Физика решу егэ 10064

Варианты, ответы и решения ФИ2210401, ФИ2210402, ФИ2210403, ФИ2210404 тренировочная работа №4 статград пробник ЕГЭ 2023 по физике 11 класс в формате реального экзамена ЕГЭ 2023 года, которая прошла 7 марта 2023 года.

Скачать тренировочные варианты

Скачать ответы для вариантов

ФИ2210401_ФИ2210402_ФИ2210403_ФИ2210404

ответы для олимпиады

Вариант ФИ2210401 с ответами

1. Два маленьких тела, находившиеся в состоянии покоя, одновременно начинают двигаться из одной точки по плоскости YOX с разными по модулю постоянными ускорениями. На рисунке изображены векторы 1 a и 2 a ускорений этих тел (масштабы координатной сетки вдоль горизонтальной и вертикальной осей одинаковы). Чему равно отношение путей S1/S2, пройденных этими телами за первые 2 секунды их движения?

2. Ускорение свободного падения на поверхности Юпитера в 2,6 раза больше, чем на поверхности Земли. Первая космическая скорость для Юпитера в 5,4 раза больше, чем для Земли. Во сколько раз радиус Юпитера больше радиуса Земли? Ответ округлите до целого числа.

3. На горизонтальном столе лежит лист бумаги, на котором нарисован равнобедренный треугольник с длиной боковой стороны 12 см и углом 30° при основании. В его вершинах расположены одинаковые маленькие тяжёлые бусинки. На каком расстоянии от основания данного треугольника расположен центр тяжести системы, состоящей из этих трёх бусинок?

4. Небольшая шайба массой 50 г соскальзывает с наклонной плоскости с углом при основании 30°. Сопротивление воздуха пренебрежимо мало. В таблице приведены значения модуля скорости V шайбы в различные моменты времени t. Выберите все верные утверждения о результатах этого опыта на основании данных, содержащихся в таблице.

1) Сухое трение между шайбой и плоскостью отсутствует.
2) Модуль ускорения шайбы приблизительно равен 3 м/с2 .
3) За первую секунду движения шайба прошла путь менее 1 м.
4) В момент времени t = 0,4 с модуль импульса шайбы примерно равен 0,06 кг⋅м/с.
5) Если в момент времени t = 1,4 с шайба столкнётся с абсолютно неупругим препятствием, то выделится количество теплоты ≈ 0,44 Дж.

5. На двух узких опорах покоится тяжёлая горизонтальная однородная доска. На доске посередине между опорами лежит гиря. Гирю перекладывают так, что она оказывается лежащей на доске ближе к правой опоре. Как после перекладывания гири изменяются модуль силы реакции правой опоры и момент силы тяжести гири относительно левой опоры? Для каждой величины определите соответствующий характер изменения:

1) увеличивается
2) уменьшается
3) не изменяется

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

6. На горизонтальном столе установлена в вертикальном положении лёгкая пружина жёсткостью k. Её нижний конец прикреплён к столу, а к верхнему концу прикреплена горизонтальная платформа массой M. На высоте H над платформой удерживают маленький пластилиновый шарик массой m. Шарик отпускают без начальной скорости, после чего он свободно падает и прилипает к покоившейся платформе. В результате этого платформа с шариком начинают совершать колебания, в ходе которых ось пружины остаётся вертикальной, а платформа не касается стола. Установите соответствие между физическими величинами и формулами, выражающими их в рассматриваемой задаче (g – ускорение свободного падения). К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

7. В сосуде объёмом 8,31 л находится 0,35 моль идеального газа при давлении 100 кПа. Газ сначала изотермически расширяют в 2 раза, а затем изохорически нагревают на 120 К. Чему равно давление газа в конечном состоянии? Ответ выразите в кПа и округлите до целого числа.

8. На рисунке приведена зависимость температуры T однородного твёрдого тела массой 2 кг от времени t в процессе нагревания. Чему равна удельная теплоёмкость вещества этого тела? Подводимую к телу тепловую мощность можно считать постоянной и равной 450 Вт.

9. На Т–р-диаграмме показан процесс изменения состояния идеального одноатомного газа. Газ отдал в этом процессе количество теплоты 80 кДж. Масса газа не менялась. Определите работу, совершённую внешними силами над газом в этом процессе, если р1 = 80 кПа, р2 = 200 кПа, Т0 =300 К.

10. С постоянной массой идеального одноатомного газа происходит циклический процесс 1−2−3−4−1, p–V-диаграмма которого представлена на рисунке. Максимальная температура газа в этом процессе составляет 400 К. На основании анализа этого циклического процесса выберите все верные утверждения.

1) Работа, совершённая газом при его изобарическом расширении, равна 200 Дж.
2) Количество вещества газа, участвующего в циклическом процессе, больше 0,45 моль.
3) Работа, совершённая над газом при его изобарическом сжатии, равна 200 Дж.
4) Изменение внутренней энергии газа в процессе 1–2–3–4–1 равно нулю.
5) Количество теплоты, переданное газу при изохорическом нагревании, равно 400 Дж.

11. В закрытом сосуде под подвижным поршнем находятся влажный воздух и немного воды. Перемещая поршень, объём сосуда медленно увеличивают при постоянной температуре. Как изменяются в этом процессе относительная влажность воздуха и концентрация пара? Известно, что в конечном состоянии в сосуде остаётся вода. Для каждой величины определите соответствующий характер изменения:

1) увеличивается
2) уменьшается
3) не изменяется

12. Участок электрической цепи состоит из трёх резисторов, соединённых так, как показано на рисунке. Сила тока I = 3 А. Сопротивления резисторов равны R1 = 20 Ом и R2 = 30 Ом. Каким должно быть сопротивление резистора R, чтобы сила текущего через него тока была равна 2 А?

13. На рисунке показан график зависимости магнитного потока Φ, пронизывающего проводящий контур, от времени t. Сопротивление контура равно 5 Ом. Чему равна сила тока, текущего в контуре, в промежутке времени от 0 до 10 с?

15. Две маленькие закреплённые бусинки, расположенные в точках А и В, несут на себе заряды +q > 0 и +4q соответственно (см. рисунок). Расстояние от точки С до точки А в два раза меньше, чем расстояние от точки С до точки В: СВ = 2 АС . Выберите все верные утверждения, соответствующие приведённым данным.

1) Модуль силы Кулона, действующей на бусинку в точке А, в 4 раза больше, чем модуль силы Кулона, действующей на бусинку в точке В.
2) Если бусинки соединить тонким проводником, то они будут притягиваться друг к другу.
3) Напряжённость результирующего электростатического поля в точке С равна нулю.
4) Если бусинки соединить стеклянной палочкой, то их заряды не изменятся.
5) Если бусинку с зарядом +4q заменить на бусинку с зарядом –4q, то напряжённость результирующего электростатического поля в точке С будет направлена вправо.

16. В первом опыте лазерный луч красного цвета падает перпендикулярно на дифракционную решётку, содержащую 50 штрихов на 1 мм. При этом на удалённом экране наблюдают дифракционную картину. Во втором опыте проводят эксперимент с тем же лазером, заменив решётку на другую, содержащую 100 штрихов на 1 мм, и оставив угол падения лазерного луча на решётку тем же. Как изменяются во втором опыте по сравнению с первым расстояние между дифракционными максимумами первого порядка на экране и количество наблюдаемых дифракционных максимумов? Для каждой величины определите соответствующий характер изменения:

  • 1) увеличивается
  • 2) уменьшается
  • 3) не изменяется

17. В однородном вертикальном магнитном поле находится наклонная плоскость с углом α при основании. На этой плоскости закреплён П-образный проводник, по которому скользит вниз с постоянной скоростью V проводящая перемычка длиной L. Взаимное расположение наклонной плоскости, проводника и перемычки показано на рисунке. Сопротивление перемычки равно R, сопротивление П-образного проводника мало. Модуль индукции магнитного поля равен В. Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

18. Какая доля радиоактивных ядер (в процентах от первоначального числа ядер) остаётся нераспавшейся через интервал времени, равный двум периодам полураспада?

19. В опыте по изучению фотоэффекта металлическая пластина облучалась светом с частотой ν. Работа выхода электронов из металла равна Авых. Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать (h – постоянная Планка, с – скорость света в вакууме, me – масса электрона). К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

20. Выберите все верные утверждения о физических явлениях, величинах и закономерностях. Запишите цифры, под которыми они указаны.

  • 1) При равномерном прямолинейном движении за любые равные промежутки времени тело совершает одинаковые перемещения.
  • 2) Средняя кинетическая энергия теплового движения молекул гелия уменьшается при увеличении абсолютной температуры газа.
  • 3) В однородном электростатическом поле работа по перемещению электрического заряда между двумя положениями в пространстве не зависит от траектории.
  • 4) При переходе электромагнитной волны из воды в воздух период колебаний вектора напряжённости электрического поля в волне уменьшается.
  • 5) При испускании протона электрический заряд ядра уменьшается.

21. Даны следующие зависимости величин:

  • А) зависимость модуля импульса материальной точки от её кинетической энергии при неизменной массе;
  • Б) зависимость количества теплоты, выделяющегося при конденсации пара, от его массы;
  • В) зависимость периода колебаний силы тока в идеальном колебательном контуре от индуктивности катушки.

Установите соответствие между этими зависимостями и графиками, обозначенными цифрами 1–5. Для каждой зависимости А–В подберите соответствующий вид графика и запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.

22. Для определения массы порции подсолнечного масла ученик измерил её объём с использованием мерного цилиндра и получил результат: V = (12 ±1) см3 . Чему равна масса данной порции масла с учётом погрешности измерений?

23. Ученик изучает свойства силы трения скольжения. В его распоряжении имеются установки, состоящие из горизонтальной опоры и сплошного бруска. Площадь соприкосновения бруска с опорой при проведении всех опытов одинакова. Параметры установок приведены в таблице. Какие из этих установок нужно использовать для того, чтобы на опыте обнаружить зависимость коэффициента трения от модуля силы нормального давления тела на опору?

24. В боковой стенке покоящейся на столе бутылки проделано маленькое отверстие, в которое вставлена затычка. В бутылку налита вода, а горлышко бутылки закрыто резиновой пробкой, через которую пропущена вертикальная тонкая трубка. Нижний конец трубки находится выше отверстия в стенке бутылки, но ниже поверхности воды, а верхний конец сообщается с атмосферой (см. рис.). Затычку из отверстия в боковой стенке вынимают, и вода вытекает из бутылки через отверстие. При этом через трубку в бутылку входят пузырьки воздуха. Затем трубку начинают медленно опускать вниз и делают это до тех пор, пока нижний конец трубки не окажется на одном уровне с отверстием. Опишите, как будет изменяться скорость вытекания воды из отверстия по мере опускания трубки. Считайте, что уровень воды всегда находится выше нижнего конца трубки и выше отверстия в стенке. Ответ обоснуйте, указав, какие физические закономерности Вы использовали для объяснения.

25. В механической системе, изображённой на рисунке, все блоки, пружины и нити невесомые, нити нерастяжимые, трения в осях блоков нет, все участки нитей, не лежащие на блоках, вертикальны. Известно, что после подвешивания груза массой M = 40 кг к оси самого правого блока левая пружина в состоянии равновесия растянулась на величину Δx1 = 10 см. Найдите коэффициент жёсткости k1 левой пружины.

26. В центре металлической сферической оболочки толщиной 0,5 см поместили точечный заряд q = 2 мкКл, а на её внешнюю поверхность радиусом R = 10 см – заряд Q = – 1 мкКл. Найдите для равновесного состояния модуль напряжённости E электрического поля на расстоянии r = 1 м от центра оболочки и укажите, куда направлен вектор E  – к центру оболочки или от неё.

27. В большом помещении с размерами 6 × 10 × 3 м3 в зимние холода при температуре Т1 парциальное давление водяного пара в воздухе составляло pп1 = 700 Па, а относительная влажность воздуха равнялась при этом φ1 = 50 %. После обогрева помещения температура в нём поднялась до значения T2 = 25 °С, а относительная влажность снизилась до φ2 = 25 %. Используя приведённый на рисунке график, найдите, как и на сколько в результате обогрева изменилась масса m паров воды в данном помещении.

28. Иногда для измерения индукции магнитного поля используют следующий способ: маленькую плоскую круглую катушку с большим числом витков быстро вводят в область измеряемого поля так, что её плоскость перпендикулярна линиям индукции. Катушка присоединена к входным клеммам баллистического гальванометра, который может измерять электрический заряд Δq, протекший по образовавшейся замкнутой цепи за время ввода измерительной катушки в исследуемое магнитное поле. Этот заряд связан с изменением магнитного потока Ф через катушку, поэтому данный гальванометр часто используют в качестве «флюксметра». Зная поток магнитной индукции и параметры катушки, можно найти величину В проекции индукции на ось катушки. Пусть измеренное таким способом значение В = 0,5 Тл, входное сопротивление гальванометра rф = 0,1 кОм, сопротивление измерительной катушки rк = 900 Ом, диаметр её витков d = 1 см. Определите число N витков в катушке, если протекший через цепь суммарный заряд qΣ = 15 мкКл.

29. Вдоль оптической оси тонкой выпуклой собирающей линзы распространяется в воздухе параллельный приосевой пучок света, собирающийся в точку справа от неё на расстоянии F1. Линза изготовлена из стекла с показателем преломления n1 = 1,4 и ограничена справа и слева сферическими поверхностями радиусами R1 = 15 см. На какое расстояние и в какую сторону сместится точка схождения лучей этого пучка, если заменить линзу на другую, с показателем преломления стекла n2 = 1,6 и радиусами поверхностей R2 = 24 см? Положения обеих линз относительно пучка света одинаковые. Все углы падения и преломления можно считать малыми и использовать для них приближённую формулу sin α ≈ α.

30. На даче у школьника на горизонтальном полу террасы стояла пластмассовая кубическая ёмкость для воды, иногда протекающей с крыши. Когда ёмкость заполнилась наполовину, дедушка попросил внука вылить воду из неё, наклонив вокруг одного из нижних рёбер куба, чтобы вода переливалась через соседнее верхнее ребро. Какую работу А совершил внук к моменту начала вытекания воды из ёмкости, если процесс подъёма был очень медленным, так что поверхность воды всё время оставалась горизонтальной? Объём воды вначале был равен V = 108 л, квадратные стенки ёмкости и её днище тонкие, однородные, массой m = 4 кг каждая (сверху ёмкость открыта). Сделайте рисунки с указанием положения центров масс воды, днища и стенок ёмкости до начала наклона ёмкости и в момент, когда вода начинает выливаться. Обоснуйте применимость используемых законов к решению задачи.

Вариант ФИ2210402 с ответами

1. Два маленьких тела, находившиеся в состоянии покоя, одновременно начинают двигаться из одной точки по плоскости YOX с разными по модулю постоянными ускорениями. На рисунке изображены векторы 1 a и 2 a ускорений этих тел (масштабы координатной сетки вдоль горизонтальной и вертикальной осей одинаковы). Чему равно отношение путей S1/S2, пройденных этими телами за первые 3 секунды их движения?

2. Ускорение свободного падения на поверхности Земли в 2,65 раза больше, чем на поверхности Марса. Вторая космическая скорость для Земли в 2,24 раза больше, чем для Марса. Во сколько раз радиус Земли больше радиуса Марса? Ответ округлите до целого числа.

3. На горизонтальном столе лежит лист бумаги, на котором нарисован равнобедренный треугольник ABC с основанием BC. Длина боковой стороны этого треугольника 18 см, угол при основании 30°. В его вершинах расположены одинаковые маленькие тяжёлые бусинки. На каком расстоянии от вершины A расположен центр тяжести системы, состоящей из этих трёх бусинок?

4. Небольшая шайба массой 100 г соскальзывает с наклонной плоскости с углом при основании 45°. Сопротивление воздуха пренебрежимо мало. В таблице приведены значения модуля скорости V шайбы в различные моменты времени t. Выберите все верные утверждения о результатах этого опыта на основании данных, содержащихся в таблице.

  • 1) Между шайбой и плоскостью есть сухое трение.
  • 2) Модуль ускорения шайбы приблизительно равен 7 м/с2 .
  • 3) За первую секунду движения шайба прошла путь менее 2 м.
  • 4) В момент времени t = 0,6 с модуль импульса шайбы примерно равен 0,36 кг⋅м/с.
  • 5) Если в момент времени t = 1,2 с шайба столкнётся с абсолютно неупругим препятствием, то выделится количество теплоты ≈ 2,6 Дж.

5. На двух узких опорах покоится тяжёлая горизонтальная однородная доска. На доске посередине между опорами лежит гиря. Гирю перекладывают так, что она оказывается лежащей на доске ближе к правой опоре. Как после перекладывания гири изменяются модуль силы реакции левой опоры и момент силы тяжести гири относительно правой опоры? Для каждой величины определите соответствующий характер изменения:

  • 1) увеличивается
  • 2) уменьшается
  • 3) не изменяется

6. На горизонтальном столе установлена в вертикальном положении лёгкая пружина жёсткостью k. Её нижний конец прикреплён к столу, а к верхнему концу прикреплена горизонтальная платформа массой M. На высоте H над платформой удерживают маленький пластилиновый шарик массой m. Шарик отпускают без начальной скорости, после чего он свободно падает и прилипает к покоившейся платформе. В результате этого платформа с шариком начинают совершать колебания, в ходе которых ось пружины остаётся вертикальной, а платформа не касается стола. Установите соответствие между физическими величинами и формулами, выражающими их в рассматриваемой задаче (g – ускорение свободного падения). К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

7. В сосуде объёмом 8,31 л находится 0,35 моля идеального газа при давлении 100 кПа. Газ сначала изотермически расширяют в 2 раза, а затем изобарически нагревают на 24 К. Чему равен объём газа в конечном состоянии?

8. На рисунке приведена зависимость температуры t однородного твёрдого тела массой 5 кг от времени τ в процессе нагревания. Чему равна удельная теплоёмкость вещества этого тела? Подводимую к телу тепловую мощность можно считать постоянной и равной 520 Вт.

9. На Т–V-диаграмме показан процесс изменения состояния идеального одноатомного газа. Газ получил в этом процессе количество теплоты 120 кДж. Масса газа не менялась. Определите работу, совершённую газом в этом процессе, если V1 = 8 л, V2 = 20 л, Т0 = 300 К.

10. С постоянной массой идеального одноатомного газа происходит циклический процесс 1−2−3−4−1, p–V-диаграмма которого представлена на рисунке. Максимальная температура газа в этом процессе составляет 600 К. На основании анализа этого циклического процесса выберите все верные утверждения.

  • 1) Работа, совершённая газом при его изобарическом расширении, равна 400 Дж.
  • 2) Количество вещества газа, участвующего в циклическом процессе, больше 0,45 моля.
  • 3) Суммарное количество теплоты, которым газ обменялся с окружающими телами в процессе 1–2–3–4–1, равно 200 Дж.
  • 4) Изменение внутренней энергии газа в процессе 4–1 равно 600 Дж.
  • 5) Температура газа в состоянии 4 равна 225 К.

11. В закрытом сосуде под подвижным поршнем находятся влажный воздух и немного воды. Перемещая поршень, объём сосуда медленно уменьшают при постоянной температуре. Как изменяются в этом процессе относительная влажность воздуха и плотность пара? Для каждой величины определите соответствующий характер изменения:

  • 1) увеличивается
  • 2) уменьшается
  • 3) не изменяется

12. Участок электрической цепи состоит из трёх резисторов, соединённых так, как показано на рисунке. Сила тока I = 6 А. Сопротивления резисторов равны R1 = 10 Ом и R2 = 30 Ом. Каким должно быть сопротивление резистора R, чтобы сила тока, текущего через него, была равна 2 А?

13. На рисунке показан график зависимости магнитного потока Φ, пронизывающего проводящий контур, от времени t. Сопротивление контура равно 3 Ом. Чему равна сила тока, текущего в контуре в промежутке времени от 10 до 20 с?

14. Сила тока i в идеальном колебательном контуре меняется со временем t по закону 0,02cos(5 10 ) 6 i = ⋅ t , где все величины выражены в единицах СИ. Чему равен максимальный заряд одной из пластин конденсатора, включённого в этот колебательный контур?

15. Две маленькие закреплённые бусинки, расположенные в точках А и В, несут на себе заряды +q > 0 и –4q соответственно (см. рисунок). Точка С расположена посередине отрезка АВ. Выберите все верные утверждения, соответствующие приведённым данным.

  • 1) Сила Кулона, действующая на бусинку в точке А равна по модулю силе Кулона, действующей на бусинку в точке В.
  • 2) Если бусинки соединить проводником, то они станут отталкиваться друг от друга.
  • 3) Напряжённость результирующего электростатического поля в точке С направлена влево.
  • 4) Если бусинки соединить стеклянной палочкой, то их заряды станут одинаковыми.
  • 5) Если бусинку с зарядом –4q заменить на бусинку с зарядом +3q, то модуль напряжённости результирующего электростатического поля в точке С уменьшится в 2,5 раза.

16. В первом опыте лазерный луч красного цвета падает перпендикулярно на дифракционную решётку, содержащую 100 штрихов на 1 мм. При этом на удалённом экране наблюдают дифракционную картину. Во втором опыте проводят эксперимент с тем же лазером, заменив решётку на другую, содержащую 50 штрихов на 1 мм, и оставив угол падения лазерного луча на решётку тем же. Как изменяются во втором опыте по сравнению с первым расстояние между дифракционными максимумами второго порядка на экране и угол, под которым наблюдается первый дифракционный максимум? Для каждой величины определите соответствующий характер изменения:

  • 1) увеличивается
  • 2) уменьшается
  • 3) не изменяется

17. В однородном вертикальном магнитном поле находится наклонная плоскость с углом α при основании. На этой плоскости закреплён П-образный проводник, по которому скользит вниз с постоянной скоростью V проводящая перемычка длиной L. Взаимное расположение наклонной плоскости, проводника и перемычки показано на рисунке. Сопротивление перемычки равно R, сопротивление П-образного проводника мало. Модуль индукции магнитного поля равен В. Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать.

18. Какая доля радиоактивных ядер (в процентах от первоначального числа ядер) остаётся нераспавшейся через интервал времени, равный трём периодам полураспада?

19. В опыте по изучению фотоэффекта металлическая пластина облучалась светом с частотой ν. Работа выхода электронов из металла равна Авых. Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать (h – постоянная Планка, с – скорость света в вакууме, me – масса электрона). К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

20. Выберите все верные утверждения о физических явлениях, величинах и закономерностях. Запишите цифры, под которыми они указаны.

  • 1) При равномерном движении по окружности перемещение тела за один период обращения равно нулю.
  • 2) При увеличении средней кинетической энергии теплового движения молекул гелия его давление в закрытом сосуде неизменного объёма уменьшается.
  • 3) При движении заряда по окружности в однородном магнитном поле сила Лоренца, действующая на этот заряд, не совершает работу.
  • 4) При переходе электромагнитной волны из воздуха в воду период колебаний вектора индукции магнитного поля в волне не изменяется.
  • 5) При испускании нейтрона электрический заряд ядра увеличивается.

21. Даны следующие зависимости величин:

  • А) зависимость кинетической энергии материальной точки от модуля её импульса при неизменной массе;
  • Б) зависимость количества теплоты, выделяющегося при кристаллизации воды, от её массы;
  • В) зависимость энергии конденсатора постоянной ёмкости от его заряда.

Установите соответствие между этими зависимостями и графиками, обозначенными цифрами 1–5. Для каждой зависимости А–В подберите соответствующий вид графика и запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.

22. Для определения массы порции керосина ученик измерил её объём с использованием мерного цилиндра и получил результат: V = (30,0 ± 0,5) см3 . Чему равна масса данной порции керосина с учётом погрешности измерений?

23. Ученик изучает свойства силы трения скольжения. В его распоряжении имеются установки, состоящие из горизонтальной опоры и сплошного бруска. Площадь соприкосновения бруска с опорой при проведении всех опытов одинакова. Параметры установок приведены в таблице. Какие из установок нужно использовать для того, чтобы на опыте обнаружить зависимость коэффициента трения от материала опоры?

24. В боковой стенке покоящейся на столе бутылки проделано маленькое отверстие, в которое вставлена затычка. В бутылку налита вода, а горлышко бутылки закрыто резиновой пробкой, через которую пропущена вертикальная тонкая трубка. Нижний конец трубки находится ниже поверхности воды на уровне отверстия в стенке бутылки, а верхний конец сообщается с атмосферой (см. рис.). Затычку из отверстия в боковой стенке вынимают и начинают медленно поднимать трубку вверх. При этом вода вытекает из бутылки через отверстие, а через трубку в бутылку входят пузырьки воздуха. Опишите, как будет изменяться скорость вытекания воды из отверстия по мере поднимания трубки. Считайте, что уровень воды всегда находится выше нижнего конца трубки и выше отверстия в стенке. Ответ обоснуйте, указав, какие физические закономерности Вы использовали для объяснения.

25. В механической системе, изображённой на рисунке, все блоки, пружины и нити невесомые, нити нерастяжимые, трения в осях блоков нет, все участки нитей, не лежащие на блоках, вертикальны. Известно, что после подвешивания груза M к оси самого правого блока левая пружина, имеющая коэффициент жёсткости k1 = 500 Н/м, в состоянии равновесия растянулась на величину Δx1 = 10 см. На какую величину Δx2 удлинилась при этом правая пружина, если её коэффициент жёсткости равен k2 = 1000 Н/м?

26. В центре металлической сферической оболочки толщиной 0,2 см поместили точечный заряд q = 1 мкКл, а на её внешнюю поверхность радиусом R = 10 см – заряд Q = – 3 мкКл. Найдите для равновесного состояния модуль E напряжённости электрического поля на расстоянии r = 2 м от центра оболочки и укажите, куда направлен вектор E  – к центру оболочки или от неё.

27. В большом помещении с размерами 5 × 10 м2 (пол) и 3,5 м (высота потолка) температура T1 во время зимних холодов понизилась, парциальное давление водяного пара в воздухе опустилось до значения pп1 = 600 Па, а относительная влажность воздуха равнялась при этом φ1 = 50 %. После обогрева помещения температура в нём поднялась до значения T2 = 24 °С, а относительная влажность снизилась до φ2 = 30 %. Используя приведённый на рисунке график, найдите, как и во сколько раз в результате обогрева изменилась масса m паров воды в данном помещении.

28. Иногда для измерения индукции магнитного поля используют следующий способ: маленькую плоскую круглую катушку с большим числом витков быстро вводят в область измеряемого поля так, что её плоскость перпендикулярна линиям индукции. Катушка присоединена к входным клеммам баллистического гальванометра, который может измерять электрический заряд Δq, протекший по образовавшейся замкнутой цепи за время ввода измерительной катушки в исследуемое магнитное поле. Этот заряд связан с изменением магнитного потока Ф через катушку, поэтому данный гальванометр часто используют в качестве «флюксметра». Зная поток магнитной индукции и параметры катушки, можно найти величину В проекции индукции на ось катушки. Пусть входное сопротивление гальванометра rф = 0,2 кОм, сопротивление измерительной катушки rк = 600 Ом, диаметр её витков d = 0,95 см, число витков в ней N = 300. Чему равен измеренный модуль индукции магнитного поля, если протекший через цепь суммарный заряд qΣ = 12 мкКл.

29. Вдоль оптической оси тонкой выпуклой собирающей линзы распространяется в воздухе параллельный приосевой пучок света, собирающийся в точку справа от неё на расстоянии F1. Линза изготовлена из стекла с показателем преломления n1 = 1,5 и ограничена справа и слева сферическими поверхностями радиусами R1 = 20 см. На какое расстояние сместится точка схождения лучей этого пучка, если заменить линзу на другую, с показателем преломления стекла n2 = 1,7 и радиусами поверхностей R2 = 16 см? Положения обеих линз относительно пучка света одинаковые. Все углы падения и преломления можно считать малыми и использовать для них приближённую формулу sinα ≈ α.

30. На даче у школьника на горизонтальном полу террасы стояла пластмассовая кубическая ёмкость для воды, иногда протекающей с крыши. Когда ёмкость заполнилась наполовину, дедушка попросил своего сильного внука вылить воду из неё, наклонив вокруг одного из нижних рёбер куба, чтобы вода переливалась через соседнее верхнее ребро. Оцените, на какую величину ∆E внук увеличит механическую энергию ёмкости с водой к моменту начала вытекания воды из ёмкости, если процесс подъёма был очень медленным, так что поверхность воды всё время оставалась горизонтальной? Объём воды вначале был равен V = 63 л, квадратные стенки ёмкости и её днище тонкие, однородные, массой m = 3 кг каждая (сверху ёмкость открыта). Сделайте рисунки с указанием положения центров масс воды, днища и стенок ёмкости до начала наклона ёмкости и в момент, когда вода начинает выливаться. Обоснуйте применимость используемых законов к решению задачи.

Попробуйте решить другие варианты

Статград ФИ2210301-ФИ2210304 физика 11 класс ЕГЭ 2023 варианты и ответы

ПОДЕЛИТЬСЯ МАТЕРИАЛОМ

Skip to content

ЕГЭ профильный уровень. №5 Логарифмические уравнения. Задача 10

ЕГЭ профильный уровень. №5 Логарифмические уравнения. Задача 10admin2023-03-12T19:10:47+03:00

Задача 10. Решите уравнение    ({log _{x + 6}}32 = 5.)    Если уравнение имеет более одного корня, в ответе запишите меньший из корней.

({log _{x + 6}}32 = 5,,,,,, Leftrightarrow ,,,,,,left{ {begin{array}{*{20}{c}}{{{left( {x + 6} right)}^5} = 32}\{x + 6 > 0,,,,,,,,,,}\{x + 6 ne 1,,,,,,,,,,,}end{array}} right.,,,,,,, Leftrightarrow ,,,,,,left{ {begin{array}{*{20}{c}}{{{left( {x + 6} right)}^5} = {2^5}}\{x + 6 > 0,,,,,,,,}\{x + 6 ne 1,,,,,,,,}end{array}} right.,,,,,, Leftrightarrow )

( Leftrightarrow ,,,,,,,left{ {begin{array}{*{20}{c}}{x + 6 = 2}\{x + 6 > 0}\{x + 6 ne 1}end{array},,,,,, Leftrightarrow } right.,,,,,,,,x + 6 = 2,,,,,,, Leftrightarrow ,,,,,,,x =  — 4.)

Ответ: – 4.


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

ЕГЭ по физике с решением

Равномерное прямолинейное движение материальной точки — это движение, при котором тело за равные промежутки времени совершает одинаковые перемещения. Траектория при таком движении — прямая. Скорость тела постоянна (displaystyle vec {v}=const.)

Уравнение координаты материальной точки в проекциях на ось при равномерном движении:

[x=x_0+v_text{0x}t]

Перемещение:

[S_x=v_text{0x}t]

Из двух концов комнаты навстречу друг другу с постоянной скоростью движутся МО и Рыжий Боб. На графике показана зависимость расстояния между ними от времени. Скорость МО равна 3,14 м/с. С какой скоростью движется Рыжий Боб? (Ответ дайте в м/с)

По графику определяем, что расстояние между МО и Рыжим Бобом в начальный момент времени (S=7) м, а время, спустя которое они встретятся, (t=2) c. Перейдем в подвижную систему отсчета относительно МО. Тогда по закону сложения скоростей Рыжий Боб будет двигаться к нему со скоростью: [upsilon=upsilon_1+upsilon_2,] где (upsilon_1) и (upsilon_2) — скорости МО и Рыжего Боба соответственно (относительно неподвижной системы отсчета).
По закону равномерного прямолинейного движения: [S=upsilon t] Подставим сюда предыдущую формулу, и получим: [S=(upsilon_1+upsilon_2)t] Осталось выразить отсюда скорость Рыжего Боба: [upsilon_2=dfrac{S}{t}-upsilon_1=dfrac{7 text{ м}}{2~c}-3{,}14 text{ м/c} = 0{,}36 text{ м/c} .]

Ответ: 0,36

На рисунке представлены графики зависимости пройденного пути от времени для двух тел. Определите, во сколько раз скорость второго тела (upsilon_2) больше скорости первого тела (upsilon_1).

Т.к. пройденные пути тел линейно увеличиваются, тела движутся равномерно и прямолинейно.
По графику определяем, что первое тело за время (t_1=4) с проходит путь (S_1=3) м, а второе тело за время (t_2=2~c) проходит путь (S_2=3) м. По закону равномерного прямолинейного движения: [S_1=upsilon_1t_1
quad
S_2=upsilon_2t_2]
Отсюда выразим (upsilon_1) и (upsilon_2): [upsilon_1=dfrac{S_1}{t_1}; quad
upsilon_2=dfrac{S_2}{t_2}.]
Найдем (dfrac{upsilon_2}{upsilon_1}): [dfrac{upsilon_2}{upsilon_1}=dfrac{dfrac{S_2}{t_2}}{dfrac{S_1}{t_1}}=dfrac{dfrac{3 text{ м}}{2~c}}{dfrac{3 text{ м}}{4~c}}=2]

Ответ: 2

Дима каждый день ходит в школу. На рисунке представлен график движения Димы из дома в школу и обратно. Дом находится в точке (S=0), а школа — в точке (S=300) м. Чему равен модуль скорости Димы на пути из школы домой? (Ответ дайте в м/с)

Рассмотрим график: весь путь Дима двигался прямолинейно и равномерно (но в точке (S=300) м изменил свою скорость). Сначала он двигался из дома в школу со скоростью (upsilon_1) в течение времени (t_1=5) мин, после чего возвращался из школы домой cо скоростью (upsilon_2) в течение времени (t_2): [t_2=15text{ мин}-5text{ мин}=10text{ мин}=10cdot60text{ c}=600~text{ с}.] Чтобы найти (upsilon_2), нам необходимо рассмотреть участок движения Димы по пути из школы домой ((S_2)).
По закону равномерного прямолинейного движения: [S_2=upsilon_2t_2,] где (S_2=0text{ м}-300text{ м}=-300text{ м}).
Отсюда выражаем (upsilon_2): [upsilon_2=dfrac{S_2}{t_2}=dfrac{-300~text{м}}{600~text{c}}=-0,5~text{м/с}] Значит, (|upsilon_2|=|-0,5|text{ м/с}=0,5text{ м/с })

Ответ: 0,5

На рисунке представлен график зависимости пути (S), пройденного материальной точкой, от времени (t). Определите скорость (upsilon) точки на интервале времени от 5 с до 7 с. (Ответ дайте в м/с)

Т.к. пройденный путь материальной точки на интервале времени от 5 c до 7 c линейно увеличивается, материальная точка на этом интервале движется равномерно и прямолинейно. По закону равномерного прямолинейного движения:

[Delta S=upsilonDelta t,] где (Delta S=25 text{ м}-15text{ м}=10text{ м}), а (Delta t=7text{ c}-5text{ c}=2text{ c}). Выразим (upsilon): [upsilon=dfrac{Delta S}{Delta t}=dfrac{10text{ м}}{2text{ c}}=5text{ м/c}]

Ответ: 5

На рисунке приведён график зависимости координаты тела от времени при прямолинейном движении по оси Ox. Чему равна (upsilon_x) проекция скорости тела на ось Ох? (Ответ дайте в м/с)

Т.к. пройденный путь тела линейно уменьшается, тело движется равномерно и прямолинейно, и скорость тела постоянна: (upsilon_x=const). По закону прямолинейного равномерного движения тела: [Delta S=upsilon_xDelta t,] где (Delta S=-50text{ м}-50text{ м}=-100) — перемещение тела, а (Delta t=40 c) — время перемещения.
Отсюда выразим (upsilon_x): [upsilon_x=dfrac{Delta S}{Delta t}=dfrac{-100text{ м}}{40text{ c}}=-2,5~dfrac{text{м}}{text{c}}]

Ответ: -2,5

На рисунке приведен график зависимости координаты тела от времени при прямолинейном движении по оси (x). Какова проекция (upsilon_x) скорости тела в промежутке от 5 (c) до 8 (c)? (Ответ дайте в м/с)

Найдем изменение координаты тела в промежутке от 5 (c) до 8 (c). Для этого из конечной координаты вычтем начальную: [Delta x=x_text{к}-x_text{н}]

Подставим исходные данные: [Delta x=(-3)text{ м}-3text{ м}=-6text{ м}]

Найдем изменение времени в промежутке от 5 (c) до 8 (c): [Delta t=t_text{к}-t_text{н}]

Подставим исходные данные: [Delta t=8text{ с}-5text{ с}=3text{ c}]

Найдем проекцию скорости тела:

[upsilon_x=frac{Delta x}{Delta t}]

Подставим исходные данные: [upsilon_x=frac{-6text{ м}}{3text{ c}}=-2text{ м/c}]

Ответ: -2

Движение двух велосипедистов задано уравнениями (x_1=3t) (м) и (x_2=12-t) (м). Велосипедисты двигаются вдоль одной прямой. Найдите координату (x) места встречи велосипедистов. (Ответ дайте в метрах)

1 способ:
Велосипедисты встретятся, если совпадут их координаты, отсюда: [x_1=x_2]
Подставим уравнения: [3t=12-t] [4t=12]
Отсюда время, в которое встретятся велосипедисты: [t=3text{ c}]
Найдем координату (x) места встречи велосипедистов, для этого подставим время (t) в оба уравнения: [x_1=3cdot3=9text{ м}] [x_2=12-3=9text{ м}]
2 способ:
Изобразим движение велосипедистов: Найдем пересечение графиков и опустим перпендикуляр к оси (oY). Отсюда очевидно, что ответ 9 м.

Ответ: 9

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

На чтение 1 мин Просмотров 4 Опубликовано 5 марта, 2023

Вариант 220404 пробный ЕГЭ 2022 по физике 11 класс 100 баллов с ответами Решение и ответы на задачи на официальном сайте источника онлайн.

Решу ЕГЭ 2022 физика 11 класс пробный тренировочный вариант 100 баллов №14 КИМ №220404 в форме типового экзамена ЕГЭ 2022

Варианты ответов и решение задачи ТУТ: https://100ballnik.com/%d0%b2%d0%b0%d1%80%d0%b8%d0%b0%d0%bd%d1%82-220404-%d0%bf%d1%80%d0%be%d0%b1%d0%bd%d1%8b%d0%b9-%d0%b5%d0%b3%d1%8d-2022-%d0%bf%d0%be-%d1%84%d0%b8%d0%b7%d0%b8%d0%ba%d0%b5-11-%d0%ba%d0%bb%d0%b0%d1%81%d1%81/

Ответы и решение задачи онлайн

Оставляйте комментарии на сайте, обсуждайте их решения и ответы, предлагайте альтернативные варианты ответов.

Какие официальные изменения появились в КИМах (контрольно-измерительных материалах), и по каким предметам. Tutortop выяснил последние новости сдачи экзамена в 2023 году на 10 марта. Смотрите, какие изменения затронут школьников со всей России, о чём важно знать при экзаменационной подготовке.

Согласно официальному сайту ФИПИ, наибольшее количество изменений в 2023 году появилось в КИМах ЕГЭ для экзамена по русскому языку, а также по базовой и профильной математике.  Выпускников, которые будут сдавать  экзамен по географии, изменения ЕГЭ в 2023 году не коснулись. 

ЕГЭ по русскому языку

В части 1 экзамена:

  1. В этом году изменился порядок экзаменационных заданий на основе микротекста.
  2. Изменения в формулировке задания № 2, у школьников появилась возможность выбрать несколько вариантов ответа.
  3. № 3, 21, 26 получили статус повышенного уровня. 
  4. Обновились материалы для подготовки, Орфоэпический словник для № 4, появилась возможность выбрать несколько вариантов ответа, и Словарик паронимов для № 5. Ранее в них было меньше слов.
  5. За № 8 можно получить 3 балла вместо 5.
  6. Задание № 9 стало похоже на № 10–12.

В части 2 экзамена:

  1. Изменилась формулировка в № 27 и критерии оценки текста, в материалах больше нет понятия «негрубая ошибка», максимальный балл теперь 5 вместо 6.
  2. Изменились критерии оценивания сочинения, касающиеся фактических ошибок.
  3. Исчезли ограничения на максимальный объём сочинения и количество слов.
  4. Изменён первичный балл за сочинение, в этом году составит 54 вместо 58.

ЕГЭ по математике

Базовый уровень экзамена по математике: В самих задачах изменений нет, в материалах их распределили по группам: практические задачи из разных разделов математики, задачи по геометрии, по алгебре и по началам математического анализа.

Профильный уровень экзамена по математике: Содержание задач не менялось, как и в базовом уровне, их перегруппировали по блокам: задачи по геометрии, по комбинаторике, статистике и теории вероятностей, в конце — алгебра и начала математического анализа.

ЕГЭ по физике

  1. В этом году во вторую часть добавились задачи по статистике к задачам на применение законов Ньютона и законов сохранения.
  2. Перегруппировались задания первой части, линии 1 и 2 перенесли на линии 21 и 22.

ЕГЭ по химии

  1. В задании № 23 теперь все элементы будут в виде текста вместо таблицы.
  2. Поменялись местами № 33 и 34.
  3. № 9, 12 и 16 теперь повышенного уровня сложности.

ЕГЭ по биологии

  1. В первой части теперь на одно задание больше: 29 вместо 28.
  2. Задания перегруппировали в единые модули: «Многообразие растений и грибов» и «Многообразие животных» — 9–12, «Организм человека и его здоровье» — 13–16.
  3. Вопросы с кратким ответом теперь будут в разделе «Клетка и организм — биологические системы» — № 5–6.
  4. Больше не будет линии 24 с анализом биологической информации. № 23 и 24 теперь являются общим модулем, проверяющим методологические умения школьников.

ЕГЭ по истории

  1. Большее внимание уделяется истории Великой Отечественной войны, не менее 20% вопросов будут проверять знания школьников по этой теме.
  2. Увеличилось количество заданий: 21 вместо 19. Появилось задание на проверку фактов Великой Отечественной войны и на сравнение исторических явлений.
  3. Максимальная оценка теперь 42 вместо 38.
  4. Уточнили критерии оценки № 18 и 19.
  5. Увеличилось время выполнения работы: 210 минут вместо 180.

ЕГЭ по обществознанию

  1. Изменилась формулировка задания № 18.
  2. За № 25 теперь можно получить 6 баллов вместо 4.
  3. А вот за № 3 теперь можно получить только 1 балл.
  4. Максимальная оценка в этом году — 58 вместо 57.

ЕГЭ по литературе

  1. Правильное количество ответов в задании № 9 теперь может варьироваться от 2 до 4.
  2. Скорректировали первый критерий оценивания сочинения.

ЕГЭ по иностранным языкам: английский, немецкий, французский, испанский язык

  1. В разделе «Грамматика и лексика» количество заданий сократили до 18.
  2. Максимум за выполнение № 1 и 11 в письменной части составит 3 балла, за выполнение № 2 и 10 — 4 балла.
  3. Максимальный первичный балл уменьшился: 86 вместо 100.
  4. Уточнены формулировки и критерии оценивания заданий № 3, 4, 37, 38.

ЕГЭ по китайскому языку

  1. В задании № 17 нужно заполнить пропуск подходящей лексической единицей, в № 23 — результативной морфемой, в № 26 установить верную последовательность фрагментов с точки зрения грамматики.
  2. В № 15, 16, 17, 18, 22, 23 теперь всего 4 варианта ответа вместо 5.
  3. В разделе «Говорение» для выпускников повысились требования, ответ на № 2 теперь должен состоять из 10–12 фраз. Скорректирована формулировка № 3.

ЕГЭ Информатика

  1. Изменилось содержание задания № 6, теперь в нем будет два задания — анализ алгоритма для конкретного исполнителя и вычисление простейших результатов работы: вычислительных алгоритмов и алгоритмов управления исполнителями.
  2. В № 22 вам предложат специальный файл для решения задачи по параллельному программированию и технологиям организации многопроцессорных вычислений.

ЕГЭ География

Изменений нет.

Как видите, новости совсем не страшные, основной упор сделан на организацию материала в КИМах и сами формулировки вопросов. Изменения не сильно затронули сам процесс сдачи и политику проведения ЕГЭ в этом году. Выпускникам осталось только подготовиться к экзамену и выбрать дальнейший образовательный маршрут. 

Для школьников, занятых подготовкой к ОГЭ, важно помнить, что в этом году разработан новый порядок проведения ЕГЭ в России, который вступит в силу не ранее сентября 2023 года. Если проект утвердят, выпускники смогут вносить изменения в перечень предметов по выбору, который указали ранее.

Подготовка к ОГЭ и ЕГЭ

Среднее общее образование

Линия УМК А. В. Грачева. Физика (10-11) (баз., углубл.)

Линия УМК А. В. Грачева. Физика (7-9)

Линия УМК А. В. Перышкина. Физика (7-9)

Разбираем задания ЕГЭ по физике (Вариант С) с учителем.

Лебедева Алевтина Сергеевна, учитель физики, стаж работы 27 лет. Почетная грамота Министерства образования Московской области (2013 год), Благодарность Главы Воскресенского муниципального района (2015 год), Грамота Президента Ассоциации учителей математики и физики Московской области (2015 год).

В работе представлены задания разных уровней сложности: базового, повышенного и высокого. Задания базового уровня, это простые задания, проверяющие усвоение наиболее важных физических понятий, моделей, явлений и законов. Задания повышенного уровня направлены на проверку умения использовать понятия и законы физики для анализа различных процессов и явлений, а также умения решать задачи на применение одного-двух законов (формул) по какой-либо из тем школьного курса физики. В работе 4 задания части 2 являются заданиями высокого уровня сложности и проверяют умение использовать законы и теории физики в измененной или новой ситуации. Выполнение таких заданий требует применения знаний сразу из двух трех разделов физики, т.е. высокого уровня подготовки. Данный вариант полностью соответствует демонстрационному варианту ЕГЭ 2017 года, задания взяты из открытого банка заданий ЕГЭ.

На рисунке представлен график зависимости модуля скорости от времени t
. Определите по графику путь, пройденный автомобилем в интервале времени от 0 до 30 с.

Решение.
Путь, пройденный автомобилем в интервале времени от 0 до 30 с проще всего определить как площадь трапеции, основаниями которой являются интервалы времени (30 – 0) = 30 c и (30 – 10) = 20 с, а высотой является скорость v
= 10 м/с, т.е.

S
=
(30 + 20) с
10 м/с = 250 м.
2

Ответ.
250 м.

Груз массой 100 кг поднимают вертикально вверх с помощью троса. На рисунке приведена зависимость проекции скорости V
груза на ось, направленную вверх, от времени t
. Определите модуль силы натяжения троса в течение подъема.

Решение.
По графику зависимости проекции скорости v
груза на ось, направленную вертикально вверх, от времени t
, можно определить проекцию ускорения груза

a

=

v
= (8 – 2) м/с = 2 м/с 2 .
t
3 с

На груз действуют: сила тяжести , направленная вертикально вниз и сила натяжения троса , направленная вдоль троса вертикально вверх смотри рис. 2. Запишем основное уравнение динамики. Воспользуемся вторым законом Ньютона. Геометрическая сумма сил действующих на тело равна произведению массы тела на сообщаемое ему ускорение.

+ = (1)

Запишем уравнение для проекции векторов в системе отсчета, связанной с землей, ось OY направим вверх. Проекция силы натяжения положительная, так как направление силы совпадает с направлением оси OY, проекция силы тяжести отрицательная, так как вектор силы противоположно направлен оси OY, проекция вектора ускорения тоже положительная, так тело движется с ускорением вверх. Имеем

T
mg
= ma

(2);

из формулы (2) модуль силы натяжения

Т
= m
(g
+ a

) = 100 кг (10 + 2) м/с 2 = 1200 Н.

Ответ
. 1200 Н.

Тело тащат по шероховатой горизонтальной поверхности с постоянной скоростью модуль которой равен 1, 5 м/с, прикладывая к нему силу так, как показано на рисунке (1). При этом модуль действующей на тело силы трения скольжения равен 16 Н. Чему равна мощность, развиваемая силой F
?

Решение.
Представим себе физический процесс, заданный в условии задачи и сделаем схематический чертеж с указанием всех сил, действующих на тело (рис.2). Запишем основное уравнение динамики.

Тр + + = (1)

Выбрав систему отсчета, связанную с неподвижной поверхностью, запишем уравнения для проекции векторов на выбранные координатные оси. По условию задачи тело движется равномерно, так как его скорость постоянна и равна 1,5 м/с. Это значит, ускорение тела равно нулю. По горизонтали на тело действуют две силы: сила трения скольжения тр. и сила , с которой тело тащат. Проекция силы трения отрицательная, так как вектор силы не совпадает с направлением оси Х
. Проекция силы F
положительная. Напоминаем, для нахождения проекции опускаем перпендикуляр из начала и конца вектора на выбранную ось. С учетом этого имеем: F
cosα – F
тр = 0; (1) выразим проекцию силы F
, это F
cosα = F
тр = 16 Н; (2) тогда мощность, развиваемая силой , будет равна N
= F
cosα V
(3) Сделаем замену, учитывая уравнение (2), и подставим соответствующие данные в уравнение (3):

N
= 16 Н · 1,5 м/с = 24 Вт.

Ответ.
24 Вт.

Груз, закрепленный на легкой пружине жесткостью 200 Н/м, совершает вертикальные колебания. На рисунке представлен график зависимости смещения x
груза от времени t
. Определите, чему равна масса груза. Ответ округлите до целого числа.

Решение.
Груз на пружине совершает вертикальные колебания. По графику зависимости смещения груза х
от времени t
, определим период колебаний груза. Период колебаний равен Т
= 4 с; из формулы Т
= 2π
выразим массу m
груза.

= T ; m
= T
2
; m
= k
T
2
; m
= 200 H/м
(4 с) 2 = 81,14 кг ≈ 81 кг.
k

2

2
39,438

Ответ:
81 кг.

На рисунке показана система из двух легких блоков и невесомого троса, с помощью которого можно удерживать в равновесии или поднимать груз массой 10 кг. Трение пренебрежимо мало. На основании анализа приведенного рисунка выберите два
верных утверждения и укажите в ответе их номера.

  1. Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 100 Н.
  2. Изображенная на рисунке система блоков не дает выигрыша в силе.
  3. h
    , нужно вытянуть участок веревки длиной 3h
    .
  4. Для того чтобы медленно поднять груз на высоту h
    h
    .

Решение.
В данной задаче необходимо вспомнить простые механизмы, а именно блоки: подвижный и неподвижный блок. Подвижный блок дает выигрыш в силе в два раза, при этом участок веревки нужно вытянуть в два раза длиннее, а неподвижный блок используют для перенаправления силы. В работе простые механизмы выигрыша не дают. После анализа задачи сразу выбираем нужные утверждения:

  1. Для того чтобы медленно поднять груз на высоту h
    , нужно вытянуть участок веревки длиной 2h
    .
  2. Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 50 Н.

Ответ.
45.

В сосуд с водой полностью погружен алюминиевый груз, закрепленный на невесомой и нерастяжимой нити. Груз не касается стенок и дна сосуда. Затем в такой же сосуд с водой погружают железный груз, масса которого равна массе алюминиевого груза. Как в результате этого изменятся модуль силы натяжения нити и модуль действующей на груз силы тяжести?

  1. Увеличивается;
  2. Уменьшается;
  3. Не изменяется.

Решение.
Анализируем условие задачи и выделяем те параметры, которые не меняются в ходе исследования: это масса тела и жидкость, в которую погружают тело на нити. После этого лучше выполнить схематический рисунок и указать действующие на груз силы: сила натяжения нити F
упр, направленная вдоль нити вверх; сила тяжести , направленная вертикально вниз; архимедова сила a

, действующая со стороны жидкости на погруженное тело и направленная вверх. По условию задачи масса грузов одинакова, следовательно, модуль действующей на груз силы тяжести не меняется. Так как плотность грузов разная, то объем тоже будет разный

Плотность железа 7800 кг/м 3 , а алюминиевого груза 2700 кг/м 3 . Следовательно, V
ж V a

. Тело в равновесии, равнодействующая всех сил, действующих на тело равна нулю. Направим координатную ось OY вверх. Основное уравнение динамики с учетом проекции сил запишем в виде F
упр + F a

mg
= 0; (1) Выразим силу натяжения F
упр = mg
F a

(2); архимедова сила зависит от плотности жидкости и объема погруженной части тела F a

= ρgV
п.ч.т. (3); Плотность жидкости не меняется, а объем тела из железа меньше V
ж V a

, поэтому архимедова сила, действующая на железный груз будет меньше. Делаем вывод о модуле силы натяжения нити, работая с уравнение (2), он возрастет.

Ответ.
13.

Брусок массой m
соскальзывает с закрепленной шероховатой наклонной плоскости с углом α при основании. Модуль ускорения бруска равен a
, модуль скорости бруска возрастает. Сопротивлением воздуха можно пренебречь.

Установите соответствие между физическими величинами и формулами, при помощи которых их можно вычислить. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Б) Коэффициент трения бруска о наклонную плоскость

3) mg
cosα

Решение.
Данная задача требует применение законов Ньютона. Рекомендуем сделать схематический чертеж; указать все кинематические характеристики движения. Если возможно, изобразить вектор ускорения и векторы всех сил, приложенных к движущемуся телу; помнить, что силы, действующие на тело, – результат взаимодействия с другими телами. Затем записать основное уравнение динамики. Выбрать систему отсчета и записать полученное уравнение для проекции векторов сил и ускорений;

Следуя предложенному алгоритму, сделаем схематический чертеж (рис. 1). На рисунке изображены силы, приложенные к центру тяжести бруска, и координатные оси системы отсчета, связанной с поверхностью наклонной плоскости. Так как все силы постоянны, то движение бруска будет равнопеременным с увеличивающейся скоростью, т.е. вектор ускорения направлен в сторону движения. Выберем направление осей как указано на рисунке. Запишем проекции сил, на выбранные оси.

Запишем основное уравнение динамики:

Тр + = (1)

Запишем данное уравнение (1) для проекции сил и ускорения.

На ось OY: проекция силы реакции опоры положительная, так как вектор совпадает с направлением оси OY N y
= N
; проекция силы трения равна нулю так как вектор перпендикулярен оси; проекция силы тяжести будет отрицательная и равная mg y
=


mg
cosα
; проекция вектора ускорения a
y
= 0, так как вектор ускорения перпендикулярен оси. Имеем N
mg
cosα
= 0 (2) из уравнения выразим силу реакции действующей на брусок, со стороны наклонной плоскости. N
= mg
cosα
(3). Запишем проекции на ось OX.

На ось OX: проекция силы N
равна нулю, так как вектор перпендикулярен оси ОХ; Проекция силы трения отрицательная (вектор направлен в противоположную сторону относительно выбранной оси); проекция силы тяжести положительная и равна mg x
= mg
sinα
(4) из прямоугольного треугольника. Проекция ускорения положительная a
x
= a

; Тогда уравнение (1) запишем с учетом проекции mg
sinα – F
тр = ma

(5); F
тр = m
(g
sinα
a

) (6); Помним, что сила трения пропорциональна силе нормального давления N
.

По определению F
тр = μN
(7), выразим коэффициент трения бруска о наклонную плоскость.

μ
=
F
тр
= m
(g
sinα
a

)

= tgα
a (8).
N
mg
cosα
g
cosα

Выбираем соответствующие позиции для каждой буквы.

Ответ.
A – 3; Б – 2.

Задание 8. Газообразный кислород находится в сосуде объемом 33,2 литра. Давление газа 150 кПа, его температура 127° С. Определите массу газа в этом сосуде. Ответ выразите в граммах и округлите до целого числа.

Решение.
Важно обратить внимание на перевод единиц в систему СИ. Температуру переводим в Кельвины T
= t
°С + 273, объем V
= 33,2 л = 33,2 · 10 –3 м 3 ; Давление переводим P
= 150 кПа = 150 000 Па. Используя уравнение состояния идеального газа

выразим массу газа.

Обязательно обращаем внимание, в каких единица просят записать ответ. Это очень важно.

Ответ.
48 г.

Задание 9.
Идеальный одноатомный газ в количестве 0,025 моль адиабатически расширился. При этом его температура понизилась с +103°С до +23°С. Какую работу совершил газ? Ответ выразите в Джоулях и округлите до целого числа.

Решение.
Во-первых, газ одноатомный число степеней свободы i
= 3, во-вторых, газ расширяется адиабатически – это значит без теплообмена Q
= 0. Газ совершает работу за счет уменьшения внутренней энергии. С учетом этого, первый закон термодинамики запишем в виде 0 = ∆U
+ A
г; (1) выразим работу газа A
г = –∆U
(2); Изменение внутренней энергии для одноатомного газа запишем как

Ответ.
25 Дж.

Относительная влажность порции воздуха при некоторой температуре равна 10 %. Во сколько раз следует изменить давление этой порции воздуха для того, чтобы при неизменной температуре его относительная влажность увеличилась на 25 %?

Решение.
Вопросы, связанные с насыщенным паром и влажностью воздуха, чаще всего вызывают затруднения у школьников. Воспользуемся формулой для расчета относительной влажности воздуха

По условию задачи температура не изменяется, значит, давление насыщенного пара остается тем же. Запишем формулу (1) для двух состояний воздуха.

φ
1 = 10 % ; φ
2 = 35 %

Выразим давления воздуха из формул (2), (3) и найдем отношение давлений.

P
2
= φ
2
= 35 = 3,5
P
1
φ
1
10

Ответ.
Давление следует увеличить в 3,5 раза.

Горячее вещество в жидком состоянии медленно охлаждалось в плавильной печи с постоянной мощностью. В таблице приведены результаты измерений температуры вещества с течением времени.

Выберите из предложенного перечня два
утверждения, которые соответствуют результатам проведенных измерений и укажите их номера.

  1. Температура плавления вещества в данных условиях равна 232°С.
  2. Через 20 мин. после начала измерений вещество находилось только в твердом состоянии.
  3. Теплоемкость вещества в жидком и твердом состоянии одинакова.
  4. Через 30 мин. после начала измерений вещество находилось только в твердом состоянии.
  5. Процесс кристаллизации вещества занял более 25 минут.

Решение.
Так как вещество охлаждалось, то его внутренняя энергия уменьшалась. Результаты измерения температуры, позволяют определить температуру, при которой вещество начинает кристаллизоваться. Пока вещество переходит из жидкого состояния в твердое, температура не меняется. Зная, что температура плавления и температура кристаллизации одинаковы, выбираем утверждение:

1. Tемпература плавления вещества в данных условиях равна 232°С.

Второе верное утверждение это:

4. Через 30 мин. после начала измерений вещество находилось только в твердом состоянии. Так как температура в этот момент времени, уже ниже температуры кристаллизации.

Ответ.
14.

В изолированной системе тело А имеет температуру +40°С, а тело Б температуру +65°С. Эти тела привели в тепловой контакт друг с другом. Через некоторое время наступило тепловое равновесие. Как в результате изменилась температура тела Б и суммарная внутренняя энергия тела А и Б?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличилась;
  2. Уменьшилась;
  3. Не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение.
Если в изолированной системе тел не происходит никаких превращений энергии кроме теплообмена, то количество теплоты, отданное телами, внутренняя энергия которых уменьшается, равно количеству теплоты, полученному телами, внутренняя энергия которых увеличивается. (По закону сохранения энергии.) При этом суммарная внутренняя энергия системы не меняется. Задачи такого типа решаются на основании уравнения теплового баланса.

U = ∑
n
U i =
0 (1);
i
= 1

где ∆U
– изменение внутренней энергии.

В нашем случае в результате теплообмена внутренняя энергия тела Б уменьшается, а значит уменьшается температура этого тела. Внутренняя энергия тела А увеличивается, так как тело получило количество теплоты от тела Б, то температура его увеличится. Суммарная внутренняя энергия тел А и Б не изменяется.

Ответ.
23.

Протон p
, влетевший в зазор между полюсами электромагнита, имеет скорость , перпендикулярную вектору индукции магнитного поля, как показано на рисунке. Куда направлена действующая на протон сила Лоренца относительно рисунка (вверх, к наблюдателю, от наблюдателя, вниз, влево, вправо)

Решение.
На заряженную частицу магнитное поле действует с силой Лоренца. Для того чтобы определить направление этой силы, важно помнить мнемоническое правило левой руки, не забывать учитывать заряд частицы. Четыре пальца левой руки направляем по вектору скорости, для положительно заряженной частицы, вектор должен перпендикулярно входить в ладонь, большой палец отставленный на 90° показывает направление действующей на частицу силы Лоренца. В результате имеем, что вектор силы Лоренца направлен от наблюдателя относительно рисунка.

Ответ.
от наблюдателя.

Модуль напряженности электрического поля в плоском воздушном конденсаторе емкостью 50 мкФ равен 200 В/м. Расстояние между пластинами конденсатора 2 мм. Чему равен заряд конденсатора? Ответ запишите в мкКл.

Решение.
Переведем все единицы измерения в систему СИ. Емкость С = 50 мкФ = 50 · 10 –6 Ф, расстояние между пластинами d
= 2 · 10 –3 м. В задаче говорится о плоском воздушном конденсаторе – устройстве для накопления электрического заряда и энергии электрического поля. Из формулы электрической емкости

где d
– расстояние между пластинами.

Выразим напряжение U
= E · d
(4); Подставим (4) в (2) и рассчитаем заряд конденсатора.

q
= C
· Ed
= 50 · 10 –6 · 200 · 0,002 = 20 мкКл

Обращаем внимание, в каких единицах нужно записать ответ. Получили в кулонах, а представляем в мкКл.

Ответ.
20 мкКл.

Ученик провел опыт по преломлению света, представленный на фотографии. Как изменяется при увеличении угла падения угол преломления света, распространяющегося в стекле, и показатель преломления стекла?

  1. Увеличивается
  2. Уменьшается
  3. Не изменяется
  4. Запишите в таблицу выбранные цифры для каждого ответа. Цифры в ответе могут повторяться.

Решение.
В задачах такого плана вспоминаем, что такое преломление. Это изменение направления распространения волны при прохождении из одной среды в другую. Вызвано оно тем, что скорости распространения волн в этих средах различны. Разобравшись из какой среды в какую свет распространяется, запишем закона преломления в виде

где n
2 – абсолютный показатель преломления стекла, среда куда идет свет; n
1 – абсолютный показатель преломления первой среды, откуда свет идет. Для воздуха n
1 = 1. α
– угол падения луча на поверхность стеклянного полуцилиндра, β
– угол преломления луча в стекле. Причем, угол преломления будет меньше угла падения, так как стекло оптически более плотная среда – среда с большим показателем преломления. Скорость распространения света в стекле меньше. Обращаем внимание, что углы измеряем от перпендикуляра, восстановленного в точке падения луча. Если увеличивать угол падения, то и угол преломления будет расти. Показатель преломления стекла от этого меняться не будет.

Ответ.

Медная перемычка в момент времени t
0 = 0 начинает двигаться со скоростью 2 м/с по параллельным горизонтальным проводящим рельсам, к концам которых подсоединен резистор сопротивлением 10 Ом. Вся система находится в вертикальном однородном магнитном поле. Сопротивление перемычки и рельсов пренебрежимо мало, перемычка все время расположена перпендикулярно рельсам. Поток Ф
вектора магнитной индукции через контур, образованный перемычкой, рельсами и резистором, изменяется с течением времени t
так, как показано на графике.

Используя график, выберите два верных утверждения и укажите в ответе их номера.

  1. К моменту времени t
    = 0,1 с изменение магнитного потока через контур равно 1 мВб.
  2. Индукционный ток в перемычке в интервале от t
    = 0,1 с t
    = 0,3 с максимален.
  3. Модуль ЭДС индукции, возникающей в контуре, равен 10 мВ.
  4. Сила индукционного тока, текущего в перемычке, равна 64 мА.
  5. Для поддержания движения перемычки к ней прикладывают силу, проекция которой на направление рельсов равна 0,2 Н.

Решение.
По графику зависимости потока вектора магнитной индукции через контур от времени определим участки, где поток Ф
меняется, и где изменение потока равно нулю. Это позволит нам определить интервалы времени, в которые в контуре будет возникать индукционный ток. Верное утверждение:

1) К моменту времени t
= 0,1 с изменение магнитного потока через контур равно 1 мВб ∆Ф
= (1 – 0) · 10 –3 Вб; Модуль ЭДС индукции, возникающей в контуре определим используя закон ЭМИ

Ответ.
13.

По графику зависимости силы тока от времени в электрической цепи, индуктивность которой равна 1 мГн, определите модуль ЭДС самоиндукции в интервале времени от 5 до 10 с. Ответ запишите в мкВ.

Решение.
Переведем все величины в систему СИ, т.е. индуктивность 1 мГн переведем в Гн, получим 10 –3 Гн. Силу тока, показанной на рисунке в мА также будем переводить в А путем умножения на величину 10 –3 .

Формула ЭДС самоиндукции имеет вид

при этом интервал времени дан по условию задачи

t
= 10 c – 5 c = 5 c

секунд и по графику определяем интервал изменения тока за это время:

I

= 30 · 10 –3 – 20 · 10 –3 = 10 · 10 –3 = 10 –2 A.

Подставляем числовые значения в формулу (2), получаем

|

Ɛ
|

= 2 ·10 –6 В, или 2 мкВ.

Ответ.
2.

Две прозрачные плоскопараллельные пластинки плотно прижаты друг к другу. Из воздуха на поверхность первой пластинки падает луч света (см. рисунок). Известно, что показатель преломления верхней пластинки равен n
2 = 1,77. Установите соответствие между физическими величинами и их значениями. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Решение.
Для решения задач о преломлении света на границе раздела двух сред, в частности задач на прохождение света через плоскопараллельные пластинки можно рекомендовать следующий порядок решения: сделать чертеж с указанием хода лучей, идущих из одной среды в другую; в точке падения луча на границе раздела двух сред провести нормаль к поверхности, отметить углы падения и преломления. Особо обратить внимание на оптическую плотность рассматриваемых сред и помнить, что при переходе луча света из оптически менее плотной среды в оптически более плотную среду угол преломления будет меньше угла падения. На рисунке дан угол между падающим лучом и поверхностью, а нам нужен угол падения. Помним, что углы определяются от перпендикуляра, восстановленного в точке падения. Определяем, что угол падения луча на поверхность 90° – 40° = 50°, показатель преломления n
2 = 1,77; n
1 = 1 (воздух).

Запишем закон преломления

sinβ
=
sin50 = 0,4327 ≈ 0,433
1,77

Построим примерный ход луча через пластинки. Используем формулу (1) для границы 2–3 и 3–1. В ответе получаем

А) Синус угла падения луча на границу 2–3 между пластинками – это 2) ≈ 0,433;

Б) Угол преломления луча при переходе границы 3–1 (в радианах) – это 4) ≈ 0,873.

Ответ
. 24.

Определите, сколько α – частиц и сколько протонов получается в результате реакции термоядерного синтеза

+ → x
+ y
;

Решение.
При всех ядерных реакциях соблюдаются законы сохранения электрического заряда и числа нуклонов. Обозначим через x – количество альфа частиц, y– количество протонов. Составим уравнения

+ → x + y;

решая систему имеем, что x
= 1; y
= 2

Ответ.
1 – α
-частица; 2 – протона.

Модуль импульса первого фотона равен 1,32 · 10 –28 кг·м/с, что на 9,48 · 10 –28 кг·м/с меньше, чем модуль импульса второго фотона. Найдите отношение энергии E 2 /E 1 второго и первого фотонов. Ответ округлите до десятых долей.

Решение.
Импульс второго фотона больше импульса первого фотона по условию значит можно представить p
2 = p
1 + Δp
(1). Энергию фотона можно выразить через импульс фотона, используя следующие уравнения. Это E

= mc
2 (1) и p
= mc
(2), тогда

E
= pc
(3),

где E
– энергия фотона, p
– импульс фотона, m – масса фотона, c
= 3 · 10 8 м/с – скорость света. С учетом формулы (3) имеем:

E
2
= p
2
= 8,18;
E
1
p
1

Ответ округляем до десятых и получаем 8,2.

Ответ.
8,2.

Ядро атома претерпело радиоактивный позитронный β – распад. Как в результате этого изменялись электрический заряд ядра и количество нейтронов в нем?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличилась;
  2. Уменьшилась;
  3. Не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение.
Позитронный β
– распад в атомном ядре происходит при превращений протона в нейтрон с испусканием позитрона. В результате этого число нейтронов в ядре увеличивается на единицу, электрический заряд уменьшается на единицу, а массовое число ядра остается неизменным. Таким образом, реакция превращения элемента следующая:

Ответ.
21.

В лаборатории было проведено пять экспериментов по наблюдению дифракции с помощью различных дифракционных решеток. Каждая из решеток освещалась параллельными пучками монохроматического света с определенной длиной волны. Свет во всех случаях падал перпендикулярно решетке. В двух из этих экспериментов наблюдалось одинаковое количество главных дифракционных максимумов. Укажите сначала номер эксперимента, в котором использовалась дифракционная решетка с меньшим периодом, а затем – номер эксперимента, в котором использовалась дифракционная решетка с большим периодом.

Решение.
Дифракцией света называется явление светового пучка в область геометрической тени. Дифракцию можно наблюдать в том случае, когда на пути световой волны встречаются непрозрачные участки или отверстия в больших по размерам и непрозрачных для света преградах, причем размеры этих участков или отверстий соизмеримы с длиной волны. Одним из важнейших дифракционных устройств является дифракционная решетка. Угловые направления на максимумы дифракционной картины определяются уравнением

d
sinφ
= k
λ
(1),

где d
– период дифракционной решетки, φ
– угол между нормалью к решетке и направлением на один из максимумов дифракционной картины, λ
– длина световой волны, k
– целое число, называемое порядком дифракционного максимума. Выразим из уравнения (1)

Подбирая пары согласно условию эксперимента, выбираем сначала 4 где использовалась дифракционная решетка с меньшим периодом, а затем – номер эксперимента, в котором использовалась дифракционная решетка с большим периодом – это 2.

Ответ.
42.

По проволочному резистору течет ток. Резистор заменили на другой, с проволокой из того же металла и той же длины, но имеющей вдвое меньшую площадь поперечного сечения, и пропустили через него вдвое меньший ток. Как изменятся при этом напряжение на резисторе и его сопротивление?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличится;
  2. Уменьшится;
  3. Не изменится.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение.
Важно помнить от каких величин зависит сопротивление проводника. Формула для расчета сопротивления имеет вид

закона Ома для участка цепи, из формулы (2), выразим напряжение

U
= I
R
(3).

По условию задачи второй резистор изготовлен из проволоки того же материала, той же длины, но разной площади поперечного сечения. Площадь в два раза меньшая. Подставляя в (1) получим, что сопротивление увеличивается в 2 раза, а сила тока уменьшается в 2 раза, следовательно, напряжение не изменяется.

Ответ.
13.

Период колебаний математического маятника на поверхности Земли в 1, 2 раза больше периода его колебаний на некоторой планете. Чему равен модуль ускорения свободного падения на этой планете? Влияние атмосферы в обоих случаях пренебрежимо мало.

Решение.
Математический маятник – это система, состоящая из нити, размеры которой много больше размеров шарика и самого шарика. Трудность может возникнуть если забыта формула Томсона для периода колебаний математического маятника.

T
= 2π (1);

l

– длина математического маятника; g
– ускорение свободного падения.

По условию

Выразим из (3) g
п = 14,4 м/с 2 . Надо отметить, что ускорение свободного падения зависит от массы планеты и радиуса

Ответ.
14,4 м/с 2 .

Прямолинейный проводник длиной 1 м, по которому течет ток 3 А, расположен в однородном магнитном поле с индукцией В
= 0,4 Тл под углом 30° к вектору . Каков модуль силы, действующей на проводник со стороны магнитного поля?

Решение.
Если в магнитное поле, поместить проводник с током, то поле на проводник с током будет действовать с силой Ампера. Запишем формулу модуля силы Ампера

F
А = I
LB
sinα
;

F
А = 0,6 Н

Ответ. F
А = 0,6 Н.

Энергия магнитного поля, запасенная в катушке при пропускании через нее постоянного тока, равна 120 Дж. Во сколько раз нужно увеличить силу тока, протекающего через обмотку катушки, для того, чтобы запасенная в ней энергия магнитного поля увеличилась на 5760 Дж.

Решение.
Энергия магнитного поля катушки рассчитывается по формуле

По условию W
1 = 120 Дж, тогда W
2 = 120 + 5760 = 5880 Дж.

I

1 2 =

2W
1
; I

2 2 =
2W
2
;
L
L

Тогда отношение токов

I

2 2

= 49; I

2

= 7
I
1 2
I

1

Ответ.
Силу тока нужно увеличить в 7 раз. В бланк ответов Вы вносите только цифру 7.

Электрическая цепь состоит из двух лампочек, двух диодов и витка провода, соединенных, как показано на рисунке. (Диод пропускает ток только в одном направлении, как показано на верхней части рисунка). Какая из лампочек загорится, если к витку приближать северный полюс магнита? Ответ объясните, указав, какие явления и закономерности вы использовали при объяснении.

Решение.
Линии магнитной индукции выходят из северного полюса магнита и расходятся. При приближении магнита магнитный поток через виток провода увеличивается. В соответствии с правило Ленца магнитное поле, создаваемое индукционным током витка, должно быть направлено вправо. По правилу буравчика ток должен идти по часовой стрелке (если смотреть слева). В этом направлении пропускает диод, стоящий в цепи второй лампы. Значит, загорится вторая лампа.

Ответ.
Загорится вторая лампа.

Алюминиевая спица длиной L
= 25 см и площадью поперечного сечения S
= 0,1 см 2 подвешена на нити за верхний конец. Нижний конец опирается на горизонтальное дно сосуда, в который налита вода. Длина погруженной в воду части спицы l

= 10 см. Найти силу F
, с которой спица давит на дно сосуда, если известно, что нить расположена вертикально. Плотность алюминия ρ
а = 2,7 г/см 3 , плотность воды ρ
в = 1,0 г/см 3 . Ускорение свободного падения g
= 10 м/с 2

Решение.
Выполним поясняющий рисунок.

– Сила натяжения нити;

– Сила реакции дна сосуда;

a – архимедова сила, действующая только на погруженную часть тела, и приложенная к центру погруженной части спицы;

– сила тяжести, действующая на спицу со стороны Земли и приложена к центу всей спицы.

По определению масса спицы m
и модуль архимедовой силы выражаются следующим образом: m
= SL
ρ
a (1);

F
a = Sl
ρ
в g
(2)

Рассмотрим моменты сил относительно точки подвеса спицы.

М
(Т
) = 0 – момент силы натяжения; (3)

М
(N) = NL
cosα
– момент силы реакции опоры; (4)

С учетом знаков моментов запишем уравнение

NL
cosα
+ Sl

ρ
в g
(L

l ) cosα
= SL
ρ
a

g

L
cosα
(7)
2 2

учитывая, что по третьему закону Ньютона сила реакции дна сосуда равна силе F
д с которой спица давит на дно сосуда запишем N
= F
д и из уравнения (7) выразим эту силу:

F д = [ 1 L
ρ
a

– (1 –

l )l

ρ
в ]Sg
(8).

2 2L

Подставим числовые данные и получим, что

F
д = 0,025 Н.

Ответ.
F
д = 0,025 Н.

Баллон, содержащий m
1 = 1 кг азота, при испытании на прочность взорвался при температуре t
1 = 327°С. Какую массу водорода m
2 можно было бы хранить в таком баллоне при температуре t
2 = 27°С, имея пятикратный запас прочности? Молярная масса азота M
1 = 28 г/моль, водорода M
2 = 2 г/моль.

Решение.
Запишем уравнение состояния идеального газа Менделеева – Клапейрона для азота

где V
– объем баллона, T
1 = t
1 + 273°C. По условию водород можно хранить при давлении p
2 = p 1 /5; (3) Учитывая, что

можем выразить массу водорода работая сразу с уравнениями (2), (3), (4). Конечная формула имеет вид:

m
2 =
m
1
M
2
T
1
(5).
5 M
1
T
2

После подстановки числовых данных m
2 = 28 г.

Ответ.
m
2 = 28 г.

В идеальном колебательном контуре амплитуда колебаний силы тока в катушке индуктивности I
m
= 5 мА, а амплитуда напряжения на конденсаторе U m
= 2,0 В. В момент времени t
напряжение на конденсаторе равно 1,2 В. Найдите силу тока в катушке в этот момент.

Решение.
В идеальном колебательном контуре сохраняется энергия колебаний. Для момента времени t закон сохранения энергий имеет вид

C
U
2
+ L
I

2

= L
I
m
2
(1)
2 2 2

Для амплитудных (максимальных) значений запишем

а из уравнения (2) выразим

Подставим (4) в (3). В результате получим:

I

= I m
(5)

Таким образом, сила тока в катушке в момент времени t
равна

I
= 4,0 мА.

Ответ.
I

= 4,0 мА.

На дне водоема глубиной 2 м лежит зеркало. Луч света, пройдя через воду, отражается от зеркала и выходит из воды. Показатель преломления воды равен 1,33. Найдите расстояние между точкой входа луча в воду и точкой выхода луча из воды, если угол падения луча равен 30°

Решение.
Сделаем поясняющий рисунок

α
– угол падения луча;

β
– угол преломления луча в воде;

АС – расстояние между точкой входа луча в воду и точкой выхода луча из воды.

По закону преломления света

Рассмотрим прямоугольный ΔАDВ. В нем АD = h
, тогда DВ = АD

tgβ
= h
tgβ
= h
sinα = h
sinβ = h
sinα (4)
cosβ

Получаем следующее выражение:

Подставим числовые значения в полученную формулу (5)

Ответ.
1,63 м.

В рамках подготовки к ЕГЭ предлагаем вам ознакомиться с рабочей программой по физике для 7–9 класса к линии УМК Перышкина А. В.
и рабочей программой углубленного уровня для 10-11 классов к УМК Мякишева Г.Я.
Программы доступны для просмотра и бесплатного скачивания всем зарегистрированным пользователям.

Подготовка к ОГЭ и ЕГЭ

Среднее общее образование

Линия УМК А. В. Грачева. Физика (10-11) (баз., углубл.)

Линия УМК А. В. Грачева. Физика (7-9)

Линия УМК А. В. Перышкина. Физика (7-9)

Разбираем задания ЕГЭ по физике (Вариант С) с учителем.

Лебедева Алевтина Сергеевна, учитель физики, стаж работы 27 лет. Почетная грамота Министерства образования Московской области (2013 год), Благодарность Главы Воскресенского муниципального района (2015 год), Грамота Президента Ассоциации учителей математики и физики Московской области (2015 год).

В работе представлены задания разных уровней сложности: базового, повышенного и высокого. Задания базового уровня, это простые задания, проверяющие усвоение наиболее важных физических понятий, моделей, явлений и законов. Задания повышенного уровня направлены на проверку умения использовать понятия и законы физики для анализа различных процессов и явлений, а также умения решать задачи на применение одного-двух законов (формул) по какой-либо из тем школьного курса физики. В работе 4 задания части 2 являются заданиями высокого уровня сложности и проверяют умение использовать законы и теории физики в измененной или новой ситуации. Выполнение таких заданий требует применения знаний сразу из двух трех разделов физики, т.е. высокого уровня подготовки. Данный вариант полностью соответствует демонстрационному варианту ЕГЭ 2017 года, задания взяты из открытого банка заданий ЕГЭ.

На рисунке представлен график зависимости модуля скорости от времени t
. Определите по графику путь, пройденный автомобилем в интервале времени от 0 до 30 с.

Решение.
Путь, пройденный автомобилем в интервале времени от 0 до 30 с проще всего определить как площадь трапеции, основаниями которой являются интервалы времени (30 – 0) = 30 c и (30 – 10) = 20 с, а высотой является скорость v
= 10 м/с, т.е.

S
=
(30 + 20) с
10 м/с = 250 м.
2

Ответ.
250 м.

Груз массой 100 кг поднимают вертикально вверх с помощью троса. На рисунке приведена зависимость проекции скорости V
груза на ось, направленную вверх, от времени t
. Определите модуль силы натяжения троса в течение подъема.

Решение.
По графику зависимости проекции скорости v
груза на ось, направленную вертикально вверх, от времени t
, можно определить проекцию ускорения груза

a

=

v
= (8 – 2) м/с = 2 м/с 2 .
t
3 с

На груз действуют: сила тяжести , направленная вертикально вниз и сила натяжения троса , направленная вдоль троса вертикально вверх смотри рис. 2. Запишем основное уравнение динамики. Воспользуемся вторым законом Ньютона. Геометрическая сумма сил действующих на тело равна произведению массы тела на сообщаемое ему ускорение.

+ = (1)

Запишем уравнение для проекции векторов в системе отсчета, связанной с землей, ось OY направим вверх. Проекция силы натяжения положительная, так как направление силы совпадает с направлением оси OY, проекция силы тяжести отрицательная, так как вектор силы противоположно направлен оси OY, проекция вектора ускорения тоже положительная, так тело движется с ускорением вверх. Имеем

T
mg
= ma

(2);

из формулы (2) модуль силы натяжения

Т
= m
(g
+ a

) = 100 кг (10 + 2) м/с 2 = 1200 Н.

Ответ
. 1200 Н.

Тело тащат по шероховатой горизонтальной поверхности с постоянной скоростью модуль которой равен 1, 5 м/с, прикладывая к нему силу так, как показано на рисунке (1). При этом модуль действующей на тело силы трения скольжения равен 16 Н. Чему равна мощность, развиваемая силой F
?

Решение.
Представим себе физический процесс, заданный в условии задачи и сделаем схематический чертеж с указанием всех сил, действующих на тело (рис.2). Запишем основное уравнение динамики.

Тр + + = (1)

Выбрав систему отсчета, связанную с неподвижной поверхностью, запишем уравнения для проекции векторов на выбранные координатные оси. По условию задачи тело движется равномерно, так как его скорость постоянна и равна 1,5 м/с. Это значит, ускорение тела равно нулю. По горизонтали на тело действуют две силы: сила трения скольжения тр. и сила , с которой тело тащат. Проекция силы трения отрицательная, так как вектор силы не совпадает с направлением оси Х
. Проекция силы F
положительная. Напоминаем, для нахождения проекции опускаем перпендикуляр из начала и конца вектора на выбранную ось. С учетом этого имеем: F
cosα – F
тр = 0; (1) выразим проекцию силы F
, это F
cosα = F
тр = 16 Н; (2) тогда мощность, развиваемая силой , будет равна N
= F
cosα V
(3) Сделаем замену, учитывая уравнение (2), и подставим соответствующие данные в уравнение (3):

N
= 16 Н · 1,5 м/с = 24 Вт.

Ответ.
24 Вт.

Груз, закрепленный на легкой пружине жесткостью 200 Н/м, совершает вертикальные колебания. На рисунке представлен график зависимости смещения x
груза от времени t
. Определите, чему равна масса груза. Ответ округлите до целого числа.

Решение.
Груз на пружине совершает вертикальные колебания. По графику зависимости смещения груза х
от времени t
, определим период колебаний груза. Период колебаний равен Т
= 4 с; из формулы Т
= 2π
выразим массу m
груза.

= T ; m
= T
2
; m
= k
T
2
; m
= 200 H/м
(4 с) 2 = 81,14 кг ≈ 81 кг.
k

2

2
39,438

Ответ:
81 кг.

На рисунке показана система из двух легких блоков и невесомого троса, с помощью которого можно удерживать в равновесии или поднимать груз массой 10 кг. Трение пренебрежимо мало. На основании анализа приведенного рисунка выберите два
верных утверждения и укажите в ответе их номера.

  1. Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 100 Н.
  2. Изображенная на рисунке система блоков не дает выигрыша в силе.
  3. h
    , нужно вытянуть участок веревки длиной 3h
    .
  4. Для того чтобы медленно поднять груз на высоту h
    h
    .

Решение.
В данной задаче необходимо вспомнить простые механизмы, а именно блоки: подвижный и неподвижный блок. Подвижный блок дает выигрыш в силе в два раза, при этом участок веревки нужно вытянуть в два раза длиннее, а неподвижный блок используют для перенаправления силы. В работе простые механизмы выигрыша не дают. После анализа задачи сразу выбираем нужные утверждения:

  1. Для того чтобы медленно поднять груз на высоту h
    , нужно вытянуть участок веревки длиной 2h
    .
  2. Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 50 Н.

Ответ.
45.

В сосуд с водой полностью погружен алюминиевый груз, закрепленный на невесомой и нерастяжимой нити. Груз не касается стенок и дна сосуда. Затем в такой же сосуд с водой погружают железный груз, масса которого равна массе алюминиевого груза. Как в результате этого изменятся модуль силы натяжения нити и модуль действующей на груз силы тяжести?

  1. Увеличивается;
  2. Уменьшается;
  3. Не изменяется.

Решение.
Анализируем условие задачи и выделяем те параметры, которые не меняются в ходе исследования: это масса тела и жидкость, в которую погружают тело на нити. После этого лучше выполнить схематический рисунок и указать действующие на груз силы: сила натяжения нити F
упр, направленная вдоль нити вверх; сила тяжести , направленная вертикально вниз; архимедова сила a

, действующая со стороны жидкости на погруженное тело и направленная вверх. По условию задачи масса грузов одинакова, следовательно, модуль действующей на груз силы тяжести не меняется. Так как плотность грузов разная, то объем тоже будет разный

Плотность железа 7800 кг/м 3 , а алюминиевого груза 2700 кг/м 3 . Следовательно, V
ж V a

. Тело в равновесии, равнодействующая всех сил, действующих на тело равна нулю. Направим координатную ось OY вверх. Основное уравнение динамики с учетом проекции сил запишем в виде F
упр + F a

mg
= 0; (1) Выразим силу натяжения F
упр = mg
F a

(2); архимедова сила зависит от плотности жидкости и объема погруженной части тела F a

= ρgV
п.ч.т. (3); Плотность жидкости не меняется, а объем тела из железа меньше V
ж V a

, поэтому архимедова сила, действующая на железный груз будет меньше. Делаем вывод о модуле силы натяжения нити, работая с уравнение (2), он возрастет.

Ответ.
13.

Брусок массой m
соскальзывает с закрепленной шероховатой наклонной плоскости с углом α при основании. Модуль ускорения бруска равен a
, модуль скорости бруска возрастает. Сопротивлением воздуха можно пренебречь.

Установите соответствие между физическими величинами и формулами, при помощи которых их можно вычислить. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Б) Коэффициент трения бруска о наклонную плоскость

3) mg
cosα

Решение.
Данная задача требует применение законов Ньютона. Рекомендуем сделать схематический чертеж; указать все кинематические характеристики движения. Если возможно, изобразить вектор ускорения и векторы всех сил, приложенных к движущемуся телу; помнить, что силы, действующие на тело, – результат взаимодействия с другими телами. Затем записать основное уравнение динамики. Выбрать систему отсчета и записать полученное уравнение для проекции векторов сил и ускорений;

Следуя предложенному алгоритму, сделаем схематический чертеж (рис. 1). На рисунке изображены силы, приложенные к центру тяжести бруска, и координатные оси системы отсчета, связанной с поверхностью наклонной плоскости. Так как все силы постоянны, то движение бруска будет равнопеременным с увеличивающейся скоростью, т.е. вектор ускорения направлен в сторону движения. Выберем направление осей как указано на рисунке. Запишем проекции сил, на выбранные оси.

Запишем основное уравнение динамики:

Тр + = (1)

Запишем данное уравнение (1) для проекции сил и ускорения.

На ось OY: проекция силы реакции опоры положительная, так как вектор совпадает с направлением оси OY N y
= N
; проекция силы трения равна нулю так как вектор перпендикулярен оси; проекция силы тяжести будет отрицательная и равная mg y
=


mg
cosα
; проекция вектора ускорения a
y
= 0, так как вектор ускорения перпендикулярен оси. Имеем N
mg
cosα
= 0 (2) из уравнения выразим силу реакции действующей на брусок, со стороны наклонной плоскости. N
= mg
cosα
(3). Запишем проекции на ось OX.

На ось OX: проекция силы N
равна нулю, так как вектор перпендикулярен оси ОХ; Проекция силы трения отрицательная (вектор направлен в противоположную сторону относительно выбранной оси); проекция силы тяжести положительная и равна mg x
= mg
sinα
(4) из прямоугольного треугольника. Проекция ускорения положительная a
x
= a

; Тогда уравнение (1) запишем с учетом проекции mg
sinα – F
тр = ma

(5); F
тр = m
(g
sinα
a

) (6); Помним, что сила трения пропорциональна силе нормального давления N
.

По определению F
тр = μN
(7), выразим коэффициент трения бруска о наклонную плоскость.

μ
=
F
тр
= m
(g
sinα
a

)

= tgα
a (8).
N
mg
cosα
g
cosα

Выбираем соответствующие позиции для каждой буквы.

Ответ.
A – 3; Б – 2.

Задание 8. Газообразный кислород находится в сосуде объемом 33,2 литра. Давление газа 150 кПа, его температура 127° С. Определите массу газа в этом сосуде. Ответ выразите в граммах и округлите до целого числа.

Решение.
Важно обратить внимание на перевод единиц в систему СИ. Температуру переводим в Кельвины T
= t
°С + 273, объем V
= 33,2 л = 33,2 · 10 –3 м 3 ; Давление переводим P
= 150 кПа = 150 000 Па. Используя уравнение состояния идеального газа

выразим массу газа.

Обязательно обращаем внимание, в каких единица просят записать ответ. Это очень важно.

Ответ.
48 г.

Задание 9.
Идеальный одноатомный газ в количестве 0,025 моль адиабатически расширился. При этом его температура понизилась с +103°С до +23°С. Какую работу совершил газ? Ответ выразите в Джоулях и округлите до целого числа.

Решение.
Во-первых, газ одноатомный число степеней свободы i
= 3, во-вторых, газ расширяется адиабатически – это значит без теплообмена Q
= 0. Газ совершает работу за счет уменьшения внутренней энергии. С учетом этого, первый закон термодинамики запишем в виде 0 = ∆U
+ A
г; (1) выразим работу газа A
г = –∆U
(2); Изменение внутренней энергии для одноатомного газа запишем как

Ответ.
25 Дж.

Относительная влажность порции воздуха при некоторой температуре равна 10 %. Во сколько раз следует изменить давление этой порции воздуха для того, чтобы при неизменной температуре его относительная влажность увеличилась на 25 %?

Решение.
Вопросы, связанные с насыщенным паром и влажностью воздуха, чаще всего вызывают затруднения у школьников. Воспользуемся формулой для расчета относительной влажности воздуха

По условию задачи температура не изменяется, значит, давление насыщенного пара остается тем же. Запишем формулу (1) для двух состояний воздуха.

φ
1 = 10 % ; φ
2 = 35 %

Выразим давления воздуха из формул (2), (3) и найдем отношение давлений.

P
2
= φ
2
= 35 = 3,5
P
1
φ
1
10

Ответ.
Давление следует увеличить в 3,5 раза.

Горячее вещество в жидком состоянии медленно охлаждалось в плавильной печи с постоянной мощностью. В таблице приведены результаты измерений температуры вещества с течением времени.

Выберите из предложенного перечня два
утверждения, которые соответствуют результатам проведенных измерений и укажите их номера.

  1. Температура плавления вещества в данных условиях равна 232°С.
  2. Через 20 мин. после начала измерений вещество находилось только в твердом состоянии.
  3. Теплоемкость вещества в жидком и твердом состоянии одинакова.
  4. Через 30 мин. после начала измерений вещество находилось только в твердом состоянии.
  5. Процесс кристаллизации вещества занял более 25 минут.

Решение.
Так как вещество охлаждалось, то его внутренняя энергия уменьшалась. Результаты измерения температуры, позволяют определить температуру, при которой вещество начинает кристаллизоваться. Пока вещество переходит из жидкого состояния в твердое, температура не меняется. Зная, что температура плавления и температура кристаллизации одинаковы, выбираем утверждение:

1. Tемпература плавления вещества в данных условиях равна 232°С.

Второе верное утверждение это:

4. Через 30 мин. после начала измерений вещество находилось только в твердом состоянии. Так как температура в этот момент времени, уже ниже температуры кристаллизации.

Ответ.
14.

В изолированной системе тело А имеет температуру +40°С, а тело Б температуру +65°С. Эти тела привели в тепловой контакт друг с другом. Через некоторое время наступило тепловое равновесие. Как в результате изменилась температура тела Б и суммарная внутренняя энергия тела А и Б?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличилась;
  2. Уменьшилась;
  3. Не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение.
Если в изолированной системе тел не происходит никаких превращений энергии кроме теплообмена, то количество теплоты, отданное телами, внутренняя энергия которых уменьшается, равно количеству теплоты, полученному телами, внутренняя энергия которых увеличивается. (По закону сохранения энергии.) При этом суммарная внутренняя энергия системы не меняется. Задачи такого типа решаются на основании уравнения теплового баланса.

U = ∑
n
U i =
0 (1);
i
= 1

где ∆U
– изменение внутренней энергии.

В нашем случае в результате теплообмена внутренняя энергия тела Б уменьшается, а значит уменьшается температура этого тела. Внутренняя энергия тела А увеличивается, так как тело получило количество теплоты от тела Б, то температура его увеличится. Суммарная внутренняя энергия тел А и Б не изменяется.

Ответ.
23.

Протон p
, влетевший в зазор между полюсами электромагнита, имеет скорость , перпендикулярную вектору индукции магнитного поля, как показано на рисунке. Куда направлена действующая на протон сила Лоренца относительно рисунка (вверх, к наблюдателю, от наблюдателя, вниз, влево, вправо)

Решение.
На заряженную частицу магнитное поле действует с силой Лоренца. Для того чтобы определить направление этой силы, важно помнить мнемоническое правило левой руки, не забывать учитывать заряд частицы. Четыре пальца левой руки направляем по вектору скорости, для положительно заряженной частицы, вектор должен перпендикулярно входить в ладонь, большой палец отставленный на 90° показывает направление действующей на частицу силы Лоренца. В результате имеем, что вектор силы Лоренца направлен от наблюдателя относительно рисунка.

Ответ.
от наблюдателя.

Модуль напряженности электрического поля в плоском воздушном конденсаторе емкостью 50 мкФ равен 200 В/м. Расстояние между пластинами конденсатора 2 мм. Чему равен заряд конденсатора? Ответ запишите в мкКл.

Решение.
Переведем все единицы измерения в систему СИ. Емкость С = 50 мкФ = 50 · 10 –6 Ф, расстояние между пластинами d
= 2 · 10 –3 м. В задаче говорится о плоском воздушном конденсаторе – устройстве для накопления электрического заряда и энергии электрического поля. Из формулы электрической емкости

где d
– расстояние между пластинами.

Выразим напряжение U
= E · d
(4); Подставим (4) в (2) и рассчитаем заряд конденсатора.

q
= C
· Ed
= 50 · 10 –6 · 200 · 0,002 = 20 мкКл

Обращаем внимание, в каких единицах нужно записать ответ. Получили в кулонах, а представляем в мкКл.

Ответ.
20 мкКл.

Ученик провел опыт по преломлению света, представленный на фотографии. Как изменяется при увеличении угла падения угол преломления света, распространяющегося в стекле, и показатель преломления стекла?

  1. Увеличивается
  2. Уменьшается
  3. Не изменяется
  4. Запишите в таблицу выбранные цифры для каждого ответа. Цифры в ответе могут повторяться.

Решение.
В задачах такого плана вспоминаем, что такое преломление. Это изменение направления распространения волны при прохождении из одной среды в другую. Вызвано оно тем, что скорости распространения волн в этих средах различны. Разобравшись из какой среды в какую свет распространяется, запишем закона преломления в виде

где n
2 – абсолютный показатель преломления стекла, среда куда идет свет; n
1 – абсолютный показатель преломления первой среды, откуда свет идет. Для воздуха n
1 = 1. α
– угол падения луча на поверхность стеклянного полуцилиндра, β
– угол преломления луча в стекле. Причем, угол преломления будет меньше угла падения, так как стекло оптически более плотная среда – среда с большим показателем преломления. Скорость распространения света в стекле меньше. Обращаем внимание, что углы измеряем от перпендикуляра, восстановленного в точке падения луча. Если увеличивать угол падения, то и угол преломления будет расти. Показатель преломления стекла от этого меняться не будет.

Ответ.

Медная перемычка в момент времени t
0 = 0 начинает двигаться со скоростью 2 м/с по параллельным горизонтальным проводящим рельсам, к концам которых подсоединен резистор сопротивлением 10 Ом. Вся система находится в вертикальном однородном магнитном поле. Сопротивление перемычки и рельсов пренебрежимо мало, перемычка все время расположена перпендикулярно рельсам. Поток Ф
вектора магнитной индукции через контур, образованный перемычкой, рельсами и резистором, изменяется с течением времени t
так, как показано на графике.

Используя график, выберите два верных утверждения и укажите в ответе их номера.

  1. К моменту времени t
    = 0,1 с изменение магнитного потока через контур равно 1 мВб.
  2. Индукционный ток в перемычке в интервале от t
    = 0,1 с t
    = 0,3 с максимален.
  3. Модуль ЭДС индукции, возникающей в контуре, равен 10 мВ.
  4. Сила индукционного тока, текущего в перемычке, равна 64 мА.
  5. Для поддержания движения перемычки к ней прикладывают силу, проекция которой на направление рельсов равна 0,2 Н.

Решение.
По графику зависимости потока вектора магнитной индукции через контур от времени определим участки, где поток Ф
меняется, и где изменение потока равно нулю. Это позволит нам определить интервалы времени, в которые в контуре будет возникать индукционный ток. Верное утверждение:

1) К моменту времени t
= 0,1 с изменение магнитного потока через контур равно 1 мВб ∆Ф
= (1 – 0) · 10 –3 Вб; Модуль ЭДС индукции, возникающей в контуре определим используя закон ЭМИ

Ответ.
13.

По графику зависимости силы тока от времени в электрической цепи, индуктивность которой равна 1 мГн, определите модуль ЭДС самоиндукции в интервале времени от 5 до 10 с. Ответ запишите в мкВ.

Решение.
Переведем все величины в систему СИ, т.е. индуктивность 1 мГн переведем в Гн, получим 10 –3 Гн. Силу тока, показанной на рисунке в мА также будем переводить в А путем умножения на величину 10 –3 .

Формула ЭДС самоиндукции имеет вид

при этом интервал времени дан по условию задачи

t
= 10 c – 5 c = 5 c

секунд и по графику определяем интервал изменения тока за это время:

I

= 30 · 10 –3 – 20 · 10 –3 = 10 · 10 –3 = 10 –2 A.

Подставляем числовые значения в формулу (2), получаем

|

Ɛ
|

= 2 ·10 –6 В, или 2 мкВ.

Ответ.
2.

Две прозрачные плоскопараллельные пластинки плотно прижаты друг к другу. Из воздуха на поверхность первой пластинки падает луч света (см. рисунок). Известно, что показатель преломления верхней пластинки равен n
2 = 1,77. Установите соответствие между физическими величинами и их значениями. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Решение.
Для решения задач о преломлении света на границе раздела двух сред, в частности задач на прохождение света через плоскопараллельные пластинки можно рекомендовать следующий порядок решения: сделать чертеж с указанием хода лучей, идущих из одной среды в другую; в точке падения луча на границе раздела двух сред провести нормаль к поверхности, отметить углы падения и преломления. Особо обратить внимание на оптическую плотность рассматриваемых сред и помнить, что при переходе луча света из оптически менее плотной среды в оптически более плотную среду угол преломления будет меньше угла падения. На рисунке дан угол между падающим лучом и поверхностью, а нам нужен угол падения. Помним, что углы определяются от перпендикуляра, восстановленного в точке падения. Определяем, что угол падения луча на поверхность 90° – 40° = 50°, показатель преломления n
2 = 1,77; n
1 = 1 (воздух).

Запишем закон преломления

sinβ
=
sin50 = 0,4327 ≈ 0,433
1,77

Построим примерный ход луча через пластинки. Используем формулу (1) для границы 2–3 и 3–1. В ответе получаем

А) Синус угла падения луча на границу 2–3 между пластинками – это 2) ≈ 0,433;

Б) Угол преломления луча при переходе границы 3–1 (в радианах) – это 4) ≈ 0,873.

Ответ
. 24.

Определите, сколько α – частиц и сколько протонов получается в результате реакции термоядерного синтеза

+ → x
+ y
;

Решение.
При всех ядерных реакциях соблюдаются законы сохранения электрического заряда и числа нуклонов. Обозначим через x – количество альфа частиц, y– количество протонов. Составим уравнения

+ → x + y;

решая систему имеем, что x
= 1; y
= 2

Ответ.
1 – α
-частица; 2 – протона.

Модуль импульса первого фотона равен 1,32 · 10 –28 кг·м/с, что на 9,48 · 10 –28 кг·м/с меньше, чем модуль импульса второго фотона. Найдите отношение энергии E 2 /E 1 второго и первого фотонов. Ответ округлите до десятых долей.

Решение.
Импульс второго фотона больше импульса первого фотона по условию значит можно представить p
2 = p
1 + Δp
(1). Энергию фотона можно выразить через импульс фотона, используя следующие уравнения. Это E

= mc
2 (1) и p
= mc
(2), тогда

E
= pc
(3),

где E
– энергия фотона, p
– импульс фотона, m – масса фотона, c
= 3 · 10 8 м/с – скорость света. С учетом формулы (3) имеем:

E
2
= p
2
= 8,18;
E
1
p
1

Ответ округляем до десятых и получаем 8,2.

Ответ.
8,2.

Ядро атома претерпело радиоактивный позитронный β – распад. Как в результате этого изменялись электрический заряд ядра и количество нейтронов в нем?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличилась;
  2. Уменьшилась;
  3. Не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение.
Позитронный β
– распад в атомном ядре происходит при превращений протона в нейтрон с испусканием позитрона. В результате этого число нейтронов в ядре увеличивается на единицу, электрический заряд уменьшается на единицу, а массовое число ядра остается неизменным. Таким образом, реакция превращения элемента следующая:

Ответ.
21.

В лаборатории было проведено пять экспериментов по наблюдению дифракции с помощью различных дифракционных решеток. Каждая из решеток освещалась параллельными пучками монохроматического света с определенной длиной волны. Свет во всех случаях падал перпендикулярно решетке. В двух из этих экспериментов наблюдалось одинаковое количество главных дифракционных максимумов. Укажите сначала номер эксперимента, в котором использовалась дифракционная решетка с меньшим периодом, а затем – номер эксперимента, в котором использовалась дифракционная решетка с большим периодом.

Решение.
Дифракцией света называется явление светового пучка в область геометрической тени. Дифракцию можно наблюдать в том случае, когда на пути световой волны встречаются непрозрачные участки или отверстия в больших по размерам и непрозрачных для света преградах, причем размеры этих участков или отверстий соизмеримы с длиной волны. Одним из важнейших дифракционных устройств является дифракционная решетка. Угловые направления на максимумы дифракционной картины определяются уравнением

d
sinφ
= k
λ
(1),

где d
– период дифракционной решетки, φ
– угол между нормалью к решетке и направлением на один из максимумов дифракционной картины, λ
– длина световой волны, k
– целое число, называемое порядком дифракционного максимума. Выразим из уравнения (1)

Подбирая пары согласно условию эксперимента, выбираем сначала 4 где использовалась дифракционная решетка с меньшим периодом, а затем – номер эксперимента, в котором использовалась дифракционная решетка с большим периодом – это 2.

Ответ.
42.

По проволочному резистору течет ток. Резистор заменили на другой, с проволокой из того же металла и той же длины, но имеющей вдвое меньшую площадь поперечного сечения, и пропустили через него вдвое меньший ток. Как изменятся при этом напряжение на резисторе и его сопротивление?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличится;
  2. Уменьшится;
  3. Не изменится.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение.
Важно помнить от каких величин зависит сопротивление проводника. Формула для расчета сопротивления имеет вид

закона Ома для участка цепи, из формулы (2), выразим напряжение

U
= I
R
(3).

По условию задачи второй резистор изготовлен из проволоки того же материала, той же длины, но разной площади поперечного сечения. Площадь в два раза меньшая. Подставляя в (1) получим, что сопротивление увеличивается в 2 раза, а сила тока уменьшается в 2 раза, следовательно, напряжение не изменяется.

Ответ.
13.

Период колебаний математического маятника на поверхности Земли в 1, 2 раза больше периода его колебаний на некоторой планете. Чему равен модуль ускорения свободного падения на этой планете? Влияние атмосферы в обоих случаях пренебрежимо мало.

Решение.
Математический маятник – это система, состоящая из нити, размеры которой много больше размеров шарика и самого шарика. Трудность может возникнуть если забыта формула Томсона для периода колебаний математического маятника.

T
= 2π (1);

l

– длина математического маятника; g
– ускорение свободного падения.

По условию

Выразим из (3) g
п = 14,4 м/с 2 . Надо отметить, что ускорение свободного падения зависит от массы планеты и радиуса

Ответ.
14,4 м/с 2 .

Прямолинейный проводник длиной 1 м, по которому течет ток 3 А, расположен в однородном магнитном поле с индукцией В
= 0,4 Тл под углом 30° к вектору . Каков модуль силы, действующей на проводник со стороны магнитного поля?

Решение.
Если в магнитное поле, поместить проводник с током, то поле на проводник с током будет действовать с силой Ампера. Запишем формулу модуля силы Ампера

F
А = I
LB
sinα
;

F
А = 0,6 Н

Ответ. F
А = 0,6 Н.

Энергия магнитного поля, запасенная в катушке при пропускании через нее постоянного тока, равна 120 Дж. Во сколько раз нужно увеличить силу тока, протекающего через обмотку катушки, для того, чтобы запасенная в ней энергия магнитного поля увеличилась на 5760 Дж.

Решение.
Энергия магнитного поля катушки рассчитывается по формуле

По условию W
1 = 120 Дж, тогда W
2 = 120 + 5760 = 5880 Дж.

I

1 2 =

2W
1
; I

2 2 =
2W
2
;
L
L

Тогда отношение токов

I

2 2

= 49; I

2

= 7
I
1 2
I

1

Ответ.
Силу тока нужно увеличить в 7 раз. В бланк ответов Вы вносите только цифру 7.

Электрическая цепь состоит из двух лампочек, двух диодов и витка провода, соединенных, как показано на рисунке. (Диод пропускает ток только в одном направлении, как показано на верхней части рисунка). Какая из лампочек загорится, если к витку приближать северный полюс магнита? Ответ объясните, указав, какие явления и закономерности вы использовали при объяснении.

Решение.
Линии магнитной индукции выходят из северного полюса магнита и расходятся. При приближении магнита магнитный поток через виток провода увеличивается. В соответствии с правило Ленца магнитное поле, создаваемое индукционным током витка, должно быть направлено вправо. По правилу буравчика ток должен идти по часовой стрелке (если смотреть слева). В этом направлении пропускает диод, стоящий в цепи второй лампы. Значит, загорится вторая лампа.

Ответ.
Загорится вторая лампа.

Алюминиевая спица длиной L
= 25 см и площадью поперечного сечения S
= 0,1 см 2 подвешена на нити за верхний конец. Нижний конец опирается на горизонтальное дно сосуда, в который налита вода. Длина погруженной в воду части спицы l

= 10 см. Найти силу F
, с которой спица давит на дно сосуда, если известно, что нить расположена вертикально. Плотность алюминия ρ
а = 2,7 г/см 3 , плотность воды ρ
в = 1,0 г/см 3 . Ускорение свободного падения g
= 10 м/с 2

Решение.
Выполним поясняющий рисунок.

– Сила натяжения нити;

– Сила реакции дна сосуда;

a – архимедова сила, действующая только на погруженную часть тела, и приложенная к центру погруженной части спицы;

– сила тяжести, действующая на спицу со стороны Земли и приложена к центу всей спицы.

По определению масса спицы m
и модуль архимедовой силы выражаются следующим образом: m
= SL
ρ
a (1);

F
a = Sl
ρ
в g
(2)

Рассмотрим моменты сил относительно точки подвеса спицы.

М
(Т
) = 0 – момент силы натяжения; (3)

М
(N) = NL
cosα
– момент силы реакции опоры; (4)

С учетом знаков моментов запишем уравнение

NL
cosα
+ Sl

ρ
в g
(L

l ) cosα
= SL
ρ
a

g

L
cosα
(7)
2 2

учитывая, что по третьему закону Ньютона сила реакции дна сосуда равна силе F
д с которой спица давит на дно сосуда запишем N
= F
д и из уравнения (7) выразим эту силу:

F д = [ 1 L
ρ
a

– (1 –

l )l

ρ
в ]Sg
(8).

2 2L

Подставим числовые данные и получим, что

F
д = 0,025 Н.

Ответ.
F
д = 0,025 Н.

Баллон, содержащий m
1 = 1 кг азота, при испытании на прочность взорвался при температуре t
1 = 327°С. Какую массу водорода m
2 можно было бы хранить в таком баллоне при температуре t
2 = 27°С, имея пятикратный запас прочности? Молярная масса азота M
1 = 28 г/моль, водорода M
2 = 2 г/моль.

Решение.
Запишем уравнение состояния идеального газа Менделеева – Клапейрона для азота

где V
– объем баллона, T
1 = t
1 + 273°C. По условию водород можно хранить при давлении p
2 = p 1 /5; (3) Учитывая, что

можем выразить массу водорода работая сразу с уравнениями (2), (3), (4). Конечная формула имеет вид:

m
2 =
m
1
M
2
T
1
(5).
5 M
1
T
2

После подстановки числовых данных m
2 = 28 г.

Ответ.
m
2 = 28 г.

В идеальном колебательном контуре амплитуда колебаний силы тока в катушке индуктивности I
m
= 5 мА, а амплитуда напряжения на конденсаторе U m
= 2,0 В. В момент времени t
напряжение на конденсаторе равно 1,2 В. Найдите силу тока в катушке в этот момент.

Решение.
В идеальном колебательном контуре сохраняется энергия колебаний. Для момента времени t закон сохранения энергий имеет вид

C
U
2
+ L
I

2

= L
I
m
2
(1)
2 2 2

Для амплитудных (максимальных) значений запишем

а из уравнения (2) выразим

Подставим (4) в (3). В результате получим:

I

= I m
(5)

Таким образом, сила тока в катушке в момент времени t
равна

I
= 4,0 мА.

Ответ.
I

= 4,0 мА.

На дне водоема глубиной 2 м лежит зеркало. Луч света, пройдя через воду, отражается от зеркала и выходит из воды. Показатель преломления воды равен 1,33. Найдите расстояние между точкой входа луча в воду и точкой выхода луча из воды, если угол падения луча равен 30°

Решение.
Сделаем поясняющий рисунок

α
– угол падения луча;

β
– угол преломления луча в воде;

АС – расстояние между точкой входа луча в воду и точкой выхода луча из воды.

По закону преломления света

Рассмотрим прямоугольный ΔАDВ. В нем АD = h
, тогда DВ = АD

tgβ
= h
tgβ
= h
sinα = h
sinβ = h
sinα (4)
cosβ

Получаем следующее выражение:

Подставим числовые значения в полученную формулу (5)

Ответ.
1,63 м.

В рамках подготовки к ЕГЭ предлагаем вам ознакомиться с рабочей программой по физике для 7–9 класса к линии УМК Перышкина А. В.
и рабочей программой углубленного уровня для 10-11 классов к УМК Мякишева Г.Я.
Программы доступны для просмотра и бесплатного скачивания всем зарегистрированным пользователям.

1)

ЕДИНЫЙ ГОСУДАРСТВЕННЫЙ ЭКЗАМЕН ПО ФИЗИКЕ ДЛИТСЯ




235
мин

2) СТРУКТУРА КИМов — 2018 и 2019 по сравнению с 2017г. несколько ИЗМЕНИЛАСЬ:

Вариант экзаменационной работы будет состоять из двух частей и включит в себя
32 задания. Часть 1 будет содержать 24 задания с кратким ответом, в том числе задания с самостоятельной записью ответа в виде числа, двух чисел или слова, а также задания на установление
соответствия и множественный выбор, в которых ответы необходимо записать в виде последовательности цифр. Часть 2 будет содержать 8 заданий, объединенных общим видом деятельности – решение задач.
Из них 3 задания с кратким ответом (25–27) и 5 заданий (28–32), для которых необходимо привести развернутый ответ. В работу будут включены задания трех уровней сложности. Задания базового уровня
включены в часть 1 работы (18 заданий, из которых 13 заданий с записью ответа в виде числа, двух чисел или слова и 5 заданий на соответствие и множественный выбор). Задания повышенного
уровня распределены между частями 1 и 2 экзаменационной работы: 5 заданий с кратким ответом в части 1, 3 задания с кратким ответом и 1 задание с развернутым ответом в части 2. Последние четыре
задачи части 2 являются заданиями высокого уровня сложности. Часть 1 экзаменационной работы будет включать два блока заданий: первый проверяет освоение понятийного аппарата школьного курса
физики, а второй – овладение методологическими умениями. Первый блок включает 21 задание, которые группируются, исходя из тематической принадлежности: 7 заданий по механике, 5 заданий по МКТ и
термодинамике, 6 заданий по электродинамике и 3 по квантовой физике.

Новым заданием базового уровня сложности является последнее задание первой части (24 позиция), приуроченное к возвращению курса астрономии в школьную программу. Задание имеет
характеристику типа «выбор 2 суждений из 5».
Задание 24, как и другие аналогичные задания в
экзаменационной работе, оценивается максимально в 2 балла, если верно указаны оба элемента ответа, и в 1 балл, если в одном из элементов допущена ошибка. Порядок записи цифр в ответе значения не
имеет. Как правило, задания будут иметь контекстный характер, т.е. часть данных, необходимых для выполнения задания будут приводиться в виде таблицы, схемы или графика.

В соответствии с этим заданием в кодификаторе добавился подраздел «Элементы астрофизики» раздела «Квантовая физика и элементы астрофизики», включающий следующие пункты:

·

Солнечная система: планеты земной
группы и планеты-гиганты, малые тела Солнечной системы.

·

Звёзды: разнообразие звездных
характеристик и их закономерности. Источники энергии звезд.

·

Современные представления о
происхождении и эволюции Солнца и звёзд. Наша галактика. Другие галактики. Пространственные масштабы наблюдаемой Вселенной.

·

Современные взгляды на строение и
эволюцию Вселенной.

подробнее о структуре КИМ-2018 Вы можете узнать, посмотрев вебинар с участием М.Ю. Демидовой https://www.youtube.com/watch?v=JXeB6OzLokU либо в документе, приведенном ниже.

Изменений в заданиях ЕГЭ по физике на 2019
год нет.

Структура заданий ЕГЭ по физике-2019

Экзаменационная работа состоит из двух частей, включающих в себя 32 задания
.

Часть 1
содержит 27 заданий.

  • В заданиях 1–4, 8–10, 14, 15, 20, 25–27 ответом является целое число или конечная десятичная дробь.
  • Ответом к заданиям 5–7, 11, 12, 16–18, 21, 23 и 24 является последовательность двух цифр.
  • Ответом к заданиям 19 и 22 являются два числа.

Часть 2
содержит 5 заданий. Ответ к заданиям 28–32 включает в себя подробное описание всего хода выполнения задания. Вторая часть заданий (с развёрнутым ответом) оцениваются экспертной комиссией на основе .

Темы ЕГЭ по физике, которые будут в экзаменационной работе

  1. Механика
    (кинематика, динамика, статика, законы сохранения в механике, механические колебания и волны).
  2. Молекулярная физика
    (молекулярно-кинетическая теория, термодинамика).
  3. Электродинамика и основы СТО
    (электрическое поле, постоянный ток, магнитное поле, электромагнитная индукция, электромагнитные колебания и волны, оптика, основы СТО).
  4. Квантовая физика и элементы астрофизики
    (корпускулярноволновой дуализм, физика атома, физика атомного ядра, элементы астрофизики).

Продолжительность ЕГЭ по физике

На выполнение всей экзаменационной работы отводится 235 минут
.

Примерное время на выполнение заданий различных частей работы составляет:

  1. для каждого задания с кратким ответом – 3–5 минут;
  2. для каждого задания с развернутым ответом – 15–20 минут.

Что можно брать на экзамен:

  • Используется непрограммируемый калькулятор (на каждого ученика) с возможностью вычисления тригонометрических функций (cos, sin, tg) и линейка.
  • Перечень дополнительных устройств и , использование которых разрешено на ЕГЭ, утверждается Рособрнадзором.

Важно!!!
не стоит рассчитывать на шпаргалки, подсказки и использование технических средств (телефонов, планшетов) на экзамене. Видеонаблюдение на ЕГЭ-2019 усилят дополнительными камерами.

Баллы ЕГЭ по физике

  • 1 балл — за 1-4, 8, 9, 10, 13, 14, 15, 19, 20, 22, 23, 25, 26, 27 задания.
  • 2 балла — 5, 6, 7, 11, 12, 16, 17, 18, 21, 24.
  • З балла — 28, 29, 30, 31, 32.

Всего: 52 баллов
(максимальный первичный балл).

Что необходимо знать при подготовки заданий в ЕГЭ:

  • Знать/понимать смысл физических понятий, величин, законов, принципов, постулатов.
  • Уметь описывать и объяснять физические явления и свойства тел (включая космические объекты), результаты экспериментов… приводить примеры практического использования физических знаний
  • Отличать гипотезы от научной теории, делать выводы на основе эксперимента и т.д.
  • Уметь применять полученные знания при решении физических задач.
  • Использовать приобретенные знания и умения в практической деятельности и повседневной жизни.

С чего начать подготовку к ЕГЭ по физике:

  1. Изучать теорию, необходимую для каждого заданий.
  2. Тренироваться в тестовых заданиях по физике, разработанные на основе ЕГЭ. На нашем сайте задания и варианты по физике будут пополняться.
  3. Правильно распределяй время.

Желаем успеха!

ЕГЭ по физике

– экзамен, который не входит в перечень испытаний обязательных для сдачи всеми выпускниками. Физику выбирают потенциальные студенты инженерных специальностей. Причем, каждый ВУЗ устанавливает свою планку – в престижных учебных заведениях она может быть очень высокой. Это должен понимать выпускник, начиная подготовку к экзамену.
Цель экзамена

– проверка уровня знаний и умений, полученных в ходе школьного обучения, на соответствие нормам и стандартам, указанным в программе.

  • На экзамен отводится практически 4 часа – 235 минут, это время необходимо правильно распределить между заданиями, чтобы успешно справиться со всеми, не теряя ни одной минуты.
  • Разрешается брать с собой калькулятор, поскольку для выполнения заданий требуется множество сложных расчетов. Также можно взять линейку.
  • Работа состоит из трех частей, каждая имеет свои особенности, состоит из заданий разного уровня сложности.

Первая часть

экзаменационной работы состоит из обычных тестов с несколькими вариантами ответов, из которых требуется выбрать правильный. Цель первой части – проверка базовых знаний, умения применять теорию на практике на начальном уровне. При изучении новой темы в классе, подобные задания могли даваться для закрепления нового материала. Для успешного прохождения этого уровня, требуется выучить и повторить законы, теории, формулы, определения, чтобы иметь возможность воспроизвести их на экзамене. Также эта часть содержит задания, в которых требуется правильно установить соответствия. Формулируется задача и предлагается несколько вопросов к ней. К каждому вопросу необходимо подобрать правильный ответ из предложенных, и указать в бланке. Цель данной части испытания — проверка умения устанавливать связи между величинами, применять несколько формул и теорий, проводить вычисления на основе теоретических данных.
Вторая часть

делится на 2 блока. В первом блоке необходимо применять формулы, законы и теории для решения заданий и получения ответа. Экзаменуемому предлагаются варианты, из которых нужно выбрать правильный.
Во втором блоке – задачи, требуется предоставить детальное решение, полное объяснение каждого действия. Лица, проверяющие задание, должны также увидеть здесь формулы, законы, которые используются для решения – с них нужно начать детальный разбор задания.

Физика относится к сложным предметам, приблизительно каждый 15-1 сдает этот экзамен ежегодно, чтобы поступить в технический ВУЗ. Предполагается, что выпускник с такими целями не будет учить предмет «с нуля», чтобы подготовиться к ЕГЭ.
Чтобы удачно пройти испытание, необходимо:

  • Начинать повторение материала заранее, подходить к вопросу комплексно;
  • Активно применять теорию на практике – решать много заданий разного уровня сложности;
  • Заниматься самообразованием;
  • Проходить онлайн тестирование по вопросам за прошлые годы.

Эффективные помощники в подготовке – онлайн курсы, репетиторы. При помощи профессионального репетитора можно анализировать ошибки, быстро получать обратную связь. Онлайн курсы и ресурсы с заданиями помогут накопить опыт в решении различных заданий. «Решу ЕГЭ по физике» – возможность результативно тренироваться перед тестированием.

Like this post? Please share to your friends:
  • Физика решу егэ 10060
  • Физика решение задач на егэ вахнина скачать
  • Физика решение задач егэ колесников
  • Физика проходной балл егэ первичный
  • Физика проходной балл егэ 2022