Формула для сплавов егэ математика

Задачи ЕГЭ на сплавы, смеси, растворы.

Задачи на сплавы, смеси, растворы встречаются и в математике, и в химии. У химиков сложнее – там вещества еще и взаимодействуют, превращаясь во что-то новое. А в задачах по математике мы просто смешиваем растворы различной концентрации. Покажем правила решения на примере задач на растворы. Для сплавов и смесей – действуем аналогично.

1. В сосуд, содержащий 5 литров 12-процентного водного раствора некоторого вещества, добавили 7 литров воды. Сколько процентов составляет концентрация получившегося раствора?

В решении подобных задач помогает картинка. Изобразим сосуд с раствором схематично — так, как будто вещество и вода в нем не перемешаны между собой, а отделены друг от друга, как в коктейле. И подпишем, сколько литров содержат сосуды и сколько в них процентов вещества. Концентрацию получившегося раствора обозначим x.

Первый сосуд содержал 0,12 cdot 5=0,6 литра вещества. Во втором сосуде была только вода. Значит, в третьем сосуде столько же литров вещества, сколько и в первом:

0,12 cdot 5=genfrac{}{}{}{0}{displaystyle x}{displaystyle 100} cdot 12
x=5.


2. Смешали некоторое количество 15-процентного раствора некоторого вещества с таким же количеством 19-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?

Пусть масса первого раствора равна x. Масса второго — тоже x. В результате получили раствор массой 2x. Рисуем картинку.

Получаем: 0,15x+0,19x=0,34x=0,17cdot 2x

Ответ: 17.

3. Виноград содержит 90% влаги, а изюм — 5%. Сколько килограммов винограда требуется для получения 20 килограммов изюма?

Внимание! Если вам встретилась задача «о продуктах», то есть такая, где из винограда получается изюм, из абрикосов урюк, из хлеба сухари или из молока творог — знайте, что на самом деле это задача на растворы. Виноград мы тоже можем условно изобразить как раствор. В нем есть вода и «сухое вещество». У «сухого вещества» сложный химический состав, а по его вкусу, цвету и запаху мы могли бы понять, что это именно виноград, а не картошка. Изюм получается, когда из винограда испаряется вода. При этом количество «сухого вещества» остается постоянным. В винограде содержалось 90% воды, значит, «сухого вещества» было 10%. В изюме 5% воды и 95% «сухого вещества». Пусть из x кг винограда получилось 20 кг изюма. Тогда

10% от x=95% от 20

Составим уравнение:
0,1x=0,95cdot20
и найдем x.

Ответ: 190.


4. Имеется два сплава. Первый сплав содержит 10% никеля, второй — 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава меньше массы второго?

Пусть масса первого сплава равна x, а масса второго равна y. В результате получили сплав массой x+y=200.

Запишем простую систему уравнений:

left{begin{matrix}x+y=200\ 0,1x+0,3y=0,25 cdot200end{matrix}right.

Первое уравнение — масса получившегося сплава, второе — масса никеля.

Решая, получим, что x=50, y=150.

Ответ: 100.


5. Смешав 30-процентный и 60-процентный растворы кислоты и добавив 10 кг чистой воды, получили 36-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 41-процентный раствор кислоты. Сколько килограммов 30-процентного раствора использовали для получения смеси?

Пусть масса первого раствора x, масса второго равна y. Масса получившегося раствора равна x+y+10. Запишем два уравнения, для количества кислоты.

left{begin{matrix}0,3x + 0,6y = 0,36 left(x + y + 10right)\ 0,3x + 0,6y + 0,5 cdot 10 = 0,41 left(x + y + 10right)end{matrix}right.

Решаем получившуюся систему. Сразу умножим обе части уравнений на 100, поскольку с целыми коэффициентами удобнее работать, чем с дробными. Раскроем скобки.

left{begin{matrix}30x + 60y = 36x + 36y + 360\ 30x + 60y + 500 = 41x + 41y + 410end{matrix}right.

left{begin{matrix}4y - x = 60\ 11x - 19y = 90end{matrix}right.

x=60, y=30

Ответ: 60.

Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Задачи ЕГЭ на сплавы, смеси, растворы.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
09.03.2023

Задачи на смеси и сплавы – подробнее

Концентрация какого-то вещества в растворе – это отношение массы или объема этого вещества к массе или объему всего раствора.

То же самое относится и к сплавам: содержание одного из металлов в сплаве – это отношение массы этого металла к массе всего сплава.

Обычно концентрация измеряется в процентах.

Что такое процент?

Напомню, что это сотая доля числа. То есть, если массу или объем разделить на ( displaystyle 100), получим ( displaystyle 1%) этой массы или объема.

Чтобы вычислить концентрацию в процентах, достаточно полученное число умножить на ( displaystyle 100%).

Почему?

Сейчас покажу: пусть масса всего раствора равна ( displaystyle M), а масса растворенного вещества (например, соли или кислоты) – ( displaystyle m). Тогда один процент от массы раствора равен ( displaystyle frac{M}{100}).

Как узнать, сколько таких процентов содержится в числе ( displaystyle m)?

Просто: поделить число ( displaystyle m) на этот один процент: ( displaystyle frac{m}{frac{M}{100}}=frac{m}{M}cdot 100), но ведь ( displaystyle frac{m}{M}) – это концентрация.

Вот и получается, что ее надо умножить на ( displaystyle 100), чтобы узнать, сколько процентов вещества содержится в растворе.

Более подробно о процентах – в темах  “Дроби, и действия с дробями”и “Проценты”.

Поехали дальше.

Масса раствора, смеси или сплава равна сумма масс всех составляющих.

Логично, правда?

Например, если в растворе массой ( displaystyle 10) кг содержится ( displaystyle 3) кг соли, то сколько в нем воды? Правильно, ( displaystyle 7)кг.

И еще одна очевидность:

При смешивании нескольких растворов (или смесей, или сплавов), масса нового раствора становится равной сумме масс всех смешанных растворов.

А масса растворенного вещества в итоге равна сумме масс этого же вещества в каждом растворе отдельно.

Например: в первом растворе массой ( displaystyle 10) кг содержится ( displaystyle 3) кг кислоты, а во втором растворе массой ( displaystyle 14) кг – ( displaystyle 5) кг кислоты.

Когда мы их смешаем, чему будет равна масса нового раствора?

( displaystyle 10+14=24) кг.

А сколько в новом растворе будет кислоты? ( displaystyle 3+5=8) кг.

Перейдем к задачам.

Бонус: Вебинары из нашего курса подготовки к ЕГЭ по математике

ЕГЭ №11. Задачи на растворы, смеси и сплавы (и на проценты)

В этом видео мы научимся решать текстовые задачи на проценты, а так же на растворы, смеси и сплавы – на все, что содержит разные вещества в каком-то соотношении.

Задачи на смеси и сплавы очень часто попадаются на ОГЭ (№23) и профильном ЕГЭ (под номером 12).

Мы научимся очень простому способу сводить эти задачи к обычному линейному уравнению или к системе из двух таких уравнений.

Также мы научимся решать сложные задачи на проценты – в основном они на банковские вклады и кредиты и прочие финансовые штуки.

Это, в том числе, даст нам очень большой задел для “ экономической” задачи №17 (которая стоит аж 3 первичных балла).

ЕГЭ №17 Экономическая задача. Вклады

Экономические задачи в основном довольно простые, но дают аж 3 первичных балла!

Но это не совсем 3 балла нахаляву. Эти задачи требуют очень подробного и чёткого описания решения.

По сути, мы составляем математическую модель какой-то жизненной ситуации (например, связанной с банковскими вкладами или кредитами), и важно научиться ничего не пропускать при описании этой модели: описывать словами все введённые обозначения, обосновывать уравнения, которые мы записываем, и всё в таком духе.

Если не написать эти объяснения, вы гарантированно получите 0 баллов даже за правильно найденный ответ!

На этом уроке мы узнаем, как работают вклады, научимся решать и, главное, правильно оформлять решение таких задач.

Возможно, вам нужно заглянут сюда – “Простейшие задачи на проценты”

Задача 1. В сосуд, содержащий 7 литров 14-процентного водного раствора некоторого вещества, добавили 7 литров воды. Сколько процентов составляет концентрация получившегося раствора?

Решение: + показать


Задача 2. Смешали некоторое количество 13-процентного раствора некоторого вещества с таким же количеством 17-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?

Решение: + показать


Задача 3. Имеется два сплава. Первый сплав содержит 10% никеля, второй  — 35% никеля. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава меньше массы второго?

Решение: + показать


Задача 4.  Смешав 54-процентный и 61-процентный растворы кислоты и добавив 10 кг чистой воды, получили 46-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 56-процентный раствор кислоты. Сколько килограммов 54-процентного раствора использовали для получения смеси?

Решение: + показать


Задача 5.  Имеются два сосуда. Первый содержит 100 кг, а второй — 60 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 19% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 22% кислоты. Сколько килограммов кислоты содержится в первом сосуде?

Решение: + показать


Задача 6. Виноград содержит 90% влаги, а изюм  — 5%. Сколько килограммов винограда требуется для получения 40 килограммов изюма?

Решение: + показать


Задача 7. В 2008 году в городском квартале проживало 40000 человек. В 2009 году, в результате строительства новых домов, число жителей выросло на 1%, а в 2010 году  — на 9% по сравнению с 2009 годом. Сколько человек стало проживать в квартале в 2010 году?

Решение: + показать


Задача 8. Цена холодильника в магазине ежегодно уменьшается на одно и то же число процентов от предыдущей цены. Определите, на сколько процентов каждый год уменьшалась цена холодильника, если, выставленный на продажу за 20700 рублей, через два года был продан за 16767 рублей.

Решение: + показать


Задача 9. В понедельник акции компании подорожали на некоторое количество процентов, а во вторник подешевели на то же самое количество процентов. В результате они стали стоить на 1% дешевле, чем при открытии торгов в понедельник. На сколько процентов подорожали акции компании в понедельник?

Решение: + показать


Задача 10.  Шесть рубашек дешевле куртки на 2%. На сколько процентов девять рубашек дороже куртки? Видео*

Решение: + показать


Задача 11. Семья состоит из мужа, жены и их дочери студентки. Если бы зарплата мужа увеличилась вдвое, общий доход семьи вырос бы на 65%. Если бы стипендия дочери уменьшилась вдвое, общий доход семьи сократился бы на 2%. Сколько процентов от общего дохода семьи составляет зарплата жены?

Решение: + показать


Задача 12. Дима, Андрей, Гриша и Коля учредили компанию с уставным капиталом 200000 рублей. Дима внес 26% уставного капитала, Андрей  — 55000 рублей, Гриша  — 0,16 уставного капитала, а оставшуюся часть капитала внес Коля. Учредители договорились делить ежегодную прибыль пропорционально внесенному в уставной капитал вкладу. Какая сумма от прибыли 1000000 рублей причитается Коле? Ответ дайте в рублях.

Решение: + показать


Задача 13.  Клиент А. сделал вклад в банке в размере 6200 рублей. Проценты по вкладу начисляются раз в год и прибавляются к текущей сумме вклада. Ровно через год на тех же условиях такой же вклад в том же банке сделал Б. Ещё ровно через год клиенты А. и Б. закрыли вклады и забрали все накопившиеся деньги. При этом клиент А. получил на 682 рубля больше клиента Б. Какой процент годовых начислял банк по этим вкладам?

Решение: + показать


тест

Вы можете пройти Тест по задачам на проценты,  сплавы, смеси

11. Сюжетные текстовые задачи


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Задачи на растворы, смеси и сплавы

(blacktriangleright) Концентрация вещества в растворе (сплаве) – это процент содержания этого вещества в растворе (сплаве): [text{концентрация вещества}=dfrac{text{масса вещества}}{text{масса раствора}}cdot 100%]

(blacktriangleright) Заметим, что в задачах из данной подтемы зачастую удобно составлять уравнения относительно кислоты или активного вещества.


Задание
1

#846

Уровень задания: Равен ЕГЭ

Сергей смешал раствор, содержащий (20%) кислоты и раствор, содержащий (40%) той же кислоты. В итоге у него получился раствор, содержащий (32,5%) кислоты, причём объём полученного раствора (4) литра. Сколько литров раствора, содержащего (20%) кислоты, использовал Сергей при смешивании?

Пусть (x) литров раствора, содержащего (20%) кислоты использовал Сергей при смешивании, тогда

(4 — x) литров раствора, содержащего (40%) кислоты использовал Сергей при смешивании,

(dfrac{20}{100}x) – объём кислоты в растворе, содержащем (20%) кислоты, (dfrac{40}{100}(4 — x)) – объём кислоты в растворе, содержащем (40%) кислоты.

Так как в итоге кислоты оказалось (dfrac{32,5}{100} cdot 4 = 1,3) литра, то:

[dfrac{20}{100}x + dfrac{40}{100}(4 — x) = 1,3,] откуда находим (x = 1,5).

Ответ: 1,5


Задание
2

#844

Уровень задания: Равен ЕГЭ

Один газ в сосуде А содержал (21%) кислорода, второй газ в сосуде В содержал (5%) кислорода. Масса первого газа в сосуде А была больше массы второго газа в сосуде В на 300 г. Перегородку между сосудами убрали так, что газы перемешались и получившийся третий газ теперь содержит (14,6%) кислорода. Найдите массу третьего газа. Ответ дайте в граммах.

Пусть (x) грамм – масса второго газа, тогда

(x + 300) грамм – масса первого газа,

(dfrac{21}{100}(x + 300)) грамм – масса кислорода в первом газе,

(dfrac{5}{100}x) грамм – масса кислорода во втором газе,

тогда масса кислорода в третьем газе составляет (dfrac{14,6}{100}(2x + 300)) грамм.

Так как третий газ возник в результате смешивания первого и второго, то:

[dfrac{21}{100}(x + 300) + dfrac{5}{100}x = dfrac{14,6}{100}(2x + 300),] откуда находим (x = 600). Таким образом, масса третьего газа равна (600 + 600 + 300 = 1500) грамм.

Ответ: 1500


Задание
3

#843

Уровень задания: Равен ЕГЭ

Иван случайно смешал молоко жирностью (2,5%) и молоко жирностью (6%). В итоге у него получилось 5 литров молока жирностью (4,6%). Сколько литров молока жирностью (2,5%) было у Ивана до смешивания?

Пусть (x) литров молока жирностью (2,5%) было у Ивана, тогда

(5 — x) литров молока жирностью (6%) было у Ивана,

(dfrac{2,5}{100}x) – объём жира в молоке жирностью (2,5%), (dfrac{6}{100}(5 — x)) – объём жира в молоке жирностью (6%).

Так как в итоге жира оказалось (dfrac{4,6}{100} cdot 5 = 0,23) литра, то:

(dfrac{2,5}{100}x + dfrac{6}{100}(5 — x) = 0,23), откуда находим (x = 2).

Ответ: 2


Задание
4

#841

Уровень задания: Равен ЕГЭ

В сосуде А содержится 3 литра 17-процентного водного раствора вещества Х. Из сосуда В в сосуд А перелили 7 литров 19-процентного водного раствора вещества Х. Сколько процентов составляет концентрация полученного в сосуде А раствора?

Концентрация в процентах – это отношение объёма вещества к объёму смеси, умноженное на 100(%). До переливания в сосуде А было (3 cdot 0,17 = 0,51) литра вещества Х, в сосуде В было (7 cdot 0,19 = 1,33) литра вещества Х.

После переливания объём вещества Х в сосуде А стал (0,51 + 1,33 = 1,84) литра, а объём всего раствора (3 + 7 = 10) литров. Тогда концентрация в процентах составила [dfrac{1,84}{10} cdot 100% = 18,4%.]

Ответ: 18,4


Задание
5

#2133

Уровень задания: Равен ЕГЭ

Во сколько раз больше должен быть объём (5)-процентного раствора кислоты, чем объём (10)-процентного раствора той же кислоты, чтобы при смешивании получить (7)-процентный раствор?

Пусть объём (5)-процентного раствора кислоты равен (x) литров, а объём (10)-процентного раствора равен (y) литров, тогда требуется найти значение величины (dfrac{x}{y}) при условии [0,05x + 0,1y = 0,07(x + y)
qquadLeftrightarrowqquad
dfrac{x}{y} = dfrac{3}{2} = 1,5,,]
таким образом, ответ: (1,5).

Ответ: 1,5


Задание
6

#2134

Уровень задания: Равен ЕГЭ

Во сколько раз больше должен быть объём (20)-процентного раствора кислоты, чем объём (14)-процентного раствора той же кислоты, чтобы при смешивании получить (18)-процентный раствор?

Пусть объём (20)-процентного раствора кислоты равен (x) литров, а объём (14)-процентного раствора равен (y) литров, тогда требуется найти значение величины (dfrac{x}{y}) при условии [0,2x + 0,14y = 0,18(x + y)
qquadLeftrightarrowqquad
dfrac{x}{y} = 2,,]
таким образом, ответ: (2).

Ответ: 2


Задание
7

#2629

Уровень задания: Равен ЕГЭ

Смешав (25)-процентный и (95)-процентный растворы кислоты и добавив (20) кг чистой воды, получили (40)-процентный раствор кислоты. Если бы вместо (20) кг воды добавили (20) кг (30)-процентного раствора той же кислоты, то получили бы (50)-процентный раствор кислоты. Сколько килограммов (25)-процентного раствора использовали для получения смеси?

Заметим, что вода – это раствор, не содержащий кислоту, то есть содержащий (0%) кислоты.
Пусть (x) кг – масса раствора с (25)-процентным содержанием кислоты, (y) кг – масса раствора с (95)-процентным содержанием кислоты. Составим схему, описывающую получение (40)-процентного раствора:

Заметим, что количество кислоты во всех трех растворах равно количеству кислоты в получившемся растворе. Найдем количество кислоты в первом растворе.
Если раствор весит (x) кг, а в нем (25%) кислоты, то в килограммах в нем (dfrac{25}{100}cdot x) кислоты.

Таким же образом можно посчитать количество кислоты в остальных растворах. Получим первое уравнение:

[dfrac{25}{100}cdot x+dfrac{95}{100}cdot y+
dfrac{0}{100}cdot 20=dfrac{40}{100}cdot (x+y+20)]

Аналогично составим схему, описывающую получение (50)-процентного раствора:

Значит, уравнение, описывающее эту ситуацию, будет выглядеть так:

[dfrac{25}{100}cdot x+dfrac{95}{100}cdot y+
dfrac{30}{100}cdot 20=dfrac{50}{100}cdot (x+y+20)]

Таким образом, решив систему из полученных двух уравнений, найдем (x). Для этого можно умножить оба уравнения на (100), чтобы сделать их проще на вид:

[begin{cases}
25x+95y+0=40(x+y+20)\
25x+95y+30cdot 20=50(x+y+20)
end{cases}]

Вычтем из второго уравнения первое и получим новую систему:

[begin{aligned} &begin{cases}
25x+95y=40(x+y+20)\
30cdot 20=10(x+y+20)
end{cases} quad Rightarrow quad begin{cases}
5x+19y=8(x+y+20)\
y=40-x end{cases} quad Rightarrow \[2ex] Rightarrow quad
&begin{cases}
3x-11(40-x)+160=0\
y=40-x end{cases} quad Rightarrow quad begin{cases}
x=20\y=20end{cases} end{aligned}]

Таким образом, раствора с (25%) кислоты было (20) кг.

Ответ: 20

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Всего: 101    1–20 | 21–40 | 41–60 | 61–80 …

Добавить в вариант

Имеется два сплава. Первый сплав содержит 10% меди, второй  — 40% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 30% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.


Имеется два сплава. Первый сплав содержит 5% меди, второй  — 12% меди. Масса второго сплава больше массы первого на 9 кг. Из этих двух сплавов получили третий сплав, содержащий 10% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.


Имеется два сплава. Первый сплав содержит 5% меди, второй  — 13% меди. Масса второго сплава больше массы первого на 9 кг. Из этих двух сплавов получили третий сплав, содержащий 10% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

Источник: Досрочная волна ЕГЭ по математике 29.03.2019. Вариант 1


Имеется два сплава. Первый сплав содержит 5% меди, второй  — 14% меди. Масса второго сплава больше массы первого на 10 кг. Из этих двух сплавов получили третий сплав, содержащий 12% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

Источник: ЕГЭ — 2016. Основная волна по математике 06.06.2016. Вариант 437. Юг


Имеется два сплава. Первый сплав содержит 5% меди, второй  — 40% меди. Масса первого сплава больше массы второго на 50 кг. Из этих двух сплавов получили третий сплав, содержащий 10% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

Источник: Досрочная волна ЕГЭ по математике 29.03.2019. Вариант 2


Имеется два сплава. Первый сплав содержит 40% меди, второй  — 25% меди. Масса первого сплава больше массы второго на 10 кг. Из этих двух сплавов получили третий сплав, содержащий 35% меди. Найдите массу третьего

сплава. Ответ дайте в килограммах.

Источник: ЕГЭ по математике 27.03.2020. Досрочная волна. Вариант 1


Имеется два сплава. Первый сплав содержит 45% меди, второй  — 20% меди. Масса первого сплава больше массы второго на 30 кг. Из этих двух сплавов получили третий сплав, содержащий 40% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

Источник: ЕГЭ по математике 27.03.2020. Досрочная волна. Вариант 2


Имеется два сплава. Первый сплав содержит 35% меди, второй  — 5% меди. Масса первого сплава больше массы второго на 80 кг. Из этих двух сплавов получили третий сплав, содержащий 30% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

Источник: ЕГЭ по математике 28.03.2022. Досрочная волна. Москва. Вариант 1


Имеется два сплава. Первый сплав содержит 5% меди, второй  — 12% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 10% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.


Имеется два сплава. Первый сплав содержит 5% меди, второй  — 14% меди. Масса второго сплава больше массы первого на 7 кг. Из этих двух сплавов получили третий сплав, содержащий 10% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.


Имеется два сплава. Первый сплав содержит 5% меди, второй  — 14% меди. Масса второго сплава больше массы первого на 5 кг. Из этих двух сплавов получили третий сплав, содержащий 10% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.


Имеется два сплава. Первый содержит 10% никеля, второй  — 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?


Имеется два сплава. Первый содержит 10% никеля, второй  — 35% никеля. Из этих двух сплавов получили третий сплав массой 150 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава была меньше массы второго?


Имеется два сплава. Первый содержит 10% никеля, второй  — 35% никеля. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?


Имеется два сплава. Первый содержит 10% никеля, второй  — 35% никеля. Из этих двух сплавов получили третий сплав массой 250 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?


Имеется два сплава. Первый содержит 10% никеля, второй − 35% никеля. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Источник: ЕГЭ по математике 05.06.2014. Основная волна. Восток. Вариант 1.


Имеется два сплава. Первый содержит 15% никеля, второй  — 35% никеля. Из этих двух сплавов получили третий сплав массой 140 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Источник: Досрочная волна ЕГЭ по математике 29.03.2019. Вариант 4


Имеется два сплава. Первый содержит 10% никеля, второй  — 35% никеля. Из этих двух сплавов получили третий сплав массой 175 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?


Имеется два сплава. Первый содержит 5% никеля, второй  — 30% никеля. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 20% никеля. На сколько килограммов масса первого сплава была меньше массы второго?


Смешав 11-процентный и 72-процентный растворы кислоты и добавив 10 кг чистой воды, получили 31-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 51-процентный раствор кислоты. Сколько килограммов 11-процентного раствора использовали для получения смеси?

Всего: 101    1–20 | 21–40 | 41–60 | 61–80 …

Skip to content

ЕГЭ Профиль №9. Задачи на проценты, смеси и сплавы

ЕГЭ Профиль №9. Задачи на проценты, смеси и сплавыadmin2022-10-26T22:13:32+03:00

Скачать файл в формате pdf.

ЕГЭ Профиль №9. Задачи на проценты, смеси и сплавы

Задача 1. В 2008 году в городском квартале проживало 40000 человек. В 2009 году, в результате строительства новых домов, число жителей выросло на 8%, а в 2010 году  — на 9% по сравнению с 2009 годом. Сколько человек стало проживать в квартале в 2010 году?

В 2009 году число жителей стало равно (40000 + 40000 cdot frac{8}{{100}} = 43200), а в 2010 году:  (43200 + 43200 cdot frac{9}{{100}} = 47088.)

Ответ: 47088.

Задача 2. В понедельник акции компании подорожали на некоторое количество процентов, а во вторник подешевели на то же самое количество процентов. В результате они стали стоить на 4% дешевле, чем при открытии торгов в понедельник. На сколько процентов подорожали акции компании в понедельник?

Обозначим первоначальную стоимость акций за А. Пусть в понедельник акции подорожали на х %, поэтому они стали стоить (100 + х)% от А, то есть (A cdot frac{{100 + x}}{{100}}). Во вторник они подешевели на х %, поэтому они стали стоить (100 – х) % от (A cdot frac{{100 + x}}{{100}}),  то есть  (A cdot frac{{100 + x}}{{100}} cdot frac{{100 — x}}{{100}}.)

В результате акции стали стоить 96% от А(A cdot frac{{96}}{{100}}). Таким образом, получаем уравнение:

(A cdot frac{{100 + x}}{{100}} cdot frac{{100 — x}}{{100}} = A cdot frac{{96}}{{100}},left| {,:,} right.A,,,, Leftrightarrow ,,,,frac{{{{100}^2} — {x^2}}}{{100}} = 96,,,, Leftrightarrow ,,,,10000 — {x^2} = 9600,,,, Leftrightarrow )

( Leftrightarrow ,,,,{x^2} = 400,,,, Leftrightarrow ,,,,{x_1} = 20;,,,,,{x_2} =  — 20.)

Так как (x > 0), то акции подорожали в понедельник на 20%.

Ответ: 20.

Задача 3. Четыре рубашки дешевле куртки на 8%. На сколько процентов пять рубашек дороже куртки?

Стоимость четырех рубашек составляет 100 – 8 = 92 % от куртки. Следовательно, стоимость одной рубашки составляет (frac{{92}}{4} = 23)% от стоимости куртки. Тогда стоимость пяти рубашек составляет (5 cdot 23 = 115)%, что на 115 – 100 = 15 % превышает стоимость куртки.

Ответ: 15.

Задача 4. Семья состоит из мужа, жены и их дочери студентки. Если бы зарплата мужа увеличилась вдвое, общий доход семьи вырос бы на 67%. Если бы стипендия дочери уменьшилась втрое, общий доход семьи сократился бы на 4%. Сколько процентов от общего дохода семьи составляет зарплата жены?

Пусть доход мужа, жены и дочери составляет x, y и z % соответственно. Тогда первое уравнение: (x + y + z = 100.) Если зарплату мужа увеличить вдвое (зарплата станет 2х), то общий доход увеличиться на 67 %, то есть второе уравнение будет: (2x + y + z = 167.) Если стипендию дочери уменьшить втрое (стипендия станет (frac{z}{3})), то общий доход уменьшиться на 4 %, то есть третье уравнение будет иметь вид: (x + y + frac{z}{3} = 96.)

Таким образом, получаем систему уравнений:    (left{ {begin{array}{*{20}{c}}  {x + y + z = 100;} \   {2x + y + z = 167;} \   {x + y + frac{z}{3} = 96.} end{array}} right.)

Вычтем из второго уравнения первое:    (2x — x + y — y + z — z = 167 — 100,,,, Leftrightarrow ,,,,,x = 67.)

Вычтем из первого уравнения третье:   (x — x + y — y + z — frac{z}{3} = 100 — 96,,,,, Leftrightarrow ,,,,frac{{2z}}{3} = 4,,,, Leftrightarrow ,,,,z = 6.)

Подставляя найденные x и z в первое уравнение, получим:  (67 + y + 6 = 100,,,, Leftrightarrow ,,,,y = 27.)

Ответ: 27.

Задача 5. Цена холодильника в магазине ежегодно уменьшается на одно и то же число процентов от предыдущей цены. Определите, на сколько процентов каждый год уменьшалась цена холодильника, если, выставленный на продажу за 20000 рублей, через два года был продан за 15842 рубля.

Пусть цена холодильника ежегодно уменьшалась на х%, тогда после первого понижения цена составила (100 – х) % от 20000 рублей, то есть:  (20000 cdot frac{{100 — x}}{{100}} = 200 cdot left( {100 — x} right)), а после второго (100 – х) % от (200left( {100 — x} right)), то есть:  (200left( {100 — x} right) cdot frac{{100 — x}}{{100}} = 2 cdot {left( {100 — x} right)^2}), что составило 15842 рубля.

(2{left( {100 — x} right)^2} = 15842,,{left| {,:,2,,,, Leftrightarrow ,,,,left( {100 — x} right)} right.^2} = 7921.)

(100 — x = 89;,,,,,,,,100 — x =  — 89.)

({x_1} = 11,,,,,,,,,,,,,,,,,,,,,{x_2} = 189)

Так как (0 < x < 100), то холодильник ежегодно дешевел на 11 %.

Ответ: 11.

Задача 6. Митя, Антон, Гоша и Борис учредили компанию с уставным капиталом 200000 рублей. Митя внес 14% уставного капитала, Антон  — 42000 рублей, Гоша  — 0,12 уставного капитала, а оставшуюся часть капитала внес Борис. Учредители договорились делить ежегодную прибыль пропорционально внесенному в уставной капитал вкладу. Какая сумма от прибыли 1000000 рублей причитается Борису? Ответ дайте в рублях.

Митя внес 14 % уставного капитала. Антон (frac{{42000}}{{200000}} cdot 100 = 21)% уставного капитала. Гоша 0,12 уставного капитала, то есть 12%. Следовательно, Борис внес (100 — 14 — 21 — 12 = 53)% уставного капитала. Таким образом, от прибыли 1000000 рублей Борису причитается:  (1000000 cdot frac{{53}}{{100}} = 530000) рублей.

Ответ: 530000.

Задача 7. В сосуд, содержащий 5 литров 12-процентного водного раствора некоторого вещества, добавили 7 литров воды. Сколько процентов составляет концентрация получившегося раствора?

Будем считать, что первый сосуд содержит 5 литров 12-процентного раствора вещества, а второй 7 литров воды (0-процентного раствора) и их содержимое перелили в третий сосуд. Пусть третий сосуд содержит x-процентный раствор вещества.

Тогда количество вещества в первом сосуде (frac{{5 cdot 12}}{{100}}) литров, во втором (frac{{7 cdot 0}}{{100}}) литров, а в третьем (frac{{12 cdot x}}{{100}}) литров. При этом количество вещества в третьем сосуде равно количеству вещества в первых двух сосудах.

(frac{{5 cdot 12}}{{100}} + frac{{7 cdot 0}}{{100}} = frac{{12 cdot x}}{{100}},left| {, cdot 100,,,,} right. Leftrightarrow ,,,,,,5 cdot 12 = 12 cdot x,,,,, Leftrightarrow ,,,,,,x = 5.)

Ответ: 5.

Задача 8. Смешали некоторое количество 15-процентного раствора некоторого вещества с таким же количеством 19-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?

Будем считать, что первый сосуд содержит А литров 15-процентного раствора вещества, а второй А литров 19-процентного раствора вещества и их содержимое перелили в третий сосуд. Пусть третий сосуд содержит x-процентный раствор вещества.

Тогда количество вещества в первом сосуде (frac{{A cdot 15}}{{100}}) литров, во втором (frac{{A cdot 19}}{{100}}) литров, а в третьем (frac{{2A cdot x}}{{100}}) литров. При этом количество вещества в третьем сосуде равно количеству вещества в первых двух сосудах.

(frac{{A cdot 15}}{{100}} + frac{{A cdot 19}}{{100}} = frac{{2A cdot x}}{{100}},,,left| {, cdot 100,,,,} right. Leftrightarrow ,,,,,,15 cdot A + 19 cdot A = 2A cdot x,,left| {,:A} right.,,,,, Leftrightarrow ,,,,,,2x = 34,,,,, Leftrightarrow ,,,,,x = 17.)

Ответ: 17.

Задача 9. Смешали 4 литра 15-процентного водного раствора некоторого вещества с 6 литрами 25-процентного водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?

Будем считать, что первый сосуд содержит 4 литра 15-процентного раствора вещества, а второй 6 литров 25-процентного раствора вещества и их содержимое перелили в третий сосуд. Пусть третий сосуд содержит x-процентный раствор вещества.

Тогда количество вещества в первом сосуде (frac{{4 cdot 15}}{{100}}) литров, во втором (frac{{6 cdot 25}}{{100}}) литров, а в третьем (frac{{10 cdot x}}{{100}}) литров. При этом количество вещества в третьем сосуде равно количеству вещества в первых двух сосудах.

(frac{{4 cdot 15}}{{100}} + frac{{6 cdot 25}}{{100}} = frac{{10 cdot x}}{{100}},left| {, cdot 100,,,,} right. Leftrightarrow ,,,,,,60 + 150 = 10 cdot x,,,,, Leftrightarrow ,,,,,,x = 21.)

Ответ: 21.

Задача 10. Виноград содержит 90% влаги, а изюм — 5%. Сколько килограммов винограда требуется для получения 20 килограммов изюма?

Виноград содержит 10% «сухого» вещества, а изюм 95% соответственно. При этом масса «сухого» вещества винограда и изюма равны. Пусть для получения 20 килограммов изюма требуется x килограммов винограда. Тогда масса «сухого» вещества в винограде (frac{{10 cdot x}}{{100}}) кг, а масса «сухого» вещества в изюме (frac{{20 cdot 95}}{{100}}) кг. Следовательно:

(frac{{10 cdot x}}{{100}} = frac{{20 cdot 95}}{{100}},left| {, cdot 100,,,,,, Leftrightarrow ,,,,,10x = 20} right. cdot 95,,,,, Leftrightarrow ,,,,x = 190) кг.

Ответ: 190.

Задача 11. Имеется два сплава. Первый сплав содержит 10% никеля, второй — 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава меньше массы второго.

Пусть x кг масса первого сплава. Так как масса третьего сплава 200 кг, то масса второго сплава (200 — x) кг.

Тогда масса никеля в первом сплаве (frac{{x cdot 10}}{{100}}) кг, во втором (frac{{left( {200 — x} right) cdot 30}}{{100}}) кг, а в третьем (frac{{200 cdot 25}}{{100}}) кг. При этом масса никеля в третьем сплаве равна массе никеля в первых двух сплавах.

(frac{{x cdot 10}}{{100}} + frac{{left( {200 — x} right) cdot 30}}{{100}} = frac{{200 cdot 25}}{{100}},left| {, cdot 100,,,,} right. Leftrightarrow ,,,,,,10x + 6000 — 30x = 5000,,,,, Leftrightarrow ,,,,,,20x = 1000,,,,, Leftrightarrow ,,,,,x = 50.)

Значит масса первого сплава 50 кг, а масса второго сплава равна 150 кг. Следовательно, масса первого сплава на 100 кг меньше массы второго.

Ответ: 100.

Задача 12. Первый сплав содержит 10% меди, второй  — 40% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 30% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.


Пусть x кг масса первого сплава, тогда масса второго сплава (x + 3) кг, а масса третьего сплава (x + x + 3 = 2x + 3) кг.

Тогда масса меди в первом сплаве (frac{{x cdot 10}}{{100}}) кг, во втором (frac{{left( {x + 3} right) cdot 40}}{{100}}) кг, а в третьем (frac{{left( {2x + 3} right) cdot 30}}{{100}}) кг. При этом масса меди в третьем сплаве равна массе меди в первых двух сплавах.

(frac{{x cdot 10}}{{100}} + frac{{left( {x + 3} right) cdot 40}}{{100}} = frac{{left( {2x + 3} right) cdot 30}}{{100}},left| {, cdot 100,,,,} right. Leftrightarrow ,,,,,,10x + 40x + 120 = 60x + 90,,,,, Leftrightarrow ,,,,,,10x = 30,,,,, Leftrightarrow ,,,,,x = 30.)

Значит масса первого сплава 3 кг, а масса третьего сплава равна (2x + 3 = 2 cdot 3 + 3 = 9) кг.

Ответ: 9.

Задача 13. Смешав 30-процентный и 60-процентный растворы кислоты и добавив 10 кг чистой воды, получили 36-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 41-процентный раствор кислоты. Сколько килограммов 30-процентного раствора использовали для получения смеси?

Пусть x кг масса 30-процентного раствора, а y кг масса 60-процентрого раствора кислоты.

Тогда масса кислоты в 30-процентном растворе (frac{{x cdot 30}}{{100}}) кг, в 60-процентном (frac{{y cdot 60}}{{100}}) кг, в воде (frac{{10 cdot 0}}{{100}}) кг, а в 36-процентном (frac{{left( {x + y + 10} right) cdot 36}}{{100}}). При этом масса кислоты в 36-процентноом растворе равна массе кислоты 30-процентного, 60-процентного и воды. Таким образом, первое уравнение будет иметь вид:

(frac{{x cdot 30}}{{100}} + frac{{y cdot 60}}{{100}} + frac{{10 cdot 0}}{{100}} = frac{{left( {x + y + 10} right) cdot 36}}{{100}},,left| { cdot 100} right.,,,,, Leftrightarrow ,,,,,30x + 60y = 36left( {x + y + 10} right).)

Рассмотрим случай, когда вместо 10 кг воды добавили 10 кг 50-процентного раствора кислоты.

Рассуждая аналогично, как и в первом случае, получим второе уравнение:

(frac{{x cdot 30}}{{100}} + frac{{y cdot 60}}{{100}} + frac{{10 cdot 50}}{{100}} = frac{{left( {x + y + 10} right) cdot 41}}{{100}},,left| { cdot 100} right.,,,,, Leftrightarrow ,,,,,30x + 60y + 500 = 41left( {x + y + 10} right).)

Таким образом, получаем систему уравнений:

(left{ {begin{array}{*{20}{c}}  {30x + 60y = 36left( {x + y + 10} right);} \   {30x + 60y + 500 = 41left( {x + y + 10} right).} end{array}} right.)

Вычтем из второго уравнения первое:

(500 = 5left( {x + y + 10} right),left| {:5} right.,,,,, Leftrightarrow ,,,,,100 = x + y + 10,,,,, Leftrightarrow ,,,,,y = 90 — x.)

Подставим выраженный  y  в первое уравнение:

(30x + 60left( {90 — x} right) = 3600,,,,, Leftrightarrow ,,,,30x — 60x = 3600 — 5400,,,,, Leftrightarrow ,,,,,30x = 1800,,,,, Leftrightarrow ,,,,,x = 60.)

Следовательно, для получения смеси использовали 60 кг 30-процентного раствора.

Ответ: 60.

Задача 14. Имеются два сосуда. Первый содержит 30 кг, а второй  — 20 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 68% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 70% кислоты. Сколько килограммов кислоты содержится в первом сосуде?

Будем считать, что первый сосуд содержит 30 кг x-процентного раствора кислоты, а второй 20 кг y-процентного раствора кислоты и их содержимое перелили в третий сосуд, в котором получилось 50 кг 68-процентного раствора кислоты.

Тогда масса кислоты в первом сосуде (frac{{30 cdot x}}{{100}}) кг, во втором (frac{{20 cdot y}}{{100}}) кг, а в третьем (frac{{50 cdot 68}}{{100}}) кг. При этом масса кислоты в третьем сосуде равна массе кислоты в первых двух сосудах. Таким образом, первое уравнение будет иметь вид:

(frac{{30 cdot x}}{{100}} + frac{{20 cdot y}}{{100}} = frac{{50 cdot 68}}{{100}},,left| { cdot 10} right.,,,,, Leftrightarrow ,,,,,3x + 2y = 340.)

Смешаем равные массы по m кг.

Рассуждая аналогично, как и в первом случае, получим второе уравнение:

(frac{{m cdot x}}{{100}} + frac{{m cdot y}}{{100}} = frac{{2m cdot 70}}{{100}},,left| {, cdot 100} right.,,,,, Leftrightarrow ,,,,,m cdot x + m cdot y = 140m,left| {,:m} right.,,,,,, Leftrightarrow ,,,,,,x + y = 140.) 

Таким образом, получаем систему уравнений:

(left{ {begin{array}{*{20}{c}}  {3x + 2y = 340} \   {x + y = 140} end{array},,,,,, Leftrightarrow ,,,,,left{ {begin{array}{*{20}{c}}  {3x + 2y = 340} \   {y = 140 — x} end{array}} right.} right.)

(3x + 2left( {140 — x} right) = 340,,,,,, Leftrightarrow ,,,,,3x — 2x = 340 — 280,,,,, Leftrightarrow ,,,,,x = 60.)

Следовательно, в первом сосуде содержится 60% кислоты, а масса этой кислоты равна   (frac{{30 cdot 60}}{{100}} = 18) кг.

Ответ: 18.

Задача 15. Клиент А. сделал вклад в банке в размере 7700 рублей. Проценты по вкладу начисляются раз в год и прибавляются к текущей сумме вклада. Ровно через год на тех же условиях такой же вклад в том же банке сделал клиент Б. Еще ровно через год клиенты А. и Б. закрыли вклады и забрали все накопившиеся деньги. При этом клиент А. получил на 847 рублей больше клиента Б. Какой процент годовых начислял банк по этим вкладам?

Пусть банк начисляет x% годовых. Тогда через год вклад клиента А составит (left( {100 + x} right)) процентов от 7700 рублей, то есть (7700 cdot frac{{100 + x}}{{100}}) рублей. Через год банк начислит ещё x% и его вклад станет равен (left( {100 + x} right)) процентов от (7700 cdot frac{{100 + x}}{{100}}) рублей, то есть (7700 cdot {left( {frac{{100 + x}}{{100}}} right)^2}) рублей. Клиент Б открыл такой же вклад сроком на один год. Следовательно, через год на его вкладе будет сумма равная (7700 cdot frac{{100 + x}}{{100}}) рублей. Так как клиент А получил на 847 рублей больше, то:

(7700 cdot {left( {frac{{100 + x}}{{100}}} right)^2} — 7700 cdot frac{{100 + x}}{{100}} = 847.)

Пусть (frac{{100 + x}}{{100}} = t), тогда:

(7700,{t^2} — 7700,t = 847,left| {,:,77,,,,, Leftrightarrow ,,,,,100,{t^2} — 100,t — 11 = 0;} right.)

(D = {100^2} + 4 cdot 100 cdot 11 = 14400;,,,,,sqrt D  = 120;,,,,,{t_1} = frac{{100 + 120}}{{200}} = 1,1;,,,,,{t_2} = frac{{100 — 120}}{{200}} =  — frac{1}{{10}}.)Так как (x > 0), то (t > 1).

Следовательно, (t = 1,1) и тогда (frac{{100 + x}}{{100}} = 1,1,,,,,, Leftrightarrow ,,,,,,x = 10.)

Ответ: 10.

Понравилась статья? Поделить с друзьями:
  • Формула для решения экономической задачи егэ по математике
  • Формула подсчета баллов егэ
  • Формула для решения задач на вероятность егэ
  • Формула по тригонометрии для егэ
  • Формула для растворов егэ математика