменяется
12. Участок электрической цепи состоит из трёх резисторов, соединённых так, как показано на рисунке. Сила тока I = 6 А. Сопротивления резисторов равны R1 = 10 Ом и R2 = 30 Ом. Каким должно быть сопротивление резистора R, чтобы сила тока, текущего через него, была равна 2 А?
13. На рисунке показан график зависимости магнитного потока Φ, пронизывающего проводящий контур, от времени t. Сопротивление контура равно 3 Ом. Чему равна сила тока, текущего в контуре в промежутке времени от 10 до 20 с?
14. Сила тока i в идеальном колебательном контуре меняется со временем t по закону 0,02cos(5 10 ) 6 i = ⋅ t , где все величины выражены в единицах СИ. Чему равен максимальный заряд одной из пластин конденсатора, включённого в этот колебательный контур?
15. Две маленькие закреплённые бусинки, расположенные в точках А и В, несут на себе заряды +q > 0 и –4q соответственно (см. рисунок). Точка С расположена посередине отрезка АВ. Выберите все верные утверждения, соответствующие приведённым данным.
- 1) Сила Кулона, действующая на бусинку в точке А равна по модулю силе Кулона, действующей на бусинку в точке В.
- 2) Если бусинки соединить проводником, то они станут отталкиваться друг от друга.
- 3) Напряжённость результирующего электростатического поля в точке С направлена влево.
- 4) Если бусинки соединить стеклянной палочкой, то их заряды станут одинаковыми.
- 5) Если бусинку с зарядом –4q заменить на бусинку с зарядом +3q, то модуль напряжённости результирующего электростатического поля в точке С уменьшится в 2,5 раза.
16. В первом опыте лазерный луч красного цвета падает перпендикулярно на дифракционную решётку, содержащую 100 штрихов на 1 мм. При этом на удалённом экране наблюдают дифракционную картину. Во втором опыте проводят эксперимент с тем же лазером, заменив решётку на другую, содержащую 50 штрихов на 1 мм, и оставив угол падения лазерного луча на решётку тем же. Как изменяются во втором опыте по сравнению с первым расстояние между дифракционными максимумами второго порядка на экране и угол, под которым наблюдается первый дифракционный максимум? Для каждой величины определите соответствующий характер изменения:
- 1) увеличивается
- 2) уменьшается
- 3) не изменяется
17. В однородном вертикальном магнитном поле находится наклонная плоскость с углом α при основании. На этой плоскости закреплён П-образный проводник, по которому скользит вниз с постоянной скоростью V проводящая перемычка длиной L. Взаимное расположение наклонной плоскости, проводника и перемычки показано на рисунке. Сопротивление перемычки равно R, сопротивление П-образного проводника мало. Модуль индукции магнитного поля равен В. Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать.
18. Какая доля радиоактивных ядер (в процентах от первоначального числа ядер) остаётся нераспавшейся через интервал времени, равный трём периодам полураспада?
19. В опыте по изучению фотоэффекта металлическая пластина облучалась светом с частотой ν. Работа выхода электронов из металла равна Авых. Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать (h – постоянная Планка, с – скорость света в вакууме, me – масса электрона). К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.
20. Выберите все верные утверждения о физических явлениях, величинах и закономерностях. Запишите цифры, под которыми они указаны.
- 1) При равномерном движении по окружности перемещение тела за один период обращения равно нулю.
- 2) При увеличении средней кинетической энергии теплового движения молекул гелия его давление в закрытом сосуде неизменного объёма уменьшается.
- 3) При движении заряда по окружности в однородном магнитном поле сила Лоренца, действующая на этот заряд, не совершает работу.
- 4) При переходе электромагнитной волны из воздуха в воду период колебаний вектора индукции магнитного поля в волне не изменяется.
- 5) При испускании нейтрона электрический заряд ядра увеличивается.
21. Даны следующие зависимости величин:
- А) зависимость кинетической энергии материальной точки от модуля её импульса при неизменной массе;
- Б) зависимость количества теплоты, выделяющегося при кристаллизации воды, от её массы;
- В) зависимость энергии конденсатора постоянной ёмкости от его заряда.
Установите соответствие между этими зависимостями и графиками, обозначенными цифрами 1–5. Для каждой зависимости А–В подберите соответствующий вид графика и запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.
22. Для определения массы порции керосина ученик измерил её объём с использованием мерного цилиндра и получил результат: V = (30,0 ± 0,5) см3 . Чему равна масса данной порции керосина с учётом погрешности измерений?
23. Ученик изучает свойства силы трения скольжения. В его распоряжении имеются установки, состоящие из горизонтальной опоры и сплошного бруска. Площадь соприкосновения бруска с опорой при проведении всех опытов одинакова. Параметры установок приведены в таблице. Какие из установок нужно использовать для того, чтобы на опыте обнаружить зависимость коэффициента трения от материала опоры?
24. В боковой стенке покоящейся на столе бутылки проделано маленькое отверстие, в которое вставлена затычка. В бутылку налита вода, а горлышко бутылки закрыто резиновой пробкой, через которую пропущена вертикальная тонкая трубка. Нижний конец трубки находится ниже поверхности воды на уровне отверстия в стенке бутылки, а верхний конец сообщается с атмосферой (см. рис.). Затычку из отверстия в боковой стенке вынимают и начинают медленно поднимать трубку вверх. При этом вода вытекает из бутылки через отверстие, а через трубку в бутылку входят пузырьки воздуха. Опишите, как будет изменяться скорость вытекания воды из отверстия по мере поднимания трубки. Считайте, что уровень воды всегда находится выше нижнего конца трубки и выше отверстия в стенке. Ответ обоснуйте, указав, какие физические закономерности Вы использовали для объяснения.
25. В механической системе, изображённой на рисунке, все блоки, пружины и нити невесомые, нити нерастяжимые, трения в осях блоков нет, все участки нитей, не лежащие на блоках, вертикальны. Известно, что после подвешивания груза M к оси самого правого блока левая пружина, имеющая коэффициент жёсткости k1 = 500 Н/м, в состоянии равновесия растянулась на величину Δx1 = 10 см. На какую величину Δx2 удлинилась при этом правая пружина, если её коэффициент жёсткости равен k2 = 1000 Н/м?
26. В центре металлической сферической оболочки толщиной 0,2 см поместили точечный заряд q = 1 мкКл, а на её внешнюю поверхность радиусом R = 10 см – заряд Q = – 3 мкКл. Найдите для равновесного состояния модуль E напряжённости электрического поля на расстоянии r = 2 м от центра оболочки и укажите, куда направлен вектор E – к центру оболочки или от неё.
27. В большом помещении с размерами 5 × 10 м2 (пол) и 3,5 м (высота потолка) температура T1 во время зимних холодов понизилась, парциальное давление водяного пара в воздухе опустилось до значения pп1 = 600 Па, а относительная влажность воздуха равнялась при этом φ1 = 50 %. После обогрева помещения температура в нём поднялась до значения T2 = 24 °С, а относительная влажность снизилась до φ2 = 30 %. Используя приведённый на рисунке график, найдите, как и во сколько раз в результате обогрева изменилась масса m паров воды в данном помещении.
28. Иногда для измерения индукции магнитного поля используют следующий способ: маленькую плоскую круглую катушку с большим числом витков быстро вводят в область измеряемого поля так, что её плоскость перпендикулярна линиям индукции. Катушка присоединена к входным клеммам баллистического гальванометра, который может измерять электрический заряд Δq, протекший по образовавшейся замкнутой цепи за время ввода измерительной катушки в исследуемое магнитное поле. Этот заряд связан с изменением магнитного потока Ф через катушку, поэтому данный гальванометр часто используют в качестве «флюксметра». Зная поток магнитной индукции и параметры катушки, можно найти величину В проекции индукции на ось катушки. Пусть входное сопротивление гальванометра rф = 0,2 кОм, сопротивление измерительной катушки rк = 600 Ом, диаметр её витков d = 0,95 см, число витков в ней N = 300. Чему равен измеренный модуль индукции магнитного поля, если протекший через цепь суммарный заряд qΣ = 12 мкКл.
29. Вдоль оптической оси тонкой выпуклой собирающей линзы распространяется в воздухе параллельный приосевой пучок света, собирающийся в точку справа от неё на расстоянии F1. Линза изготовлена из стекла с показателем преломления n1 = 1,5 и ограничена справа и слева сферическими поверхностями радиусами R1 = 20 см. На какое расстояние сместится точка схождения лучей этого пучка, если заменить линзу на другую, с показателем преломления стекла n2 = 1,7 и радиусами поверхностей R2 = 16 см? Положения обеих линз относительно пучка света одинаковые. Все углы падения и преломления можно считать малыми и использовать для них приближённую формулу sinα ≈ α.
30. На даче у школьника на горизонтальном полу террасы стояла пластмассовая кубическая ёмкость для воды, иногда протекающей с крыши. Когда ёмкость заполнилась наполовину, дедушка попросил своего сильного внука вылить воду из неё, наклонив вокруг одного из нижних рёбер куба, чтобы вода переливалась через соседнее верхнее ребро. Оцените, на какую величину ∆E внук увеличит механическую энергию ёмкости с водой к моменту начала вытекания воды из ёмкости, если процесс подъёма был очень медленным, так что поверхность воды всё время оставалась горизонтальной? Объём воды вначале был равен V = 63 л, квадратные стенки ёмкости и её днище тонкие, однородные, массой m = 3 кг каждая (сверху ёмкость открыта). Сделайте рисунки с указанием положения центров масс воды, днища и стенок ёмкости до начала наклона ёмкости и в момент, когда вода начинает выливаться. Обоснуйте применимость используемых законов к решению задачи.
Попробуйте решить другие варианты
Статград ФИ2210301-ФИ2210304 физика 11 класс ЕГЭ 2023 варианты и ответы
ПОДЕЛИТЬСЯ МАТЕРИАЛОМ
Подборка тренировочных вариантов ЕГЭ 2023 по физике для 11 класса с ответами из различных источников.
Соответствуют демоверсии ЕГЭ 2023 по физике
→ варианты прошлого года
Тренировочные варианты ЕГЭ 2023 по физике
ЕГЭ 100 баллов (с ответами) | ||
Вариант 1 | скачать | |
Вариант 2 | скачать | |
Вариант 3 | скачать | |
Вариант 4 | скачать | |
Вариант 5 | скачать | |
Вариант 6 | скачать | |
vk.com/shkolkovo_fiz | ||
Вариант 1 | ответы | |
Вариант 2 | разбор | |
Вариант 3 | ответы | |
easy-physic.ru | ||
Вариант 110 | ответы | разбор |
Вариант 111 | ответы | разбор |
Вариант 112 | ответы | разбор |
Вариант 113 | ответы | разбор |
Вариант 114 | ответы | разбор |
Вариант 115 | ответы | разбор |
Вариант 116 | ответы | разбор |
Примеры заданий:
1. Цилиндрический сосуд разделён лёгким подвижным теплоизолирующим поршнем на две части. В одной части сосуда находится аргон, в другой – неон. Концентрация молекул газов одинакова. Определите отношение средней кинетической энергии теплового движения молекул аргона к средней кинетической энергии теплового движения молекул неона, когда поршень находится в равновесии.
2. Газ получил количество теплоты, равное 300 Дж, при этом внутренняя энергия газа уменьшилась на 100 Дж. Масса газа не менялась. Какую работу совершил газ в этом процессе?
3. Выберите все верные утверждения о физических явлениях, величинах и закономерностях. Запишите цифры, под которыми они указаны.
1) При увеличении длины нити математического маятника период его колебаний уменьшается.
2) Явление диффузии протекает в твёрдых телах значительно медленнее, чем в жидкостях.
3) Сила Лоренца отклоняет положительно и отрицательно заряженные частицы, влетающие под углом к линиям индукции однородного магнитного поля, в противоположные стороны.
4) Дифракция рентгеновских лучей невозможна.
5) В процессе фотоэффекта с поверхности вещества под действием падающего света вылетают электроны.
4. В запаянной с одного конца трубке находится влажный воздух, отделённый от атмосферы столбиком ртути длиной l = 76 мм. Когда трубка лежит горизонтально, относительная влажность воздуха ϕ1 в ней равна 80%. Какой станет относительная влажность этого воздуха ϕ2 , если трубку поставить вертикально, открытым концом вниз? Атмосферное давление равно 760 мм рт. ст. Температуру считать постоянно
5. Предмет расположен на главной оптической оси тонкой собирающей линзы. Оптическая сила линзы D = 5 дптр. Изображение предмета действительное, увеличение (отношение высоты изображения предмета к высоте самого предмета) k = 2. Найдите расстояние между предметом и его изображением.
Связанные страницы:
Задание 18045
Внимательно прочитайте текст задания и выберите верный ответ из списка
Решение
→
Задание 18103
Внимательно прочитайте текст задания и выберите верный ответ из списка
Решение
→
Задание 18111
Внимательно прочитайте текст задания и выберите верный ответ из списка
Решение
→
Задание 18142
Внимательно прочитайте текст задания и выберите верный ответ из списка
Решение
→
Задание 18243
Внимательно прочитайте текст задания и выберите верный ответ из списка
Решение
→
Задание 18615
Установление соответствия
Решение
→
Задание 18684
Установление соответствия
Решение
→
Задание 18789
Установление соответствия
Решение
→
Задание 18478
Внимательно прочитайте текст задания и выберите верный ответ из списка
Решение
→
Задание 18533
Введите ответ в поле ввода
Решение
→
Задание 18190
Установление соответствия
Решение
→
Задание 18785
Установление соответствия
Решение
→
Задание 17495
Внимательно прочитайте текст задания и выберите верный ответ из списка
Решение
→
Задание 18143
Внимательно прочитайте текст задания и выберите верный ответ из списка
Решение
→
Задание 18207
Внимательно прочитайте текст задания и выберите верный ответ из списка
Решение
→
Задание 18176
Внимательно прочитайте текст задания и выберите верный ответ из списка
Решение
→
Задание 18473
Внимательно прочитайте текст задания и выберите верный ответ из списка
Решение
→
ГлавнаяШпаргалкиРазбор заданий ЕГЭ-2022 по физике с Дальнего Востока
06 июня, 2022
5 мин
Решение задач ✏️
Физ 🔬
7756
0
Разобрали задания, которые встретились на ЕГЭ-2022 по физике на Дальнем Востоке.
Для удобства оформили все решения в pdf-файлы. Скачать их можно ниже.
первая часть ЕГЭ-2022 ДВ
вторая часть ЕГЭ-2022 ДВ
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter. Мы обязательно поправим!
Редакция Без Сменки
45
подписчиков
+ Подписаться