Формула для параболы егэ

Квадратичная функция (парабола)

Все знают, как выглядит парабола y = x2. В седьмом классе мы рисовали таблицу:

x -3 -2 -1 0 1 2 3
y 9 4 1 0 1 4 9

После этого по точкам строили график:

Параболу y = ax2 + bx + c мы не станем строить каждый раз «по точкам» — для выпускника школы это просто несолидно. Ведь нам надо знать закономерности поведения данной функции. А эти закономерности таковы.

1. Знак коэффициента a отвечает за направление ветвей. При a > 0 ветви направлены вверх, при a < 0 — вниз.

На рисунке приведены две параболы y = ax2 с равными по модулю, но противоположными по знаку значениями a.


2. Абсолютная величина коэффициента a отвечает за «раскрыв» параболы. Чем больше |a|, тем у́же парабола (больше прижата к оси Y ). Наоборот, чем меньше |a|, тем шире парабола (больше прижата к оси X).

На рисунке приведены две параболы y = a1x2 и y = a2x2, у которых a2 > a1 > 0.


3. Абсцисса вершины параболы y = ax2 + bx + c находится по формуле:


Для нахождения ординаты вершины y0 удобнее всего подставить x0 в уравнение параболы. Но вообще, полезно помнить, что


где D = b2 − 4ac — дискриминант.

4. Точки пересечения параболы y = ax2 + bx + c с осью X находятся с помощью решения квадратного уравнения
ax2 + bx + c = 0. Если дискриминант равен нулю, то парабола касается оси X. Если дискриминант меньше нуля, то парабола не пересекает ось X.

5. Точка пересечения с осью Y находится легко: мы просто подставляем x = 0 в уравнение параболы. Получается точка (0, c).

А теперь покажем, как с помощью графика функции y = ax2 + bx + c решать квадратные неравенства.

1. Часто на тестировании мы предлагаем решить неравенство

x2 < 400.

Справляются далеко не все. Очень часто, не задумываясь, выдают «ответ»: x < ± 20.

Однако сама эта запись — абсурдна! Представьте, что вы слышите прогноз погоды: «Температура будет меньше плюс-минус двадцати градусов». Что, спрашивается, надеть — рубашку или шубу? :-)

Давайте решим это неравенство с помощью графика. Изобразим схематично график функции y = x2 и отметим все значения x, для которых y < 400.


Теперь мы видим правильный ответ: x ∈ (−20; 20).

2. Решим неравенство: x2 − 3x − 10 ≥ 0.

Графиком функции y = x2 − 3x − 10 служит парабола, ветви которой направлены вверх. Решая квадратное уравнение x2 − 3x − 10 = 0, находим x1 = −2 и x2 = 5 — в этих точках парабола пересекает ось X. Нарисуем схематично нашу параболу:


Мы видим, что при x ∈ (−2; 5) значения функции отрицательны (график проходит ниже оси X). В точках −2 и 5 функция обращается в нуль, а при x < −2 и x > 5 значения функции положительны. Следовательно, наше неравенство выполняется при .

Обратите внимание, что для решения неравенства нам достаточно было схематично изобразить параболу. Ось Y вообще не понадобилась!

3. Ещё одно неравенство: x2 + 2x + 4 > 0.

Ветви параболы y = x2 + 2x + 4 направлены вверх. Дискриминант отрицателен, т. е. уравнение x2 + 2x + 4 = 0 не имеет корней. Стало быть, нет и точек пересечения параболы с осью X.

Раз ветви параболы направлены вверх и она не пересекает ось X — значит, парабола расположена над осью X.


Получается, что значения функции положительны при всех возможных x. Иными словами, решения нашего неравенства — это все действительные числа.

Ответ: .

Квадратные неравенства являются неотъемлемой частью ЕГЭ. Разберём типичные примеры из банка заданий ЕГЭ.

4. Завиcимоcть объeма cпроcа q (тыc. руб.) на продукцию предприятия-монополиcта от цены p (тыc. руб.) задаeтcя формулой q = 100 − 10p. Выручка предприятия за меcяц r (в тыc. руб.) вычиcляетcя по формуле r(p) = q · p. Определите наибольшую цену p, при которой меcячная выручка r(p) cоcтавит не менее 240 тыc. руб. Ответ приведите в тыc. руб.

Подставим выражение для q в формулу выручки:

r(p) = qp = (100 − 10p)p = 100p − 10p2.

Выручка должна быть не менее (то есть больше или равна) 240 тысяч рублей. Поскольку цена p уже выражена в тысячах рублей, мы можем записать это условие в виде неравенства:

100p − 10p2 ≥ 240.

Переносим всё вправо и делим на 10:

p2 − 10p + 24 ≤ 0.

Для схематичного построения параболы находим корни уравнения p2 − 10p + 24 = 0. Они равны 4 и 6. Остаётся сделать рисунок.

Решением нашего неравенства служит отрезок [4; 6]. Нас просили найти наибольшее p. Оно равно 6.

Ответ: 6.

5. Выcота над землёй подброшенного вверх мяча меняетcя по закону h(t) = 1,6 + 8t − 5t2, где h — выcота в метрах, t — время в cекундах, прошедшее c момента броcка. Cколько cекунд мяч будет находитьcя на выcоте не менее трёх метров?

Итак, требуется, чтобы выполнялось неравенство h(t) ≥ 3. Подставляем сюда выражение для h:

1,6 + 8t − 5t2 ≥ 3.

Собираем всё справа:

5t2 − 8t + 1,4 ≤ 0.

Корни соответствующего уравнения 5t2 −8t+1,4 = 0 равны t1 = 0,2 и t2 = 1,4. Как дальше действовать — мы знаем.


Таким образом, через t1 = 0,2 секунды после начала полёта мяч оказался на высоте 3 метра. Мяч продолжал лететь вверх, высота увеличивалась; затем началось снижение, высота уменьшалась, и в момент времени t = 1,4 секунды снова стала равна трём метрам над землей.

Получается, что мяч находился на высоте не менее трёх метров в течение t2 − t1 = 1,2 секунд. В бланк ответов вписываем десятичную дробь 1,2.

6. Завиcимоcть температуры (в градуcах Кельвина) от времени для нагревательного элемента некоторого прибора была получена экcпериментально и на иccледуемом интервале температур определяетcя выражением T(t) = T0 + bt + at2, где t — время в минутах, T0 = 1400 К, a = −10 К/мин, b = 200 К/мин. Извеcтно, что при температуре нагревателя cвыше 1760 К прибор может иcпортитьcя, поэтому его нужно отключать. Определите, через какое наибольшее время поcле начала работы нужно отключать прибор. Ответ выразите в минутах.

Согласно условию, зависимость температуры нагревательного элемента от времени определяется формулой:

T(t) = 1400 + 200t − 10t2.

В нормальном режиме работы прибора должно выполняться неравенство T ≤ 1760, или

1400 + 200t − 10t2 ≤ 1760.

Переносим всё вправо и делим на 10:

t2 − 20t + 36 ≥ 0.

Находим t1 = 2, t2 = 18 и делаем рисунок:

Получаем решения нашего неравенства:

left [ begin{array}{c}tleq 2,\tgeq 18.\end{array} right.

Остаётся понять: в какой же момент отключать прибор? Для этого надо представить физическую картину процесса.

Мы включаем прибор в момент времени t = 0. Температура нагревателя повышается и при t = 2 мин достигает 1760 К. Затем повышение температуры продолжается, в результате чего прибор может испортиться. Поэтому ясно, что отключать его надо при t = 2.

А что же решения t ≥ 18? Они не имеют физического смысла. Войдя в зону температур T > 1760, прибор испортится, и формула T(t) = 1400+200t−10t2, справедливая для исправного прибора, перестанет адекватно отражать реальность.

Поэтому в бланк ответов вписываем число 2.

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Квадратичная функция (парабола)» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
08.03.2023

Функция вида y=ax^2+bx+c , где aneq 0 называется квадратичной функцией

График квадратичной функции – парабола

парабола, построение параболы, график парабола

Рассмотрим случаи:

I СЛУЧАЙ, КЛАССИЧЕСКАЯ ПАРАБОЛА 

y=x^2, то есть a=1, b=0, c=0

Для построения заполняем таблицу, подставляя значения x в формулу:

parabola2

Отмечаем  точки (0;0); (1;1); (-1;1) и т.д. на координатной плоскости (чем с меньшим шагом мы берем значения х ( в данном случае шаг 1 ), и чем больше берем значений х, тем плавнее будет кривая), получаем параболу:

классическая парабола, парабола, построение параболы

Нетрудно заметить, что если мы возьмем случай a=-1, b=0, c=0, то есть y=-x^2, то мы получим параболу, симметричную y=x^2 относительно оси (ох). Убедиться  в этом несложно, заполнив аналогичную таблицу:

парабола, построение параболы

II СЛУЧАЙ,  «a» ОТЛИЧНО ОТ ЕДИНИЦЫ

Что же будет, если мы будем брать a=2, a=-3, a=0.5? Как изменится поведение параболы? При |a|>1 парабола  y=ax^2 изменит форму, она “похудеет” по сравнению с параболой y=x^2 (не верите – заполните соответствующую таблицу – и убедитесь сами):

парабола, построение параболы, ветви параболы, коэффициенты параболы, дискриминант

На первой картинке (см. выше) хорошо видно, что точки из таблицы для параболы y=x^2 (1;1), (-1;1) трансформировались в точки (1;4), (1;-4), то есть при тех же значениях x  ордината  y  каждой точки умножилась на 4.  Это произойдет со всеми ключевыми точками исходной  таблицы. Аналогично рассуждаем в случаях картинок 2 и 3.

А при |a|<1 парабола y=ax^2  «станет шире»  параболы y=x^2:

парабола, построение параболы, ветви параболы, коэффициенты параболы, дискриминант, ветви вниз

Давайте подитожим:

III СЛУЧАЙ, ПОЯВЛЯЕТСЯ  «С»

 Теперь давайте введем в игру c (то есть рассматриваем случай, когда cneq 0), будем рассматривать параболы вида y=ax^2+c. Нетрудно догадаться (вы всегда можете обратиться к таблице), что будет происходить смещение параболы y=ax^2 вдоль оси (oy) вверх или вниз в зависимости от знака c:

парабола, построение параболы, сдвиг параболы, ветви параболы, коэффициенты параболы, дискриминант

IV СЛУЧАЙ, ПОЯВЛЯЕТСЯ «b»

Когда же парабола “оторвется” от оси (oy) и будет, наконец, “гулять” по всей координатной плоскости? Когда b перестанет быть равным 0.

Здесь для построения параболы y=ax^2+bx+c нам понадобится формула для вычисления вершины: x_o=frac{-b}{2a},   y_o=y(x_o).

Так вот в этой точке (как в точке (0;0) новой системы координат) мы будем строить параболу y=ax^2, что уже нам по силам. Если  имеем дело со случаем a=1, то от вершины откладываем один единичный отрезок вправо, один вверх, – полученная точка – наша (аналогично шаг влево, шаг вверх – наша точка); если имеем дело с a=2, например, то от вершины откладываем один единичный отрезок вправо, два – вверх и т.д.

Например, вершина параболы y=x^2-4x-2:

x_o=frac{4}{2}=2,  y_o=(2)^2-4cdot 2 -2=-6. Теперь главное уяснить, что в этой вершине мы будем строить параболу по шаблону параболы y=x^2,  ведь a=1 в нашем случае.

парабола, построение параболы, ветви параболы, дискриминант

При построении параболы после нахождения координат вершины очень удобно учитывать следующие моменты:

1) парабола обязательно пройдет через точку (0;c).  Действительно, подставив в формулу y=ax^2+bx+c x=0, получим, что y=c. То есть ордината точки пересечения параболы  с осью (оу), это c.   В нашем примере (выше), парабола пересекает ось ординат в точке -2, так как c=-2.

2) осью симметрии параболы является прямая x=frac{-b}{2a}, поэтому все точки параболы будут симметричны относительно нее. В нашем примере, мы сразу берем точку (0; -2) и строим ей симметричную относительно оси симметрии параболы, получим точку (4; -2), через которую будет проходить парабола.

3) Приравнивая y к 0, мы узнаем точки пересечения параболы с осью (ох). Для этого решаем уравнение ax^2+bx+c=0. В зависимости от дискриминанта, будем получать одну (D=0,  x=-frac{b}{2a}), две (D>0, x_{1,2}=frac{-bpmsqrt{b^2-4ac}}{2a}) или нИсколько (D<0) точек пересечения с осью (ох). В предыдущем примере у нас  корень из дискриминанта – не целое число, при построении нам особо нет смысла находить корни, но мы видим четко, что две точки пересечения  с осью (ох) у нас будут (так как D>0), хотя, в общем, это видно и без дискриминанта.

Итак, давайте выработаем

Алгоритм для построения параболы, если она задана  в виде y=ax^2+bx+c

1) определяем направление ветвей ( а>0 – вверх, a<0 – вниз)

2) находим координаты вершины (x_o;y_o) параболы по формуле x_o=frac{-b}{2a},   y_o=y(x_o).

3) находим точку пересечения параболы с осью (оу) по свободному члену c, строим точку, симметричную данной относительно оси симметрии параболы (надо заметить, бывает, что эту точку невыгодно отмечать, например, потому, что значение c велико… пропускаем этот пункт…)

4) В найденной точке – вершине параболы (как в точке (0;0) новой системы координат) строим параболу y=ax^2. Если |a|>1, то парабола y=ax^2 становится у’же по сравнению с y=x^2, если |a|<1, то парабола расширяется по сравнению с y=x^2

5) Находим точки пересечения параболы с осью (оу) (если они еще сами “не всплыли”), решая уравнение ax^2+bx+c=0

Пример 1

алгоритм построения параболы, парабола

Пример  2

парабола, построение параболы, ветви параболы, коэффициенты параболы, дискриминант

Замечание 1. Если же парабола изначально нам задана в виде y=a(x-m)^2+n, где m, n – некоторые числа (например, y=(x-5)^2-1), то построить ее будет еще легче, потому что нам уже заданы координаты вершины (m, n). Почему?

Возьмем квадратный трехчлен ax^2+bx+c и выделим в нем полный квадрат: ax^2+bx+c=a(x^2+frac{b}{a}x+frac{c}{a})=a((x^2+2frac{b}{2a}x+frac{b^2}{4a^2})-frac{b^2}{4a^2}+frac{c}{a})=a(x+frac{b}{2a})^2-frac{b^2}{4a}+c. Посмотрите, вот мы и получили, что m=frac{-b}{2a}, n=-frac{b^2}{4a}+c=y(frac{-b}{2a}). Мы с вами ранее называли   вершину параболы (x_o; y_o), то есть теперь x_o=m, y_o=n.

Например,  y=-frac{1}{3}{(x+2)}^2+6. Отмечаем на плоскости вершину параболы (-2; 6), понимаем, что ветви направлены вниз, парабола расширена (относительно y=x^2). То есть выполняем пункты 1; 3; 4; 5 из алгоритма построения параболы (см. выше).

парабола с ветвями вниз

Замечание 2. Если парабола задана в виде, подобном этому y=x(x-4) (то есть y представлен в виде произведения двух линейных множителей), то нам сразу видны точки пересечения параболы с осью (ох). В данном случае  – (0;0) и (4;0). В остальном же действуем согласно алгоритму, раскрыв скобки.

В ЕГЭ 2022 года добавили новую задачу на графики функций. Для решения этой задачи нужно сначала определить формулу функции, а затем вычислить ответ на вопрос задачи. И если вычисление ответа по известной формуле обычно не составляет труда, то вот определение самой формулы часто ставит школьников в тупик. Поэтому мы разберем три разных подхода к этому вопросу.

Замечание. Про то как определяется формула у прямой и параболы я написала в этой и этой статьях. Поэтому здесь в примерах я буду использовать другие функции – дробные, иррациональные, показательные и логарифмические, но все три описанных здесь способа работают и для линейных, и для квадратичных функций в том числе.

1 способ – находим формулу по точкам

Этот способ подходит вообще для любой девятой задачи, но занимает достаточно много времени и требует хорошего навыка решения систем уравнений.

Давайте разберем алгоритм на примере конкретной 9-ой задачи ЕГЭ:

задача с гиперболой

Алгоритм:

1. Находим 2 точки с целыми координатами. Обычно они выделены жирно, но если это не так, то не проблема найти их самому.
Пример:

находим две точки с целыми координатами

2. Подставляем эти координаты в «полуфабрикат» функции. Вместо (f(x))– координату игрек, вместо (x) – икс. Получается система.

составляем уравнения

3. Решаем эту систему и получаем готовую формулу.

решаем систему

4. Готово, функция найдена, можно переходить ко второму этапу – вычислению (f(-8)). Если вы вдруг не знаете, что это значит – в конце статьи я рассматриваю этот момент более подробно.

отвечаем на вопрос задачи

Давайте посмотрим метод еще раз на примере с логарифмической функцией.
Пример:

Пример с логарифмической функцией

2 способ – преобразование графиков функций

Этот способ сильно быстрее первого, но требует больше знаний. Для использования преобразований функций нужно знать, как выглядят функции без изменения и как преобразования их меняют. Наиболее удобно использовать этот способ для иррациональной функции ((y=sqrt{x}) ) и функции обратной пропорциональности ((y=frac{1}{x})).

Вот как выглядит применение этого способа:

преобразование графиков функций

Для использования этого способа надо знать, как выглядят изначальные функции:

Виды функций

И понимать, как меняются функции от преобразований:

Преобразование графиков функций

примеры преобразований функций

Преобразование показательной функции Преобразование гипербол

Часто даже по «полуфабрикату» функции понятно, какие преобразования сделали с функцией:

как по формуле определить какие были преобразования с функцией

Пример:

пример с функцией обратной пропорциональности

3 способ – гибридный

Идеально подходит для логарифмических и показательных функций, так как обычно у таких функций неизвестно основание и с помощью преобразований его не найти. С другой стороны, независимо от оснований любая показательная функция должна проходить через точку ((0;1)), а любая логарифмическая — через точку ((1;0)).

показательная и логарифмическая функция

По смещению этих точек легко понять, как именно двигали функцию, но только если ее не растягивали, а лишь перемещали вверх-вниз, влево-вправо (как обычно и бывает в задачах на ЕГЭ).

Основание же лучше находить уже следующим действием, используя подстановку координат точки в «полуфабрикат» функции.

пример с логарифмической функцией

пример с логарифмической функцией

Как отвечать на вопросы в задаче, когда уже определили функцию

— Если просят найти (f)(любое число), то нужно это число подставить в готовую функцию вместо икса.
Пример:

что значит найти f от числа

— Если просят найти «при каком значении x значение функции равно *любому числу*», то надо решить уравнение, в одной части которого будет функция, а в другой — то самое число. Аналогично надо поступить, если просят «найти корень уравнения (f(x)=) *любое число*».
Пример:

найдите, при каком значении x значение функции равно 8

— Если просят найти абсциссу точки пересечения – надо приравнять 2 функции и решить получившееся уравнение. Корень уравнения и будет искомой абсциссой. Аналогично надо делать в задачах, где даны две точки пересечения (A)(*любое число*;*другое число*) и (B(x_0;y_0)) и просят найти (x_0).
Пример:

найдите точку пересечения функций

— Если просят найти ординату точки пересечения – надо приравнять 2 функции, найти иксы и подставить подходящий икс в любую функцию. Точно также решаем если просят найти (y_0) точки пересечения двух функций.
Пример:

найдите ординату точки пересечения

— Иногда просят найти просто какой-либо из коэффициентов функции. Тогда надо просто восстановить функцию и записать в ответ то, о чем спросили:
Пример:

найдите k

Каталог заданий.
Параболы


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Тип 10 № 509253

На рисунке изображены графики функций f левая круглая скобка x правая круглая скобка =4x в квадрате минус 25x плюс 41 и g левая круглая скобка x правая круглая скобка =ax в квадрате плюс bx плюс c, которые пересекаются в точках A и B. Найдите абсциссу точки B.

Аналоги к заданию № 509253: 509254 509255 509259 509262 509263 509264 509268 509256 509257 509258 … Все

Кодификатор ФИПИ/Решу ЕГЭ: 3.1.5 Преобразования графиков, 3.3.3 Квадратичная функция, её график

Решение

·

·

Сообщить об ошибке · Помощь


2

Тип 10 № 562060

На рисунке изображён график функции вида f левая круглая скобка x правая круглая скобка = дробь: числитель: x в квадрате , знаменатель: a конец дроби плюс bx плюс c, где числа a, b и c  — целые. Найдите значение f левая круглая скобка 3,5 правая круглая скобка .

Аналоги к заданию № 562153: 562060 562154 562155 562156 562157 562158 562159 562160 562161 562162 … Все

Кодификатор ФИПИ/Решу ЕГЭ: 3.1.5 Преобразования графиков, 3.3.3 Квадратичная функция, её график

Решение

·

·

Сообщить об ошибке · Помощь


3

Тип 10 № 562061

На рисунке изображён график функции вида f левая круглая скобка x правая круглая скобка = дробь: числитель: x в квадрате , знаменатель: a конец дроби плюс bx плюс c, где числа a, b и c  — целые. Найдите значение дискриминанта уравнения f левая круглая скобка x правая круглая скобка =0.

Кодификатор ФИПИ/Решу ЕГЭ: 3.1.5 Преобразования графиков, 3.3.3 Квадратичная функция, её график

Решение

·

·

1 комментарий · Сообщить об ошибке · Помощь


4

Тип 10 № 562153

На рисунке изображён график функции вида f левая круглая скобка x правая круглая скобка = дробь: числитель: x в квадрате , знаменатель: a конец дроби плюс bx плюс c, где числа a, b и c  — целые. Найдите значение f левая круглая скобка 13 правая круглая скобка .

Аналоги к заданию № 562153: 562060 562154 562155 562156 562157 562158 562159 562160 562161 562162 … Все

Кодификатор ФИПИ/Решу ЕГЭ: 3.1.5 Преобразования графиков, 3.3.3 Квадратичная функция, её график

Решение

·

·

Сообщить об ошибке · Помощь


5

Тип 10 № 562154

На рисунке изображён график функции вида f левая круглая скобка x правая круглая скобка = дробь: числитель: x в квадрате , знаменатель: a конец дроби плюс bx плюс c, где числа a, b и c  — целые. Найдите значение f левая круглая скобка 10 правая круглая скобка .

Аналоги к заданию № 562153: 562060 562154 562155 562156 562157 562158 562159 562160 562161 562162 … Все

Кодификатор ФИПИ/Решу ЕГЭ: 3.1.5 Преобразования графиков, 3.3.3 Квадратичная функция, её график

Решение

·

·

Сообщить об ошибке · Помощь

Пройти тестирование по этим заданиям

Понравилась статья? Поделить с друзьями:
  • Формула для нахождения вероятности егэ
  • Формула для звука егэ информатика
  • Формула для задач по химии егэ
  • Формула для егэ по математике профильный уровень
  • Формула для вычисления кредита егэ