Физика кинематика все формулы для егэ

КИНЕМАТИКА.
Теория и формулы (кратко и сжато)

Кинематика – раздел физики, изучающий способы математического описания движения без выяснения его причин.

Кинематика 1


Механическое движение – изменение положения тела относительно других тел с течением времени. Способы описания: словесный, табличный, графический, формулами.

Материальная точка – тело, собственными размерами которого в данных условиях можно пренебречь.


Кинематика 2


Траектория – линия, которую описывает материальная точка при своём движении в пространстве. По виду траектории все движения делятся на прямолинейные и криволинейные.

Система отсчёта – часы и система координат, связанные с условно выбираемым телом отсчёта (наблюдателем).


Кинематика 3


Относительность движения – различие скорости, направления и траектории движения в различных системах отсчёта.

Перемещение – вектор, проведённый из начального положения материальной точки в её конечное положение.


Кинематика 4


Типы движений

1. Равномерное движение

1.1. Равномерное прямолинейное движение

Равномерное движение – движение тела, при котором за равные интервалы времени оно преодолевает равные части пути.

Скорость равномерного движения равна отношению пройденного пути к интервалу времени, за который этот путь пройден.

Скорость равномерного прямолинейного движения равна отношению перемещения к интервалу времени его совершения.

Уравнение равно-прямолинейного движения x = xo + υoxt показывает, что координата линейно зависит от времени.

Мгновенная скорость равна отношению перемещения к бесконечно малому интервалу времени, за который оно произошло.

1.2 Равномерное движение по окружности (равномерное вращение)

Равномерное движение по окружности — это движение, при котором материальная точка за равные промежутки времени проходит равные по длине дуги окружности.

Равномерное движение тела по окружности — это частный и наиболее простой случай криволинейного движения. Хотя при таком движении модуль скорости остается постоянным, это движение с ускорением, которое является следствием изменения направления вектора скорости.

Кинематика 5


2. Движение с постоянным ускорением

Равноускоренное движение – движение, при котором мгновенная скорость за любые равные интервалы времени меняется одинаково.

Мгновенное ускорение равно отношению изменения мгновенной скорости тела к бесконечно малому интервалу времени, за который это изменение произошло.

Ускорение равноускоренного движения равно отношению изменения мгновенной скорости тела к интервалу времени, за который это изменение произошло.

Уравнение равноускоренного движения y = yo + υoyt + ½ay показывает, что координата квадратично зависит от времени. Уравнение υy = υoy + aytпоказывает, что скорость линейно зависит от времени.

Центростремительное ускорение – ускорение, всегда направленное к центру окружности при равномерном движении по ней материальной точки. Модуль центростремительного ускорения равен отношению квадрата модуля скорости равномерного движения по окружности к её радиусу.

Кинематика 6


3. Гармоническое движение

Кинематика 7



Виды движений

Прямолинейное движение

Прямолинейное движение

Криволинейное движение

Криволинейное движение

Частные случаи равноускоренного движения под действием силы тяжести

Частные случаи равноускоренного движения под действием силы тяжести

Частные случаи решения задач

Частные случаи решения задач


Дополнительные материалы по кинематике

Кинематика. Таблица кратко.

кинематика-1

кинематика-2



Это конспект по физике «Кинематика. Теория и формулы для ЕГЭ» + шпаргалка.

Еще конспекты для 10-11 классов:

1.1.1 Механическое движение — изменение положения тела в пространстве относительно других тел с течением времени.

Относительность механического движения — зависимость механического движения тела от системы отсчёта, относительно которой рассматривается движение.

Система отсчета — это совокупность неподвижных относительно друг друга тел (тело отсчёта), по отношению к которым рассматривается движение.

1.1.2 Материальная точка — тело, размерами которого можно пренебречь при проведении расчетов в данных условиях.

Радиус-вектор — вектор идущий из начала координат в рассматриваемую точку:

Траектория (м) — линия в пространстве по которой двигалась материальная точка (совокупность точек пространства в которых находилась материальная точка в заданный промежуток времени).

Перемещение (м) — вектор проведенный из точки начала движения в конец:

 1.1.3 Скорость материальной точки (м/c) — векторная физическая величина, характеризующая быстроту перемещения и направление движения материальной точки относительно выбранной системы отсчёта:

Сложение скоростей:

1.1.4  Ускорение материальной точки (м/c2) — векторная физическая величина, характеризующая быстроту изменения скорости материальной точки:

аналогично

1.1.5 Равномерное прямолинейное движение — это движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения:

1.1.6 Равноускоренное прямолинейное движение -это движение, при котором тело движется вдоль прямой линии, а его скорость за любые равные промежутки времени меняется на одно и ту же величину:

1.1.7  Свободное падение — равнопеременное движение под действием силы тяжести, когда другие силы, действующие на тело, отсутствуют, скомпенсированы, либо пренебрежимо малы.

Ускорение свободного падения — ускорение, придаваемое телу силой тяжести, при исключении из рассмотрения других сил (g = 9,80665 м/с²).

Движение тела, брошенного под углом α к  горизонту:

1.1.8  Движение точки по окружности.

Угловая скорость (рад/c) — физическая величина, равная отношению угла поворота к интервалу времени, в течение которого этот поворот произошел и линейная скорость точки (м/c) — скорость точки, направленная по касательной к окружности:

Центростремительное ускорение (м/с²) — ускорение движущегося по окружности тела, направленное к центру:

Кинематика

Механика — это раздел физики, изучающий механическое движение тел.

Кинематика — это раздел механики, в котором изучается механическое движение тел без учета причин, вызывающих это движение.

Материальная точка — тело, обладающее массой, размерами которого в данной задаче можно пренебречь, если

  • расстояние, которое проходит тело, много больше его размера;
  • расстояние от данного тела до другого тела много больше его размера;
  • тело движется поступательно.

Система отсчета — это тело отсчета, связанная с ним система координат и прибор для измерения времени.
Траектория — это линия, которую описывает тело при своем движении.
Путь — это скалярная величина, равная длине траектории.
Перемещение — это вектор, соединяющий начальное положение тела с его конечным положением за данный промежуток времени.

Важно! 
В процессе движения путь может только увеличиваться, а перемещение как увеличиваться, так и уменьшаться, например, когда тело поворачивает обратно.
При прямолинейном движении в одном направлении путь равен модулю перемещения, а при криволинейном — путь больше перемещения.
Перемещение на замкнутой траектории равно нулю.

Основная задача механики — определить положение тела в пространстве в любой момент времени.

Содержание

  • Механическое движение и его виды
  • Относительность механического движения
    • Правило сложения перемещений
    • Правило сложения скоростей
    • Относительная скорость
  • Скорость
  • Ускорение
  • Равномерное движение
    • График скорости (проекции скорости)
    • График перемещения (проекции перемещения)
  • Прямолинейное равноускоренное движение
  • Свободное падение (ускорение свободного падения)
    • Движение тела по вертикали
    • Движение тела, брошенного горизонтально
    • Движение тела, брошенного под углом к горизонту (баллистическое движение)
  • Движение по окружности с постоянной по модулю скоростью
  • Основные формулы по теме «Кинематика»

Механическое движение и его виды

Механическое движение — это изменение положения тела в пространстве относительно других тел с течением времени.

Механическое движение может быть:
1. по характеру движения

  • поступательным — это движение, при котором все точки тела движутся одинаково и любая прямая, мысленно проведенная в теле, остается параллельна сама себе;
  • вращательным — это движение, при котором все точки твердого тела движутся по окружностям, расположенным в параллельных плоскостях;
  • колебательным — это движение, которое повторяется в двух взаимно противоположных направлениях;

2. по виду траектории

  • прямолинейным — это движение, траектория которого прямая линия;
  • криволинейным — это движение, траектория которого кривая линия;

3. по скорости

  • равномерным — движение, при котором скорость тела с течением времени не изменяется;
  • неравномерным — это движение, при котором скорость тела с течением времени изменяется;

4. по ускорению

  • равноускоренным — это движение, при котором скорость тела увеличивается с течением времени на одну и ту же величину;
  • равнозамедленным — это движение, при котором скорость тела уменьшается с течением времени на одну и ту же величину.

Относительность механического движения

Относительность движения — это зависимость характеристик механического движения от выбора системы отсчета.

Правило сложения перемещений

Перемещение тела относительно неподвижной системы отсчета равно векторной сумме перемещения тела относительно подвижной системы отсчета и перемещения подвижной системы отсчета относительно неподвижной системы отсчета:

где ​( S )​ — перемещение тела относительно неподвижной системы отсчета;
( S_1 )​ — перемещение тела относительно подвижной системы отсчета;
( S_2 )​ — перемещение подвижной системы отсчета относительно неподвижной системы отсчета.

Правило сложения скоростей

Скорость тела относительно неподвижной системы отсчета равна векторной сумме скорости тела относительно подвижной системы отсчета и скорости подвижной системы отсчета относительно неподвижной системы отсчета:

где ​( v )​ — скорость тела относительно неподвижной системы отсчета;
( v_1 )​ — скорость тела относительно подвижной системы отсчета;
( v_2 )​ — скорость подвижной системы отсчета относительно неподвижной системы отсчета.

Относительная скорость

Важно! Чтобы определить скорость одного тела относительно другого, надо мысленно остановить то тело, которое мы принимаем за тело отсчета, а к скорости оставшегося тела прибавить скорость остановленного, изменив направление его скорости на противоположное.

Пусть ( v_1 ) — скорость первого тела, а ( v_2 ) — скорость второго тела.
Определим скорость первого тела относительно второго ( v_{12} ):

Определим скорость второго тела относительно первого ( v_{21} ):

Следует помнить, что траектория движения тела и пройденный путь тоже относительны.

Если скорости направлены перпендикулярно друг к другу, то относительная скорость рассчитывается по теореме Пифагора:

Если скорости направлены под углом ​( alpha )​ друг к другу, то относительная скорость рассчитывается по теореме косинусов:

Скорость

Скорость — это векторная величина, характеризующая изменение перемещения данного тела относительно тела отсчета с течением времени.

Обозначение — ​( v )​, единицы измерения — ​м/с (км/ч)​.

Средняя скорость — это векторная величина, равная отношению всего перемещения к промежутку времени, за которое это перемещение произошло:

Средняя путевая скорость — это скалярная величина, равная отношению всего пути, пройденного телом, к промежутку времени, за которое этот путь пройден:

Важно! Чтобы определить среднюю скорость на всем участке пути, надо время разделить на отдельные промежутки и все время представить в виде суммы этих промежутков.
Чтобы определить среднюю скорость за все время движения, надо путь разделить на отдельные участки и весь путь представить как сумму этих участков.

Мгновенная скорость — это скорость тела в данный момент времени или в данной точке траектории.
Мгновенная скорость направлена по касательной к траектории движения.

Ускорение

Ускорение – это векторная физическая величина, характеризующая быстроту изменения скорости.

Обозначение — ​( a )​, единица измерения — м/с2.
В векторном виде:

где ​( v )​ – конечная скорость; ​( v_0 )​ – начальная скорость;
( t )​ – промежуток времени, за который произошло изменение скорости.

В проекциях на ось ОХ:

где ​( a_n )​ – нормальное ускорение, ​( a_{tau} )​ – тангенциальное ускорение.

Тангенциальное ускорение сонаправлено с вектором линейной скорости, а значит, направлено вдоль касательной к кривой:

Нормальное ускорение перпендикулярно направлению вектора линейной скорости, а значит, и касательной к кривой:

Ускорение характеризует быстроту изменения скорости, а скорость – векторная величина, которая имеет модуль (числовое значение) и направление.

Важно!
Тангенциальное ускорение характеризует быстроту изменения модуля скорости. Нормальное ускорение характеризует быстроту изменения направления скорости.
Если ( a_{tau} ) ≠ 0, ( a_n ) = 0, то тело движется по прямой;
если ( a_{tau} ) = 0, ( a_n ) = 0, ​( v )​ ≠ 0, то тело движется равномерно по прямой;
если ( a_{tau} ) = 0, ( a_n ) ≠ 0, тело движется равномерно по кривой;
если ( a_{tau} ) = 0, ( a_n ) = const, то тело движется равномерно по окружности;
если ( a_{tau} ) ≠ 0, ( a_n ) ≠ 0, то тело движется неравномерно по окружности.

Равномерное движение

Равномерное движение – это движение, при котором тело за любые равные промежутки времени совершает равные перемещения.

Скорость при равномерном движении – величина, равная отношению перемещения к промежутку времени, за которое это перемещение произошло:

Проекция вектора скорости на ось ОХ:

Проекция вектора скорости на координатную ось равна быстроте изменения данной координаты:

График скорости (проекции скорости)

График скорости (проекции скорости) представляет собой зависимость скорости от времени:

График скорости при равномерном движении – прямая, параллельная оси времени.
График 1 лежит над осью ​( t )​, тело движется по направлению оси ОХ.
Графики 2 и 3 лежат под осью ​( t )​, тело движется против оси ОХ.

Перемещение при равномерном движении – это величина, равная произведению скорости на время:

Проекция вектора перемещения на ось ОХ:

График перемещения (проекции перемещения)

График перемещения (проекции перемещения) представляет собой зависимость перемещения от времени:

График перемещения при равномерном движении – прямая, выходящая из начала координат.
График 1 лежит над осью ( t ), тело движется по направлению оси ОХ.
Графики 2 и 3 лежат под осью ( t ), тело движется против оси ОХ.

По графику зависимости скорости от времени можно определить перемещение, пройденное телом за время ( t ). Для этого необходимо определить площадь фигуры под графиком (заштрихованной фигуры).

Координата тела при равномерном движении рассчитывается по формуле:

График координаты представляет собой зависимость координаты от времени: ​( x=x(t) )​.

График координаты при равномерном движении – прямая.
График 1 направлен вверх, тело движется по направлению оси ОХ:

График 2 параллелен оси ОХ, тело покоится.
График 3 направлен вниз, тело движется против оси ОХ:

Прямолинейное равноускоренное движение

Прямолинейное равноускоренное движение – это движение по прямой, при котором тело движется с постоянным ускорением:

При движении с ускорением скорость может как увеличиваться, так и уменьшаться.

Скорость тела при равноускоренном движении рассчитывается по формуле:

При разгоне (в проекциях на ось ОХ):

При торможении (в проекциях на ось ОХ):

График ускорения (проекции ускорения) при равноускоренном движении представляет собой зависимость ускорения от времени:

График ускорения при равноускоренном движении – прямая, параллельная оси времени.
График 1 лежит над осью t, тело разгоняется, ​( a_x )​ > 0.
График 2 лежит под осью t, тело тормозит, ( a_x ) < 0.

График скорости (проекции скорости) представляет собой зависимость скорости от времени:

График скорости при равноускоренном движении – прямая.
График 1 направлен вверх, тело движется равноускоренно в положительном направлении оси ОХ, ​( v_{0x} )​ > 0, ​( a_x )​ > 0.

График 2 направлен вниз, тело движется равнозамедленно в положительном направлении оси ОХ, ( v_{0x} ) > 0, ( a_x ) < 0,

График 3 направлен вниз, тело движется равноускоренно против оси ОХ, ( v_{0x} ) < 0, ( a_x ) < 0. По графику зависимости скорости от времени можно определить перемещение, пройденное телом за промежуток времени ​( t_2-t_1 )​. Для этого необходимо определить площадь фигуры под графиком (заштрихованной фигуры).

Перемещение при равноускоренном движении рассчитывается по формулам:

Перемещение в ​( n )​-ую секунду при равноускоренном движении рассчитывается по формуле:

Координата тела при равноускоренном движении рассчитывается по формуле:

Свободное падение (ускорение свободного падения)

Свободное падение – это движение тела в безвоздушном пространстве под действием только силы тяжести.

Все тела при свободном падении независимо от массы падают с одинаковым ускорением, называемым ускорением свободного падения.
Ускорение свободного падения всегда направлено к центру Земли (вертикально вниз).

Обозначение – ​( g )​, единицы измерения – м/с2.

Важно! ( g ) = 9,8 м/с2, но при решении задач считается, что ( g ) = 10 м/с2.

Движение тела по вертикали

Тело падает вниз, вектор скорости направлен в одну сторону с вектором ускорения свободного падения:

Если тело падает вниз без начальной скорости, то ​( v_0 )​ = 0.
Время падения рассчитывается по формуле:

Тело брошено вверх:

Если брошенное вверх тело достигло максимальной высоты, то ​( v )​ = 0.
Время подъема рассчитывается по формуле:

Движение тела, брошенного горизонтально

Движение тела, брошенного горизонтально, можно представить как суперпозицию двух движений:

  1. равномерного движения по горизонтали со скоростью ​( v_0=v_{0x} )​;
  2. равноускоренного движения по вертикали с ускорением свободного падения ​( g )​ и без начальной скорости ​( v_{0y}=0 )​.

Уравнение скорости:

Уравнение координаты:

Скорость тела в любой момент времени:

Дальность полета:

Угол между вектором скорости и осью ОХ:

Движение тела, брошенного под углом к горизонту (баллистическое движение)

Движение тела, брошенного под углом к горизонту, можно представить как суперпозицию двух движений:

  1. равномерного движения по горизонтали;
  2. равноускоренного движения по вертикали с ускорением свободного падения.

Уравнение скорости:

Уравнение координаты:

Скорость тела в любой момент времени:

Угол между вектором скорости и осью ОХ:

Время подъема на максимальную высоту:

Максимальная высота подъема:

Время полета:

Максимальная дальность полета:

Важно!
При движении вверх вертикальная составляющая скорости будет уменьшаться, т. е. тело вдоль вертикальной оси движется равнозамедленно.
При движении вниз вертикальная составляющая скорости будет увеличиваться, т. е. тело вдоль вертикальной оси движется равноускоренно.
Скорость ​( v_0 )​, с которой тело брошено с Земли, будет равна скорости, с которой оно упадет на Землю. Угол ​( alpha )​, под которым тело брошено, будет равен углу, под которым оно упадет.

При решении задач на движение тела, брошенного под углом к горизонту, важно помнить, что в точке максимального подъема проекция скорости на ось ОУ равна нулю:

Это облегчает решение задач:

Движение по окружности с постоянной по модулю скоростью

Движение по окружности с постоянной по модулю скоростью – простейший вид криволинейного движения.

Траектория движения – окружность. Вектор скорости направлен по касательной к окружности.
Модуль скорости тела с течением времени не изменяется, а ее направление при движении по окружности в каждой точке изменяется, поэтому движение по окружности – это движение с ускорением.
Ускорение, которое изменяет направление скорости, называется центростремительным.
Центростремительное ускорение направлено по радиусу окружности к ее центру.

Центростремительное ускорение – это ускорение, характеризующее быстроту изменения направления вектора линейной скорости.
Обозначение – ​( a_{цс} )​, единицы измерения – ​м/с2​.

Движение тела по окружности с постоянной по модулю скоростью является периодическим движением, т. е. его координата повторяется через равные промежутки времени.
Период – это время, за которое тело совершает один полный оборот.
Обозначение – ​( T )​, единицы измерения – с.

где ​( N )​ – количество оборотов, ​( t )​ – время, за которое эти обороты совершены.
Частота вращения – это число оборотов за единицу времени.
Обозначение – ​( nu )​, единицы измерения – с–1 (Гц).

Период и частота – взаимно обратные величины:

Линейная скорость – это скорость, с которой тело движется по окружности.
Обозначение – ​( v )​, единицы измерения – м/с.
Линейная скорость направлена по касательной к окружности:

Угловая скорость – это физическая величина, равная отношению угла поворота к времени, за которое поворот произошел.
Обозначение – ​( omega )​, единицы измерения – рад/с .

Направление угловой скорости можно определить по правилу правого винта (буравчика).
Если вращательное движение винта совпадает с направлением движения тела по окружности, то поступательное движение винта совпадает с направлением угловой скорости.
Связь различных величин, характеризующих движение по окружности с постоянной по модулю скоростью:

Важно!
При равномерном движении тела по окружности точки, лежащие на радиусе, движутся с одинаковой угловой скоростью, т. к. радиус за одинаковое время поворачивается на одинаковый угол. А вот линейная скорость разных точек радиуса различна в зависимости от того, насколько близко или далеко от центра они располагаются:

Если рассматривать равномерное движение двух сцепленных тел, то в этом случае одинаковыми будут линейные скорости, а угловые скорости тел будут различны в зависимости от радиуса тела:

Когда колесо катится равномерно по дороге, двигаясь относительно нее с линейной скоростью ​( v_1 )​, и все точки обода колеса движутся относительно его центра с такой же линейной скоростью ( v_1 ), то относительно дороги мгновенная скорость разных точек колеса различна.

Мгновенная скорость нижней точки ​( (m) )​ равна нулю, мгновенная скорость в верхней точке ​( (n) )​ равна удвоенной скорости ​( v_1 )​, мгновенная скорость точки ​( (p) )​, лежащей на горизонтальном радиусе, рассчитывается по теореме Пифагора, а мгновенная скорость в любой другой точке ​( (c) )​ – по теореме косинусов.

Основные формулы по теме «Кинематика»

Кинематика

3 (59.53%) 127 votes

Оглавление:

  • Основные теоретические сведения
    • Система СИ
    • Путь и перемещение
    • Средняя скорость
    • Равноускоренное прямолинейное движение
    • Свободное падение по вертикали
    • Горизонтальный бросок
    • Бросок под углом к горизонту (с земли на землю)
    • Сложение скоростей
    • Равномерное движение по окружности

Основные теоретические сведения

Система СИ

К оглавлению…

Основные единицы измерения величин в системе СИ таковы:

  1. единица измерения длины — метр (1 м),
  2. времени — секунда (1 с),
  3. массы — килограмм (1 кг),
  4. количества вещества — моль (1 моль),
  5. температуры — кельвин (1 К),
  6. силы электрического тока — ампер (1 А),
  7. Справочно: силы света — кандела (1 кд, фактически не используется при решении школьных задач).

При выполнении расчетов в системе СИ углы измеряются в радианах.

Если в задаче по физике не указано, в каких единицах нужно дать ответ, его нужно дать в единицах системы СИ или в производных от них величинах, соответствующих той физической величине, о которой спрашивается в задаче. Например, если в задаче требуется найти скорость, и не сказано в чем ее нужно выразить, то ответ нужно дать в м/с.

Для удобства в задачах по физике часто приходится использовать дольные (уменьшающие) и кратные (увеличивающие) приставки. их можно применять к любой физической величине. Например, мм – миллиметр, кт – килотонна, нс – наносекунда, Мг – мегаграмм, ммоль – миллимоль, мкА – микроампер. Запомните, что в физике не существует двойных приставок. Например, мкг – это микрограмм, а не милликилограмм. Учтите, что при сложении и вычитании величин Вы можете оперировать только величинами одинаковой размерности. Например, килограммы можно складывать только с килограммами, из миллиметров можно вычитать только миллиметры, и так далее. При переводе величин пользуйтесь следующей таблицей.

Таблица дольных и кратных приставок в физике:

Таблица дольных и кратных приставок в физике

Путь и перемещение

К оглавлению…

Кинематикой называют раздел механики, в котором движение тел рассматривается без выяснения причин этого движения.

Механическим движением тела называют изменение его положения в пространстве относительно других тел с течением времени.

Всякое тело имеет определенные размеры. Однако, во многих задачах механики нет необходимости указывать положения отдельных частей тела. Если размеры тела малы по сравнению с расстояниями до других тел, то данное тело можно считать материальной точкой. Так при движении автомобиля на большие расстояния можно пренебречь его длиной, так как длина автомобиля мала по сравнению с расстояниями, которое он проходит.

Интуитивно понятно, что характеристики движения (скорость, траектория и т.д.) зависят от того, откуда мы на него смотрим. Поэтому для описания движения вводится понятие системы отсчета. Система отсчета (СО) – совокупность тела отсчета (оно считается абсолютно твердым), привязанной к нему системой координат, линейки (прибора, измеряющего расстояния), часов и синхронизатора времени.

Перемещаясь с течением времени из одной точки в другую, тело (материальная точка) описывает в данной СО некоторую линию, которую называют траекторией движения тела.

Перемещением тела называют направленный отрезок прямой, соединяющий начальное положение тела с его конечным положением. Перемещение есть векторная величина. Перемещение может в процессе движения увеличиваться, уменьшаться и становиться равным нулю.

Пройденный путь равен длине траектории, пройденной телом за некоторое время. Путь – скалярная величина. Путь не может уменьшаться. Путь только возрастает либо остается постоянным (если тело не движется). При движении тела по криволинейной траектории модуль (длина) вектора перемещения всегда меньше пройденного пути.

При равномерном (с постоянной скоростью) движении путь L может быть найден по формуле:

Формула Путь при равномерном движении

где: v – скорость тела, t – время в течении которого оно двигалось. При решении задач по кинематике перемещение обычно находится из геометрических соображений. Часто геометрические соображения для нахождения перемещения требуют знания теоремы Пифагора.

Средняя скорость

К оглавлению…

Скорость – векторная величина, характеризующая быстроту перемещения тела в пространстве. Скорость бывает средней и мгновенной. Мгновенная скорость описывает движение в данный конкретный момент времени в данной конкретной точке пространства, а средняя скорость характеризует все движение в целом, в общем, не описывая подробности движения на каждом конкретном участке.

Средняя скорость пути – это отношение всего пути ко всему времени движения:

Формула Средняя скорость пути

где: Lполн – весь путь, который прошло тело, tполн – все время движения.

Средняя скорость перемещения – это отношение всего перемещения ко всему времени движения:

Формула Средняя скорость перемещения

Эта величина направлена так же, как и полное перемещение тела (то есть из начальной точки движения в конечную точку). При этом не забывайте, что полное перемещение не всегда равно алгебраической сумме перемещений на определённых этапах движения. Вектор полного перемещения равен векторной сумме перемещений на отдельных этапах движения.

  • При решении задач по кинематике не совершайте очень распространенную ошибку. Средняя скорость, как правило, не равна среднему арифметическому скоростей тела на каждом этапе движения. Среднее арифметическое получается только в некоторых частных случаях.
  • И уж тем более средняя скорость не равна одной из скоростей, с которыми двигалось тело в процессе движения, даже если эта скорость имела примерно промежуточное значение относительно других скоростей, с которыми двигалось тело.

Равноускоренное прямолинейное движение

К оглавлению…

Ускорение – векторная физическая величина, определяющая быстроту изменения скорости тела. Ускорением тела называют отношение изменения скорости к промежутку времени, в течение которого происходило изменение скорости:

Определение ускорения при равноускоренном движении

где: v0 – начальная скорость тела, v – конечная скорость тела (то есть спустя промежуток времени t).

Далее, если иное не указано в условии задачи, мы считаем, что если тело движется с ускорением, то это ускорение остается постоянным. Такое движение тела называется равноускоренным (или равнопеременным). При равноускоренном движении скорость тела изменяется на одинаковую величину за любые равные промежутки времени.

Равноускоренное движение бывает собственно ускоренным, когда тело увеличивает скорость движения, и замедленным, когда скорость уменьшается. Для простоты решения задач удобно для замедленного движения брать ускорение со знаком «–».

Из предыдущей формулы, следует другая более распространённая формула, описывающая изменение скорости со временем при равноускоренном движении:

Формула Зависимость скорости от времени при равноускоренном движении

Перемещение (но не путь) при равноускоренном движении рассчитывается по формулам:

Формула Перемещение при равноускоренном прямолинейном движении

Формула Перемещение при равноускоренном прямолинейном движении

Формула Перемещение при равноускоренном прямолинейном движении

В последней формуле использована одна особенность равноускоренного движения. При равноускоренном движении среднюю скорость можно рассчитывать, как среднее арифметическое начальной и конечной скоростей (этим свойством очень удобно пользоваться при решении некоторых задач):

Формула Средняя скорость при равноускоренном движении

С расчетом пути все сложнее. Если тело не меняло направления движения, то при равноускоренном прямолинейном движении путь численно равен перемещению. А если меняло – надо отдельно считать путь до остановки (момента разворота) и путь после остановки (момента разворота). А просто подстановка времени в формулы для перемещения в этом случае приведет к типичной ошибке.

Координата при равноускоренном движении изменяется по закону:

Формула Координата при равноускоренном движении

Проекция скорости при равноускоренном движении изменяется по такому закону:

Формула Проекция скорости при равноускоренном движении

Аналогичные формулы получаются для остальных координатных осей. Формула для тормозного пути тела:

Формула для тормозного пути тела

Свободное падение по вертикали

К оглавлению…

На все тела, находящиеся в поле тяготения Земли, действует сила тяжести. В отсутствие опоры или подвеса эта сила заставляет тела падать к поверхности Земли. Если пренебречь сопротивлением воздуха, то движение тел только под действием силы тяжести называется свободным падением. Сила тяжести сообщает любым телам, независимо от их формы, массы и размеров, одинаковое ускорение, называемое ускорением свободного падения. Вблизи поверхности Земли ускорение свободного падения составляет:

Ускорение свободного падения

Это значит, что свободное падение всех тел вблизи поверхности Земли является равноускоренным (но не обязательно прямолинейным) движением. Вначале рассмотрим простейший случай свободного падения, когда тело движется строго по вертикали. Такое движение является равноускоренным прямолинейным движением, поэтому все изученные ранее закономерности и фокусы такого движения подходят и для свободного падения. Только ускорение всегда равно ускорению свободного падения.

Традиционно при свободном падении используют направленную вертикально ось OY. Ничего страшного здесь нет. Просто надо во всех формулах вместо индекса «х» писать «у». Смысл этого индекса и правило определения знаков сохраняется. Куда направлять ось OY – Ваш выбор, зависящий от удобства решения задачи. Вариантов 2: вверх или вниз.

Приведем несколько формул, которые являются решением некоторых конкретных задач по кинематике на свободное падение по вертикали. Например, скорость, с которой упадет тело падающее с высоты h без начальной скорости:

Формула Скорость, с которой упадет тело падающее с высоты без начальной скорости

Время падения тела с высоты h без начальной скорости:

Формула Время падения тела с высоты без начальной скорости

Максимальная высота на которую поднимется тело, брошенное вертикально вверх с начальной скоростью v0, время подъема этого тела на максимальную высоту, и полное время полета (до возвращения в исходную точку):

Формула Максимальная высота на которую поднимется тело, брошенное вертикально вверх

Формула Время подъема тела брошенного вертикально вверх на максимальную высоту

Формула Полное время полета тела брошенного вертикально вверх (до возвращения в исходную точку)

Горизонтальный бросок

К оглавлению…

При горизонтальном броске с начальной скоростью v0 движение тела удобно рассматривать как два движения: равномерное вдоль оси ОХ (вдоль оси ОХ нет никаких сил препятствующих или помогающих движению) и равноускоренного движения вдоль оси OY.

Скорость в любой момент времени направлена по касательной к траектории. Ее можно разложить на две составляющие: горизонтальную и вертикальную. Горизонтальная составляющая всегда остается неизменной и равна vxv0. А вертикальная возрастает по законам ускоренного движения vy = gt. При этом полная скорость тела может быть найдена по формулам:

Формула Полная скорость тела брошенного вертикально

Формула Полная скорость при горизонтальном броске

При этом важно понять, что время падения тела на землю никоим образом не зависит от того, с какой горизонтальной скоростью его бросили, а определяется только высотой, с которой было брошено тело. Время падения тела на землю находится по формуле:

Формула Время падения тела при горизонтальном броске

Пока тело падает, оно одновременно движется вдоль горизонтальной оси. Следовательно, дальность полета тела или расстояние, которое тело сможет пролететь вдоль оси ОХ, будет равно:

Формула Дальность полета тела при горизонтальном броске

Угол между горизонтом и скоростью тела легко найти из соотношения:

Угол между горизонтом и скоростью при горизонтальном броске

Также иногда в задачах могут спросить о моменте времени, при котором полная скорость тела будет наклонена под определенным углом к вертикали. Тогда этот угол будет находиться из соотношения:

Угол между вертикалью и скоростью при горизонтальном броске

Траектория полета тела при горизонтальном броске

Важно понять, какой именно угол фигурирует в задаче (с вертикалью или с горизонталью). Это и поможет вам выбрать правильную формулу. Если же решать эту задачу координатным методом, то общая формула для закона изменения координаты при равноускоренном движении:

Закон изменения координаты пр равноускоренном движении

Преобразуется в следующий закон движения по оси OY для тела брошенного горизонтально:

Закон изменения координаты OY для свободно падающего тела

При ее помощи мы можем найти высоту на которой будет находится тело в любой момент времени. При этом в момент падения тела на землю координата тела по оси OY будет равна нулю. Очевидно, что вдоль оси OХ тело движется равномерно, поэтому в рамках координатного метода горизонтальная координата изменятся по закону:

Закон изменения координаты OX для свободно падающего тела

Бросок под углом к горизонту (с земли на землю)

К оглавлению…

Максимальная высота подъема при броске под углом к горизонту (относительно начального уровня):

Формула Максимальная высота подъема при броске под углом к горизонту

Время подъема до максимальной высоты при броске под углом к горизонту:

Формула Время подъема до максимальной высоты при броске под углом к горизонту

Дальность полета и полное время полета тела брошенного под углом к горизонту (при условии, что полет заканчивается на той же высоте с которой начался, т.е. тело бросали, например, с земли на землю):

Формула Дальность полета тела брошенного под углом к горизонту

Формула Полное время полета тела брошенного под углом к горизонту

Минимальная скорость тела брошенного под углом к горизонту – в наивысшей точке подъёма, и равна:

Минимальная скорость тела при броске под углом к горизонту

Максимальная скорость тела брошенного под углом к горизонту – в моменты броска и падения на землю, и равна начальной. Это утверждение верно только для броска с земли на землю. Если тело продолжает лететь ниже того уровня, с которого его бросали, то оно будет там приобретать все большую и большую скорость.

Сложение скоростей

К оглавлению…

Движение тел можно описывать в различных системах отсчета. С точки зрения кинематики все системы отсчета равноправны. Однако кинематические характеристики движения, такие как траектория, перемещение, скорость, в разных системах оказываются различными. Величины, зависящие от выбора системы отсчета, в которой производится их измерение, называют относительными. Таким образом, покой и движение тела относительны. Классический закон сложения скоростей:

Классический закон сложения скоростей

Таким образом, абсолютная скорость тела равна векторной сумме его скорости относительно подвижной системы координат и скорости самой подвижной системы отсчета. Или, другими словами, скорость тела в неподвижной системе отсчета равна векторной сумме скорости тела в подвижной системе отсчета и скорости подвижной системы отсчета относительно неподвижной.

Равномерное движение по окружности

К оглавлению…

Движение тела по окружности является частным случаем криволинейного движения. Такой вид движения также рассматривается в кинематике. При криволинейном движении вектор скорости тела всегда направлен по касательной к траектории. То же самое происходит и при движении по окружности (см. рисунок). Равномерное движение тела по окружности характеризуется рядом величин.

Движение тела по окружности

Период – время, за которое тело, двигаясь по окружности, совершает один полный оборот. Единица измерения – 1 с. Период рассчитывается по формуле:

Определение периода вращения

Частота – количество оборотов, которое совершило тело, двигаясь по окружности, в единицу времени. Единица измерения – 1 об/с или 1 Гц. Частота рассчитывается по формуле:

Определение частоты вращения

В обеих формулах: N – количество оборотов за время t. Как видно из вышеприведенных формул, период и частота величины взаимообратные:

Формулы Связь периода и частоты

При равномерном вращении скорость тела будет определяется следующим образом:

Формула Линейная скорость при равномерном движении по окружности

где: l – длина окружности или путь, пройденный телом за время равное периоду T. При движении тела по окружности удобно рассматривать угловое перемещение φ (или угол поворота), измеряемое в радианах. Угловой скоростью ω тела в данной точке называют отношение малого углового перемещения Δφ к малому промежутку времени Δt. Очевидно, что за время равное периоду T тело пройдет угол равный 2π, следовательно при равномерном движении по окружности выполняются формулы:

Формула Угловая скорость вращения

Угловая скорость измеряется в рад/с. Не забывайте переводить углы из градусов в радианы. Длина дуги l связана с углом поворота соотношением:

Формула Связь угла поворота и пути при равномерном движении по окружности

Связь между модулем линейной скорости v и угловой скоростью ω:

Формула Связь линейной и скорости и угловой скорости

При движении тела по окружности с постоянной по модулю скоростью изменяется только направление вектора скорости, поэтому движение тела по окружности с постоянной по модулю скоростью является движением с ускорением (но не равноускоренным), так как меняется направление скорости. В этом случае ускорение направлено по радиусу к центру окружности. Его называют нормальным, или центростремительным ускорением, так как вектор ускорения в любой точке окружности направлен к ее центру (см. рисунок).

Движение тела по окружности

Модуль центростремительного ускорения связан с линейной v и угловой ω скоростями соотношениями:

Формула Центростремительное ускорение

Обратите внимание, что если тела (точки) находятся на вращающемся диске, шаре, стержне и так далее, одним словом на одном и том же вращающемся объекте, то у всех тел одинаковые период вращения, угловая скорость и частота.

Кинематика

Другие записи

10.06.2016.
Свободное падение

К другим разделам:

Кинематика
Графики кинематических величин
Свободное падение
Частные случаи горизонтального броска и броска под углом
Динамика
Статика и гидростатика
Законы сохранения
Молекулярная…

10.06.2016.
Динамика

К другим разделам:

Кинематика
Графики кинематических величин
Свободное падение
Частные случаи горизонтального броска и броска под углом
Динамика
Статика и гидростатика
Законы сохранения
Молекулярная…

10.06.2016.
Статика и гидростатика

К другим разделам:

Кинематика
Графики кинематических величин
Свободное падение
Частные случаи горизонтального броска и броска под углом
Динамика
Статика и гидростатика
Законы сохранения
Молекулярная…

10.06.2016.
Законы сохранения

К другим разделам:

Кинематика
Графики кинематических величин
Свободное падение
Частные случаи горизонтального броска и броска под углом
Динамика
Статика и гидростатика
Законы сохранения
Молекулярная…

Понравилась статья? Поделить с друзьями:
  • Физика как обязательный экзамен
  • Физика подготовка к егэ программа
  • Физика история егэ время
  • Физика подготовка к егэ задачи
  • Физика интеллект центр 11 класс егэ