На уроке рассматривается разбор 2 задания ЕГЭ по информатике, дается подробное объяснение того, как решать подобные задачи
Содержание:
- Объяснение задания 2 ЕГЭ по информатике
- Таблицы истинности и порядок выполнения логических операций
- Решение заданий 2 ЕГЭ по информатике
- Задания для тренировки
2-е задание: «Таблицы истинности»
Уровень сложности
— базовый,
Требуется использование специализированного программного обеспечения
— нет,
Максимальный балл
— 1,
Примерное время выполнения
— 3 минуты.
Проверяемые элементы содержания: Умение строить таблицы истинности и логические схемы
Типичные ошибки и рекомендации по их предотвращению:
«Игнорирование прямо указанного в условии задания требования, что заполненная таблица истинности не должна содержать одинаковых строк. Это приводит к внешне правдоподобному, но на самом деле неверному решению»
ФГБНУ «Федеральный институт педагогических измерений»
Таблицы истинности и порядок выполнения логических операций
Для логических операций приняты следующие обозначения:
операция | пояснение | в программировании |
---|---|---|
¬ A, A | не A (отрицание, инверсия) | not(A) |
A ∧ B, A ⋅ B | A и B (логическое умножение, конъюнкция) | A and B |
A ∨ B, A + B | A или B (логическое сложение, дизъюнкция) | A or B |
A → B | импликация (следование) | A <= B |
A ↔ B, A ≡ B, A ∼ B | эквиваленция (эквивалентность, равносильность) | A==B (python) A=B(pascal) |
A ⊕ B | строгая дизъюнкция | A != B (python) A <> B (pascal) |
Егифка ©:
Отрицание (НЕ):
Таблица истинности операции НЕ
Конъюнкция (И):
Таблица истинности операции И (конъюнкция)
Дизъюнкция (ИЛИ):
Таблица истинности операции ИЛИ (дизъюнкция)
Импликация (если…, то…):
Таблица истинности операции Импликация (если…, то…)
Эквивалентность (тогда и только тогда, …):
Таблица истинности операции Эквивалентность (тогда и только тогда, …)
Сложение по модулю 2 (XOR):
A | B | A ⊕ B |
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
Порядок выполнения операций:
- если нет скобок, сначала выполняются все операции «НЕ», затем – «И», затем – «ИЛИ», импликация, равносильность
Еще о логических операциях:
- логическое произведение X∙Y∙Z∙… равно 1, т.е. выражение является истинным, только тогда, когда все сомножители равны 1 (а в остальных случаях равно 0)
- логическая сумма X+Y+Z+… равна 0, т.е. выражение является ложным только тогда, когда все слагаемые равны 0 (а в остальных случаях равна 1)
О преобразованиях логических операций читайте здесь.
Егифка ©:
Решение заданий 2 ЕГЭ по информатике
Задание 2_11: Решение 2 задания ЕГЭ по информатике:
Логическая функция F задается выражением
(¬x ∨ y ∨ z) ∧ (x ∨ ¬z ∨ ¬w)
Ниже приведен фрагмент таблицы истинности функции F, содержащей все наборы аргументов, при которых функция F ложна.
Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.
Перем.1 | Перем.2 | Перем.3 | Перем.4 | F |
??? | ??? | ??? | ??? | F |
0 | 1 | 1 | 0 | 0 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 |
В ответе запишите буквы в том порядке, в котором идут соответствующие им столбцы.
✍ Решение:
✎ Способ 1. Электронные таблицы Excel + Логические размышления:
- Отобразим перебор всех значений использующихся в выражении переменных (всю таблицу истинности). Поскольку в выражении используются 4 переменных, то строк таблицы будет 24=16:
- Далее обе скобки исходного выражения необходимо записать в виде логического выражения, каждую — в отдельном столбце. Также в отдельном столбце добавьте формулу итоговой функции F:
xwzy
-
✎ Способ 2. Программирование:
- В результате будут выведены значения для
F=0
:
Язык python:
print('x y z w') for x in 0, 1: for y in 0, 1: for z in 0, 1: for w in 0, 1: F = (not(x) or y or z) and (x or not(z) or not(w)) if not(F): print(x, y, z, w)
x y z w 0 0 1 1 0 1 1 1 1 0 0 0 1 0 0 1
xwzy
Язык pascalAbc.net:
begin writeln('x':7, 'y':7, 'z':7,'w':7); for var x:=false to true do for var y:=false to true do for var z:=false to true do for var w:=false to true do if not((not x or y or z) and (x or not z or not w)) then writeln(x:7, y:7, z:7,w:7); end.
F=0
:x y z w False False True True False True True True True False False False True False False True
false
= 0, True
= 1Ответ:
xwzy
-
✎ Способ 3. Логические размышления:
- Внешняя операция выражения — конъюнкция (∧). Во всех указанных строках таблицы истинности функция принимает значение 0 (ложь). Конъюнкция ложна аж в трех случаях, поэтому проверить на ложь очень затруднительно. Тогда как конъюнкция истинна (= 1) только в одном случае: когда все операнды истинны. Т.е. в нашем случае:
(¬x ∨ y ∨ z) ∧ (x ∨ ¬z ∨ ¬w) = 1 когда: 1. (¬x ∨ y ∨ z) = 1 И 2. (x ∨ ¬z ∨ ¬w) = 1
x | y | z | результат |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 1 |
0 | 1 | 0 | 1 |
0 | 1 | 1 | 1 |
1 | 0 | 0 | 0 |
1 | 0 | 1 | 1 |
1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 |
x | z | w | результат |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 1 |
0 | 1 | 0 | 1 |
0 | 1 | 1 | 0 |
1 | 0 | 0 | 1 |
1 | 0 | 1 | 1 |
1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 |
x | y | z | w | F |
0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 |
x | y | z | w | F |
0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 |
x | ??? | ??? | ??? | F |
0 | 1 | 1 | 0 | 0 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 |
x | y | z | w | F |
0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 |
x | ??? | ??? | y | F |
0 | 1 | 1 | 0 | 0 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 |
x | y | z | w | F |
0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 |
x | w | z | y | F |
0 | 1 | 1 | 0 | 0 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 |
Результат: xwzy
🎦 Видеорешение (бескомпьютерный вариант):
📹 здесь
📹 Видеорешение на RuTube здесь
Задание 2_12: Разбор 2 задания ЕГЭ:
Миша заполнял таблицу истинности функции:
(¬z ∧ ¬(x ≡ y)) → ¬(y ∨ w)
но успел заполнить лишь фрагмент из трех различных ее строк, даже не указав, какому столбцу таблицы соответствует каждая из переменных w, x, y, z:
Перем.1 | Перем.2 | Перем.3 | Перем.4 | F |
??? | ??? | ??? | ??? | F |
1 | 1 | 0 | ||
1 | 0 | 0 | ||
1 | 1 | 0 | 0 |
Определите, какому столбцу таблицы соответствует каждая из переменных x, y, z, w.
В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы.
Подобные задания для тренировки
✍ Решение:
✎ Способ 1. Логические размышления (бескомпьютерный вариант):
- Решим задание методом построения полной таблицы истинности.
- Посчитаем общее количество строк в таблице истинности и построим ее:
4 переменных -> 24 = 16 строк
(¬z ∧ ¬(x ≡ y)) → ¬(y ∨ w) 1. Избавимся от импликации: ¬(¬z ∧ ¬(x ≡ y)) ∨ ¬(y ∨ w) 2. Внесем знак отрицания в скобки (закон Де Моргана): (z ∨ (x ≡ y)) ∨ (¬y ∧ ¬w) = 0 1 часть = 0 2 часть = 0 * Исходное выражение должно быть = 0. Дизъюнкция = 0, когда оба операнда равны 0.
(z ∨ (x ≡ y)) = 0 когда z = 0 и x ≡ y = 0 ¬y ∧ ¬w = 0 когда: 1. ¬y = 0 ¬w = 0 2. ¬y = 1 ¬w = 0 3. ¬y = 0 ¬w = 1
x | y | w | z | F |
0 | 1 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 |
1 | 0 | 1 | 0 | 0 |
y | w | x | z | F |
1 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 |
Результат: ywxz
✎ Способ 2. Программирование:
- В результате будут выведены значения для F=0:
Язык PascalAbc.net:
begin writeln('x':7, 'y':7, 'z':7,'w':7); for var x:=false to true do for var y:=false to true do for var z:=false to true do for var w:=false to true do if not((not z and (x xor y)) <= not(y or w)) then writeln(x:7, y:7, z:7,w:7); end.
x y z w False True False False False True False True True False False True
false
= 0, True
= 1Сопоставив их с исходной таблицей, получим результат: ywxz
Язык Python:
print ('x y z w') for x in 0,1: for y in 0,1: for z in 0,1: for w in 0,1: F=(not z and not(x==y))<=(not(y or w)) if not F: print (x,y,z,w)
F=0
:x y z w 0 1 0 0 0 1 0 1 1 0 0 1
Сопоставив их с исходной таблицей, получим результат:
Результат: ywxz
🎦 Доступно видео решения этого задания (бескомпьютерный вариант):
📹 здесь
📹 Видеорешение на RuTube здесь
🎦 Видео (решение 2 ЕГЭ в Excel):
📹 здесь
📹 Видеорешение на RuTube здесь
📹 Видеорешение на RuTube здесь (Программирование)
Задание 2_10: Решение 2 задания ЕГЭ по информатике:
Логическая функция F задается выражением
¬a ∧ b ∧ (c ∨ ¬d)
Ниже приведен фрагмент таблицы истинности функции F, содержащей все наборы аргументов, при которых функция F истинна.
Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a, b, c, d.
Перем.1 | Перем.2 | Перем.3 | Перем.4 | F |
??? | ??? | ??? | ??? | F |
0 | 1 | 0 | 0 | 1 |
1 | 1 | 0 | 0 | 1 |
1 | 1 | 0 | 1 | 1 |
В ответе запишите буквы в том порядке, в котором идут соответствующие им столбцы.
✍ Решение:
🎦 (Бескомьютерный вариант) Предлагаем подробный разбор посмотреть на видео:
📹 здесь
📹 Видеорешение на RuTube здесь
Задание 2_3: Решение задания 2. Демоверсия ЕГЭ 2018 информатика:
Логическая функция F задаётся выражением ¬x ∨ y ∨ (¬z ∧ w).
На рисунке приведён фрагмент таб. ист-ти функции F, содержащий все наборы аргументов, при которых функция F ложна.
Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных w, x, y, z.
Перем. 1 | Перем. 2 | Перем. 3 | Перем. 4 | F |
??? | ??? | ??? | ??? | F |
1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 |
В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала – буква, соответствующая первому столбцу; затем – буква, соответствующая второму столбцу, и т.д.) Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Подобные задания для тренировки
✍ Решение:
-
✎ Логические размышления (бескомпьютерный вариант):
- Внешним действием (последним выполняемым) в исходном выражении является дизъюнкция:
¬x ∨ y ∨ (¬z ∧ w)
x1 | x2 | F |
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 1 |
¬x
= 1 или 0, y
= 1 или 0, ¬z ∧ w
= 1 или 0).¬x
= 0, иными словами x
= 1. Значит первый столбец соответствует переменной x
. Перем. 1 | Перем. 2 | Перем. 3 | Перем. 4 | F |
x | ??? | ??? | ??? | F |
1 | 0 | 0 | 0 | 0 |
y
= 0. Значит четвертый столбец соответствует переменной y
. Перем. 1 | Перем. 2 | Перем. 3 | Перем. 4 | F |
x | ??? | ??? | y | F |
1 | 1 | 1 | 0 | 0 |
¬z ∧ w
должно равняться 0, чтобы функция была ложной. Конъюнкция истинна только тогда, когда оба операнда истинны (=1); в нашем случае функция должна быть ложной, но пойдем от обратного. Если ¬z
= 1, т.е. z
= 0, а w
= 1, то это неверно для нашего случая. Значит всё должно быть наоборот: z
= 1, а w
= 0. Таким образом столбец второй соответствует z
, а столбец третий — w
. x | z | w | y | F |
1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 |
Результат: xzwy
✎ Способ 2. Программирование:
Язык pascalABC.NET:
begin writeln('x ','y ','z ','w '); for var x:=false to true do for var y:=false to true do for var z:=false to true do for var w:=false to true do if not(not x or y or(not z and w)) then writeln(x:7,y:7,z:7,w:7); end.
🎦 (бескомпьютерный вариант) Подробное решение данного 2 задания из демоверсии ЕГЭ 2018 года смотрите на видео:
📹 здесь
📹 Видеорешение на RuTube здесь
Задание 2_13: Разбор досрочного егэ по информатике 2019
Логическая функция F задаётся выражением
(x ∧ ¬y) ∨ (y ≡ z) ∨ ¬w
Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.
В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.
Перем.1 | Перем.2 | Перем.3 | Перем.4 | F |
??? | ??? | ??? | ??? | F |
0 | 0 | 0 | ||
0 | 1 | 0 | 1 | 0 |
1 | 0 | 0 |
✍ Решение:
🎦 Видеорешение (бескомпьютерный вариант):
📹 здесь
📹 Видеорешение на RuTube здесь
Задания для тренировки
Задание 2_2: Задание 2 ЕГЭ по информатике:
Каждое из логических выражений F и G содержит 5 переменных. В табл. истинности для F и G есть ровно 5 одинаковых строк, причем ровно в 4 из них в столбце значений стоит 1.
Сколько строк таблицы истинности для F ∨ G содержит 1 в столбце значений?
Подобные задания для тренировки
✍ Решение:
- Поскольку в каждом из выражений присутствует 5 переменных, то эти 5 переменных порождают таблицу истинности из 32 строк: т.к. каждая из переменных может принимать оно из двух значений (0 или 1), то различных вариантов с пятью переменными будет 25=32, т.е. 32 строки.
- Из этих 32 строк и для F и для G мы знаем наверняка только о 5 строках: 4 из них истинны (=1), а одна ложна (=0).
- Вопрос стоит о количестве строк = 1 для таб. истинности F ∨ G. Данная операция — дизъюнкция, которая ложна только в одном случае — если F = 0 и одновременно G = 0
- В исходных таблицах для F и G мы знаем о существовании только одного 0, т.е. в остальных строках может быть 1. Т.о., и для F и для G в 31 строке могут быть единицы (32-1=31), а лишь в одной — ноль.
- Тогда для F ∨ G только в одном случае будет 0, когда и F = 0 и G = 0:
- Соответственно, истинными будут все остальные строки:
№ | F | G | F ∨ G |
---|---|---|---|
1 | 0 | 0 | 0 |
2 | 0 | 1 | 1 |
… | … | … | 1 |
32 | … | … | 1 |
32 - 1 = 31
Результат: 31
Подробное объяснение данного задания смотрите на видео:
📹 здесь
Задание 2_6: Решение 2 задания ЕГЭ по информатике:
Каждое логическое выражение A и B зависит от одного и того же набора из 7 переменных. В таблицах истинности каждого из этих выражений в столбце значений стоит ровно по 4 единицы.
Каково максимально возможное число единиц в столбце значений таблицы истинности выражения A ∨ B?
✍ Решение:
- Полная таблица истинности для каждого из выражений A и B состоит из 27 = 128 строк.
- В четырех из них результат равен единице, значит в остальных — 0.
- A ∨ B истинно в том случае, когда либо A = 1 либо B = 1, или и A и B = 1.
- Поскольку А = 1 только в 4 случаях, то чтобы получить максимальное количество единиц в результирующей таблице истинности (для A ∨ B), расположим все единицы т.и. для выражения A так, чтобы они были в строках, где B = 0, и наоборот, все строки, где B = 1, поставим в строки, где A = 0:
- Итого получаем 8 строк.
- Если бы в задании требовалось найти минимальное количество единиц, то мы бы совместили строки со значением = 1, и получили бы значение 4.
A | B |
1 | 0 |
1 | 0 |
1 | 0 |
1 | 0 |
0 | 1 |
0 | 1 |
0 | 1 |
0 | 1 |
0 | 0 |
… | … |
Результат: 8
Задание 2_7: Решение 2 задания ЕГЭ по информатике:
Каждое логическое выражение A и B зависит от одного и того же набора из 8 переменных. В таблицах истинности каждого из этих выражений в столбце значений стоит ровно по 6 единиц.
Каково максимально возможное число нулей в столбце значений таблицы истинности выражения A ∧ B?
✍ Решение:
- Полная таблица истинности для каждого из выражений A и B состоит из 28 = 256 строк.
- В шести из них результат равен единице, значит в остальных — 0.
- A ∧ B ложно в том случае, когда:
A ∧ B = 0 если: 1. A = 0, B = 1 2. B = 0, A = 1 3. A = 0 и B = 0
- Во всех случаях там где А=1 может стоять B=0, и тогда результат F = 0. Поскольку нам необходимо найти максимально возможное число нулей, то как раз для всех шести А=1 сопоставим B=0, и наоборот, для всех шести возможных B=1 сопоставим A=0
- Поскольку строк всего 256, то вполне возможно, что все 256 из них возвратят в результате 0
A | B | F |
1 | 0 | 0 |
1 | 0 | 0 |
1 | 0 | 0 |
1 | 0 | 0 |
0 | 1 | 0 |
0 | 1 | 0 |
0 | 1 | 0 |
0 | 1 | 0 |
0 | 0 | 0 |
… | … | … |
Результат: 256
Задание 2_4: 2 задание:
Дан фрагмент таблицы истинности выражения F.
x1 | x2 | x3 | x4 | x5 | x6 | x7 | F |
1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 |
0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 |
Каким из приведённых ниже выражений может быть F?
1) ¬x1 ∧ x2 ∧ ¬x3 ∧ ¬x4 ∧ x5 ∧ ¬x6 ∧ x7
2) x1 ∨ x2 ∨ x3 ∨ ¬x4 ∨ ¬x5 ∨ ¬x6 ∨ ¬x7
3) x1 ∧ ¬x2 ∧ x3 ∧ ¬x4 ∧ x5 ∧ x6 ∧ ¬x7
4) x1 ∨ ¬x2 ∨ x3 ∨ x4 ∨ ¬x5 ∨ ¬x6 ∨ x7
✍ Решение:
- В первом внешняя операция (выполняется последней) — конъюнкция. Начнем рассмотрение с нее. Соответственно, проверяем по второй строке таб. ист-ти, там где F = 1, так как в таком случае все аргументы должны быть истинными (см. таб. истинности для конъюнкции).
- Если мы подставим в нее все аргументы выражения, то функция действительно возвращает истину. Т.е. пункт первый подходит:
- Но проверим на всякий случай остальные.
- Второй пункт проверяем по первой и третьей строке, так как основная операция — дизъюнкция — ложна только в том случае, если все аргументы ложны (см. таб. истинности для дизъюнкции). Проверяя по первой строке, сразу видим, что x1 в ней равен 1. В таком случаем функция будет = 1. Т.е. этот пункт не подходит:
- Третий пункт проверяем по второй строке, так как основная операция — конъюнкция — возвратит истину только тогда, когда все операнды равны 1. Видим, что x1 = 0, соответственно функция будет тоже равна 0. Т.е. выражение нам не подходит:
- Четвертый пункт проверяем по первой и третьей строкам. В первой — x1 = 1, т.е. функция должна быть равна 1. Т.е. пункт тоже не подходит:
- Таким образом, ответ равен 1.
Результат: 1
Решение 2 задания ГВЭ по информатике смотрите на видео:
📹 здесь
Задание 2_8: Решение 2 задания ЕГЭ по информатике:
Дано логическое выражение, зависящее от 5 логических переменных:
(¬x1 ∨ ¬x2 ∨ ¬x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x3 ∨ ¬x4 ∨ ¬x5)
Сколько существует различных наборов значений переменных, при которых выражение истинно?
1) 0
2) 30
3) 31
4) 32
Подобные задания для тренировки
✍ Решение:
- Поскольку выражение включает 5 переменных, то таб. ист-ти состоит из 25 = 32 строк.
- Внешней операцией (последней) является конъюнкция (логическое умножение), а внутри скобок — дизъюнкция (логическое сложение).
- Обозначим первую скобку за А, а вторую скобку за B. Получим A ∧ B.
- Найдем сколько нулей существует для таб. истинности:
A B F 1. 0 0 0 2. 0 1 0 3. 1 0 0
Теперь рассмотрим каждый случай отдельно:
¬x1 ∨ ¬x2 ∨ ¬x3 ∨ x4 ∨ x5 = 0
и
x1 ∨ x2 ∨ x3 ∨ ¬x4 ∨ ¬x5 = 0.
32 - 2 = 30, что соответствует номеру 2
Результат: 2
Подробное решение задания смотрите в видеоуроке:
📹 здесь
Задание 2_5: Решение 2 задания ЕГЭ по информатике:
Дан фрагмент таблицы истинности для выражения F:
x1 | x2 | x3 | x4 | x5 | x6 | F |
0 | 0 | 1 | 1 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 1 | 1 |
1 | 0 | 1 | 0 | 1 | 1 | 1 |
0 | 1 | 1 | 1 | 0 | 1 | 0 |
Укажите максимально возможное число различных строк полной таблицы истинности этого выражения, в которых значение x3 не совпадает с F.
Подобные задания для тренировки
✍ Решение:
- Полная таблица истинности будет иметь 26 = 64 строк (т.к. 6 переменных).
- 4 из них нам известны: в них x3 два раза не совпадает с F.
- Неизвестных строк:
64 - 4 = 60
60 + 2 = 62
Результат: 62
Задание 2_9: Решение 2 задания ЕГЭ по информатике:
Дан фрагмент таблицы истинности для выражения F:
x1 | x2 | x3 | x4 | x5 | x6 | x7 | F |
0 | 0 | 0 | |||||
0 | 0 | 1 | |||||
1 | 1 | 1 |
Каким выражением может быть F?
1) x1 ∧ (x2 → x3) ∧ ¬x4 ∧ x5 ∧ x6 ∧ ¬x7
2) x1 ∨ (¬x2 → x3) ∨ ¬x4 ∨ ¬x5 ∨ x6 ∨ ¬x7
3) ¬x1 ∧ (x2 → ¬x3) ∧ x4 ∧ ¬x5 ∧ x6 ∧ x7
4) ¬x1 ∨ (x2 → ¬x3) ∨ x4 ∨ x5 ∨ x6 ∧ x7
✍ Решение:
- Рассмотрим отдельно каждый пункт и найдем последнюю операцию, которая должна быть выполнена (внешнюю).
1 пункт:
(((x1 ∧ (x2 → x3) ∧ ¬x4) ∧ x5) ∧ x6) ∧ ¬x7
2 пункт:
(((x1 ∨ (¬x2 → x3) ∨ ¬x4) ∨ ¬x5) ∨ x6) ∨ ¬x7
3 пункт:
(((¬x1 ∧ (x2 → ¬x3) ∧ x4) ∧ ¬x5) ∧ x6) ∧ x7
Результат: 4
В видеоуроке рассмотрено подробное решение 2 задания:
📹 здесь
Задание 2_1: Задание 2 ЕГЭ по информатике:
Логическая функция F задается выражением
(y → x) ∧ (y → z) ∧ z.
Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.
№ | Перем. 1 | Перем. 2 | Перем. 3 | F |
---|---|---|---|---|
??? | ??? | ??? | F | |
1 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 1 | 0 |
3 | 0 | 1 | 0 | 1 |
4 | 0 | 1 | 1 | 1 |
5 | 1 | 0 | 0 | 0 |
6 | 1 | 0 | 1 | 0 |
7 | 1 | 1 | 0 | 0 |
8 | 1 | 1 | 1 | 1 |
В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.
✍ Решение:
- Сначала необходимо рассмотреть логическую операцию, которую мы будем выполнять в последнюю очередь — это логическое И (конъюнкция) или ∧. То есть внешнюю операцию:
(y → x) ∧ (y → z) ∧ z
(y → x) ∧ (y → z) ∧ z = 1 если: 1. (y → x) = 1 2. (y → z) = 1 3. z = 1
№ | Перем. 1 | Перем. 2 | Перем. 3 | F |
---|---|---|---|---|
3 | 0 | 1 | 0 | 1 |
№ | Перем. 1 | Перем. 2 | Перем. 3 | F |
---|---|---|---|---|
_ | ??? | z | ??? | F |
№ | Перем. 1 | z | Перем. 3 | F |
---|---|---|---|---|
4 | 0 | 1 | 1 | 1 |
Результат: yzx
Детальный разбор данного задания 2 ЕГЭ по информатике предлагаем посмотреть в видео:
📹 здесь
За это задание ты можешь получить 1 балл. На решение дается около 3 минут. Уровень сложности: базовый.
Средний процент выполнения: 65.9%
Ответом к заданию 2 по информатике может быть цифра (число) или слово.
Задача 1
Дано логическое выражение, зависящее от 6 логических переменных:
¬(A → F) ∧ B ∧ ¬C ∧ (D → E).
Сколько существует различных наборов значений переменных, при которых выражение ложно?
Решение
Заметим, что все скобки и выражения связаны конъюнкцией, для которой сложно получить единицу. Поэтому будет решать от обратного. Посчитаем количество наборов, когда выражение истинно, тогда:
¬(A → F) = 1, тогда $A → F = 0$, следовательно, A = 1, F = 0.
B = 1.
¬C = 1, значит C = 0.
(D → E) = 1, тогда возможно 3 варианта: D = 0, E = 0; D = 0, E = 1; D = 1, E = 1.
Перемножим количество подходящих значений для каждой переменной: A, B, C, F — по одному набору, D и E — 3 набора. Итого:
1 х 3 = 3 набора, для которых вся функция истинна. Но нам нужно, чтобы функция была ложна. Найдём общее количество наборов по формуле $k = 2^N$, где N — количество переменных. У нас 6 переменных, значит всего наборов 64. Из них 3 нам не подходят. Тогда количество подходящих (ложных) наборов:
64 — 3 = 61.
Или при помощи программы на С++:
#include <iostream>
#include <algorithm>
#include <fstream>using namespace std;
bool f(int A, int B, int C, int D, int E, int F){
return (!(!A || F) && B && !C && (!D || E));
}int main() {
int count = 0;
for (int A = 0; A <= 1; ++A)
for (int B = 0; B <= 1; ++B)
for (int C = 0; C <= 1; ++C)
for (int D = 0; D <= 1; ++D)
for (int E = 0; E <= 1; ++E)
for (int F = 0; F <= 1; ++F)
if (f(A, B, C, D, E, F) == false)
count++;
cout << count;
return 0;
}
Ответ: 61.
Ответ: 61
Задача 2
Дано логическое выражение, зависящее от 5 логических переменных:
$(A ∨ ¬B) ∧ (¬C ∨ D ∨ ¬E)$.
Сколько существует различных наборов значений переменных, при которых выражение ложно?
Решение
В первой скобке 2 переменных, значит для неё будет 4 набора. Поскольку переменные соединяются дизъюнкцией, выражение ложно ровно в одном случае, а в трёх оставшихся — истинно.
Во второй скобке 3 переменных, значит для неё будет 8 наборов. Поскольку переменные соединяются дизъюнкцией, выражение ложно ровно в одном случае, а в семи оставшихся — истинно.
Конъюнкция ложна, когда хотя бы одна скобка ложна. Рассмотрим 3 случая:
Первая скобка ложна, вторая истинна. Первая скобка ложна в 1 случае из 4, вторая истинна в 7 случаях из 8. Итого 7 · 1 = 7.
Первая скобка истинна, вторая ложна. Первая скобка истинна в 3 случаях из 4, вторая ложна в 1 случае из 4. Итого 1 · 3 = 3.
Первая скобка ложна, вторая ложна. Первая скобка ложна в 1 случае из 4, вторая ложна в 1 случае из 8. Итого 1 · 1 = 1.
Суммарно: 7 + 3 + 1 = 11.
Ответ: 11.
Ответ: 11
Задача 3
Дано логическое выражение, зависящее от 5 логических переменных:
(¬A ∧ B ∧ C) ∨ (¬D ∧ ¬E).
Сколько существует различных наборов значений переменных, при которых выражение истинно?
Решение
В первой скобке 3 переменных, значит для неё будет 8 наборов. Поскольку переменные соединяются конъюнкцией, выражение истинно ровно в одном случае, а в семи оставшихся — ложно.
Во второй скобке 2 переменных, значит для неё будет 4 набора. Поскольку переменные соединяются конъюнкцией, выражение истинно ровно в одном случае, а в трёх оставшихся — ложно.
Дизъюнкция истинна, когда хотя бы одна скобка истинна. Рассмотрим 3 случая:
Первая скобка ложна, вторая истинна. Первая скобка ложна в 7 случаях из 8, вторая истинна в 1 случае из 4. Итого 7 · 1 = 7.
Первая скобка истинна, вторая ложна. Первая скобка истинна в 1 случае из 8, вторая ложна в 3 случаях из 4. Итого 1 · 3 = 3.
Первая скобка истинна, вторая истинна. Первая скобка истинна в 1 случае из 8, вторая истинна в 1 случае из 4. Итого 1 · 1 = 1.
Суммарно: 7 + 3 + 1 = 11.
Ответ: 11.
Ответ: 11
Задача 4
Логическая функция F задаётся выражением ((x∧z)∨¬x)∧¬w∧y. Во фрагменте таблицы истинности приведены все строки, при которых значение функции F является истиной. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.
F | ||||
1 | 0 | 0 | 0 | 1 |
1 | 1 | 0 | 0 | 1 |
1 | 1 | 1 | 0 | 1 |
В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы (сначала букву, соответствующую 1-му столбцу; затем букву, соответствующую 2-му столбцу; затем букву, соответствующую 3-му столбцу; затем букву, соответствующую последнему столбцу). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Решение
Строим таблицу истинности для логической функции любым способом и находим наборы, при которых функция ложна. Например, при помощи программы:
bool f(int x, int y, int z, int w){
return (((x && z) || !x) && !w && y);
}int main() {
cout << "x y z w F" << endl;
for (int x = 0; x <= 1; ++x)
for (int y = 0; y <= 1; ++y)
for (int z = 0; z <= 1; ++z)
for (int w = 0; w <= 1; ++w)
if (f(x, y, z, w) == true)
cout << x << " " << y << " "
<< z << " " << w << " " << f(x, y, z, w) << endl;
return 0;
}
Получили наборы:
x y z w F
0 1 0 0 1
0 1 1 0 1
1 1 1 0 1
Начинаем сопоставление с исходной тбалицей:
1) столбец без единиц четвёртый в таблице из условия — это W
2) столбец с одной единицей третий в исходной таблице — это X
3) столбей с тремя единицами — это Y
4) столбец с двумя единицами — это Z
Результат: YZXW
Ответ: yzxw
Задача 5
Логическая функция F задаётся выражением (y → w) ∨ (¬x ∧ z). Во фрагменте таблицы истинности приведены все строки, при которых значение функции F ложно. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.
F | ||||
0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 1 | 0 |
1 | 0 | 1 | 1 | 0 |
В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала букву, соответствующую 1-му столбцу; затем букву, соответствующую 2-му столбцу; затем букву, соответствующую 3-му столбцу; затем букву, соответствующую последнему столбцу). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Решение
Строим таблицу истинности для логической функции любым способом и находим наборы, при которых функция ложна. Например, при помощи программы:
bool f(int x, int y, int z, int w){
return ((!y || w) || (!x && z));
}int main() {
cout << "x y z w F" << endl;
for (int x = 0; x <= 1; ++x)
for (int y = 0; y <= 1; ++y)
for (int z = 0; z <= 1; ++z)
for (int w = 0; w <= 1; ++w)
if (f(x, y, z, w) == false)
cout << x << " " << y << " "
<< z << " " << w << " " << f(x, y, z, w) << endl;
return 0;
}
Получили наборы:
x y z w F
0 1 0 0 0
1 1 0 0 0
1 1 1 0 0
Начинаем сопоставление с исходной тбалицей:
1) столбец без единиц второй в таблице из условия — это W
2) столбец с одной единицей третий в исходной таблице — это Z
3) столбей с тремя единицами — это Y
4) столбец с двумя единицами — это X
Результат: xwzy
Ответ: xwzy
Задача 6
Дан фрагмент таблицы истинности выражения F:
x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | F |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 |
1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
Сколько строк таблицы удовлетворяют выражению: F = (x1 ∨ x2 ∨ x3) ∧ x4 ∧ (x5 ∨ x6 ∨ x7) ∧ x8?
Решение
Данное выражение является конъюнкцией четырёх выражений. Конъюнкция нескольких высказываний истинна тогда и только тогда, когда истинными являются все входящие в неё высказывания. Следовательно, x4 = 1, x8 = 1 и в наборах значений переменных (x1, x2, x3), (x5, x6, x7) должна быть хотя бы одна 1.
Этим условиям удовлетворяют три последние строки таблицы. В каждой из этих строк значение функции F = 1. Следовательно, эти строки удовлетворяют заданному логическому выражению.
Чтобы остальные строки удовлетворяли заданному выражению, значение F должно быть равно 0. В таблице количество таких строк равно 5.
Всего значения 8 строк таблицы удовлетворяют заданному выражению.
Ответ: 8
Задача 7
Логическая функция F задаётся выражением (¬x → y) ∧ (z → y). Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.
Переменная 1 ??? |
Переменная 2 ??? |
Переменная 3 ??? |
Функция F |
0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 1 | 1 |
1 | 0 | 1 | 1 |
0 | 1 | 0 | 1 |
1 | 1 | 0 | 0 |
0 | 1 | 1 | 1 |
1 | 1 | 1 | 1 |
В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала — буква, соответствующая 1-му столбцу; затем — буква, соответствующая 2-му столбцу; затем — буква, соответствующая 3-му столбцу). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Пусть задано выражение x ∨ ¬y, зависящее от двух переменных x и y, и таблица истинности:
Переменная 1 ??? |
Переменная 2 ??? |
Функция F |
1 | 0 | 0 |
0 | 1 | 1 |
0 | 0 | 1 |
0 | 1 | 1 |
Тогда 1-му столбцу соответствует переменная y, а 2-му столбцу соответствует переменная x. В ответе нужно написать: yx.
Решение
Преобразуем исходное выражение.
(¬x → y) ∧ (z → y) = (x ∨ y) ∧ (¬z ∨ y) = y ∨ (x ∧ ¬z).
Так как дизъюнкция ложна только в том случае, когда ложны оба высказывания, входящие в неё, то переменной y должен соответствовать тот столбец, в котором значение 0 стоит в тех же строках, что и в столбце F. Следовательно, переменной y соответствует третий столбец.
Рассмотрим строку, в которой значение функции отличается от значения переменной y. Такой строкой является четвёртая снизу. Здесь переменная y = 0, а значение функции F = 1. Это означает, что x ∧ ¬z = 1. В рассматриваемой строке значение первого столбца 0, а второго 1. Пусть x = 0, z = 1. При этих значениях логическое выражение x ∧ ¬z ложно, что не соответствует табличному значению функции F = 1. Следовательно, x = 1, z = 0. Значит, первый столбец соответствует переменной z, а второй—x.
Или при помощи программы на С++:
Выводим только ложные наборы, потому что их меньше
#include <iostream>
#include <algorithm>
#include <fstream>using namespace std;
bool f(int x, int y, int z){
return ((x || y) && (!z || y));
}int main() {
cout << "x y z F" << endl;
for (int x = 0; x <= 1; ++x)
for (int y = 0; y <= 1; ++y)
for (int z = 0; z <= 1; ++z)
if (f(x, y, z) == false)
cout << x << " " << y << " "
<< z << " " << f(x, y, z) << endl;
return 0;
}
Ответ: zxy
Задача 8
Логическая функция F задаётся выражением ((¬z∨¬x)∧z)∨w∨¬y. Во фрагменте таблицы истинности приведены все строки, при которых значение функции F ложно. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.
F | ||||
1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 |
В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы (сначала букву, соответствующую 1-му столбцу; затем букву, соответствующую 2-му столбцу; затем букву, соответствующую 3-му столбцу; затем букву, соответствующую последнему столбцу). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Пусть задано выражение x∨¬y, зависящее от двух переменных x и y, и таблица истинности
F | ||
1 | 0 | 0 |
0 | 1 | 1 |
0 | 0 | 1 |
1 | 1 | 1 |
тогда 1-му столбцу соответствует переменная y, а 2-му столбцу соответствует переменная x. В ответе нужно написать: yx.
Задача 9
Логическая функция F задаётся выражением (y ∧ (w → x)) → g. Во фрагменте таблицы истинности приведены все строки, при которых значение функции F ложно. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, w, g.
F | ||||
0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 1 | 0 |
1 | 0 | 1 | 1 | 0 |
В ответе напишите буквы x, y, w, g в том порядке, в котором идут соответствующие им столбцы (сначала букву, соответствующую 1-му столбцу; затем букву, соответствующую 2-му столбцу; затем букву, соответствующую 3-му столбцу; затем букву, соответствующую последнему столбцу). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Пусть задано выражение x∨¬y, зависящее от двух переменных x и y, и таблица истинности
F | ||
1 | 0 | 0 |
0 | 1 | 1 |
0 | 0 | 1 |
1 | 1 | 1 |
тогда 1-му столбцу соответствует переменная y, а 2-му столбцу соответствует переменная x. В ответе нужно написать: yx.
Задача 10
Логическая функция F задаётся выражением (x → y) → (w → g). Во фрагменте таблицы истинности приведены все строки, при которых значение функции F ложно. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, w, g.
F | ||||
0 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 0 |
0 | 1 | 1 | 1 | 0 |
В ответе напишите буквы x, y, w, g в том порядке, в котором идут соответствующие им столбцы (сначала букву, соответствующую 1-му столбцу; затем букву, соответствующую 2-му столбцу; затем букву, соответствующую 3-му столбцу; затем букву, соответствующую последнему столбцу). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Пусть задано выражение x∨¬y, зависящее от двух переменных x и y, и таблица истинности
F | ||
1 | 0 | 0 |
0 | 1 | 1 |
0 | 0 | 1 |
1 | 1 | 1 |
тогда 1-му столбцу соответствует переменная y, а 2-му столбцу соответствует переменная x. В ответе нужно написать: yx.
Задача 11
Логическая функция F задаётся выражением (x = y) ∨ ¬(y → w) ∨ z. Ниже приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки.
Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных w, x, y, z.
F | ||||
1 | 1 | 0 | 0 | |
1 | 1 | 0 | ||
0 | 1 | 0 |
В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала букву, соответствующую 1-му столбцу; затем букву, соответствующую 2-му столбцу; затем букву, соответствующую 3-му столбцу; затем букву, соответствующую последнему столбцу). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Если бы функция F была задана выражением x ∨ ¬y, зависящим от двух переменных x и y, а фрагмент таблицы истинности имел бы вид:
тогда 1-му столбцу соответствовала бы переменная y, а 2-му столбцу — переменная x. В ответе следовало бы написать: yx.
Задача 12
Логическая функция F задаётся выражением (x = y)∨(x∧w)∨¬z. Ниже приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки.
Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных w, x, y, z.
F | ||||
1 | 0 | 0 | ||
0 | 0 | 0 | ||
0 | 1 | 0 |
В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала букву, соответствующую 1-му столбцу; затем букву, соответствующую 2-му столбцу; затем букву, соответствующую 3-му столбцу; затем букву, соответствующую последнему столбцу). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Если бы функция F была задана выражением x ∨ ¬y, зависящим от двух переменных x и y, а фрагмент таблицы истинности имел бы вид:
тогда 1-му столбцу соответствовала бы переменная y, а 2-му столбцу — переменная x. В ответе следовало бы написать: yx.
Условные обозначения логических операций:
¬A, — не A (отрицание, инверсия);
A ∧ B, A · B — A и B (логическое умножение, конъюнкция);
A ∨ B, A + B— A или B (логическое сложение, дизъюнкция);
A → B— импликация (следование);
A ≡ B— эквивалентность (равносильность).
Операцию «импликация» можно выразить через «ИЛИ» и «НЕ»:
A → B = ¬A ∨ B — A → B =
Иногда для упрощения выражений полезны формулы де Моргана:
¬(A ∧ B) = ¬A ∨ ¬B —
¬(A ∨ B) = ¬A ∧ ¬B —
Если в выражении нет скобок, сначала выполняются все операции «НЕ», затем — «И», затем — «ИЛИ», «импликация», и самая последняя — «эквивалентность».
Таблица истинности выражения определяет его значения при всех возможных комбинациях исходных данных.
Если известна только часть таблицы истинности, соответствующее логическое выражение однозначно определить нельзя, поскольку частичной таблице могут соответствовать несколько разных логических выражений (не совпадающих для других вариантов входных данных).
Количество разных логических выражений, удовлетворяющих неполной таблице истинности, равно где k – число отсутствующих строк; например, полная таблица истинности выражения с тремя переменными содержит 23 = 8 строчек, если заданы только 6 из них, то можно найти 28−6 = 22 = 4 разных логических выражения, удовлетворяющие этим 6 строчкам (но отличающиеся в двух оставшихся).
Логическая сумма A + B + C + … равна 0 (выражение ложно) тогда и только тогда, когда все слагаемые одновременно равны нулю, а в остальных случаях равна 1 (выражение истинно).
Логическое произведение A · B · C · … равно 1 (выражение истинно) тогда и только тогда, когда все сомножители одновременно равны единице, а в остальных случаях равно 0 (выражение ложно).
Логическое следование (импликация) А → В равна 0 тогда и только тогда, когда A (посылка) истинна, а B (следствие) ложно.
Эквивалентность А ≡ B равна 1 тогда и только тогда, когда оба значения одновременно равны 0 или одновременно равны 1.