Формула по тригонометрии для егэ

Чуть больше 30% выпускников справляется с тригонометрией на ЕГЭ по математике. И неудивительно: для решения заданий из базы и профиля надо знать очень много формул, которые сложно освоить за 1-2 года. На самом деле, это миф! Чтобы решить задания по тригонометрии, нужно знать всего 5 формул — и просто уметь ими пользоваться.

тригонометрия егэ

Тригонометрия на ЕГЭ: 5 формул для базы и профиля

Тригонометрия на ЕГЭ: основные проблемы темы

Чаще всего тригонометрию начинают изучать в 10 классе — но в некоторых школах оставляют до 11. В первом случае у учеников есть 2 года, чтобы освоить новую тему. А во втором, к сожалению, всего год. И это проблема. Дело в том, что в тригонометрии очень много формул, которые нужно знать, чтобы успешно решать задания. Если за 2 года их можно успеть выучить, то за год это будет сделать проблематично.

Ситуация осложняется ещё двумя факторами. Во-первых, в самой математике много формул, признаков, теорем и т.д. Во-вторых, кроме математики есть и другие экзамены, для которых нужно выучить большой объём информации.

Именно поэтому я всегда советую своим ученикам не учить формулы для тригонометрии на ЕГЭ, а выводить! Но об этом мы поговорим чуть позже, а сейчас давайте обсудим, почему тригонометрия так важна и где в ЕГЭ ее можно встретить.

Задания по тригонометрии в базе и профиле на ЕГЭ

Так как ЕГЭ по математике делится на базовый и профильный, а тригонометрия встречается в обоих, то давайте рассмотрим оба уровня экзамена.

Тригонометрия в базе

Что касается Базового уровня, то в нём всего 3 задания, в которых можно столкнуться с тригонометрией:

В № 7 в виде простейшего выражения

Как правило, для успешного решения таких заданий достаточно воспользоваться формулами из справочного материала.

тригонометрия в егэ база

Пример задания № 7 по тригонометрии, демоверсия ЕГЭ

В № 8 в виде формулы прикладной задачи

Стоит отметить, что в базовом ЕГЭ в прикладных задачах тригонометрия попадается редко, но нужно быть готовыми.

тригонометрия в егэ база

Пример задания № 8 по тригонометрии, демоверсия ЕГЭ

В № 15 как тригонометрия в геометрии

В справочном материале есть вся необходимая информация для успешного решения данного задания, а именно определение всех тригофункций в прямоугольном треугольнике.

тригонометрия в егэ база

Пример задания № 15 по тригонометрии, демоверсия ЕГЭ

Тригонометрия в профиле

Базовый уровень мы рассмотрели, теперь перейдём к профильному. Здесь уже больше вариантов, в которых можно встретиться с тригонометрией. Давайте посмотрим на Части 1 и 2.

В № 3 как тригонометрия в геометрии (Часть 1)

То же самое задание, как в базовом ЕГЭ, вот только в справочном материале уже нет необходимой информации.

тригонометрия егэ профиль задания

Пример задания № 3 по тригонометрии, демоверсия ЕГЭ

В № 4 в виде выражения (Часть 1)

То же самое задание, как в базовом ЕГЭ.

тригонометрия егэ профиль задания

Пример задания № 4 по тригонометрии, демоверсия ЕГЭ

В № 7 в виде формулы прикладной задачи (Часть 1)

То же самое задание, как в базовом ЕГЭ. Для успешного решения подойдут базовые навыки работы с тригонометрией.

тригонометрия егэ профиль задания

Пример задания № 7 по тригонометрии, демоверсия ЕГЭ

В № 11 как часть функции (Часть 1)

Функцию нужно проанализировать для поиска наибольшего/наименьшего значения или точек максимума/минимума.

тригонометрия егэ профиль задания

Пример задания № 11 по тригонометрии, демоверсия ЕГЭ

Если с Частью 1 профиля всё более-менее очевидно, то во второй части бывают сюрпризы, о которых ученики даже не подозревают. Да-да, тригонометрия на ЕГЭ умеет прятаться и в Части 2. Давайте посмотрим на эти задания.

В № 12 (Часть 2)

Тут сюрпризов нет. Это уравнение второй части, в котором ученики как раз ожидают увидеть тригонометрию, хотя она там бывает не всегда!

тригонометрия егэ профиль задания

Пример задания № 12 по тригонометрии, демоверсия ЕГЭ

В № 13 — стереометрия (Часть 2)

Да, тригонометрия может встретиться здесь в виде теоремы синусов или теоремы косинусов, а ещё в виде формул в методе координат (для любителей решать этим методом).

В № 16 — планиметрия (Часть 2)

Здесь всё аналогично стереометрии: есть геометрические формулы, в которых прячется тригонометрия. Ведь, как я и сказала выше, в геометрии она тоже бывает!

5 формул тригонометрии: теория для ЕГЭ

А теперь предлагаю перейти к самому интересному — а именно к формулам. К сожалению, их действительно много. А ещё они похожи, и если их просто учить (или бездумно зубрить), то велик риск перепутать «+» с «–» или забыть какую-нибудь единичку.

Именно поэтому я рекомендую не учить формулы, а выводить. Это очень удобно тем более, что в профильном ЕГЭ по математике весь справочный материал состоит из 5-ти формул тригонометрии, из которых очень легко выводятся все остальные.

Но прежде чем я расскажу вам, как выводятся тригонометрические формулы, пообещайте, что обязательно отработаете все правила выведения! Для этого нужно будет регулярно выводить формулы по указанным ниже схемам.

Вот формулы, которые будут у вас в справочном материале:

тригонометрия теория для егэ

Тригонометрия: теория для ЕГЭ — 5 основных формул

Формула № 1 и как она пригодится в поиске котангенса и тангенса

Первая формула — основное тригонометрическое тождество (ОТТ):

тригонометрия теория для егэ

Тригонометрия: теория для ЕГЭ — формула № 1

Обычно ученики знают ее очень хорошо. Она связывает синус и косинус и помогает найти одну функцию через другую.

С этой формулой косвенно связана другая (ее нет в справочном материале), которая тоже легко дается школьникам:

тригонометрия теория для егэ

Тригонометрия: теория для ЕГЭ

Эту формулу очень легко запомнить, если знать, как можно расписать тангенс и котангенс через синус и косинус:

тригонометрия теория для егэ

Тригонометрия: теория для ЕГЭ

Эти 2 формулы связывают по отдельности синус с косинусом и тангенс с котангенсом. Но иногда требуется, чтобы были связаны все 4 функции, и здесь на помощь приходят следствия из ОТТ (как раз та самая формула № 1).

Чтобы вывести следствия нужно всего лишь разделить ОТТ на sin2 и cos2:

тригонометрия теория для егэ

Тригонометрия: теория для ЕГЭ — что выводится из формулы № 1

Теперь можно легко найти:

  • котангенс, зная синус,
  • или тангенс, зная косинус.

Формула № 2 и что из нее можно вывести

С тождествами разобрались, давайте перейдём к формулам двойного угла. Что касается синуса двойного угла (вторая формула в справочном материале):

тригонометрия теория для егэ

Тригонометрия: теория для ЕГЭ — формула № 2

Здесь всё просто, берёте и применяете формулу, если видите, что она нужна для задания.

Формула № 3 и что из нее можно вывести

А вот с косинусом двойного угла (третья формула в справочном материале) всё интереснее. Безусловно, косинус двойного угла:

тригонометрия теория для егэ

Тригонометрия: теория для ЕГЭ — формула № 3

в чистом виде встречается, и тогда вы делаете всё тоже самое, что с синусом. Но на самом деле есть ещё 2 формулы, которые очень просто вывести, используя ОТТ (формулу № 1). Для начала нужно выразить квадрат синуса и квадрат косинуса из ОТТ (Шаг 1):

тригонометрия теория для егэ

Тригонометрия: теория для ЕГЭ — как еще найти косинус двойного угла (Шаг 1)

А потом нужно подставить эти значения в формулу (6, или третья формула справочного материала) (Шаг 2):

тригонометрия теория для егэ

Тригонометрия: теория для ЕГЭ — как еще найти косинус двойного угла (Шаг 2)

Вот мы вывели ещё 2 формулы! А сейчас я покажу вам как практически ничего не делая получить ещё 2. Мы будем выводить формулы понижения степени из формул двойного угла. Смотрите, нужно всего лишь выразить одно из другого:

тригонометрия теория для егэ

Тригонометрия: теория для ЕГЭ — что выводится из формулы № 3

Формулы № 4 и 5 и что из них можно вывести

Давайте посмотрим на справочный материал, у нас там ещё целых 2 формулы, из которых мы получим конечно же ещё 2! Сейчас вообще ничего удивительного не будет. Вот формулы, которые уже даны:

тригонометрия теория для егэ

Тригонометрия: теория для ЕГЭ — формулы № 4 и 5

Как вы заметили, они для суммы углов, а чтобы получить формулы для разности углов, нам нужно всего лишь поменять знаки в формуле на противоположные (разумеется, я говорю про «+» и «–»):

тригонометрия теория для егэ

Тригонометрия: теория для ЕГЭ — что выводится из формул № 4 и 5

Вот так при помощи нехитрых преобразований из 5-ти формул справочного материала мы получили целых 14!

Все скриншоты взяты из открытого банка заданий ФИПИ или из демоверсий ЕГЭ по математике 2022.

Что еще пригодится вам для тригонометрии на ЕГЭ

Скажу по секрету, что это далеко не все формулы тригонометрии, которые существуют. Есть и другие:

  • некоторые можно вывести из вышеуказанных,
  • некоторые можно обобщить и вместо огромного количества формул использовать короткое правило.

Но мне кажется, что пока этого и так много!

Советую сначала хорошо отработать формулы, которые я перечислила в этой статье, и только потом браться за другие. Так вы не загрузите свою память и будете быстрее решать сложные задания по тригонометрии из ЕГЭ. Это, кстати, касается любой темы на экзамене по математике: а в ЕГЭ их очень много. Поэтому чтобы получить высокий балл, надо правильно и системно отработать их все.

Именно так я и строю подготовку к ЕГЭ по математике вместе со своими учениками: строгая система подготовки — ключ к успеху на экзамене. Сначала мы разбираем простые темы и задания и учимся решать их самыми удобными способами — почти на автомате. А после я добавляю более хитрые и сложные задания. В итоге ребята и имеют хорошую базу знаний по математике, и умеют решать самые разные типы задач. Так что если вы хотите по-настоящему знать математику, а не зазубривать формулы, приходите на мои уроки!

А чтобы отрабатывать выведение было не так скучно, держите моего котика, который любезно согласился позировать в позе котангенса:

тригонометрия егэ

Тригонометрия ЕГЭ: КОТангенс

Лобышева Ирина Сергеевна

Опубликовано 04.12.2014 — 11:35 — Лобышева Ирина Сергеевна

  каждый год выпускаю классы и имею подборку тригонометрических формул используемых в обеих частях ЕГЭ, которыми хочу поделиться с Вами. 

Скачать:

Вложение Размер
Файл trigonometriya.docx 1.28 МБ

Предварительный просмотр:

По теме: методические разработки, презентации и конспекты

Разработка урока алгебры в 10 классе по теме «Формулы тригонометрии»

Данный урок является обобщающим по теме «Тригонометрические формулы»…

Формулы тригонометрии

Обобщающий урок по теме в 10 классе по учебнику А.Г. Мордкович…

Основные формулы по тригонометрии

Приведены основные формулы по тригонометрии для 10 класса….

Тригонометрия. Сборник формул

Тригонометрия. Сборник формул…

Основные формулы тригонометрии

Основные формулы тригонометрии, которые необходимы при подготовке к ЕГЭ по математике…

Формулы тригонометрии

В  презентации  содержится  материал  о  различных  формулах  по  тригонометрии.  Содержание  презентации  можно  использовать  как…

Тригонометрия учебник с формулами

Учебник по тригонометрии включает теоретический материал с формулами…

  • Мне нравится 

 

Для удобства сразу же приведем таблицу с всеми тригонометрическими тождествами. Всегда удобно открыть формулы в одном месте, выбрать нужную и решить пример. После таблицы мы по отдельности рассмотрим каждую тригонометрическую формулу: обсудим ее вывод и порешаем примеры.

  1. Основное тригонометрическое тождество:
    $$sin(alpha)^2+cos(alpha)^2=1;$$
  2. Определение тангенса и котангенса через синус и косинус:
    $$tg(alpha)=frac{sin(alpha)}{cos(alpha)};$$
    $$ctg(alpha)=frac{cos(alpha)}{sin(alpha)};$$
  3. Cвязь тангенса и котангенса:
    $$tg(alpha)=frac{1}{ctg(alpha)};$$
    $$tg(alpha)*ctg(alpha)=1;$$
  4. Тангенс через косинус. Котангенс через синус:
    $$tg(alpha)^2+1=frac{1}{cos(alpha)^2};$$
    $$ctg(alpha)^2+1=frac{1}{sin(alpha)^2};$$
  5. Синус суммы и разности:
    $$sin(alpha+beta)=sin(alpha)*cos(beta)+sin(beta)*cos(alpha);$$
    $$sin(alpha-beta)=sin(alpha)*cos(beta)-sin(beta)*cos(alpha);$$
  6. Косинус суммы и разности:
    $$cos(alpha+beta)=cos(alpha)*cos(beta)-sin(beta)*sin(alpha);$$
    $$cos(alpha-beta)=cos(alpha)*cos(beta)+sin(beta)*sin(alpha);$$
  7. Тангенс суммы и разности:
    $$tg(alpha+beta)=frac{tg(alpha)+tg(beta)}{1-tg(alpha)*tg(beta)};$$
    $$tg(alpha-beta)=frac{tg(alpha)-tg(beta)}{1+tg(alpha)*tg(beta)};$$
  8. Котангенс суммы и разности:
    $$сtg(alpha+beta)=frac{-1+сtg(alpha)*ctg(beta)}{ctg(alpha)+ctg(beta)};$$
    $$сtg(alpha-beta)=frac{-1-сtg(alpha)*ctg(beta)}{ctg(alpha)-ctg(beta)};$$
  9. Двойной угол:
    $$cos(2*alpha)=cos(alpha)^2-sin(alpha)^2=1-2*sin(alpha)^2=2*cos(alpha)^2-1;$$
    $$sin(2*alpha)=2*sin(alpha)*cos(alpha);$$
    $$tg(2*alpha)=frac{2*tg(alpha)}{1-tg(alpha)^2};$$
    $$ctg(2*alpha)=frac{ctg(alpha)^2-1}{2*ctg(alpha)};$$
  10. Тройной угол:
    $$cos(3*alpha)=cos(alpha)^3-3*sin(alpha)^2*cos(alpha)=-3*cos(alpha)+4*cos(alpha)^3;$$
    $$sin(3*alpha)=3*sin(alpha)*cos(alpha)^2-sin(alpha)^3=3*sin(alpha)-4*sin(alpha)^3;$$
    $$tg(3*alpha)=frac{3*tg(alpha)-tg(alpha)^3}{1-3*tg(alpha)^2};$$
    $$ctg(3*alpha)=frac{ctg(alpha)^3-3*ctg(alpha)}{3*ctg(alpha)^2-1};$$
  11. Формулы половинного угла:
    $$sin(frac{alpha}{2})^2=frac{1-cos(alpha)}{2};$$
    $$cos(frac{alpha}{2})^2=frac{1+cos(alpha)}{2};$$
    $$tg(frac{alpha}{2})^2=frac{1-cos(alpha)}{1+cos(alpha)};$$
    $$ctg(frac{alpha}{2})^2=frac{1+cos(alpha)}{1-cos(alpha)};$$
  12. Понижение степени:
    $$sin(alpha)^2=frac{1-cos(2*alpha)}{2};$$
    $$cos(alpha)^2=frac{1+cos(2*alpha)}{2};$$
    $$sin(alpha)^3=frac{3*sin(alpha)-sin(3*alpha)}{4};$$
    $$cos(alpha)^3=frac{3*cos(alpha)+cos(3*alpha)}{4};$$
    $$sin(alpha)^4=frac{3-4*cos(2*alpha)+cos(4*alpha)}{8};$$
    $$cos(alpha)^4=frac{3+4*cos(2*alpha)+cos(4*alpha)}{8};$$
  13. Преобразование суммы и разности тригонометрических функций:
    $$sin(alpha)+sin(beta)=2*sinleft(frac{alpha+beta}{2}right)*cosleft(frac{alpha-beta}{2}right);$$
    $$sin(alpha)-sin(beta)=2*sinleft(frac{alpha-beta}{2}right)*cosleft(frac{alpha+beta}{2}right);$$
    $$cos(alpha)+cos(beta)=2*cosleft(frac{alpha+beta}{2}right)*cosleft(frac{alpha-beta}{2}right);$$
    $$cos(alpha)-cos(beta)=-2*sinleft(frac{alpha+beta}{2}right)*sinleft(frac{alpha-beta}{2}right);$$
    $$cos(alpha)-cos(beta)=2*sinleft(frac{alpha+beta}{2}right)*sinleft(frac{beta-alpha}{2}right);$$
    $$tg(alpha)+tg(beta)=frac{sin(alpha+beta)}{cos(alpha)*cos(beta)};$$
    $$tg(alpha)-tg(beta)=frac{sin(alpha-beta)}{cos(alpha)*cos(beta)};$$
    $$ctg(alpha)+ctg(beta)=frac{sin(alpha+beta)}{sin(alpha)*sin(beta)};$$
    $$ctg(alpha)-ctg(beta)=frac{sin(beta-alpha)}{sin(alpha)*sin(beta)};$$
  14. Преобразование произведения тригонометрических функций:
    $$sin(alpha)*sin(beta)=frac{1}{2}*left(cos(alpha-beta)-cos(alpha+beta)right);$$
    $$cos(alpha)*cos(beta)=frac{1}{2}*left(cos(alpha-beta)+cos(alpha+beta)right);$$
    $$sin(alpha)*cos(beta)=frac{1}{2}*left(sin(alpha-beta)+sin(alpha+beta)right);$$
  15. Формулы подстановки тангенса:
    $$sin(alpha)=frac{2*tg(frac{alpha}{2})}{1+tg(frac{alpha}{2})^2};$$
    $$cos(alpha)=frac{1-tg(frac{alpha}{2})^2}{1+tg(frac{alpha}{2})^2};$$
    $$tg(alpha)=frac{2*tg(frac{alpha}{2})}{1-tg(frac{alpha}{2})^2};$$
    $$ctg(alpha)=frac{1-tg(frac{alpha}{2})^2}{2*tg(frac{alpha}{2})};$$
  16. Формулы приведения можно найти в отдельной статье

Зачем нужны тригонометрические формулы?

Как видите, тригонометрических формул очень много. Тут еще и не все приведены. Но на ваше счастье, учить всю эту таблицу не нужно. Достаточно знать только основные: №1-6, 9. Остальные на ЕГЭ по профильной математике встречаются крайне редко, а если и попадутся, то, скорее всего, будут даны в справочных материалах.

Но для участия в олимпиадах или, если вы хотите поступать в сильный математический ВУЗ через вступительные экзамены, то вам может понадобиться вся таблица. По крайней мере, у вас точно должно быть представление о существовании таких формул, чтобы их вывести в случае необходимости. Да, большинство из них легко выводятся.

Тригонометрические формулы нужны, чтобы связать все тригонометрические функции между собой. Если вы знаете одну из функций, например, синус, то, используя эти формулы, можно легко найти оставшиеся три тригонометрические функции (косинус, тангенс и котангенс). Кроме этого тождества позволяют упростить выражение под тригонометрической функцией: например, выразить синус от двойного угла через комбинацию тригонометрических функций от одинарного угла, что бывает очень полезно при решении тригонометрических уравнений и неравенств.

Обсудим и порешаем примеры на все формулы из таблицы.

Основное тригонометрическое тождество

$$mathbf{sin(alpha)^2+cos(alpha)^2=1;}$$

Эту формулу можно считать главной и самой часто используемой в тригонометрии. Она выводится при помощи определения синуса и косинуса через прямоугольный треугольник и теоремы Пифагора. Не буду еще раз описывать вывод, с ним можно познакомиться в самой первой главе по тригонометрии.

При помощи основного тригонометрического тождества очень удобно искать значение синуса, если известен косинус и наоборот. Разберем пример:

Пример 1
Найдите (3sqrt{2}*sin(alpha)=?), если (cos(alpha)=frac{1}{3}) и (alphain(0;frac{pi}{2})). (ЕГЭ)

Чтобы найти значение выражения (3sqrt{2}*sin(alpha)) необходимо сначала найти значение синуса.

Формула, которая связывает и синус, и косинус — это основное тригонометрическое тождество:
$$sin(alpha)^2+cos(alpha)^2=1;$$
Просто подставим в нее известное значение косинуса
$$sin(alpha)^2+left(frac{1}{3}right)^2=1;$$
$$sin(alpha)^2+frac{1}{9}=1;$$
$$sin(alpha)^2=1-frac{1}{9};$$
$$sin(alpha)^2=frac{8}{9};$$
$$sin(alpha)=pmsqrt{frac{8}{9}}=pmfrac{2sqrt{2}}{3};$$
Обратите внимание на знак (pm), отрицательное значение синуса нас тоже устраивает, так как при подстановке и возведении в квадрат знак минус исчезает.

В задании указано, что это пример из ЕГЭ первой части, значит должен быть только один ответ. Какое же значение синуса нам выбрать: положительное или отрицательное?

В этом нам поможет дополнительное условие на (alphain(0;frac{pi}{2})), что соответсвует первой четверти на тригонометрической окружности. Раз (alpha) лежит в первой четверти, то синус должен быть положительный. Выбираем положительное значение синуса:
$$sin(alpha)=frac{2sqrt{2}}{3};$$
И подставим найденное значение в искомое выражение:
$$3sqrt{2}*sin(alpha)=3sqrt{2}*frac{2sqrt{2}}{3}=4.$$

Ответ: (4.)

Аналогично по основному тригонометрическому тождеству можно находить значение косинуса, если известен синус.

Основные тригонометрическое тождество это ключ к решению более половины всех тригонометрических уравнений.

Основные связи тригонометрических функций

А как найти тангенс или котангенс, если нам, например, известен косинус? Посмотрите на формулы №2, для того, чтобы найти тангенс, нужно знать и косинус, и синус:

$$mathbf{tg(alpha)=frac{sin(alpha)}{cos(alpha)};}$$
$$mathbf{ctg(alpha)=frac{cos(alpha)}{sin(alpha)};}$$

Но зная косинус, мы легко можем найти синус по основному тригонометрическому тождеству, а потом уже найти тангенс.

Пример 2
Найдите (tg(alpha)) и (ctg(alpha)), если (cos(alpha)=frac{sqrt{10}}{10}) и (alpha in (frac{3pi}{2};2pi)).

Сначала находим значение синуса:
$$sin(alpha)^2+cos(alpha)^2=1;$$
$$sin(alpha)^2+left(frac{sqrt{10}}{10}right)^2=1;$$
$$sin(alpha)^2+frac{1}{10}=1;$$
$$sin(alpha)^2=1-frac{1}{10};$$
$$sin(alpha)^2=frac{9}{10};$$
$$sin(alpha)=pmsqrt{frac{9}{10}}=pmfrac{3}{sqrt{10}};$$
Так как по условию задачи (alpha in (frac{3pi}{2};2pi)), что соответсвует четвертой четверти на тригонометрической окружности, то (sin(alpha)<0). Выбираем отрицательное значение:
$$sin(alpha)=-frac{3}{sqrt{10}};$$
Теперь нам известны значения и косинуса, и синуса, можем найти тангенс:
$$tg(alpha)=frac{sin(alpha)}{cos(alpha)}=frac{-frac{3}{sqrt{10}}}{frac{sqrt{10}}{10}}=-frac{3}{sqrt{10}}*frac{10}{sqrt{10}}=-3;$$
Котангенс можно найти аналогично по формуле:
$$ctg(alpha)=frac{cos(alpha)}{sin(alpha)};$$
Но поступим проще и воспользуемся тригонометрической формулой, связывающей тангенс с котангенсом:
$$mathbf{сtg(alpha)=frac{1}{tg(alpha)};}$$
$$сtg(alpha)=frac{1}{-3}=-frac{1}{3};$$

Ответ: (tg(alpha)=-3;) (ctg(alpha)=-frac{1}{3}.)

Как видите, чтобы найти тангенс или котангенс через косинус или синус, необходимо воспользоваться сразу двумя тригонометрическими формулами. Это не очень удобно, поэтому очень полезны тригонометрические формулы, связывающие тангенс с косинусом или котангенс с синусом напрямую:
$$mathbf{tg(alpha)^2+1=frac{1}{cos(alpha)^2};}$$
$$mathbf{ctg(alpha)^2+1=frac{1}{sin(alpha)^2};}$$

Вывод связи тангенса с косинусом и котангенса с синусом

Полезно знать, как они выводятся. Вывод, на самом деле, элементарный, с использованием основного тригонометрического тождества и определения тангенса через синус и косинус:
$$tg(alpha)^2+1=frac{1}{cos(alpha)^2};$$
$$left(frac{sin(alpha)}{cos(alpha)}right)^2+1=frac{1}{cos(alpha)^2};$$
Приводим левую часть к общему знаменателю:
$$frac{sin(alpha)^2}{cos(alpha)^2}+frac{cos(alpha)^2}{cos(alpha)^2}=frac{1}{cos(alpha)^2};$$
$$frac{sin(alpha)^2+cos(alpha)^2}{cos(alpha)^2}=frac{1}{cos(alpha)^2};$$
В числителе у нас получилось основное тригонометрическое тождество:
$$frac{1}{cos(alpha)^2}=frac{1}{cos(alpha)^2};$$
Получилось верное равенство — формула доказана. Аналогично доказывается формула для котангенса и синуса. (В качестве упражнения докажите ее сами).

Если решать пример №2 по этим формулам, то решение заметно сокращается:
$$tg(alpha)^2+1=frac{1}{left(frac{sqrt{10}}{10}right)^2};$$
$$tg(alpha)^2+1=10;$$
$$tg(alpha)^2=9;$$
$$tg(alpha)=pm3;$$
Так как (alpha in (frac{3pi}{2};2pi)), то тангенс будет отрицательным:
$$tg(alpha)=-3;$$

Формулы суммы и разности тригонометрических функций

  1. Синус суммы и разности:
    $$mathbf{sin(alpha+beta)=sin(alpha)*cos(beta)+sin(beta)*cos(alpha);}$$
    $$mathbf{sin(alpha-beta)=sin(alpha)*cos(beta)-sin(beta)*cos(alpha);}$$
  2. Косинус суммы и разности:
    $$mathbf{cos(alpha+beta)=cos(alpha)*cos(beta)-sin(beta)*sin(alpha);}$$
    $$mathbf{cos(alpha-beta)=cos(alpha)*cos(beta)+sin(beta)*sin(alpha);}$$
  3. Тангенс суммы и разности:
    $$mathbf{tg(alpha+beta)=frac{tg(alpha)+tg(beta)}{1-tg(alpha)*tg(beta)};}$$
    $$mathbf{tg(alpha-beta)=frac{tg(alpha)-tg(beta)}{1+tg(alpha)*tg(beta)};}$$
  4. Котангенс суммы и разности:
    $$mathbf{сtg(alpha+beta)=frac{-1+сtg(alpha)*ctg(beta)}{ctg(alpha)+ctg(beta)};}$$
    $$mathbf{сtg(alpha-beta)=frac{-1-сtg(alpha)*ctg(beta)}{ctg(alpha)-ctg(beta)};}$$

Формулы суммы разности тригонометрических функций попадаются в ЕГЭ по профильной математике в №12. В прошлые года эти формулы давались в справочные материалах и учить их было не обязательно. Тем не менее, я бы рекомендовал выучить хотя бы формулы суммы и разности для синуса и косинуса.

Это не очень удобно, но иногда формулы суммы разности используют для вывода формул приведения:

Пример 3
Упростить выражение (sin(frac{pi}{2}+alpha)).

Воспользуемся формулой синуса суммы:
$$sin(alpha+beta)=sin(alpha)*cos(beta)+sin(beta)*cos(alpha);$$
$$sin(frac{pi}{2}+alpha)=sin(frac{pi}{2})*cos(alpha)+sin(alpha)*cos(frac{pi}{2})=$$
$$=1*cos(alpha)+sin(alpha)*0=cos(alpha);$$

Формулы суммы разности так же полезны, когда нужно посчитать значение тригонометрических функций некоторых нестандартных углов:

Пример 4
Найдите значение (sin(15^o)=?)

(15^o) нестандартный угол, вы его не найдете в тригонометрической таблице углов. Представим (15^o) в виде разности стандартных углов (15^o=45^o-30^o). И воспользуемся формулой синуса разности:
$$sin(alpha-beta)=sin(alpha)*cos(beta)-sin(beta)*cos(alpha);$$
$$sin(15^o)=sin(45^o-30^o)=sin(45^o)*cos(30^o)-sin(30^o)*cos(45^o)=$$
$$=frac{sqrt{2}}{2}*frac{sqrt{3}}{2}-frac{1}{2}*frac{sqrt{2}}{2}=$$
$$=frac{sqrt{6}}{4}-frac{sqrt{2}}{4}=frac{sqrt{6}-sqrt{2}}{4};$$
Вот мы наши синус (15^o). Получилось такое иррациональное некрасивое выражение, так и оставляем.

Ответ: (sin(15^o)=frac{sqrt{6}-sqrt{2}}{4}.)

Пример 5
Найдите значение (cos(75^o)=?)

(75^o) можно представить в виде суммы стандартных углов (75^o=30^o+45^o). Здесь воспользуемся формулой косинуса суммы:
$$cos(alpha+beta)=cos(30^o)*cos(45^o)-sin(30^0)*sin(45^0)=$$
$$=frac{sqrt{3}}{2}*frac{sqrt{2}}{2}-frac{1}{2}*frac{sqrt{2}}{2}=$$
$$=frac{sqrt{6}}{4}-frac{sqrt{2}}{4}=frac{sqrt{6}-sqrt{2}}{4};$$
У нас получился опять отвратительный ответ, но внимательный читатель заметит, что ответ такой же, как в предыдущем примере, это значит, что (cos(75^o)=sin(15^o)). Такой же вывод можно было бы сделать исходя из формул приведения и знания тригонометрической окружности.

Ответ: (cos(75^o)=frac{sqrt{6}-sqrt{2}}{4}.)

Мы не будем выводить эти формулы — это не самое приятное занятие. Их проще выучить, а вывод вам вряд ли когда-либо пригодится. Но сами формулы суммы и разности служат основой для доказательства других тригонометрических формул.

Формулы двойного угла

$$cos(2*alpha)=cos(alpha)^2-sin(alpha)^2=1-2*sin(alpha)^2=2*cos(alpha)^2-1;$$
$$sin(2*alpha)=2*sin(alpha)*cos(alpha);$$
$$tg(2*alpha)=frac{2*tg(alpha)}{1-tg(alpha)^2};$$
$$ctg(2*alpha)=frac{ctg(alpha)^2-1}{2*ctg(alpha)};$$

Формулы двойного угла для синуса, косинуса, тангенса и котангенса дают возможность выразить двойной угол (2alpha) через (alpha). Формулы для синуса и косинуса очень часто встречаются на ЕГЭ. Их обязательно нужно знать. Все они легко выводятся из формул синуса и косинуса суммы (формулы №5 и №6) :

$$cos(2alpha)=cos(alpha+alpha)=cos(alpha)*cos(alpha)-sin(alpha)*sin(alpha)=cos(alpha)^2-sin(alpha)^2;$$
Воспользовавшись основным тригонометрическим тождеством можно преобразовать эту формулу:
$$cos(2alpha)=cos(alpha)^2-sin(alpha)^2=1-sin(alpha)^2-sin(alpha)^2=1-2sin(alpha)^2;$$
$$cos(2alpha)=cos(alpha)^2-sin(alpha)^2=cos(alpha)^2-(1-cos(alpha)^2)=2cos(alpha)^2-1;$$

Синус двойного угла выводится аналогичным образом только с использованием формулы синуса суммы:
$$sin(2alpha)=sin(alpha)*cos(alpha)+sin(alpha)*cos(alpha)=2sin(alpha)cos(alpha);$$

Для вывода формул двойного угла для тангенса нам понадобится представить тангенс в виде отношения синуса к косинуса по определению и только что выведенные формулы синуса и косинуса двойного угла:
$$tg(2alpha)=frac{sin(2alpha)}{cos(2alpha)}=frac{2sin(alpha)cos(alpha)}{cos(alpha)^2-sin(alpha)^2}=frac{frac{2sin(alpha)cos(alpha)}{cos(alpha)^2}}{frac{cos(alpha)^2-sin(alpha)^2}{cos(alpha)^2}}=frac{frac{2sin(alpha)}{cos(alpha)}}{1-frac{sin(alpha)^2}{cos(alpha)^2}}=frac{2tg(alpha)}{1-tg(alpha)^2};$$
Котангенс двойного угла выводится абсолютно также:
$$сtg(2alpha)=frac{cos(2alpha)}{sin(2alpha)}=frac{cos(alpha)^2-sin(alpha)^2}{2sin(alpha)cos(alpha)}=frac{frac{cos(alpha)^2-sin(alpha)^2}{sin(alpha)^2}}{frac{2sin(alpha)cos(alpha)}{sin(alpha)^2}}=frac{frac{cos(alpha)^2}{sin(alpha)^2}-1}{frac{2cos(alpha)}{sin(alpha)}}=frac{ctg(alpha)^2-1}{2ctg(alpha)};$$

В первой части на ЕГЭ попадаются номера на преобразование тригонометрических выражений, где часто содержится двойной угол:

Пример 6
Найти значение (24cos(2alpha)=?), если (sin(alpha)=-0,2.)

Воспользуемся формулой косинуса двойного угла:
$$cos(2alpha)=1-2sin(alpha)^2;$$
$$24cos(2alpha)=24(1-2sin(alpha)^2)=24-48sin(alpha)^2=24-48*(-0,2)^2=24-48*0,04=22,08.$$

Пример 7
Найти значение (frac{10sin(6alpha)}{3cos(3alpha)}=?), если (sin(3alpha)=0,6.)

Используем синус двойного угла, для этого представим (6alpha=2*(3alpha)):
$$sin(6alpha)=sin(2*(3alpha))=2sin(3alpha)cos(3alpha);$$
$$frac{10sin(6alpha)}{3cos(3alpha)}=frac{10*2sin(3alpha)cos(3alpha)}{3cos(3alpha)}=frac{20sin(3alpha)}{3}=frac{20*0,6}{3}=frac{12}{3}=4.$$

Пример 8
Найти значение выражения (frac{12sin(11^o)cos(11^o)}{sin(22^o)}=?)

Замечаем, что (22^o=2*11^o) и воспользуемся синусом двойного угла:
$$frac{12sin(11^o)cos(11^o)}{sin(22^o)}=frac{12sin(11^o)cos(11^o)}{2sin(11^o)cos(11^o)}=frac{12}{2}=6.$$

Формулы тройного угла

Формулы тройного угла обычно попадаются на математических олимпиадах или вступительных экзаменах в математические ВУЗы. Учить их необязательно, но знать о существовании полезно, тем более, что они достаточно легко выводятся.
$$cos(3*alpha)=cos(alpha)^3-3*sin(alpha)^2*cos(alpha)=-3*cos(alpha)+4*cos(alpha)^3;$$
$$sin(3*alpha)=3*sin(alpha)*cos(alpha)^2-sin(alpha)^3=3*sin(alpha)-4*sin(alpha)^3;$$
$$tg(3*alpha)=frac{3*tg(alpha)-tg(alpha)^3}{1-3*tg(alpha)^2};$$
$$ctg(3*alpha)=frac{ctg(alpha)^3-3*ctg(alpha)}{3*ctg(alpha)^2-1};$$

Выведем эти формулы, использую формулы сложения. Начнем с косинуса тройного угла:
$$cos(3*alpha)=cos(2alpha+alpha)=cos(2alpha)*cos(alpha)-sin(2alpha)*sin(alpha)=$$
$$=(cos(alpha)^2-sin(alpha)^2)*cos(alpha)-2sin(alpha)*cos(alpha)*sin(alpha)=$$
$$=cos(alpha)^3-sin(alpha)^2*cos(alpha)-2sin(alpha)^2*cos(alpha)=$$
$$=cos(alpha)^3-3sin(alpha)^2*cos(alpha);$$

Если расписать (sin(alpha)^2=1-cos(alpha)^2), то получим еще один вариант формулы тройного угла:
$$cos(3*alpha)=cos(alpha)^3-3sin(alpha)^2*cos(alpha)=cos(alpha)^3-3(1-cos(alpha)^2)*cos(alpha)=$$
$$=4cos(alpha)^3-3cos(alpha);$$

Аналогично выводится формула синуса тройного угла:
$$sin(3alpha)=sin(2alpha+alpha)=sin(2alpha)*cos(alpha)+sin(alpha)*cos(2alpha)=$$
$$=2sin(alpha)*cos(alpha)*cos(alpha)+sin(alpha)*(cos(alpha)^2-sin(alpha)^2)=$$
$$=2sin(alpha)*cos(alpha)^2+sin(alpha)*cos(alpha)^2-sin(alpha)^3=3sin(alpha)*cos(alpha)^2-sin(alpha)^3;$$
Распишем по основному тригонометрическому тождеству (cos(alpha)^2=1-sin(alpha)^2) и подставим:
$$sin(3alpha)=3sin(alpha)*cos(alpha)^2-sin(alpha)^3=$$
$$=3sin(alpha)*(1-sin(alpha)^2)-sin(alpha)^3=3sin(alpha)-4sin(alpha)^3;$$

Для тангенса и котангенса формулы тройного угла здесь выводить не будем, так как они достаточно редки. Но в качестве упражнения можете сами выполнить вывод, представив тангенс или котангенс по определению: через отношение синуса тройного угла к косинусу тройного угла или наоборот соотвественно.

Формулы тройного угла обычно используются при преобразовании сложных тригонометрических выражений. Например, на вступительных экзаменах в МФТИ любят давать тригонометрические уравнения на тройной угол и больше.

Формулы половинного угла (двойного аргумента)

$$sin(frac{alpha}{2})^2=frac{1-cos(alpha)}{2};$$
$$cos(frac{alpha}{2})^2=frac{1+cos(alpha)}{2};$$
$$tg(frac{alpha}{2})^2=frac{1-cos(alpha)}{1+cos(alpha)};$$
$$ctg(frac{alpha}{2})^2=frac{1+cos(alpha)}{1-cos(alpha)};$$

Формулы половинного угла это по сути формулы обратные формулам двойного угла. Достаточно запомнить их элементарный вывод, тогда учить совсем необязательно. Здесь важный момент, что любой угол (alpha) всегда можно представить в виде удвоенного угла (frac{alpha}{2}):
$$alpha=2*frac{alpha}{2};$$

Выведем формулу синуса половинного угла, для этого нам понадобится формула косинуса двойного угла:
$$cos(alpha)=1-2*sin(frac{alpha}{2})^2;$$
Выразим отсюда (sin(frac{alpha}{2})):
$$sin(frac{alpha}{2})^2=frac{1-cos(alpha)}{2};$$
Иногда эту формулу записывают без квадрата:
$$sin(frac{alpha}{2})=pmsqrt{frac{1-cos(alpha)}{2}};$$
Плюс минус возникает при избавлении от квадрата.
Вывод косинуса половинного угла тоже получается из формулы косинуса двойного угла:
$$cos(alpha)=2*cos(frac{alpha}{2})^2-1;$$
$$cos(frac{alpha}{2})^2=frac{cos(alpha)+1}{2};$$
$$cos(frac{alpha}{2})=pmsqrt{frac{cos(alpha)+1}{2}};$$

Доказательство формул половинного угла для тангенса и котангенса следует из выше доказанных формул:
$$tg(frac{alpha}{2})=frac{sin(frac{alpha}{2})}{cos(frac{alpha}{2})}=frac{pmsqrt{frac{1-cos(alpha)}{2}}}{pmsqrt{frac{cos(alpha)+1}{2}}}=sqrt{frac{frac{1-cos(alpha)}{2}}{frac{cos(alpha)+1}{2}}}=frac{1-cos(alpha)}{1+cos(alpha)};$$
Точно так же для котангенса:
$$сtg(frac{alpha}{2})=frac{cos(frac{alpha}{2})}{sin(frac{alpha}{2})}=frac{pmsqrt{frac{cos(alpha)+1}{2}}}{pmsqrt{frac{1-cos(alpha)}{2}}}=sqrt{frac{frac{cos(alpha)+1}{2}}{frac{1-cos(alpha)}{2}}}=frac{1+cos(alpha)}{1-cos(alpha)};$$

Пример 9
При помощи формул половинного угла можно, например, посчитать (cos(15^o)):

$$cos(frac{alpha}{2})^2=frac{1+cos(alpha)}{2};$$
$$cos(15^o)^2=frac{1+cos(30^o)}{2}=frac{1+frac{sqrt{3}}{2}}{2}=frac{2+sqrt{3}}{4};$$
$$cos(15^o)=sqrt{frac{2+sqrt{3}}{4}}.$$

Кстати, формулы половинного угла справедливы не только в явном виде, когда аргумент правой части формулы (alpha), а левой (frac{alpha}{2}). Но и в неявном, достаточно, чтобы аргумент правой части был больше аргумента левой в два раза:
$$sin(5alpha)=pmsqrt{frac{1-cos(10alpha)}{2}};$$

Формулы понижения степени

$$sin(alpha)^2=frac{1-cos(2*alpha)}{2};$$
$$cos(alpha)^2=frac{1+cos(2*alpha)}{2};$$
$$sin(alpha)^3=frac{3*sin(alpha)-sin(3*alpha)}{4};$$
$$cos(alpha)^3=frac{3*cos(alpha)+cos(3*alpha)}{4};$$
$$sin(alpha)^4=frac{3-4*cos(2*alpha)+cos(4*alpha)}{8};$$
$$cos(alpha)^4=frac{3+4*cos(2*alpha)+cos(4*alpha)}{8};$$

Формулы понижения второй степени на самом деле дублируют формулы половинного угла.

Формулы понижения третей степени перестановкой слагаемых дублируют формулы тройного угла.

Преобразование суммы и разности тригонометрических функций:

$$sin(alpha)+sin(beta)=2*sinleft(frac{alpha+beta}{2}right)*cosleft(frac{alpha-beta}{2}right);$$
$$sin(alpha)-sin(beta)=2*sinleft(frac{alpha-beta}{2}right)*cosleft(frac{alpha+beta}{2}right);$$
$$cos(alpha)+cos(beta)=2*cosleft(frac{alpha+beta}{2}right)*cosleft(frac{alpha-beta}{2}right);$$
$$cos(alpha)-cos(beta)=-2*sinleft(frac{alpha+beta}{2}right)*sinleft(frac{alpha-beta}{2}right);$$
$$cos(alpha)-cos(beta)=2*sinleft(frac{alpha+beta}{2}right)*sinleft(frac{beta-alpha}{2}right);$$
$$tg(alpha)+tg(beta)=frac{sin(alpha+beta)}{cos(alpha)*cos(beta)};$$
$$tg(alpha)-tg(beta)=frac{sin(alpha-beta)}{cos(alpha)*cos(beta)};$$
$$ctg(alpha)+ctg(beta)=frac{sin(alpha+beta)}{sin(alpha)*sin(beta)};$$
$$ctg(alpha)-ctg(beta)=frac{sin(beta-alpha)}{sin(alpha)*sin(beta)};$$

Формулы для суммы и разности тригонометрических функций полезны, если необходимо превратить сумму двух функций в произведение. Они в основном используются в уравнениях и преобразованиях сложных выражений, когда необходимо слагаемые разложить на множители.

Для вывода формул суммы и разности синусов и косинусов нам понадобится пара трюков и формулы синуса и косинуса суммы и разности (тут можно запутаться, в названиях формул, будьте внимательны). Вывод получается не самый очевидный.

Обратите внимание, что любой угол (alpha) можно представить в таком странном виде:
$$alpha=frac{alpha}{2}+frac{alpha}{2}+frac{beta}{2}-frac{beta}{2}=frac{alpha+beta}{2}+frac{alpha-beta}{2};$$
Аналогично угол (beta):
$$beta=frac{alpha+beta}{2}-frac{alpha-beta}{2};$$
Эти странности нам понадобятся при выводе формул, просто обратите на них внимание.
А теперь перейдем непосредственно к выводу формулы суммы синусов двух углов. Для начала распишем угла (alpha) и (beta) по формулам выше:
$$sin(alpha)+sin(beta)=sin(frac{alpha+beta}{2}+frac{alpha-beta}{2})+sin(frac{alpha+beta}{2}-frac{alpha-beta}{2}); qquad (*)$$
Теперь воспользуемся формулами синуса суммы и синуса разности:

$$sin(gamma+sigma)=sin(gamma)*cos(sigma)+sin(sigma)*cos(gamma);$$
$$sin(gamma-sigma)=sin(gamma)*cos(sigma)-sin(sigma)*cos(gamma);$$

Только у нас под синусами будут стоять не (gamma) и (sigma), а целые выражения.
Пусть:
$$gamma=frac{alpha+beta}{2};$$
$$sigma=frac{alpha-beta}{2};$$
Применим формулы синуса суммы и разности в (*):
$$sin(alpha)+sin(beta)=sin(frac{alpha+beta}{2}+frac{alpha-beta}{2})+sin(frac{alpha+beta}{2}-frac{alpha-beta}{2})=$$
$$=left(sin(frac{alpha+beta}{2})*cos(frac{alpha-beta}{2})+sin(frac{alpha-beta}{2})*cos(frac{alpha+beta}{2})right)+$$
$$+left(sin(frac{alpha+beta}{2})*cos(frac{alpha-beta}{2})-sin(frac{alpha-beta}{2})*cos(frac{alpha+beta}{2})right)=$$
$$=2*sin(frac{alpha+beta}{2})*cos(frac{alpha-beta}{2}); $$
В самом конце мы просто раскрыли большие скобки и привели подобные слагаемые.

Аналогично выводятся все остальные формулы.

Пример 10
Вычислить (sin(165)+sin(75)=?)

(165^o) и (75^o) это не табличные углы. Значения синусов этих углов мы не знаем. Для решения этого примера воспользуемся формулой суммы синусов:
$$sin(alpha)+sin(beta)=2*sinleft(frac{alpha+beta}{2}right)*cosleft(frac{alpha-beta}{2}right);$$
$$sin(165^o)+sin(75^o)=2*sinleft(frac{165^o+75^o}{2}right)*cosleft(frac{165^o-75^o}{2}right)=$$
$$=2*sin(120^o)*cos(45^o)=2*frac{sqrt{3}}{2}*frac{sqrt{2}}{2}=frac{sqrt{6}}{2}.$$

Преобразование произведения тригонометрических функций

$$sin(alpha)*sin(beta)=frac{1}{2}*left(cos(alpha-beta)-cos(alpha+beta)right);$$
$$cos(alpha)*cos(beta)=frac{1}{2}*left(cos(alpha-beta)+cos(alpha+beta)right);$$
$$sin(alpha)*cos(beta)=frac{1}{2}*left(sin(alpha-beta)+sin(alpha+beta)right);$$

В некотором смысле формулы произведения синуса, косинуса, тангенса и котангенса являются обратными к тригонометрическим формулам суммы и разности тригонометрических функций. При помощи этих формул возможно перейти от произведения к сумме или разности.

Для вывода нам опять понадобятся формулы косинуса суммы и разности:
$$cos(alpha+beta)=cos(alpha)*cos(beta)-sin(beta)*sin(alpha);$$
$$cos(alpha-beta)=cos(alpha)*cos(beta)+sin(beta)*sin(alpha);$$

Сложим эти две формулы. Для этого складываем их левые части и приравниваем сумме правых частей:

$$cos(alpha+beta)+cos(alpha-beta)=cos(alpha)*cos(beta)-sin(beta)*sin(alpha)+cos(alpha)*cos(beta)+sin(beta)*sin(alpha);$$
Приводим подобные слагаемые:
$$cos(alpha+beta)+cos(alpha-beta)=2*cos(alpha)*cos(beta);$$
Отсюда получаем:
$$cos(alpha)*cos(beta)=frac{1}{2}*(cos(alpha+beta)+cos(alpha-beta));$$
Формула произведения косинусов доказана.

Произведение синусов доказывается похожим образом. Для этого домножим формулу косинуса суммы слева и справа на ((-1)):
$$-cos(alpha+beta)=-cos(alpha)*cos(beta)+sin(beta)*sin(alpha);$$
Косинус разности оставим без изменений:
$$cos(alpha-beta)=cos(alpha)*cos(beta)+sin(beta)*sin(alpha);$$
Сложим опять эти две формулы:
$$cos(alpha-beta)-cos(alpha+beta)=cos(alpha)*cos(beta)+sin(beta)*sin(alpha)-cos(alpha)*cos(beta)+sin(beta)*sin(alpha);$$
$$cos(alpha-beta)-cos(alpha+beta)=2*sin(beta)*sin(alpha);$$
$$sin(beta)*sin(alpha)=frac{1}{2}*(cos(alpha-beta)-cos(alpha+beta));$$
Произведение синусов тоже доказано.

Для того, чтобы вывести формулу произведения синуса и косинуса, нам понадобятся формулы синуса суммы и разности:
$$sin(alpha+beta)=sin(alpha)*cos(beta)+sin(beta)*cos(alpha);$$
$$sin(alpha-beta)=sin(alpha)*cos(beta)-sin(beta)*cos(alpha);$$
Сложим их:
$$sin(alpha+beta)+sin(alpha-beta)=sin(alpha)*cos(beta)+sin(beta)*cos(alpha)+sin(alpha)*cos(beta)-sin(beta)*cos(alpha);$$
$$sin(alpha+beta)+sin(alpha-beta)=2*sin(alpha)*cos(beta);$$
$$sin(alpha)*cos(beta)=frac{1}{2}*(sin(alpha+beta)+sin(alpha-beta));$$

Пример 11
Вычислить (sin(75^o)*cos(15^o)=?)

Воспользуемся формулой произведения синуса и косинуса:
$$sin(alpha)*cos(beta)=frac{1}{2}*(sin(alpha+beta)+sin(alpha-beta));$$
$$sin(75^o)*cos(15^o)=frac{1}{2}*(sin(75^o+15^o)+sin(75^o-15^o))=$$
$$=frac{1}{2}*(sin(90^o)+sin(60^o))=frac{1}{2}*(1+frac{sqrt{3}}{2})=frac{2+sqrt{3}}{4}.$$

Геометрия

  • Треугольник
  • Четырехугольники
  • Окружность и круг
  • Призма
  • Пирамида
  • Усеченная пирамида
  • Цилиндр
  • Конус
  • Усеченный конус
  • Сфера и шар

1. Формулы сокращённого умножения

 левая круглая скобка a плюс b правая круглая скобка в квадрате =a в квадрате плюс 2ab плюс b в квадрате

 левая круглая скобка a минус b правая круглая скобка в квадрате =a в квадрате минус 2ab плюс b в квадрате

 левая круглая скобка a плюс b правая круглая скобка в кубе =a в кубе плюс 3a в квадрате b плюс 3ab в квадрате плюс b в кубе

 левая круглая скобка a минус b правая круглая скобка в кубе =a в кубе минус 3a в квадрате b плюс 3ab в квадрате минус b в кубе

a в квадрате минус b в квадрате = левая круглая скобка a минус b правая круглая скобка левая круглая скобка a плюс b правая круглая скобка

a в кубе плюс b в кубе = левая круглая скобка a плюс b правая круглая скобка левая круглая скобка a в квадрате минус ab плюс b в квадрате правая круглая скобка

a в кубе минус b в кубе = левая круглая скобка a минус b правая круглая скобка левая круглая скобка a в квадрате плюс ab плюс b в квадрате правая круглая скобка

Наверх

2. Модуль числа

Определение: left| a |= система выражений новая строка a,a больше или равно 0, новая строка минус a,a меньше 0. конец системы .

Основные свойства модуля:

|a| больше или равно 0;

|a|=| минус a|;

 система выражений новая строка |a| больше или равно a, новая строка |a| больше или равно минус a; конец системы .

|a|=a равносильно a больше или равно 0;

|a|= минус a равносильно a меньше или равно 0.

Наверх

3. Степень с действительным показателем

Свойства степени с действительным показателем

Пусть a больше 0,b больше 0,x принадлежит R ,y принадлежит R . Тогда верны следующие соотношения:

Наверх

4. Корень n-ой степени из числа

Корнем n-ой степени  левая круглая скобка n принадлежит N ,n больше или равно 2 правая круглая скобка из числа a называется число, n-ая степень которого равна a.
Арифметическим корнем четной степени n  левая круглая скобка n=2k,k принадлежит N правая круглая скобка из неотрицательного числа a называется неотрицательное число, n-ая степень которого равна a.

Основные свойства арифметического корня:

a больше или равно 0: левая круглая скобка корень n степени из левая круглая скобка a правая круглая скобка правая круглая скобка в степени левая круглая скобка n правая круглая скобка =a, корень n степени из левая круглая скобка a правая круглая скобка в степени левая круглая скобка n правая круглая скобка =a, корень n степени из левая круглая скобка a правая круглая скобка в степени левая круглая скобка m правая круглая скобка = левая круглая скобка корень n степени из левая круглая скобка a правая круглая скобка правая круглая скобка в степени левая круглая скобка m правая круглая скобка , корень m степени из левая круглая скобка корень n степени из левая круглая скобка a правая круглая скобка правая круглая скобка = корень mn степени из левая круглая скобка a правая круглая скобка ;

a принадлежит R : корень n степени из левая круглая скобка a правая круглая скобка в степени левая круглая скобка n правая круглая скобка = |a|;

a больше или равно 0,b больше или равно 0: корень n степени из левая круглая скобка ab правая круглая скобка = корень n степени из левая круглая скобка a правая круглая скобка умножить на корень n степени из левая круглая скобка b правая круглая скобка , корень n степени из левая круглая скобка дробь: числитель: a, знаменатель: b конец дроби правая круглая скобка = дробь: числитель: корень n степени из левая круглая скобка a правая круглая скобка , знаменатель: корень n степени из левая круглая скобка b правая круглая скобка конец дроби  левая круглая скобка b не равно 0 правая круглая скобка ;

a меньше 0,b меньше 0: корень n степени из левая круглая скобка ab правая круглая скобка = корень n степени из левая круглая скобка минус a правая круглая скобка умножить на корень n степени из левая круглая скобка минус b правая круглая скобка , корень n степени из левая круглая скобка дробь: числитель: a, знаменатель: b конец дроби правая круглая скобка = дробь: числитель: корень n степени из левая круглая скобка минус a правая круглая скобка , знаменатель: корень n степени из левая круглая скобка минус b правая круглая скобка конец дроби ;

a больше или равно 0,b больше или равно 0:a корень n степени из левая круглая скобка b правая круглая скобка = корень n степени из левая круглая скобка a правая круглая скобка в степени левая круглая скобка n правая круглая скобка b;

a меньше 0,b больше или равно 0:a корень n степени из левая круглая скобка b правая круглая скобка = минус корень n степени из левая круглая скобка a правая круглая скобка в степени левая круглая скобка n правая круглая скобка b.

Наверх

5. Логарифмы

Определение логарифма: log _ab=cunderseta больше 0,a не равно 1mathop равносильно a в степени левая круглая скобка c правая круглая скобка =b.

Основное логарифмическое тождество: a в степени левая круглая скобка log правая круглая скобка _ab=b.

Основные свойства логарифмов

Пусть a больше 0, a не равно 1, b больше 0, b не равно 1, x больше 0, y больше 0, p принадлежит R . Тогда верны следующие соотношения:

Наверх

6. Арифметическая прогрессия

Формула n-го члена арифметической прогрессии: a_n=a_1 плюс d левая круглая скобка n минус 1 правая круглая скобка .

Характеристическое свойство арифметической прогрессии: a_n= дробь: числитель: a_n минус 1 плюс a_n плюс 1, знаменатель: 2 конец дроби ,n больше или равно 2.

Сумма n первых членов арифметической прогрессии: S_n= дробь: числитель: a_1 плюс a, знаменатель: 2 конец дроби n.

При решении задач, связанных с арифметической прогрессией, могут оказаться полезными также следующие формулы:

S_n= дробь: числитель: 2a_1 плюс d левая круглая скобка n минус 1 правая круглая скобка , знаменатель: 2 конец дроби n;

S_n= дробь: числитель: 2a_n минус d левая круглая скобка n минус 1 правая круглая скобка , знаменатель: 2 конец дроби n;

a_n= дробь: числитель: a_n минус k плюс a_n плюс k, знаменатель: 2 конец дроби ,k меньше n;

a_k плюс a_n=a_k минус m плюс a_n плюс m,m меньше k;

d= дробь: числитель: a_n минус a_k, знаменатель: n минус k конец дроби .

Наверх

7. Геометрическая прогрессия

Формула n-го члена геометрической прогрессии: a_n=a_1q в степени левая круглая скобка n минус 1 правая круглая скобка .

Характеристическое свойство геометрической прогрессии: a_n в квадрате =a_n минус 1a_n плюс 1,n больше или равно 2.

Сумма n первых членов геометрической прогрессии: S_n= дробь: числитель: a_1 минус a_nq, знаменатель: 1 минус q конец дроби , q не равно 1.

При решении задач, связанных с геометрической прогрессией, могут оказаться полезными также следующие формулы:

S_n= дробь: числитель: a_1 левая круглая скобка 1 минус q в степени левая круглая скобка n правая круглая скобка правая круглая скобка , знаменатель: 1 минус q конец дроби ;

a_n в квадрате =a_n минус ka_n плюс k,k меньше n;

a_ka_n=a_k минус ma_n плюс m,m меньше k;

|q|= корень n минус k степени из левая круглая скобка дробь: числитель: a правая круглая скобка _n, знаменатель: a_k конец дроби .

Наверх

8. Бесконечно убывающая геометрическая прогрессия

Сумма бесконечно убывающей геометрической прогрессии: S= дробь: числитель: a_1, знаменатель: 1 минус q конец дроби .

Наверх

9. Основные формулы тригонометрии

Зависимость между тригонометрическими функциями одного аргумента:

 синус в квадрате альфа плюс косинус в квадрате альфа =1;

 тангенс альфа = дробь: числитель: синус альфа , знаменатель: косинус альфа конец дроби ;

ctg альфа = дробь: числитель: косинус альфа , знаменатель: синус альфа конец дроби ;

 тангенс альфа ctg альфа =1;

1 плюс тангенс в квадрате альфа = дробь: числитель: 1, знаменатель: косинус в квадрате альфа конец дроби ;

1 плюс ctg в квадрате альфа = дробь: числитель: 1, знаменатель: синус в квадрате альфа конец дроби .

Формулы сложения:

 косинус левая круглая скобка альфа плюс бета правая круглая скобка = косинус альфа косинус бета минус синус альфа синус бета ;

 косинус левая круглая скобка альфа минус бета правая круглая скобка = косинус альфа косинус бета плюс синус альфа синус бета ;

 синус левая круглая скобка альфа плюс бета правая круглая скобка = синус альфа косинус бета плюс косинус альфа синус бета ;

 синус левая круглая скобка альфа минус бета правая круглая скобка = синус альфа косинус бета минус косинус альфа синус бета ;

 тангенс левая круглая скобка альфа плюс бета правая круглая скобка = дробь: числитель: тангенс альфа плюс тангенс бета , знаменатель: 1 минус тангенс альфа тангенс бета конец дроби ;

 тангенс левая круглая скобка альфа минус бета правая круглая скобка = дробь: числитель: тангенс альфа минус тангенс бета , знаменатель: 1 плюс тангенс альфа тангенс бета конец дроби ;

ctg левая круглая скобка альфа плюс бета правая круглая скобка = дробь: числитель: ctg альфа ctg бета минус 1, знаменатель: ctg бета плюс ctg альфа конец дроби ;

ctg левая круглая скобка альфа минус бета правая круглая скобка = дробь: числитель: ctg альфа ctg бета плюс 1, знаменатель: ctg бета минус ctg альфа конец дроби .

Формулы тригонометрических функций двойного аргумента: синус 2 альфа =2 синус альфа косинус альфа ;

 синус 2 альфа = дробь: числитель: 2 тангенс альфа , знаменатель: 1 плюс тангенс в квадрате альфа конец дроби ;

 косинус 2 альфа = косинус в квадрате альфа минус синус в квадрате альфа ;

 косинус 2 альфа =2 косинус в квадрате альфа минус 1;

 косинус 2 альфа =1 минус 2 синус в квадрате альфа ;

 косинус 2 альфа = дробь: числитель: 1 минус тангенс в квадрате альфа , знаменатель: 1 плюс тангенс в квадрате альфа конец дроби ;

 тангенс 2 альфа = дробь: числитель: 2 тангенс альфа , знаменатель: 1 минус тангенс в квадрате альфа конец дроби ;

ctg2 альфа = дробь: числитель: ctg в квадрате альфа минус 1, знаменатель: 2ctg альфа конец дроби .

Формулы понижения степени:

 синус в квадрате альфа = дробь: числитель: 1 минус косинус 2 альфа , знаменатель: 2 конец дроби ;

 косинус в квадрате альфа = дробь: числитель: 1 плюс косинус 2 альфа , знаменатель: 2 конец дроби ;

 тангенс в квадрате альфа = дробь: числитель: 1 минус косинус 2 альфа , знаменатель: 1 плюс косинус 2 альфа конец дроби ;

ctg в квадрате альфа = дробь: числитель: 1 плюс косинус 2 альфа , знаменатель: 1 минус косинус 2 альфа конец дроби .

Формулы приведения

Все формулы приведения получаются из соответствующих формул сложения. Например:

 косинус левая круглая скобка дробь: числитель: Пи , знаменатель: 2 конец дроби плюс альфа правая круглая скобка = косинус дробь: числитель: Пи , знаменатель: 2 конец дроби косинус альфа минус синус дробь: числитель: Пи , знаменатель: 2 конец дроби синус альфа = минус синус альфа .

Применение формул приведения укладывается в следующую схему:

— определяется координатная четверть, в которой лежит аргумент приводимой функции, считая, что  альфа принадлежит левая круглая скобка 0; дробь: числитель: Пи , знаменатель: 2 конец дроби правая круглая скобка ;

— определяется знак приводимой функции;

— определяется название приведенной функции по следующему правилу: если аргумент приводимой функции имеет вид  левая круглая скобка дробь: числитель: Пи , знаменатель: 2 конец дроби pm альфа правая круглая скобка или  левая круглая скобка дробь: числитель: 3 Пи , знаменатель: 2 конец дроби pm альфа правая круглая скобка , то функция меняется на сходственную функцию, если аргумент приводимой функции имеет вид  левая круглая скобка Пи pm альфа правая круглая скобка , то функция названия не меняет.

Например, получим формулу  тангенс левая круглая скобка дробь: числитель: 3 Пи , знаменатель: 2 конец дроби плюс альфа правая круглая скобка :

 дробь: числитель: 3 Пи , знаменатель: 2 конец дроби плюс альфа принадлежит левая круглая скобка дробь: числитель: 3 Пи , знаменатель: 2 конец дроби ;2 Пи правая круглая скобка — IV четверть;

— в IV четверти тангенс отрицательный;

— аргумент приводимой функции имеет вид  дробь: числитель: 3 Пи , знаменатель: 2 конец дроби плюс альфа , следовательно, название функции меняется. Таким образом,  тангенс левая круглая скобка дробь: числитель: 3 Пи , знаменатель: 2 конец дроби плюс альфа правая круглая скобка = минус ctg альфа .

Формулы преобразования суммы тригонометрических функций в произведение:

 синус альфа плюс синус бета =2 синус дробь: числитель: альфа плюс бета , знаменатель: 2 конец дроби косинус дробь: числитель: альфа минус бета , знаменатель: 2 конец дроби ;

 синус альфа минус синус бета =2 синус дробь: числитель: альфа минус бета , знаменатель: 2 конец дроби косинус дробь: числитель: альфа плюс бета , знаменатель: 2 конец дроби ;

 косинус альфа плюс косинус бета =2 косинус дробь: числитель: альфа плюс бета , знаменатель: 2 конец дроби косинус дробь: числитель: альфа минус бета , знаменатель: 2 конец дроби ;

 косинус альфа минус косинус бета = минус 2 синус дробь: числитель: альфа плюс бета , знаменатель: 2 конец дроби синус дробь: числитель: альфа минус бета , знаменатель: 2 конец дроби ;

 тангенс альфа плюс тангенс бета = дробь: числитель: синус левая круглая скобка альфа плюс бета правая круглая скобка , знаменатель: косинус альфа косинус бета конец дроби ;

 тангенс альфа минус тангенс бета = дробь: числитель: синус левая круглая скобка альфа минус бета правая круглая скобка , знаменатель: косинус альфа косинус бета конец дроби ;

ctg альфа плюс ctg бета = дробь: числитель: синус левая круглая скобка альфа плюс бета правая круглая скобка , знаменатель: синус альфа синус бета конец дроби ;

ctg альфа минус ctg бета = дробь: числитель: синус левая круглая скобка бета минус альфа правая круглая скобка , знаменатель: синус альфа синус бета конец дроби .

Формулы преобразования произведения тригонометрических функций в сумму:

 косинус альфа косинус бета = дробь: числитель: 1, знаменатель: 2 конец дроби левая круглая скобка косинус левая круглая скобка альфа минус бета правая круглая скобка плюс косинус левая круглая скобка альфа плюс бета правая круглая скобка правая круглая скобка ;

 синус альфа синус бета = дробь: числитель: 1, знаменатель: 2 конец дроби левая круглая скобка косинус левая круглая скобка альфа минус бета правая круглая скобка минус косинус левая круглая скобка альфа плюс бета правая круглая скобка правая круглая скобка ;

 синус альфа косинус бета = дробь: числитель: 1, знаменатель: 2 конец дроби левая круглая скобка синус левая круглая скобка альфа плюс бета правая круглая скобка плюс синус левая круглая скобка альфа минус бета правая круглая скобка правая круглая скобка .

Наверх

10. Производная и интеграл

Таблица производных некоторых элементарных функций

Правила дифференцирования:

1.  левая круглая скобка f левая круглая скобка x правая круглая скобка плюс g левая круглая скобка x правая круглая скобка правая круглая скобка в степени левая круглая скобка prime правая круглая скобка =f' левая круглая скобка x правая круглая скобка плюс g' левая круглая скобка x правая круглая скобка ;

2.  левая круглая скобка cf левая круглая скобка x правая круглая скобка правая круглая скобка в степени левая круглая скобка prime правая круглая скобка =cf' левая круглая скобка x правая круглая скобка ;

3.  левая круглая скобка f левая круглая скобка x правая круглая скобка g левая круглая скобка x правая круглая скобка правая круглая скобка в степени левая круглая скобка prime правая круглая скобка =f' левая круглая скобка x правая круглая скобка g левая круглая скобка x правая круглая скобка плюс f левая круглая скобка x правая круглая скобка g' левая круглая скобка x правая круглая скобка ;

4.  левая круглая скобка дробь: числитель: f левая круглая скобка x правая круглая скобка , знаменатель: g левая круглая скобка x правая круглая скобка конец дроби правая круглая скобка в степени левая круглая скобка prime правая круглая скобка = дробь: числитель: f' левая круглая скобка x правая круглая скобка g левая круглая скобка x правая круглая скобка минус f левая круглая скобка x правая круглая скобка g' левая круглая скобка x правая круглая скобка , знаменатель: g в квадрате левая круглая скобка x правая круглая скобка конец дроби ;

5.  левая квадратная скобка f левая круглая скобка g левая круглая скобка x правая круглая скобка правая круглая скобка правая квадратная скобка в степени левая круглая скобка prime правая круглая скобка =f' левая круглая скобка g левая круглая скобка x правая круглая скобка правая круглая скобка g' левая круглая скобка x правая круглая скобка .

Уравнение касательной к графику функции y=f левая круглая скобка x правая круглая скобка в его точке  левая круглая скобка x_0;f левая круглая скобка x_0 правая круглая скобка правая круглая скобка :

y=f' левая круглая скобка x_0 правая круглая скобка левая круглая скобка x минус x_0 правая круглая скобка плюс f левая круглая скобка x_0 правая круглая скобка .

Таблица первообразных для некоторых элементарных функций

Правила нахождения первообразных

Пусть F левая круглая скобка x правая круглая скобка ,G левая круглая скобка x правая круглая скобка ― первообразные для функций f левая круглая скобка x правая круглая скобка и g левая круглая скобка x правая круглая скобка соответственно, a, b, k ― постоянные, k не равно 0. Тогда:

F левая круглая скобка x правая круглая скобка плюс G левая круглая скобка x правая круглая скобка ― первообразная для функции f левая круглая скобка x правая круглая скобка плюс g левая круглая скобка x правая круглая скобка ;

aF левая круглая скобка x правая круглая скобка ― первообразная для функции af левая круглая скобка x правая круглая скобка ;

 дробь: числитель: 1, знаменатель: k конец дроби F левая круглая скобка kx плюс b правая круглая скобка ― первообразная для функции f левая круглая скобка kx плюс b правая круглая скобка ;

— Формула Ньютона-Лейбница:  принадлежит t пределы: от a до b, f левая круглая скобка x правая круглая скобка dx=F левая круглая скобка b правая круглая скобка минус F левая круглая скобка a правая круглая скобка .

1. Треугольник

Пусть a,b,c ― длины сторон BC, AC, AB треугольника ABC соответственно; p= дробь: числитель: a плюс b плюс c, знаменатель: 2 конец дроби ― полупериметр треугольника ABC; A, B, C ― величины углов BAC, ABC, ACB треугольника ABC соответственно; h_a,h_b,h_c ― длины высот AA2, BB2, CC2 треугольника ABC соответственно; R ― радиус окружности, описанной около треугольника ABC; r — радиус окружности, вписанной в треугольник ABC; S_vartriangle ABC ― площадь треугольника ABC. Тогда имеют место следующие соотношения:

 дробь: числитель: a, знаменатель: синус A конец дроби = дробь: числитель: b, знаменатель: синус B конец дроби = дробь: числитель: c, знаменатель: синус C конец дроби =2R (теорема синусов);

c в квадрате =a в квадрате плюс b в квадрате минус 2ab косинус C (теорема косинусов);

S_vartriangle ABC= дробь: числитель: 1, знаменатель: 2 конец дроби ah_a;

S_vartriangle ABC= дробь: числитель: 1, знаменатель: 2 конец дроби ab синус C;

S_vartriangle ABC= дробь: числитель: abc, знаменатель: 4R конец дроби ;

S_vartriangle ABC=pr;

S_vartriangle ABC= корень из p левая круглая скобка p минус a правая круглая скобка левая круглая скобка p минус b правая круглая скобка левая круглая скобка p минус c правая круглая скобка .

Наверх
2. Четырёхугольники

Параллелограмм

Параллелограммом называется четырехугольник, противоположные стороны которого попарно параллельны.

Прямоугольником называется параллелограмм, у которого все углы прямые.

Ромбом называется параллелограмм, все стороны которого равны.

Квадратом называется прямоугольник, все стороны которого равны. Из определения следует, что квадрат является ромбом, следовательно, он обладает всеми свойствами прямоугольника и ромба.

Трапецией называется четырехугольник, две стороны которого параллельны, а две другие не параллельны.

Площадь четырехугольника

Площадь параллелограмма равна произведению его основания на высоту.

Площадь параллелограмма равна произведению двух его смежных сторон на синус угла между ними.

Площадь трапеции равна произведению полусуммы ее оснований на высоту.

Площадь четырехугольника равна половине произведения его диагоналей на синус угла между ними.

Наверх

3. Окружность и круг

Соотношения между элементами окружности и круга

Пусть r — радиус окружности, d — ее диаметр, C — длина окружности, S — площадь круга, l_n градусов  — длина дуги в n градусов, l_ альфа  — длина дуги в  альфа радиан, S_n градусов  — площадь сектора, ограниченного дугой в n градусов, S_ альфа  — площадь сектора, ограниченного дугой в  альфа радиан. Тогда имеют место следующие соотношения:

Вписанный угол

Вписанный угол измеряется половиной дуги, на которую он опирается.

Вписанные углы, опирающиеся на одну и ту же дугу, равны.

Вписанный угол, опирающийся на полуокружность, — прямой.

Вписанная окружность

Центр окружности, вписанной в многоугольник, есть точка равноудаленная от всех сторон этого многоугольника, ― точка пересечения биссектрис углов этого многоугольника. Таким образом, в многоугольник можно вписать окружность, и притом только одну, тогда и только тогда, когда биссектрисы его углов пересекаются в одной точке.

В четырехугольник можно вписать окружность тогда и только тогда, когда суммы его противоположных сторон равны.

Описанная окружность

Центр окружности, вписанной в многоугольник, есть точка равноудаленная от всех вершин этого многоугольника, ― точка пересечения серединных перпендикуляров к сторонам этого многоугольника. Таким образом, около многоугольника можно описать окружность, и притом только одну, тогда и только тогда, когда серединные перпендикуляры к сторонам этого многоугольника пересекаются в одной точке.

Около четырехугольника можно описать окружность тогда и только тогда, когда суммы его противоположных углов равны 180 градусов.

Наверх

4. Призма

Пусть H ― высота призмы, AA1 ― боковое ребро призмы, P_осн ― периметр основания призмы, S_осн ― площадь основания призмы, S_бок ― площадь боковой поверхности призмы, S_полн ― площадь полной поверхности призмы, V ― объем призмы, P_bot  ― периметр перпендикулярного сечения призмы, S_bot  ― площадь перпендикулярного сечения призмы. Тогда имеют место следующие соотношения:

S_бок=P_bot AA_1;

S_полн=2S_осн плюс S_бок;

V=S_bot AA_1;

V=S_оснH.

Свойства параллелепипеда:

— противоположные грани параллелепипеда равны и параллельны;

— диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам;

— квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.

Наверх

5. Пирамида

Пусть H ― высота пирамиды, P_осн ― периметр основания пирамиды, S_осн ― площадь основания пирамиды, S_бок ― площадь боковой поверхности пирамиды, S_полн ― площадь полной поверхности пирамиды, V ― объем пирамиды. Тогда имеют место следующие соотношения:

S_полн=S_осн плюс S_бок;

V= дробь: числитель: 1, знаменатель: 3 конец дроби S_оснH .


Замечание.
Если все двугранные углы при основании пирамиды равны  бета , а высоты всех боковых граней пирамиды, проведенные из вершины пирамиды, равны h_бок, то S_бок= дробь: числитель: 1, знаменатель: 2 конец дроби P_оснh_бок= дробь: числитель: S_осн, знаменатель: косинус бета конец дроби .

Наверх

6. Усечённая пирамида

Пусть H ― высота усеченной пирамиды, P_1 и P_2 ― периметры оснований усеченной пирамиды, S_1 и S_2 ― площади оснований усеченной пирамиды, S_бок ― площадь боковой поверхности усеченной пирамиды, S_полн ― площадь полной поверхности усеченной пирамиды, V ― объем усеченной пирамиды.

Тогда имеют место следующие соотношения:

S_полн=S_1 плюс S_2 плюс S_бок;

V= дробь: числитель: 1, знаменатель: 3 конец дроби H левая круглая скобка S_1 плюс S_2 плюс корень из S_1S_2 правая круглая скобка .

Замечание. Если все двугранные углы при основании пирамиды равны  бета , а высоты всех боковых граней пирамиды, проведенные из вершины пирамиды, равны h_бок, то: S_бок= дробь: числитель: 1, знаменатель: 2 конец дроби левая круглая скобка P_1 плюс P_2 правая круглая скобка h_бок= дробь: числитель: |S_1 минус S_2|, знаменатель: косинус бета конец дроби .

Наверх

7. Цилиндр

Пусть h ― высота цилиндра, r ― радиус цилиндра, S_бок ― площадь боковой поверхности цилиндра, S_полн ― площадь полной поверхности цилиндра, V ― объем цилиндра.

Тогда имеют место следующие соотношения:

S_бок=2 Пи rh;

S_полн=2 Пи r левая круглая скобка r плюс h правая круглая скобка ;

V= Пи r в квадрате h.

Наверх

8. Конус

Пусть h ― высота конуса, r ― радиус основания конуса, l ― образующая конуса, S_бок ― площадь боковой поверхности конуса, S_полн ― площадь полной поверхности конуса, V ― объем конуса.

Тогда имеют место следующие соотношения:

S_бок= Пи rl;

S_полн= Пи r левая круглая скобка r плюс l правая круглая скобка ;

V= дробь: числитель: 1, знаменатель: 3 конец дроби Пи r в квадрате h.

Наверх

9. Усечённый конус

Пусть h ― высота усеченного конуса, r и r_1 ― радиусы основания усеченного конуса, l ― образующая усеченного конуса, S_бок ― площадь боковой поверхности усеченного конуса, V ― объем усеченного конуса. Тогда имеют место следующие соотношения:

S_бок= Пи левая круглая скобка r плюс r_1 правая круглая скобка l;

V= дробь: числитель: 1, знаменатель: 3 конец дроби Пи h левая круглая скобка r в квадрате плюс rr_1 плюс r_1 в квадрате правая круглая скобка .

Наверх

10. Сфера и шар

Пусть R ― радиус шара, D ― его диаметр, S ― площадь ограничивающей шар сферы, S_h ― площадь сферической поверхности шарового сегмента (шарового слоя), высота которого равна h, V ― объем шара, V_сегм ― объем сегмента, высота которого равна h, V_сект ― объем сектора, ограниченного сегментом, высота которого равна h. Тогда имеют место следующие соотношения:

Наверх

Тригонометрическими уравнениями называют уравнения, в которых переменная содержится под знаком тригонометрических функций. К их числу прежде всего относятся простейшие тригонометрические уравнения, т.е. уравнения вида $sin x=a, cos x=a, tg x=a$, где $а$ – действительное число.

Перед решением уравнений разберем некоторые тригонометрические выражения и формулы.

$1$ радиан $={180}/{π}≈57$  градусов

$1$ градус $={π}/{180}$ радиан

Значения тригонометрических функций некоторых углов

$α$ $ 0$ ${π}/{6}$ ${π}/{4}$ ${π}/{3}$ ${π}/{2}$ $π$
$sinα$ $ 0$ $ {1}/{2}$ $ {√2}/{2}$ $ {√3}/{2}$ $ 1$ $ 0$  
$cosα$ $ 1$ $ {√3}/{2}$ $ {√2}/{2}$ $ {1}/{2}$ $ 0$ $ -1$  
$tgα$ $ 0$ $ {√3}/{3}$ $ 1$ $ √3$ $ -$ $ 0$  
$ctgα$ $ -$ $ √3$ $ 1$ $ {√3}/{3}$ $ 0$ $ -$  

Периоды повтора значений тригонометрических функций

Период повторения у синуса и косинуса $2π$, у тангенса и котангенса $π$

Знаки тригонометрических функций по четвертям

Эта информация нам пригодится для использования формул приведения. Формулы приведения необходимы для понижения углов до значения от $0$ до $90$ градусов.

Чтобы правильно раскрыть формулы приведения необходимо помнить, что:

  1. если в формуле содержатся углы $180°$ и $360°$ ($π$ и $2π$), то наименование функции не изменяется; (если же в формуле содержатся углы $90°$ и $270°$ (${π}/{2}$ и ${3π}/{2}$), то наименование функции меняется на противоположную (синус на косинус, тангенс на котангенс и т. д.);
  2. чтобы определить знак в правой части формулы ($+$ или $-$), достаточно, считая угол $α$ острым, определить знак преобразуемого выражения.

Преобразовать $сos(90° + α)$. Прежде всего, мы замечаем, что в формуле содержится угол $90$, поэтому $cos$ измениться на $sin$.

$сos(90° + α)=sinα$

Чтобы определить знак перед $sinα$, предположим, что угол $α$ острый, тогда угол $90° + α$ должен оканчиваться во 2-й четверти, а косинус угла, лежащего во 2-й четверти, отрицателен. Поэтому, перед $sinα$ нужен знак $-$.

$сos(90° + α)= — sinα$ — это конечный результат преобразования

Четность тригонометрических функций

Косинус четная функция: $cos(-t)=cos t$

Синус, тангенс и котангенс нечетные функции: $sin(-t)= — sin t; tg(-t)= — tg t; ctg(-t)= — ctg t$

Тригонометрические тождества

  1. $tgα={sinα}/{cosα}$
  2. $ctgα={cosα}/{sinα}$
  3. $sin^2α+cos^2α=1$ (Основное тригонометрическое тождество)

Из основного тригонометрического тождества можно выразить формулы для нахождения синуса и косинуса

$sinα=±√{1-cos^2α}$

$cosα=±√{1-sin^2α}$

  1. $tgα·ctgα=1$
  2. $1+tg^2α={1}/{cos^2α}$
  3. $1+ctg^2α={1}/{sin^2α}$

Вычислить $sin t$, если $cos t = {5}/{13} ; t ∈({3π}/{2};2π)$

Найдем $sin t$ через основное тригонометрическое тождество. И определим знак, так как $t ∈({3π}/{2};2π)$ -это четвертая четверть, то синус в ней имеет знак минус

$sin⁡t=-√{1-cos^2t}=-√{1-{25}/{169}}=-√{{144}/{169}}=-{12}/{13}$

Формулы двойного угла

  1. $sin2α=2sinα·cosα$
  2. $cos2α=cos^2α-sin^2α=2cos^2α-1=1-2sin^2α$
  3. $tg2α={2tgα}/{1-tg^2α}$

Формулы суммы и разности

$cosα+cosβ=2cos{α+β}/{2}·cos{α-β}/{2}$

$cosα-cosβ=2sin{α+β}/{2}·sin{β-α}/{2}$

$sinα+sinβ=2sin{α+β}/{2}·cos{α-β}/{2}$

$sinα-sinβ=2sin{α-β}/{2}·cos{α+β}/{2}$

Формулы произведения

$cosα·cosβ={cos(α-β)+cos(α+β)}/{2}$

$sinα·sinβ={cos(α-β)-cos(α+β)}/{2}$

$sinα·cosβ={sin(α+β)+sin(α-β)}/{2}$

Формулы сложения

$cos(α+β)=cosα·cosβ-sinα·sinβ$

$cos(α-β)=cosα·cosβ+sinα·sinβ$

$sin(α+β)=sinα·cosβ+cosα·sinβ$

$sin(α-β)=sinα·cosβ-cosα·sinβ$

Вычислить $sin12cos18+cos12sin18$

Данное выражение является синусом суммы

$sin12cos18+cos12sin18= sin⁡(12+18)=sin30=0.5$

Задача (Вписать в ответ число)

Вычислить $sin{5π}/{12} cos {π}/{12}+cos {π}/{12} sin {5π}/{12}$

Решение:

Данное выражение является синусом суммы

$sin {5π}/{12} cos {π}/{12}+cos {π}/{12} sin {5π}/{12}=sin⁡({π}/{12}+{5π}/{12})=sin {6π}/{12}=sin {π}/{2}=1$

Ответ: $1$

Обратные тригонометрические функции и простейшие тригонометрические уравнения

Арккосинус

Если, $|а|≤1$, то $arccos а$ – это такое число из отрезка $[0;π]$, косинус которого равен $а$.

Если, $|а|≤1$, то $arccos а = t ⇔ {table cos (t)=a; ≤t≤π;$

$arcos(-a) = π-arccos⁡a$, где $0≤а≤1$

Уравнение вида $cos t=a$, eсли, $|а|≤1$, имеет решение

$t=±arccos ⁡ a+2πk; k∈Z$

Частные случаи

$cos t =1, t = 2πk;k∈Z$

$cos t = 0, t = {π}/{2}+πk;k∈Z$

$cos t = -1, t=π+2πk;k∈Z$

Найдите наименьший положительный корень уравнения $сos{2πx}/{3}=-{√3}/{2}$

$сos{2πx}/{3}=-{√3}/{2}$

${2πx}/{3}=±arccos⁡(-{√3}/{2})+2πk;kϵZ$

${2πx}/{3}=±(π-arccos{√3}/{2})+2πk;kϵZ$

${2πx}/{3}=±(π-{π}/{6})+2πk;kϵZ$

${2πx}/{3}=±{5π}/{6} +2πk;kϵZ$

Далее избавимся от всех величин, мешающих иксу. Для этого разделим обе части уравнения на ${2π}/{3}$

$x=±{5π·3}/{6·2π} +{2π·3}/{2π}k$

$x=±1,25+3k$

Чтобы найти наименьший положительный корень, подставим вместо $k$ целые значения

$k=0$

$x_1= -1,25$

$x_2=1,25$

$к=1$

$х_1=3-1,25=1,75$

$х_2=3+1,25=4,25$

Нам подходит $1,25$ – это и есть результат

Ответ: $1,25$

Арксинус

Если, $|а|≤1$, то $arcsin a$ – это такое число, из отрезка $[-{π}/{2};{π}/{2}]$, синус которого равен $а$.

Если, $|а|≤1$, то $arcsin a = t ⇔ {table sint=a; -{π}/{2}≤t≤{π}/{2};$

$arcsin(-a)= — arcsin a$, где $0≤а≤1$

Если, $|а|≤1$, то уравнение $sin t =a$ можно решить и записать двумя способами:

$1. t_1 = arcsin a+2πk;k∈Z$

$t_2 = (π- arcsin a)+ 2πk;k∈Z$

$2. t=(-1)^n arcsin ⁡ a+πn; n∈Z$

$3.$ Частные случаи

$sin t = 0, t=πk;k∈Z$

$sin t = 1, t={π}/{2}+2πk;k∈Z$

$sin t = -1,t=-{π}/{2}+2πk;k∈Z$

Арктангенс

$arctg a$ — это такое число, из отрезка $[-{π}/{2};{π}/{2}]$, тангенс которого равен $а$.

$arctg a = t ⇔ {table tgt=a; -{π}/{2}≤t≤{π}/{2};$

$arctg(-a)= — arctg a$

Уравнение $tg t = a$ имеет решение $t= arctg a+πk;k∈Z$

Like this post? Please share to your friends:
  • Формула для растворов егэ математика
  • Формула для переплаты по кредиту егэ
  • Формула для параболы егэ
  • Формула для нахождения вероятности егэ
  • Формула для звука егэ информатика