Формула вероятности егэ профильный

Задание 3. Теория вероятностей на ЕГЭ по математике.

Мы начнем с простых задач и основных понятий теории вероятностей.
Случайным называется событие, которое нельзя точно предсказать заранее. Оно может либо произойти, либо нет.
Вы выиграли в лотерею — случайное событие. Пригласили друзей отпраздновать выигрыш, а они по дороге к вам застряли в лифте — тоже случайное событие. Правда, мастер оказался поблизости и освободил всю компанию через десять минут — и это тоже можно считать счастливой случайностью…

Наша жизнь полна случайных событий. О каждом из них можно сказать, что оно произойдет с некоторой вероятностью. Скорее всего, вы интуитивно знакомы с этим понятием. Теперь мы дадим математическое определение вероятности.

Начнем с самого простого примера. Вы бросаете монетку. Орел или решка?

Такое действие, которое может привести к одному из нескольких результатов, в теории вероятностей называют испытанием.

Орел и решка — два возможных исхода испытания.

Орел выпадет в одном случае из двух возможных. Говорят, что вероятность того, что монетка упадет орлом, равна 1/2.

Бросим игральную кость. У кубика шесть граней, поэтому возможных исходов тоже шесть.

Например, вы загадали, что выпадет три очка. Это один исход из шести возможных. В теории вероятностей он будет называться благоприятным исходом.

Вероятность выпадения тройки равна 1/6 (один благоприятный исход из шести возможных).

Вероятность четверки — тоже 1/6.

А вот вероятность появления семерки равна нулю. Ведь грани с семью точками на кубике нет.

Вероятность события равна отношению числа благоприятных исходов к общему числу исходов.

Очевидно, что вероятность не может быть больше единицы.

Вот другой пример. В пакете 25 яблок, из них 8 — красные, остальные — зеленые. Ни формой, ни размером яблоки не отличаются. Вы запускаете в пакет руку и наугад вынимаете яблоко. Вероятность вытащить красное яблоко равна 8/25, а зеленое — 17/25.

Вероятность достать красное или зеленое яблоко равна 8/25+17/25=1.
 

БЕСПЛАТНЫЙ МИНИ-КУРС ПО ТЕОРВЕРУ

Определение вероятности. Простые задачи из вариантов ЕГЭ.

Разберем задачи по теории вероятностей, входящие в сборники для подготовки к ЕГЭ.

1. В фирме такси в данный момент свободно 15 машин: 2 красных, 9 желтых и 4 зеленых. По вызову выехала одна из машин, случайно оказавшихся ближе всего к заказчице. Найдите вероятность того, что к ней приедет желтое такси.

Всего имеется 15 машин, то есть к заказчице приедет одна из пятнадцати. Желтых — девять, и значит, вероятность приезда именно желтой машины равна 9/15, то есть 0,6.

2. В сборнике билетов по биологии всего 25 билетов, в двух из них встречается вопрос о грибах. На экзамене школьнику достаётся один случайно выбранный билет. Найдите вероятность того, что в этом билете не будет вопроса о грибах.

Очевидно, вероятность вытащить билет без вопроса о грибах равна 23/25, то есть 0,92.

3. Родительский комитет закупил 30 пазлов для подарков детям на окончание учебного года, из них 12 с картинами известных художников и 18 с изображениями животных. Подарки распределяются случайным образом. Найдите вероятность того, что Вовочке достанется пазл с животным.

Задача решается аналогично.

Ответ: 0,6.

4. В чемпионате по гимнастике участвуют 20 спортсменок: 8 — из России, 7 — из США, остальные — из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая последней, окажется из Китая.

Давайте представим, что все спортсменки одновременно подошли к шляпе и вытянули из нее бумажки с номерами. Кому-то из них достанется двадцатый номер. Вероятность того, что его вытянет китайская спортсменка, равен 5/20 (поскольку из Китая — 5 спортсменок). Ответ: 0,25.

5. Ученика попросили назвать число от 1 до 100. Какова вероятность того, что он назовет число кратное пяти?

1,2,3,4,5,6,7,8,9,10,11 dotsc 100.

Каждое пятое число из данного множества делится на 5. Значит, вероятность равна 1/5.

6. Брошена игральная кость. Найдите вероятность того, что выпадет нечетное число очков.

1, 3, 5 — нечетные числа; 2,4,6 — четные. Вероятность нечетного числа очков равна 1/2.

Ответ: 0,5.

7. Монета брошена три раза. Какова вероятность двух «орлов» и одной «решки»?

Заметим, что задачу можно сформулировать по-другому: бросили три монеты одновременно. На решение это не повлияет.

Как вы думаете, сколько здесь возможных исходов?

Бросаем монету. У этого действия два возможных исхода: орел и решка.

Две монеты — уже четыре исхода:

орел орел
орел решка
решка орел
решка решка

Три монеты? Правильно, 8. исходов, так как 2 cdot 2 cdot 2 = 2^3=8.

Вот они:

орел орел орел
орел орел решка
орел решка орел
решка орел орел
орел решка решка
решка орел решка
решка решка орел
решка решка решка

Два орла и одна решка выпадают в трех случаях из восьми.

Ответ: 3/8.

8. В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 8 очков. Результат округлите до сотых.

Бросаем первую кость — шесть исходов. И для каждого из них возможны еще шесть — когда мы бросаем вторую кость.

Получаем, что у данного действия — бросания двух игральных костей — всего 36 возможных исходов, так как 6^2=36.

А теперь — благоприятные исходы:

2 6

3 5

4 4

5 3

6 2

Вероятность выпадения восьми очков равна 5/36 approx 0,14.

9. Стрелок попадает в цель с вероятностью 0,9. Найдите вероятность того, что он попадёт в цель четыре выстрела подряд.

Если вероятность попадания равна 0,9 — следовательно, вероятность промаха 0,1. Рассуждаем так же, как и в предыдущей задаче. Вероятность двух попадания подряд равна 0,9 cdot 0,9=0,81. А вероятность четырех попаданий подряд равна 0,9 cdot 0,9 cdot 0,9 cdot 0,9 = 0,6561.

Лень разбираться самому?
Присоединяйся к мини-курсу по теории вероятностей

ПОДРОБНЕЕ

Вероятность: логика перебора.

10. В кармане у Пети было 2 монеты по 5 рублей и 4 монеты по 10 рублей. Петя не глядя переложил какие-то 3 монеты в другой карман. Найдите вероятность того, что пятирублевые монеты лежат теперь в разных карманах.

Мы знаем, что вероятность события равна отношению числа благоприятных исходов к общему числу исходов. Но как посчитать все эти исходы?

Можно, конечно, обозначить пятирублевые монеты цифрами 1, а десятирублевые цифрами 2 — а затем посчитать, сколькими способами можно выбрать три элемента из набора 1 1 2 2 2 2.

Однако есть более простое решение:

Кодируем монеты числами: 1, 2 (это пятирублёвые), 3, 4, 5, 6 (это десятирублёвые). Условие задачи можно теперь сформулировать так:

Есть шесть фишек с номерами от 1 до 6. Сколькими способами можно разложить их по двум карманам поровну, так чтобы фишки с номерами 1 и 2 не оказались вместе?

Давайте запишем, что у нас в первом кармане.

Для этого составим все возможные комбинации из набора 1 2 3 4 5 6. Набор из трёх фишек будет трёхзначным числом. Очевидно, что в наших условиях 1 2 3 и 2 3 1 — это один и тот же набор фишек. Чтобы ничего не пропустить и не повториться, располагаем соответствующие трехзначные числа по возрастанию:

123, 124, 125, 126

А дальше? Мы же говорили, что располагаем числа по возрастанию. Значит, следующее — 134, а затем:

135, 136, 145, 146, 156.

Все! Мы перебрали все возможные комбинации, начинающиеся на 1. Продолжаем:

234, 235, 236, 245, 246, 256, 345, 346, 356, 456.

Всего 20 возможных исходов.

У нас есть условие — фишки с номерами 1 и 2 не должны оказаться вместе. Это значит, например, что комбинация 356 нам не подходит — она означает, что фишки 1 и 2 обе оказались не в первом, а во втором кармане. Благоприятные для нас исходы — такие, где есть либо только 1, либо только 2. Вот они:

134, 135, 136, 145, 146, 156, 234, 235, 236, 245, 246, 256 – всего 12 благоприятных исходов.

Тогда искомая вероятность равна 12/20.

Ответ: 0,6.

Сумма событий, произведение событий и их комбинации

11. Вероятность того, что новый электрический чайник прослужит больше года, равна 0,93. Вероятность того, что он прослужит больше двух лет, равна 0,87. Найдите вероятность того, что он прослужит меньше двух лет, но больше года.

Проработав год, чайник может либо сломаться на второй год, либо благополучно служить и после 2 лет работы.
Пусть p – вероятность того, что чайник прослужил больше года.

p_1 – вероятность того, что он сломается на второй год, p_2 – вероятность того, что он прослужит больше двух лет.

Очевидно, p= p_1+p_2.

Тогда p_1=p-p_2=0,93-0,87=0,06.

Ответ: 0,06.

События, взаимоисключающие друг друга в рамках данной задачи, называются несовместными. Появление одного из несовместных событий исключает появление других.

Сумма двух событий – термин, означающий, что произошло или первое событие, или второе, или оба сразу.

Вероятность суммы несовместных событий равна сумме их вероятностей.

В нашей задаче события «чайник сломался на второй год работы» и «чайник работает больше двух лет» — несовместные. Чайник или сломался, или остается в рабочем состоянии.

12. На рисунке изображён лабиринт. Паук заползает в лабиринт в точке «Вход». Развернуться и ползти назад паук не может. На каждом разветвлении паук выбирает путь, по которому ещё не полз. Считая выбор дальнейшего пути случайным, определите, с какой вероятностью паук выйдет через выход А.

Пронумеруем развилки, на которых паук может случайным образом свернуть в ту или другую сторону.

Он может либо выйти в выход D, и вероятность этого события равна frac{1}{2}. Либо уйти дальше в лабиринт. На второй развилке он может либо свернуть в тупик, либо выйти в выход В (с вероятностью frac{1}{2}cdot frac{1}{2}=frac{1}{4}). На каждой развилке вероятность свернуть в ту или другую сторону равна frac{1}{2}, а поскольку развилок пять, вероятность выбраться через выход А равна frac{1}{32}, то есть 0,03125.

События А и В называют независимыми, если вероятность появления события А не меняет вероятности появления события В.

В нашей задаче так и есть: неразумный паук сворачивает налево или направо случайным образом, независимо от того, что он делал до этого.

Для нескольких независимых событий вероятность того, что все они произойдут, равна произведению вероятностей.

13. (А) Два грузовика, работая совместно, вывозят снег с улицы Нижняя Подгорная, причем первый грузовик должен сделать три рейса с грузом снега, а второй — два. Вероятность застрять с грузом снега при подъеме в горку равна 0,2 для первого грузовика и 0,25 — для второго. С какой вероятностью грузовики вывезут снег с улицы Нижняя Подгорная, ни разу не застряв на горке?

Вероятность для первого грузовика благополучно одолеть горку 1 - 0,2 = 0,8. Для второго 1 - 0,25 = 0,75. Поскольку первый грузовик должен сделать 3 рейса, а второй – два, грузовики ни разу не застрянут на горке с вероятностью 0,8cdot0,75cdot0,8cdot0,75cdot 0,8 =0,36cdot0,8=0,288.

14. Агрофирма закупает куриные яйца в двух домашних хозяйствах. 40% яиц из первого хозяйства — яйца высшей категории, а из второго хозяйства — 20% яиц высшей категории. Всего высшую категорию получает 35% яиц. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.

Нарисуем все возможные исходы ситуации. Покупатель пришел в магазин, который принадлежит агрофирме, и купил яйцо. Надо найти вероятность того, что это яйцо из первого хозяйства.

Яйца могут быть только или из первого домашнего хозяйства, или из второго, причем эти два события несовместны. Других яиц в этот магазин не поступает.

Пусть вероятность того, что купленное яйцо из первого хозяйства, равна x. Тогда вероятность того, что яйцо из второго хозяйства (противоположного события), равна 1-x.

Яйца могут быть высшей категории и не высшей.
В первом хозяйстве 40% яиц имеют высшую категорию, а 60% — не высшую. Это значит, что случайно выбранное яйцо из первого хозяйства с вероятностью 40% будет высшей категории.

Во втором хозяйстве 20% яиц высшей категории, а 80% — не высшей.

Пусть случайно выбранное в магазине яйцо — из первого хозяйства и высшей категории. Вероятность этого события равна произведению вероятностей: 0,4 x.

Вероятность того, что яйцо из второго хозяйства и высшей категории, равна 0,2 (1-x).

Если мы сложим эти две вероятности, мы получим вероятность того, что яйцо имеет высшую категорию. По условию, высшую категорию имеют 35% яиц, значит, эта вероятность равна 0,35.

Мы получили уравнение:

0,4 x + 0,2 (1-x) = 0,35.

Решаем это уравнение и находим, что x = 0,75 – вероятность того, что яйцо, купленное у этой агрофирмы, оказалось из первого хозяйства.

15. Всем пациентам с подозрением на гепатит делают анализ крови. Если анализ выявляет гепатит, то результат анализа называется положительным. У больных гепатитом пациентов анализ даёт положительный результат с вероятностью 0,9. Если пациент не болен гепатитом, то анализ может дать ложный положительный результат с вероятностью 0,01. Известно, что 5% пациентов, поступающих с подозрением на гепатит, действительно больны гепатитом. Найдите вероятность того, что результат анализа у пациента, поступившего в клинику с подозрением на гепатит, будет положительным.

С чем пришел пациент в клинику? – С подозрением на гепатит. Возможно, он действительно болен гепатитом, а возможно, у его плохого самочувствия другая причина. Может быть, он просто съел что-нибудь. Вероятность того, что он болен гепатитом, равна 0,05 (то есть 5%). Вероятность того, что он здоров, равна 0,95 (то есть 95%).

Пациенту делают анализ. Покажем на схеме все возможные исходы:

Если он болен гепатитом, анализ дает положительный результат с вероятностью 0,9. То есть анализ покажет: «есть гепатит».
Заметим, что анализ не во всех случаях выявляет гепатит у того, кто действительно им болен. С вероятностью 0,1 анализ не распознает гепатит у больного.

Более того. Анализ может ошибочно дать положительный результат у того, кто не болеет гепатитом. Вероятность такого ложного положительного результата 0,01. Тогда с вероятностью 0,99 анализ даст отрицательный результат, если человек здоров.

Найдем вероятность того, что результат анализа у пациента, поступившего в клинику с подозрением на гепатит, будет положительным.

Благоприятные для этой ситуации исходы: человек болен, и анализ положительный (вероятность одновременного наступления этих двух событий равна 0,05cdot0,9 ), или человек здоров, и анализ ложный положительный (вероятность одновременного наступления этих двух событий равна 0,95cdot0,01 ). Так как события «человек болен» и «человек не болен» несовместны, то вероятность того, что результат анализа будет положительным, равна 0,05cdot0,9+0,95cdot0,01=0,0545.

Ответ: 0,0545.

16. Чтобы поступить в институт на специальность «Лингвистика», абитуриент З. должен набрать на ЕГЭ не менее 70 баллов по каждому из трёх предметов — математика, русский язык и иностранный язык. Чтобы поступить на специальность «Коммерция», нужно набрать не менее 70 баллов по каждому из трёх предметов — математика, русский язык и обществознание.

Вероятность того, что абитуриент З. получит не менее 70 баллов по математике, равна 0,6, по русскому языку — 0,8, по иностранному языку — 0,7 и по обществознанию — 0,5.
Найдите вероятность того, что З. сможет поступить хотя бы на одну из двух упомянутых специальностей.

Заметим, что в задаче не спрашивается, будет ли абитуриент по фамилии З. учиться и лингвистике, и коммерции сразу и получать два диплома. Здесь надо найти вероятность того, что З. сможет поступить хотя бы на одну из двух данных специальностей – то есть наберет необходимое количество баллов.
Для того чтобы поступить хотя бы на одну из двух специальностей, З. должен набрать не менее 70 баллов по математике. И по русскому. И еще – обществознание или иностранный.
Вероятность набрать 70 баллов по математике для него равна 0,6.
Вероятность набрать баллы по математике и русскому равна 0,6 cdot 0,8.

Разберемся с иностранным и обществознанием. Нам подходят варианты, когда абитуриент набрал баллы по обществознанию, по иностранному или по обоим. Не подходит вариант, когда ни по языку, ни по «обществу» он не набрал баллов. Значит, вероятность сдать обществознание или иностранный не ниже чем на 70 баллов равна
1 - 0,5 cdot 0,3.
В результате вероятность сдать математику, русский и обществознание или иностранный равна 0,6 cdot 0,8 cdot (1 - 0,5 cdot 0,3) = 0,408. Это ответ.

Чтобы полностью освоить тему, смотрите видеокурс по теории вероятностей. Это бесплатно.

Еще задачи ЕГЭ по теме «Теория вероятностей».

Смотрите также: парадокс Монти Холла.

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Задание 3. Теория вероятностей на ЕГЭ по математике.» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
09.03.2023

Вероятностью события $А$ называется отношение числа благоприятных для $А$ исходов к числу всех
равновозможных исходов

$P(A)={m}/{n}$, где $n$ – общее количество возможных исходов, а $m$ – количество исходов, благоприятствующих событию
$А$.

Вероятность события — это число из отрезка $[0; 1]$

В фирме такси в наличии $50$ легковых автомобилей. $35$ из них чёрные, остальные — жёлтые.
Найдите вероятность того, что на случайный вызов приедет машина жёлтого цвета.

Решение:

Найдем количество желтых автомобилей:

$50-35=15$

Всего имеется $50$ автомобилей, то есть на вызов приедет одна из пятидесяти. Желтых автомобилей $15$,
следовательно, вероятность приезда именно желтого автомобиля равна ${15}/{50}={3}/{10}=0,3$

Ответ:$0,3$

Противоположные события

Два события называются противоположными, если в данном испытании они несовместимы и одно из них обязательно
происходит. Вероятности противоположных событий в сумме дают 1.Событие, противоположное событию $А$, записывают
${(А)}↖{-}$.

$Р(А)+Р{(А)}↖{-}=1$

Независимые события

Два события $А$ и $В$ называются независимыми, если вероятность появления каждого из них не зависит от того,
появилось другое событие или нет. В противном случае события называются зависимыми.

Вероятность произведения двух независимых событий $A$ и $B$ равна произведению этих
вероятностей:

$Р(А·В)=Р(А)·Р(В)$

Иван Иванович купил два различных лотерейных билета. Вероятность того, что выиграет первый
лотерейный билет, равна $0,15$. Вероятность того, что выиграет второй лотерейный билет, равна $0,12$. Иван Иванович
участвует в обоих розыгрышах. Считая, что розыгрыши проводятся независимо друг от друга, найдите вероятность того,
что Иван Иванович выиграет в обоих розыгрышах.

Решения:

Вероятность $Р(А)$ — выиграет первый билет.

Вероятность $Р(В)$ — выиграет второй билет.

События $А$ и $В$ – это независимые события. То есть, чтобы найти вероятность того, что они произойдут оба
события, нужно найти произведение вероятностей

$Р(А·В)=Р(А)·Р(В)$

$Р=0,15·0,12=0,018$

Ответ: $0,018$

Несовместные события

Два события $А$ и $В$ называют несовместными, если отсутствуют исходы, благоприятствующие одновременно как событию
$А$, так и событию $В$. (События, которые не могут произойти одновременно)

Вероятность суммы двух несовместных событий $A$ и $B$ равна сумме вероятностей этих
событий:

$Р(А+В)=Р(А)+Р(В)$

На экзамене по алгебре школьнику достается один вопрос их всех экзаменационных. Вероятность
того, что это вопрос на тему «Квадратные уравнения», равна $0,3$. Вероятность того, что это вопрос на тему
«Иррациональные уравнения», равна $0,18$. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите
вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Решение:

Данные события называются несовместные, так как школьнику достанется вопрос ЛИБО по теме «Квадратные уравнения»,
ЛИБО по теме «Иррациональные уравнения». Одновременно темы не могут попасться. Вероятность суммы двух
несовместных событий $A$ и $B$ равна сумме вероятностей этих событий:

$Р(А+В)=Р(А)+Р(В)$

$Р = 0,3+0,18=0,48$

Ответ: $0,48$

Совместные события

Два события называются совместными, если появление одного из них не исключает появление другого в одном и том же
испытании. В противном случае события называются несовместными.

Вероятность суммы двух совместных событий $A$ и $B$ равна сумме вероятностей этих событий минус
вероятность их произведения:

$Р(А+В)=Р(А)+Р(В)-Р(А·В)$

В холле кинотеатра два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится
кофе, равна $0,6$. Вероятность того, что кофе закончится в обоих автоматах, равна $0,32$. Найдите вероятность того,
что к концу дня кофе закончится хотя бы в одном из автоматов.

Решение:

Обозначим события, пусть:

$А$ = кофе закончится в первом автомате,

$В$ = кофе закончится во втором автомате.

Тогда,

$A·B =$ кофе закончится в обоих автоматах,

$A + B =$ кофе закончится хотя бы в одном автомате.

По условию, $P(A) = P(B) = 0,6; P(A·B) = 0,32$.

События $A$ и $B$ совместные, вероятность суммы двух совместных событий равна сумме вероятностей этих событий,
уменьшенной на вероятность их произведения:

$P(A + B) = P(A) + P(B) − P(A·B) = 0,6 + 0,6 − 0,32 = 0,88$

Ответ: $0,88$

События, которые происходят реально или в нашем воображении, можно разделить на 3 группы. Это достоверные события, которые обязательно произойдут, невозможные события и случайные события. Теория вероятностей изучает случайные события, т.е. события, которые могут произойти или не произойти. В данной статье будет представлена в кратком виде теория вероятности формулы и примеры решения задач по теории вероятности, которые будут в 4 задании ЕГЭ по математике (профильный уровень).

Зачем нужна теория вероятности

Исторически потребность исследования этих проблем возникла в XVII веке в связи с развитием и профессионализацией азартных игр и появлением казино. Это было реальное явление, которое требовало своего изучения и исследования.

Игра в карты, кости, рулетку создавала ситуации, когда могло произойти любое из конечного числа равновозможных событий. Возникла необходимость дать числовые оценки возможности наступления того или иного события.

В XX веке выяснилось, что эта, казалось бы, легкомысленная наука играет важную роль в познании фундаментальных процессов, протекающих в микромире. Была создана современная теория вероятностей.

Основные понятия теории вероятности

Объектом изучения теории вероятностей являются события и их вероятности. Если событие является сложным, то его можно разбить на простые составляющие, вероятности которых найти несложно.

теория вероятности возникла как помощь в игре в кости, в казино и т.п.

Суммой событий А и В называется событие С, заключающееся в том, что произошло либо событие А, либо событие В, либо события А и В одновременно.

Произведением событий А и В называется событие С, заключающееся в том, что произошло и событие А и событие В.

События А и В называется несовместными, если они не могут произойти одновременно.

Событие А называется невозможным, если оно не может произойти. Такое событие обозначается символом oslash.

Событие А называется достоверным, если оно обязательно произойдет. Такое событие обозначается символом Omega.

Пусть каждому событию А поставлено в соответствие число P{А). Это число P(А) называется вероятностью события А, если при таком соответствии выполнены следующие условия.

  1. Вероятность принимает значения на отрезке от 0 до 1, т.е. 0<P(A)<1.
  2. Вероятность невозможного события равна 0, т.е. P(oslash) = 0 .
  3. Вероятность достоверного события равна 1, т.e. P(Omega) = 1.
  4. Если события A и В несовместные, то вероятность их суммы равна сумме их вероятностей, т.е. P(A+B) =P(A)+P(B).

Важным частным случаем является ситуация, когда имеется n равновероятных элементарных исходов, и произвольные k из этих исходов образуют события А. В этом случае вероятность можно ввести по формуле P(A) = frac{k}{n}. Вероятность, введенная таким образом, называется классической вероятностью. Можно доказать, что в этом случае свойства 1-4 выполнены.

Задачи по теории вероятностей, которые встречаются на ЕГЭ по математике, в основном связаны с классической вероятностью. Такие задачи могут быть очень простыми. Особенно простыми являются задачи по теории вероятностей в демонстрационных вариантах. Легко вычислить число благоприятных исходов k, прямо в условии написано число всех исходов n.

Самый простой способ определения вероятности

Ответ получаем по формуле P(A) = frac{k}{n}.

Пример задачи из ЕГЭ по математике по определению вероятности

На столе лежат 20 пирожков – 5 с капустой, 7 с яблоками и 8 с рисом. Марина хочет взять пирожок. Какова вероятность, что она возьмет пирожок с рисом?

Решение.

Всего равновероятных элементарных исходов 20, то есть Марина может взять любой из 20 пирожков. Но нам нужно оценить вероятность того, что Марина возьмет пирожок с рисом, то есть P(A), где А – это выбор пирожка с рисом. Значит у нас количество благоприятных исходов (выборов пирожков с рисом) всего 8. Тогда вероятность будет определяться по формуле:

    [ P(A)=frac{k}{n}=frac{8}{20}=0,4 ]

Ответ: 0,4

Независимые, противоположные и произвольные события

Однако в открытом банке заданий стали встречаться и более сложные задания. Поэтому обратим внимание читателя и на другие вопросы, изучаемые в теории вероятностей.

События А и В называется независимыми, если вероятность каждого из них не зависит от того, произошло ли другое событие.

Событие B состоит в том, что событие А не произошло, т.е. событие B является противоположным к событию А. Вероятность противоположного события равна единице минус вероятность прямого события,т.е. P(B)=1-P(A).

Теоремы сложения и умножения вероятностей, формулы

Для произвольных событий А и В вероятность суммы этих событий равна сумме их вероятностей без вероятности их совместного события, т.е. P(A+B) = P(A)+P(B)-P(AB).

Для независимых событий А и В вероятность произведения этих событий равна произведению их вероятностей, т.е. в этом случае P{AB)= P(A)cdot P(B).

Последние 2 утверждения называются теоремами сложения и умножения вероятностей.

Не всегда подсчет числа исходов является столь простым. В ряде случаев необходимо использовать формулы комбинаторики. При этом наиболее важным является подсчет числа событий, удовлетворяющих определенным условиям. Иногда такого рода подсчеты могут становиться самостоятельными заданиями.

Сколькими способами можно усадить 6 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Для третьего ученика остается 4 свободных места, для четвертого — 3, для пятого — 2, шестой займет единственное оставшееся место. Чтобы найти число всех вариантов, надо найти произведение 1cdot 2 cdot 3 cdot 4 cdot 5 cdot 6, которое обозначается символом 6! и читается “шесть факториал”.

В общем случае ответ на этот вопрос дает формула для числа перестановок из п элементов P_n=1 cdot 2 cdot 3 cdot 4 cdot 5 cdot 6 В нашем случае  n= 6.

Рассмотрим теперь другой случай с нашими учениками. Сколькими способами можно усадить 2 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Чтобы найти число всех вариантов, надо найти произведение 6 cdot 5.

В общем случае ответ на этот вопрос дает формула для числа размещений из n элементов по k элементам

    [ A^{k}_{n}=n cdot (n-1) cdot (n-2) dots cdot(n-k+1)= frac{n!}{(n-k)!} ]

В нашем случае n = 6, k = 2.

И последний случай из этой серии. Сколькими способами можно выбрать трех учеников из 6? Первого ученика можно выбрать 6 способами, второго — 5 способами, третьего — четырьмя. Но среди этих вариантов 6 раз встречается одна и та же тройка учеников. Чтобы найти число всех вариантов, надо вычислить величину: frac {6 cdot 5 cdot 4}{1cdot 2 cdot 3} = 20. В общем случае ответ на этот вопрос дает формула для числа сочетаний из n элементов по k элементам:

    [ C^{k}_{n}=frac{n cdot (n-1) cdot (n-2) dots (n-k+1)}{1cdot 2 cdot 3 dots cdot k}=frac{n!}{k! cdot (n-k)!}. ]

В нашем случае n=6, k=3.

Примеры решения задач из ЕГЭ по математике на определение вероятности

Задача 1. Из сборника под ред. Ященко.

На тарелке 30 пирожков: 3 с мясом, 18 с капустой и 9 с вишней. Саша наугад выбирает один пирожок. Найдите вероятность того, что он окажется с вишней.

Решение:

P=frac {9}{30}=0,3.

Ответ: 0,3.

Задача 2. Из сборника под ред. Ященко.

В каждой партии из 1000 лампочек в среднем 20 бракованных. Найдите вероятность того, что наугад взятая лампочка из партии будет исправной.

Решение: Количество исправных лампочек 1000-20=980. Тогда вероятность того, что взятая наугад лампочка из партии будет исправной:

P=frac{980}{1000}=0,98

Ответ: 0,98.

Задача 3.

Вероятность того, что на тестировании по математике учащийся У. верно решит больше 9 задач, равна 0,67. Вероятность того, что У. верно решит больше 8 задач, равна 0,73. Найдите вероятность того, что У. верно решит ровно 9 задач.

Решение:

Если мы вообразим числовую прямую и на ней отметим точки 8 и 9, то мы увидим, что условие “У. верно решит ровно 9 задач” входит в условие “У. верно решит больше 8 задач”, но не относится к условию “У. верно решит больше 9 задач”.

Однако, условие “У. верно решит больше 9 задач” содержится в условии “У. верно решит больше 8 задач”. Таким образом, если мы обозначим события: “У. верно решит ровно 9 задач” – через А, “У. верно решит больше 8 задач” – через B, “У. верно решит больше 9 задач” через С. То решение будет выглядеть следующим образом:

P(A)=P(B)-P(C)=0,73-0,67=0,06.

Ответ: 0,06.

Задача 4.

На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Тригонометрия», равна 0,2. Вероятность того, что это вопрос по теме «Внешние углы», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Решение.

Давайте подумаем какие у нас даны события. Нам даны два несовместных события. То есть либо вопрос будет относиться к теме “Тригонометрия”, либо к теме “Внешние углы”. По теореме вероятности вероятность несовместных событий равна сумме вероятностей каждого события, мы должны найти сумму вероятностей этих событий, то есть:

P(AB)=P(A)+ P(B)=0,2 +0,15 = 0,35

Ответ: 0,35.

Задача 5.

Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,29. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.

Решение:

Рассмотрим возможные события. У нас есть три лампочки, каждая из которых может перегореть или не перегореть независимо от любой другой лампочки. Это независимые события.

Тогда укажем варианты таких событий. Примем обозначения: bigcirc– лампочка горит, otimes – лампочка перегорела. И сразу рядом подсчитаем вероятность события. Например, вероятность события, в котором произошли три независимых события “лампочка перегорела”, “лампочка горит”, “лампочка горит”: P=0,29 cdot 0,71 cdot 0,71=0,146189, где вероятность события “лампочка горит” подсчитывается как вероятность события, противоположного событию “лампочка не горит”, а именно: P=1-0,29=0,71.

otimes otimes otimes P=0,29 cdot 0,29 cdot 0,29 = 0,024389

otimes bigcirc bigcirc P_1=0,29 cdot 0,71 cdot 0,71 = 0,146189

otimes otimes bigcirc  P_2=0,29 cdot 0,29 cdot 0,71 = 0,05971

bigcirc otimes bigcirc  P_3=0,71 cdot 0,29 cdot 0,71 = 0,05971

bigcirc otimes otimes  P_4=0,71 cdot 0,29 cdot 0,29 = 0,146189

bigcirc bigcirc otimes  P_5=0,71 cdot 0,71 cdot 0,29 = 0,05971

otimes bigcirc otimes  P_6=0,29 cdot 0,71 cdot 0,29 = 0,146189

bigcirc bigcirc bigcirc P_7=0,71 cdot 0,71 cdot 0,71=0,357911

Заметим, что благоприятных нам несовместных событий всего 7. Вероятность таких событий равна сумме вероятностей каждого из событий: P=P_1+P_2+P_3+P_4+P_5+P_6+P_7=0,146189 +0,05971+0,05971+0,146189+0,05971+0,146189+0,357911=0,975608.

Ответ: 0,975608.

Еще одну задачку вы можете посмотреть на рисунке:

решения задачи о монетах

Таким образом, мы с вами поняли, что такое теория вероятности формулы и примеры решения задач по которой вам могут встретиться в варианте ЕГЭ.

Вероятность

Вероятность события A: `P(A)=m/n` m — число благоприятных событий
n — общее число событий
     
События происходят A и B происходят одновременно `A*B`  
Независимые события: `P(A*B)=P(A)*P(B)` Когда вероятность одного события (А) не зависит от другого события (B)
Зависимые события: `P(A*B)=P(A)*P(B|A)` `P(B|A)` — вероятность события B при условии, что событие A наступило
     
Происходит или событие A, или B `A+B`  
Несовместные события: `P(A+B)=P(A)+P(B)` Когда невозможно наступление обоих событий одновременно, т.е. `P(A*B)=0`
Совместные события: `P(A+B)=P(A)+P(B)-P(A*B)` Когда оба события могут наступить одновременно

Все формулы для профильного ЕГЭ-2022 по математике

Все формулы для базового ЕГЭ-2022 по математике

Канал видеоролика: Мини уроки по математике

ЕГЭ 2022 ТЕОРИЯ ВЕРОЯТНОСТИ. БАЗОВЫЙ И ПРОФИЛЬНЫЙ УРОВЕНЬ. ТЕОРИЯ И РЕШЕНИЕ ЗАДАЧ.

Свежая информация для ЕГЭ и ОГЭ по Математике (листай):

С этим видео ученики смотрят следующие ролики:

ЕГЭ Математика 2022 | Профильный уровень | Задание 8 | Пошаговое решение. Урок 1.

ЕГЭ Математика 2022 | Профильный уровень | Задание 8 | Пошаговое решение. Урок 1.

Сдал ОГЭ по математике

ЕГЭ Математика 2022 | Профильный уровень | Задание 7 (10) | решение на прямую. Урок 1.

ЕГЭ Математика 2022 | Профильный уровень | Задание 7 (10) | решение на прямую. Урок 1.

Сдал ОГЭ по математике

Профильный ЕГЭ 2022 математика - задача 19 теория чисел. Летняя школа #8

Профильный ЕГЭ 2022 математика — задача 19 теория чисел. Летняя школа #8

Профильный ЕГЭ 2022. Твой план подготовки на 80+ баллов. Новая теория вероятностей, задача 10

Профильный ЕГЭ 2022. Твой план подготовки на 80+ баллов. Новая теория вероятностей, задача 10

Математик МГУ

Облегчи жизнь другим ученикам — поделись! (плюс тебе в карму):

02.10.2021

№10 профильного ЕГЭ. Презентация на урок.

nz-tv.pdf
nz-tv.pptx

Задачи

1. В ящике три красных и три синих фломастера. Фломастеры вытаскивают по очереди в случайном порядке. Какова вероятность того, что первый раз синий фломастер достанут третьим по счёту?

2. В кофейне «Восток» администратор предлагает гостям сыграть в следующую игру: за одну попытку гость бросает одновременно две игральные кости. Всего у него есть две попытки. Если в результате хотя бы одной из попыток на обоих костях оказывается одно и тоже число очков, клиент получает чашку кофе латте в подарок. Какова вероятность выиграть чашку латте?

3. Чтобы поступить в институт на специальность «Лингвистика», абитуриент должен набрать на ЕГЭ не менее 64 баллов по каждому из трёх предметов — математика, русский язык и иностранный язык. Чтобы поступить на специальность «Социология», нужно набрать не менее 64 баллов по каждому из трёх предметов — математика, русский язык и обществознание.
Вероятность того, что абитуриент Б. получит не менее 64 баллов по математике, равна 0,5, по русскому языку — 0,9, по иностранному языку — 0,7 и по обществознанию — 0,9.
Найдите вероятность того, что Б. сможет поступить хотя бы на одну из двух упомянутых специальностей.

4. При бросании двух игральных костей в сумме выпало 6 очков. Какова вероятность, что хотя бы раз выпало два очка?

5. Игральную кость подбросили два раза. Известно, что два очка не выпали ни разу. Найдите при этом условии вероятность того, что «сумма выпавших очков окажется равна 4

6. Игральную кость бросили один или несколько раз. Оказалось, что сумма всех выпавших очков равна 4. Какова вероятность того, что был сделан один бросок? Ответ округлите до сотых.

7. Игральную кость бросали до тех пор, пока сумма всех выпавших очков не превысила число 6. Какова вероятность того, что для этого потребовалось два броска? Ответ округлите до сотых.

8. В городе 48 % взрослого населения — мужчины. Пенсионеры составляют 12,6 % взрослого населения, причём доля пенсионеров среди женщин равна 15 %. Для опроса выбран случайным образом мужчина, проживающий в этом городе. Найдите вероятность события «выбранный мужчина является пенсионером».

9. Маша коллекционирует принцесс из Киндер-сюрпризов. Всего в коллекции 10 разных принцесс, и они равномерно распределены, то есть в каждом очередном Киндер-сюрпризе может с равными вероятностями оказаться любая из 10 принцесс. У Маши уже есть шесть разных принцесс из коллекции. Какова вероятность того, что для получения следующей принцессы Маше придётся купить ещё 1 или 2 шоколадных яйца?

10. Первый игральный кубик обычный, а на гранях второго кубика нет нечетных чисел, а четные числа 2, 4 и 6 встречаются по два раза. В остальном кубики одинаковые. Один случайно выбранный кубик бросают два раза. Известно, что в каком-то порядке выпали 4 и 6 очков. Какова вероятность того, что бросали первый кубик?

11. При подозрении на наличие некоторого заболевания пациента отправляют на ПЦР-тест. Если заболевание действительно есть, то тест подтверждает его в 91% случаев. Если заболевание нет, то тест выявляет отсутствие заболевания в среднем в 93% случаев. Известно, что в среднем тест оказывается положительным у 10% пациентов, направленных на тестирование. При обследовании некоторого пациента врач направил его на ПЦР-тест, который оказался положительным. Какова вероятность того, что пациент действительно имеет это заболевание? Результат округлите до сотых.

12. Турнир по настольному теннису проводится по олимпийской системе: игроки случайным образом разбиваются на пары; проигравший в каждой паре выбывает из турнира, а победитель выходит в следующий тур, где встречается со следующим противником, который определен жребием. Всего в турнире 8 игроков, все они играют одинаково хорошо, поэтому в каждой встрече вероятность проигрыша и поражения у каждого игрока равна 0,5. Среди игроков два друга — Иван и Алексей. Какова вероятность того, что этим двоим в каком-то туре придется сыграть друг с другом?

13. Симметричную монету бросают 3 раза. Найти вероятность того, что орёл выпал два раза.

14. Симметричную монету бросают 11 раз. Во сколько раз вероятность события «выпадет ровно 5 орлов» больше вероятности события «выпадет ровно 4 орла»?

15. Стрелок стреляет по пяти одинаковым мишеням. На каждую мишень дается не более двух выстрелов, и известно, что вероятность поразить мишень каждым отдельным выстрелом равна 0,6. Во сколько раз вероятность события «стрелок поразит ровно 5 мишеней» больше вероятности события «стрелок поразит ровно 4 мишени»?

16. Стрелок в тире стреляет по мишени до тех пор, пока не поразит её. Известно, что он попадает в цель с вероятностью 0,2 при каждом отдельном выстреле. Сколько патронов нужно дать стрелку, чтобы он поразил цель с вероятностью не менее 0,4?

Новое ЕГЭ по математике — Профиль 2022. Открытый банк заданий с ответами.admin2022-04-20T16:15:59+03:00

Варианты реальных и пробных ЕГЭ прошлых лет

Варианты профильного ЕГЭ

Тренировочные варианты ЕГЭ Профиль СтатГрад

Расписание СтатГрад ЕГЭ 2022

Демо вариант ЕГЭ Профиль 2022

Шкала перевода баллов ЕГЭ Профиль 2022

Методика определения минимального количества баллов ЕГЭ

1. Простейшие уравнения

Рациональные уравнения

Иррациональные уравнения

Показательные уравнения

Логарифмические уравнения

Тригонометрические уравнения

2. Начала теории вероятностей

Классическое определение вероятности

Теоремы о вероятностях событий

3. Планиметрия

Прямоугольный треугольник

Равнобедренный треугольник

Треугольник общего вида

Квадрат, прямоугольник, параллелограмм, ромб

Трапеция

Центральные и вписанные углы

Окружность, касательная, хорда, секущая

Вписанные окружности

Описанные окружности

4. Вычисления и преобразования

Вычисление значений рациональных выражений

Вычисление значений иррациональных выражений

Вычисление значений степенных выражений

Вычисление значений логарифмических выражений

Вычисление значений тригонометрических выражений

5. Стереометрия

Куб, прямоугольный параллелепипед

Элементы составных многогранников

Площадь поверхности и объем составного многогранника

Призма

Пирамида

Цилиндр, конус, шар

Комбинация тел

6. Производная и первообразная

Физический смысл производной

Геометрический смысл производной, касательная

Применение производной к исследованию функций

Первообразная

7. Задачи с прикладным содержанием

Рациональные уравнения и неравенства

Иррациональные уравнения и неравенства

Показательные и логарифмические уравнения и неравенства

Тригонометрические уравнения и неравенства

Разное

8. Текстовые задачи

Задачи на движение по прямой

Задачи на движение по окружности

Задачи на движение по воде

Задачи на работу

Задачи на проценты

Задачи на прогрессии

Прямая

Парабола

Гипербола

Логарифмическая и показательная функции

Иррациональные функции

Тригонометрические функции

10. Теория вероятностей повышенной сложности

Теоремы о вероятностях событий

Теория вероятностей повышенной сложности

11. Наибольшее и наименьшее значение функций

Степенные, иррациональные и дробные функции

Логарифмические функции

Показательные функции

Тригонометрические функции

Исследование функций без помощи производной

12. Уравнения

Рациональные уравнения

Уравнения с модулями

Иррациональные уравнения

Тригонометрические уравнения

Показательные уравнения

Логарифмические уравнения

Тригонометрические уравнения, содержащие ОДЗ

Уравнения смешанного типа, содержащие тригонометрические функции

13. Стереометрия

Вычисление отношений отрезков

Расстояние от точки до прямой. Расстояние от точки до плоскости

Угол между прямыми

Площадь сечения

Расстояние между скрещивающимися прямыми

Угол между плоскостями

Угол между прямой и плоскостью

Фигуры вращения: цилиндр, конус, шар

Объем многогранника

14. Неравенства

Рациональные неравенства

Неравенства с модулями

Показательные неравенства

Логарифмические неравенства

Логарифмические неравенства с переменным основанием

15. Финансовая математика

Задачи о вкладах и кредитовании

Экономические задачи на оптимизацию

16. Планиметрия

Треугольник и его элементы

Четырехугольники

Отношение отрезков и площадей

Окружности

Окружности, связанные с треугольником

Окружности, связанные с четырехугольником

17. Задача с параметром

Линейные уравнения, неравенства и системы уравнений с параметрами

Исследование дискриминанта и применение теоремы виета

Расположение корней квадратного трехчлена относительно данных чисел

Квадратные неравенства с параметрами

Задачи, сводящиеся к исследованию квадратного трехчлена

Применение монотонности и ограниченности функций к решению уравнений и неравенств

Применение инвариантности функций к решению уравнений и систем уравнений

Графический метод: преобразование и построение графиков в системе oxy

Графический метод: метод областей

Уравнения, неравенства и системы с параметрами

18. Числа и их свойства

Числа и их свойства

Числовые наборы на карточках и числах

Последовательности и прогрессии

Сюжетные задачи: кино, театр

Комментарии для сайта Cackle

  • 17:11

    ЕГЭ 2022. Задача 12. Тригонометрическое уравнение. метод введения вспомогательного аргумента

    ЕГЭ 2022. Задача 12. Тригонометрическое уравнение. метод введения вспомогательного аргумента

    от admin
    2 месяцев назад
    31 Просмотры

  • 1:25:49

    Лекция 8 | Квантовая теория поля как задача по теории операторов | Николай Филонов | Лекториум

    Лекция 8 | Квантовая теория поля как задача по теории операторов | Николай Филонов | Лекториум

    от admin
    5 месяцев назад
    0 Просмотры

  • 1:03:51

    Профильный ЕГЭ 2022 математика - задача 13. Летняя школа #2

    Профильный ЕГЭ 2022 математика — задача 13. Летняя школа #2

    от admin
    8 месяцев назад
    3 Просмотры

  • 1:19:20

    Профильный ЕГЭ 2022. Твой план подготовки на 80+ баллов. Новая теория вероятностей, задача 10

    Профильный ЕГЭ 2022. Твой план подготовки на 80+ баллов. Новая теория вероятностей, задача 10

    от admin
    4 месяцев назад
    8 Просмотры

  • 1:34:20

    Введение в координатный метод. Задача 13 - стереометрия. ЕГЭ 2022 Математика.

    Введение в координатный метод. Задача 13 — стереометрия. ЕГЭ 2022 Математика.

    от admin
    1 месяц назад
    1 Просмотры

  • 55:27

    Решаем ОГЭ 2022 Ященко математика Вариант 1. Задача про печь

    Решаем ОГЭ 2022 Ященко математика Вариант 1. Задача про печь

    от admin
    6 месяцев назад
    258 Просмотры

  • 50:45

    КЕГЭ 2022 по информатике. Задача №26. Excel. Python. Часть №2.

    КЕГЭ 2022 по информатике. Задача №26. Excel. Python. Часть №2.

    от admin
    2 недели назад
    4 Просмотры

  • 08:45

    ЕГЭ 2022. Экономическая задача. Задача 15. вариант 141.

    ЕГЭ 2022. Экономическая задача. Задача 15. вариант 141.

    от admin
    2 месяцев назад
    3 Просмотры

  • 16:53

    Реши, если сможешь. Самый жесткий параметр из сборника Ященко 2022. Задача 17 Профильный ЕГЭ

    Реши, если сможешь. Самый жесткий параметр из сборника Ященко 2022. Задача 17 Профильный ЕГЭ

    от admin
    4 месяцев назад
    2 Просмотры

  • 16:25

    ЕГЭ 2022. Задача 9. Вариант 141

    ЕГЭ 2022. Задача 9. Вариант 141

    от admin
    2 месяцев назад
    3 Просмотры

  • 04:28

    Теория вероятностей ЕГЭ | 'Задача о двух хозяйствах' или 'Как выбирать яйца' | ЕГЭ

    Теория вероятностей ЕГЭ | ‘Задача о двух хозяйствах’ или ‘Как выбирать яйца’ | ЕГЭ

    от admin
    8 месяцев назад
    4 Просмотры

  • 1:02:57

    6.3 Задача 2. Смешанная краевая задача случай функции от одной пространственной переменной.

    6.3 Задача 2. Смешанная краевая задача случай функции от одной пространственной переменной.

    от admin
    1 год назад
    1 Просмотры

  • 2:11:57

    Стрим Теория вероятностей на ЕГЭ-2022! Анна Малкова

    Стрим Теория вероятностей на ЕГЭ-2022! Анна Малкова

    от admin
    7 месяцев назад
    40 Просмотры

  • 1:05:30

    Профильный ЕГЭ 2022 математика - задача 14. Летняя школа #3

    Профильный ЕГЭ 2022 математика — задача 14. Летняя школа #3

    от admin
    8 месяцев назад
    0 Просмотры

  • 1:22:26

    6.4 Задача 3. Смешанная краевая задача (случай функции от одной пространственной переменной).

    6.4 Задача 3. Смешанная краевая задача (случай функции от одной пространственной переменной).

    от admin
    1 год назад
    1 Просмотры

  • 10:50

    ЗНО-2022. Задача #2. Система рівнянь (складна!)

    ЗНО-2022. Задача #2. Система рівнянь (складна!)

    от admin
    3 месяцев назад
    0 Просмотры

  • 1:00:26

    Профильный ЕГЭ 2022 математика - задача 15 неравенства. Летняя школа #4

    Профильный ЕГЭ 2022 математика — задача 15 неравенства. Летняя школа #4

    от admin
    8 месяцев назад
    1 Просмотры

  • 52:39

    7 урок (ТЕОРИЯ-1) - Летний курс ФИЗИКА ЕГЭ 2022 Абель

    7 урок (ТЕОРИЯ-1) — Летний курс ФИЗИКА ЕГЭ 2022 Абель

    от admin
    8 месяцев назад
    0 Просмотры

  • 1:11:47

    Подготовка к ЕГЭ по математике. Задача №4 - Теория вероятностей. Занятие №2

    Подготовка к ЕГЭ по математике. Задача №4 — Теория вероятностей. Занятие №2

    от admin
    10 месяцев назад
    9 Просмотры

  • 42:07

    8 урок (ТЕОРИЯ-2) - Летний курс ФИЗИКА ЕГЭ 2022 Абель

    8 урок (ТЕОРИЯ-2) — Летний курс ФИЗИКА ЕГЭ 2022 Абель

    от admin
    8 месяцев назад
    0 Просмотры

  • 30:00

    Neuro Linguistic Programming | Ram Verma | TEDxFORESchool

    Neuro Linguistic Programming | Ram Verma | TEDxFORESchool

    от admin
    1 год назад
    7,284 Просмотры

  • 10:46

    The Most Popular Programming Languages & Their Uses (2020)

    The Most Popular Programming Languages & Their Uses (2020)

    от admin
    1 год назад
    7,301 Просмотры

  • 11:28

    Top 10 Programming Languages In 2020 | Best Programming Languages To Learn In 2020 | Edureka

    Top 10 Programming Languages In 2020 | Best Programming Languages To Learn In 2020 | Edureka

    от admin
    1 год назад
    6,837 Просмотры

  • 00:29

    Every programming tutorial

    Every programming tutorial

    от admin
    1 год назад
    6,834 Просмотры

  • 08:42

    14-Year-Old Prodigy Programmer Dreams In Code

    14-Year-Old Prodigy Programmer Dreams In Code

    от admin
    1 год назад
    6,993 Просмотры

  • 10:36

    Learn Programming FAST! My Favorite Method!

    Learn Programming FAST! My Favorite Method!

    от admin
    1 год назад
    6,878 Просмотры

  • 12:44

    Programming a New Physics Engine for my Game

    Programming a New Physics Engine for my Game

    от admin
    1 год назад
    6,685 Просмотры

  • 11:34

    Top 4 Dying Programming Languages of 2019 | by Clever Programmer

    Top 4 Dying Programming Languages of 2019 | by Clever Programmer

    от admin
    1 год назад
    6,358 Просмотры

  • 13:18

    Top 10 Dying Programming Languages in 2020 | Worst Programming Languages | Edureka

    Top 10 Dying Programming Languages in 2020 | Worst Programming Languages | Edureka

    от admin
    1 год назад
    6,235 Просмотры

  • 09:10

    5 Things I Wish I Knew Before Starting Programming

    5 Things I Wish I Knew Before Starting Programming

    от admin
    1 год назад
    6,353 Просмотры

  • 23:40

    10 Tips to build and improve logic building in programming

    10 Tips to build and improve logic building in programming

    от admin
    1 год назад
    6,421 Просмотры

  • 10:10

    5 Productivity Tools For Programming

    5 Productivity Tools For Programming

    от admin
    1 год назад
    6,372 Просмотры

  • 22:06

    10 TIPS UNTUK MULAI BELAJAR PROGRAMMING

    10 TIPS UNTUK MULAI BELAJAR PROGRAMMING

    от admin
    1 год назад
    6,204 Просмотры

  • 10:05

    Best Laptop For Programming in 2020? (a few things to be aware of)

    Best Laptop For Programming in 2020? (a few things to be aware of)

    от admin
    1 год назад
    6,318 Просмотры

  • 15:45

    What to Look for in an AFFORDABLE Laptop for Programming

    What to Look for in an AFFORDABLE Laptop for Programming

    от admin
    1 год назад
    6,386 Просмотры

  • 05:01

    The Truth About Programming

    The Truth About Programming

    от admin
    1 год назад
    6,257 Просмотры

  • 06:55

    Programmer Explains Programming Memes

    Programmer Explains Programming Memes

    от admin
    1 год назад
    6,311 Просмотры

  • 10:02

    What is difference between coding and programming

    What is difference between coding and programming

    от admin
    1 год назад
    6,305 Просмотры

  • 05:11

    Programming Expectations vs Reality

    от admin
    1 год назад
    6,359 Просмотры

  • 03:39

    If Programming Was An Anime

    If Programming Was An Anime

    от admin
    1 год назад
    6,305 Просмотры

  • Правило

    Классическое определение вероятности

    Вероятностью события (displaystyle A ) называется число, равное отношению

    (displaystyle {rm P}(A)=frac{число, благоприятных, элементарных, событий}{число, всех, элементарных, событий} )

    Правило

    Правило произведения

    Если элемент (displaystyle a) из множества (displaystyle А) можно выбрать (displaystyle n) способами, а элемент (displaystyle b) из множества (displaystyle В) можно выбрать (displaystyle m) способами, то пару (displaystyle (a;b)) элементов из множеств (displaystyle А) и (displaystyle В) можно выбрать

    (displaystyle n cdot m) способами.

    Правило

    Формула условной вероятности

    Для данных двух событий (displaystyle A ) и (displaystyle B{ small ,} ) таких, что событие (displaystyle B) включает в себя событие (displaystyle A, ) выполняется

    (displaystyle P(A)=P(B)cdot P_{B}(A),)

    где (displaystyle P_{B}(A) ) – вероятность наступления события (displaystyle A ) при условии, что событие (displaystyle B ) произошло.

    Определение

    Независимые события

    События  (displaystyle A) и (displaystyle B) называются независимыми, если наступление одного из событий никак не влияет на вероятность наступления другого события.

    Правило

    Формула произведения вероятностей независимых событий

    Если события  (displaystyle A) и (displaystyle B) независимы, то вероятность их одновременного наступления равна

    (displaystyle P(Acdot B)=P(A)cdot P(B){small .})

    Определение

    Несовместные события

    События  (displaystyle A) и (displaystyle B) называются несовместными, если наступление одного события исключает появление другого события, то есть события (displaystyle A) и (displaystyle B) не могут произойти одновременно.

    Правило

    Формула суммы вероятностей событий

    Вероятность суммы событий (displaystyle A) и (displaystyle B), то есть вероятность того, что наступит событие (displaystyle A) или событие (displaystyle B{ small ,}) равна  

    (displaystyle P(A + B)=P(A)+P(B)-P(Acdot B){small .})

    Правило

    Формула суммы вероятностей несовместных событий

    Если события  (displaystyle A) и (displaystyle B) несовместны, то 

    (displaystyle P(A+ B)=P(A)+P(B){small .})

    Правило

    Вероятность противоположного события

    Если событие (displaystyle bar{A}) противоположно событию (displaystyle A{small ,}) то

    (displaystyle P(bar{A})=1-P(A){ small ,})

    Понравилась статья? Поделить с друзьями:
  • Формула вероятности алгебра 11 егэ
  • Формула аутотренинга для снятия стресса перед экзаменом
  • Формула брахмагупты на егэ
  • Формула аннуитетного платежа егэ
  • Формула бернулли теория вероятности примеры решения задач егэ математика профиль