Формулы егэ математика профильный уровень которые даются на экзамене

3621

На ЕГЭ по профильной математике с собой можно взять только черные гелевые ручки и линейку. На экзамене профильного уровня, в отличие от базового, не выдаются справочные материалы – выпускникам не предоставляются формулы, необходимые для решения задач. Исключение составляют лишь 5 формул по тригонометрии, но, естественно, они не помогут набрать максимальные баллы, если экзаменуемые не будут знать об остальных важных сведениях и математических свойствах.

Содержание

Формулы для ЕГЭ по профильной математике. Алгебра

Формулы сокращенного умножения

Квадрат суммы: (a + b)² = a² + 2ab + b²

Квадрат разности: (a – b)² = a² – 2ab + b²

Разность квадратов: a² – b² = (a + b)(a – b)

Сумма кубов: a³ + b³ = (a + b)(a² – ab + b²)

Разность кубов: a³ – b³ = (a – b)(a² + ab + b²)

Прогрессия

Арифметическая

Геометрическая

Таблица степеней

Скриншот 11-11-2022 034403

Свойства степеней

Скриншот 11-11-2022 034826

Таблица квадратов

Скриншот 11-11-2022 035150

Интенсивы по подготовке к региональному этапу ВсОШ

Все, что нужно знать
для победы, за 7 дней!

Свойства корней

Скриншот 11-11-2022 035515

Тригонометрия

Таблица значений тригонометрических функций

Скриншот 11-11-2022 035849

Тригонометрическая окружность

Скриншот 11-11-2022 040226

Тригонометрические формулы

Скриншот 11-11-2022 040507

Обратные тригонометрические функции

Преобразование суммы и разности в произведение

Регулярные курсы по подготовке к олимпиадам и ЕГЭ

Поступаем в вуз мечты без проблем!

Вероятность

Вероятность события А: m – благоприятные, n – общее число событий

 P(A) = m/n

События А и В происходят одновременно: A · B

Независимые события: P(A · B) = P(A) · P(B)

Зависимые события: P(A · B) = P(A) · P(B | A)

Происходит или А, или В: A + B

Несовместные события: P(A + B) = P(A) + P(B)

Совместные события: P(A + B) = P(A) + P(B) – P(A · B)

Свойства модуля

Производные

Основные правила дифференцирования

Таблица производных

Первообразные

Логарифмы

Квадратные уравнения

Дискриминант

Теорема Виета

Разложение на множители

3528

Формулы для ЕГЭ по профильной математике. Геометрия

Планиметрия

Треугольник

Следствие из теоремы косинусов:

Длина биссектрисы (через угол):

Длина биссектрисы (через отрезки):

Прямоугольный треугольник

24 декабря – 20 января

5-11 классы

Онлайн-олимпиада Коалиции

Равносторонний треугольник

Аргументы для итогового сочинения

Подборка лучших аргументов

Равносторонний шестиугольник

Площадь внутреннего треугольника:

Площадь внутреннего прямоугольника:

Ромб

Трапеция

Произвольный четырёхугольник

Окружность

Стереометрия

27f77fef-868e-4746-af5a-ff3f5d564738

Выводы

Не заучивайте формулы без осознания того, откуда берутся числа. Как можно чаще применяйте формулы при решении задач, тренируйте гибкость мышления, чтобы на ЕГЭ по профильной математике справиться со всеми заданиями.

А чтобы в разы повысить шансы на успех и разобраться в тонкостях непростой науки, можно обратиться за помощью к преподавателю онлайн-курса по подготовке к ЕГЭ.

Поделиться в социальных сетях

Какими формулами вам приходится пользоваться чаще всего?

Межтекстовые Отзывы

Посмотреть все комментарии

Читайте также

Ученики, сдающие базовую математику, почти не тратят времени на подготовку к ней, ведь в экзамене нужно решить лишь задания, которые требуют самых основ. Тем же выпускникам, которые хотят поступать в технические вузы, предстоит готовиться не только к предметам по выбору, но и к профилю. В этой статье мы расскажем, какие формулы для ЕГЭ по математике (профильный уровень) сделают подготовку легче, а баллы на экзамене — выше.

Формулы вероятности для егэ по профильной математике

Какие формулы необходимы для сдачи ЕГЭ по профильной математике?

Помимо очевидного, что для сдачи профиля нужно уметь складывать, вычитать и умножать, необходимы еще некоторые знания. Все это проходится в течение школы, но повторить или заполнить пробелы перед экзаменом нужно обязательно. Вот, что пригодится:

  • Формулы сокращенного умножения;
  • Арифметическая и геометрическая прогрессии;
  • Вероятность;
  • Свойства степеней;
  • Свойства логарифмов;
  • Тригонометрия;
  • Производные;
  • Первообразные.

Список внушительный, но вполне реальный, чтобы его выучить. Для того, чтобы лишний раз не гуглить в интернете «формулы для ЕГЭ по математике профильный уровень», приложим их ниже. А начнем по порядку из списка выше.

Формулы сокращённого умножения

Первые в нашем списке – формулы сокращенного умножения – нужны для решения задания №9 из профильного уровня. Вам встретятся задачи на преобразование выражений, поэтому умение это делать будет вознаграждено баллами.

Вот то, что будет вашим спасательным кругом:

Есть те, которые знать не обязательно. Но чем большими знаниями вы будете обладать, тем легче вам будет на экзамене. Вот они:

Умея применять эти формулы для ЕГЭ по математике, профильный уровень вам уже будет решить легче. Но это далеко не все, что нужно знать, чтобы получить сто баллов за ЕГЭ.

Арифметическая и геометрическая прогрессии

Для задания №19 нужно знание арифметической и геометрической прогрессии. Прикладываем формулы для ЕГЭ по математике, профильный уровень которой невозможен без их знания:

Вероятность

Вероятность встречается в задании №4, а ведь в самом начале обычно ставят легкие задания. Тем не менее, придется применять знания, которые представлены ниже:

Перейдем к свойствам степеней, ведь в них тоже есть, что запомнить.

Свойства степеней

Эти свойства нужно знать и для того, чтобы решить «базу», так что гуманитарии тоже могут обратить внимание на это:

Как вы видите, запоминать не очень много, зато формулы не самые простые. Но есть еще сложнее, и сейчас узнаем, какие они.

Свойства логарифмов

Формулы логарифмов лучше всего начать с их определения:

Теперь перейдем к более сложному:

Тригонометрия

Тригонометрические уравнения встречаются в задании №13. Для того, чтобы заработать баллы, нужно знать это:

Но это еще не все. Есть такая вещь, как основное тригонометрическое тождество. Вот оно:

Формулы двойного угла:

Формулы суммы и разности аргументов:

Преобразование суммы и разности в произведение:

Формулы половинного аргумента:

На этом с тригонометрией все.

Производные

Начнем с основных правил дифференцирования:

Уравнение касательной: 

Производные элементарных функций:

Закончим эту статью первообразными.

Первообразные

Она выглядит так:

Таблица первообразных:

Формулы для производных егэ по профильной математике

Итог

То, что работа предстоит колоссальная — и правда, и нет. Да, придется хорошо постараться, чтобы набрать высокие баллы, так как составители ЕГЭ все больше усложняют экзамен. С другой стороны, хотя бы часть формул, описанных выше, вы уже знаете. А значит, работы хоть на немного, но меньше. А это ли не счастье в такие тяжелые времена подготовки?

Геометрия

  • Треугольник
  • Четырехугольники
  • Окружность и круг
  • Призма
  • Пирамида
  • Усеченная пирамида
  • Цилиндр
  • Конус
  • Усеченный конус
  • Сфера и шар

1. Формулы сокращённого умножения

 левая круглая скобка a плюс b правая круглая скобка в квадрате =a в квадрате плюс 2ab плюс b в квадрате

 левая круглая скобка a минус b правая круглая скобка в квадрате =a в квадрате минус 2ab плюс b в квадрате

 левая круглая скобка a плюс b правая круглая скобка в кубе =a в кубе плюс 3a в квадрате b плюс 3ab в квадрате плюс b в кубе

 левая круглая скобка a минус b правая круглая скобка в кубе =a в кубе минус 3a в квадрате b плюс 3ab в квадрате минус b в кубе

a в квадрате минус b в квадрате = левая круглая скобка a минус b правая круглая скобка левая круглая скобка a плюс b правая круглая скобка

a в кубе плюс b в кубе = левая круглая скобка a плюс b правая круглая скобка левая круглая скобка a в квадрате минус ab плюс b в квадрате правая круглая скобка

a в кубе минус b в кубе = левая круглая скобка a минус b правая круглая скобка левая круглая скобка a в квадрате плюс ab плюс b в квадрате правая круглая скобка

Наверх

2. Модуль числа

Определение: left| a |= система выражений новая строка a,a больше или равно 0, новая строка минус a,a меньше 0. конец системы .

Основные свойства модуля:

|a| больше или равно 0;

|a|=| минус a|;

 система выражений новая строка |a| больше или равно a, новая строка |a| больше или равно минус a; конец системы .

|a|=a равносильно a больше или равно 0;

|a|= минус a равносильно a меньше или равно 0.

Наверх

3. Степень с действительным показателем

Свойства степени с действительным показателем

Пусть a больше 0,b больше 0,x принадлежит R ,y принадлежит R . Тогда верны следующие соотношения:

Наверх

4. Корень n-ой степени из числа

Корнем n-ой степени  левая круглая скобка n принадлежит N ,n больше или равно 2 правая круглая скобка из числа a называется число, n-ая степень которого равна a.
Арифметическим корнем четной степени n  левая круглая скобка n=2k,k принадлежит N правая круглая скобка из неотрицательного числа a называется неотрицательное число, n-ая степень которого равна a.

Основные свойства арифметического корня:

a больше или равно 0: левая круглая скобка корень n степени из левая круглая скобка a правая круглая скобка правая круглая скобка в степени левая круглая скобка n правая круглая скобка =a, корень n степени из левая круглая скобка a правая круглая скобка в степени левая круглая скобка n правая круглая скобка =a, корень n степени из левая круглая скобка a правая круглая скобка в степени левая круглая скобка m правая круглая скобка = левая круглая скобка корень n степени из левая круглая скобка a правая круглая скобка правая круглая скобка в степени левая круглая скобка m правая круглая скобка , корень m степени из левая круглая скобка корень n степени из левая круглая скобка a правая круглая скобка правая круглая скобка = корень mn степени из левая круглая скобка a правая круглая скобка ;

a принадлежит R : корень n степени из левая круглая скобка a правая круглая скобка в степени левая круглая скобка n правая круглая скобка = |a|;

a больше или равно 0,b больше или равно 0: корень n степени из левая круглая скобка ab правая круглая скобка = корень n степени из левая круглая скобка a правая круглая скобка умножить на корень n степени из левая круглая скобка b правая круглая скобка , корень n степени из левая круглая скобка дробь: числитель: a, знаменатель: b конец дроби правая круглая скобка = дробь: числитель: корень n степени из левая круглая скобка a правая круглая скобка , знаменатель: корень n степени из левая круглая скобка b правая круглая скобка конец дроби  левая круглая скобка b не равно 0 правая круглая скобка ;

a меньше 0,b меньше 0: корень n степени из левая круглая скобка ab правая круглая скобка = корень n степени из левая круглая скобка минус a правая круглая скобка умножить на корень n степени из левая круглая скобка минус b правая круглая скобка , корень n степени из левая круглая скобка дробь: числитель: a, знаменатель: b конец дроби правая круглая скобка = дробь: числитель: корень n степени из левая круглая скобка минус a правая круглая скобка , знаменатель: корень n степени из левая круглая скобка минус b правая круглая скобка конец дроби ;

a больше или равно 0,b больше или равно 0:a корень n степени из левая круглая скобка b правая круглая скобка = корень n степени из левая круглая скобка a правая круглая скобка в степени левая круглая скобка n правая круглая скобка b;

a меньше 0,b больше или равно 0:a корень n степени из левая круглая скобка b правая круглая скобка = минус корень n степени из левая круглая скобка a правая круглая скобка в степени левая круглая скобка n правая круглая скобка b.

Наверх

5. Логарифмы

Определение логарифма: log _ab=cunderseta больше 0,a не равно 1mathop равносильно a в степени левая круглая скобка c правая круглая скобка =b.

Основное логарифмическое тождество: a в степени левая круглая скобка log правая круглая скобка _ab=b.

Основные свойства логарифмов

Пусть a больше 0, a не равно 1, b больше 0, b не равно 1, x больше 0, y больше 0, p принадлежит R . Тогда верны следующие соотношения:

Наверх

6. Арифметическая прогрессия

Формула n-го члена арифметической прогрессии: a_n=a_1 плюс d левая круглая скобка n минус 1 правая круглая скобка .

Характеристическое свойство арифметической прогрессии: a_n= дробь: числитель: a_n минус 1 плюс a_n плюс 1, знаменатель: 2 конец дроби ,n больше или равно 2.

Сумма n первых членов арифметической прогрессии: S_n= дробь: числитель: a_1 плюс a, знаменатель: 2 конец дроби n.

При решении задач, связанных с арифметической прогрессией, могут оказаться полезными также следующие формулы:

S_n= дробь: числитель: 2a_1 плюс d левая круглая скобка n минус 1 правая круглая скобка , знаменатель: 2 конец дроби n;

S_n= дробь: числитель: 2a_n минус d левая круглая скобка n минус 1 правая круглая скобка , знаменатель: 2 конец дроби n;

a_n= дробь: числитель: a_n минус k плюс a_n плюс k, знаменатель: 2 конец дроби ,k меньше n;

a_k плюс a_n=a_k минус m плюс a_n плюс m,m меньше k;

d= дробь: числитель: a_n минус a_k, знаменатель: n минус k конец дроби .

Наверх

7. Геометрическая прогрессия

Формула n-го члена геометрической прогрессии: a_n=a_1q в степени левая круглая скобка n минус 1 правая круглая скобка .

Характеристическое свойство геометрической прогрессии: a_n в квадрате =a_n минус 1a_n плюс 1,n больше или равно 2.

Сумма n первых членов геометрической прогрессии: S_n= дробь: числитель: a_1 минус a_nq, знаменатель: 1 минус q конец дроби , q не равно 1.

При решении задач, связанных с геометрической прогрессией, могут оказаться полезными также следующие формулы:

S_n= дробь: числитель: a_1 левая круглая скобка 1 минус q в степени левая круглая скобка n правая круглая скобка правая круглая скобка , знаменатель: 1 минус q конец дроби ;

a_n в квадрате =a_n минус ka_n плюс k,k меньше n;

a_ka_n=a_k минус ma_n плюс m,m меньше k;

|q|= корень n минус k степени из левая круглая скобка дробь: числитель: a правая круглая скобка _n, знаменатель: a_k конец дроби .

Наверх

8. Бесконечно убывающая геометрическая прогрессия

Сумма бесконечно убывающей геометрической прогрессии: S= дробь: числитель: a_1, знаменатель: 1 минус q конец дроби .

Наверх

9. Основные формулы тригонометрии

Зависимость между тригонометрическими функциями одного аргумента:

 синус в квадрате альфа плюс косинус в квадрате альфа =1;

 тангенс альфа = дробь: числитель: синус альфа , знаменатель: косинус альфа конец дроби ;

ctg альфа = дробь: числитель: косинус альфа , знаменатель: синус альфа конец дроби ;

 тангенс альфа ctg альфа =1;

1 плюс тангенс в квадрате альфа = дробь: числитель: 1, знаменатель: косинус в квадрате альфа конец дроби ;

1 плюс ctg в квадрате альфа = дробь: числитель: 1, знаменатель: синус в квадрате альфа конец дроби .

Формулы сложения:

 косинус левая круглая скобка альфа плюс бета правая круглая скобка = косинус альфа косинус бета минус синус альфа синус бета ;

 косинус левая круглая скобка альфа минус бета правая круглая скобка = косинус альфа косинус бета плюс синус альфа синус бета ;

 синус левая круглая скобка альфа плюс бета правая круглая скобка = синус альфа косинус бета плюс косинус альфа синус бета ;

 синус левая круглая скобка альфа минус бета правая круглая скобка = синус альфа косинус бета минус косинус альфа синус бета ;

 тангенс левая круглая скобка альфа плюс бета правая круглая скобка = дробь: числитель: тангенс альфа плюс тангенс бета , знаменатель: 1 минус тангенс альфа тангенс бета конец дроби ;

 тангенс левая круглая скобка альфа минус бета правая круглая скобка = дробь: числитель: тангенс альфа минус тангенс бета , знаменатель: 1 плюс тангенс альфа тангенс бета конец дроби ;

ctg левая круглая скобка альфа плюс бета правая круглая скобка = дробь: числитель: ctg альфа ctg бета минус 1, знаменатель: ctg бета плюс ctg альфа конец дроби ;

ctg левая круглая скобка альфа минус бета правая круглая скобка = дробь: числитель: ctg альфа ctg бета плюс 1, знаменатель: ctg бета минус ctg альфа конец дроби .

Формулы тригонометрических функций двойного аргумента: синус 2 альфа =2 синус альфа косинус альфа ;

 синус 2 альфа = дробь: числитель: 2 тангенс альфа , знаменатель: 1 плюс тангенс в квадрате альфа конец дроби ;

 косинус 2 альфа = косинус в квадрате альфа минус синус в квадрате альфа ;

 косинус 2 альфа =2 косинус в квадрате альфа минус 1;

 косинус 2 альфа =1 минус 2 синус в квадрате альфа ;

 косинус 2 альфа = дробь: числитель: 1 минус тангенс в квадрате альфа , знаменатель: 1 плюс тангенс в квадрате альфа конец дроби ;

 тангенс 2 альфа = дробь: числитель: 2 тангенс альфа , знаменатель: 1 минус тангенс в квадрате альфа конец дроби ;

ctg2 альфа = дробь: числитель: ctg в квадрате альфа минус 1, знаменатель: 2ctg альфа конец дроби .

Формулы понижения степени:

 синус в квадрате альфа = дробь: числитель: 1 минус косинус 2 альфа , знаменатель: 2 конец дроби ;

 косинус в квадрате альфа = дробь: числитель: 1 плюс косинус 2 альфа , знаменатель: 2 конец дроби ;

 тангенс в квадрате альфа = дробь: числитель: 1 минус косинус 2 альфа , знаменатель: 1 плюс косинус 2 альфа конец дроби ;

ctg в квадрате альфа = дробь: числитель: 1 плюс косинус 2 альфа , знаменатель: 1 минус косинус 2 альфа конец дроби .

Формулы приведения

Все формулы приведения получаются из соответствующих формул сложения. Например:

 косинус левая круглая скобка дробь: числитель: Пи , знаменатель: 2 конец дроби плюс альфа правая круглая скобка = косинус дробь: числитель: Пи , знаменатель: 2 конец дроби косинус альфа минус синус дробь: числитель: Пи , знаменатель: 2 конец дроби синус альфа = минус синус альфа .

Применение формул приведения укладывается в следующую схему:

— определяется координатная четверть, в которой лежит аргумент приводимой функции, считая, что  альфа принадлежит левая круглая скобка 0; дробь: числитель: Пи , знаменатель: 2 конец дроби правая круглая скобка ;

— определяется знак приводимой функции;

— определяется название приведенной функции по следующему правилу: если аргумент приводимой функции имеет вид  левая круглая скобка дробь: числитель: Пи , знаменатель: 2 конец дроби pm альфа правая круглая скобка или  левая круглая скобка дробь: числитель: 3 Пи , знаменатель: 2 конец дроби pm альфа правая круглая скобка , то функция меняется на сходственную функцию, если аргумент приводимой функции имеет вид  левая круглая скобка Пи pm альфа правая круглая скобка , то функция названия не меняет.

Например, получим формулу  тангенс левая круглая скобка дробь: числитель: 3 Пи , знаменатель: 2 конец дроби плюс альфа правая круглая скобка :

 дробь: числитель: 3 Пи , знаменатель: 2 конец дроби плюс альфа принадлежит левая круглая скобка дробь: числитель: 3 Пи , знаменатель: 2 конец дроби ;2 Пи правая круглая скобка — IV четверть;

— в IV четверти тангенс отрицательный;

— аргумент приводимой функции имеет вид  дробь: числитель: 3 Пи , знаменатель: 2 конец дроби плюс альфа , следовательно, название функции меняется. Таким образом,  тангенс левая круглая скобка дробь: числитель: 3 Пи , знаменатель: 2 конец дроби плюс альфа правая круглая скобка = минус ctg альфа .

Формулы преобразования суммы тригонометрических функций в произведение:

 синус альфа плюс синус бета =2 синус дробь: числитель: альфа плюс бета , знаменатель: 2 конец дроби косинус дробь: числитель: альфа минус бета , знаменатель: 2 конец дроби ;

 синус альфа минус синус бета =2 синус дробь: числитель: альфа минус бета , знаменатель: 2 конец дроби косинус дробь: числитель: альфа плюс бета , знаменатель: 2 конец дроби ;

 косинус альфа плюс косинус бета =2 косинус дробь: числитель: альфа плюс бета , знаменатель: 2 конец дроби косинус дробь: числитель: альфа минус бета , знаменатель: 2 конец дроби ;

 косинус альфа минус косинус бета = минус 2 синус дробь: числитель: альфа плюс бета , знаменатель: 2 конец дроби синус дробь: числитель: альфа минус бета , знаменатель: 2 конец дроби ;

 тангенс альфа плюс тангенс бета = дробь: числитель: синус левая круглая скобка альфа плюс бета правая круглая скобка , знаменатель: косинус альфа косинус бета конец дроби ;

 тангенс альфа минус тангенс бета = дробь: числитель: синус левая круглая скобка альфа минус бета правая круглая скобка , знаменатель: косинус альфа косинус бета конец дроби ;

ctg альфа плюс ctg бета = дробь: числитель: синус левая круглая скобка альфа плюс бета правая круглая скобка , знаменатель: синус альфа синус бета конец дроби ;

ctg альфа минус ctg бета = дробь: числитель: синус левая круглая скобка бета минус альфа правая круглая скобка , знаменатель: синус альфа синус бета конец дроби .

Формулы преобразования произведения тригонометрических функций в сумму:

 косинус альфа косинус бета = дробь: числитель: 1, знаменатель: 2 конец дроби левая круглая скобка косинус левая круглая скобка альфа минус бета правая круглая скобка плюс косинус левая круглая скобка альфа плюс бета правая круглая скобка правая круглая скобка ;

 синус альфа синус бета = дробь: числитель: 1, знаменатель: 2 конец дроби левая круглая скобка косинус левая круглая скобка альфа минус бета правая круглая скобка минус косинус левая круглая скобка альфа плюс бета правая круглая скобка правая круглая скобка ;

 синус альфа косинус бета = дробь: числитель: 1, знаменатель: 2 конец дроби левая круглая скобка синус левая круглая скобка альфа плюс бета правая круглая скобка плюс синус левая круглая скобка альфа минус бета правая круглая скобка правая круглая скобка .

Наверх

10. Производная и интеграл

Таблица производных некоторых элементарных функций

Правила дифференцирования:

1.  левая круглая скобка f левая круглая скобка x правая круглая скобка плюс g левая круглая скобка x правая круглая скобка правая круглая скобка в степени левая круглая скобка prime правая круглая скобка =f' левая круглая скобка x правая круглая скобка плюс g' левая круглая скобка x правая круглая скобка ;

2.  левая круглая скобка cf левая круглая скобка x правая круглая скобка правая круглая скобка в степени левая круглая скобка prime правая круглая скобка =cf' левая круглая скобка x правая круглая скобка ;

3.  левая круглая скобка f левая круглая скобка x правая круглая скобка g левая круглая скобка x правая круглая скобка правая круглая скобка в степени левая круглая скобка prime правая круглая скобка =f' левая круглая скобка x правая круглая скобка g левая круглая скобка x правая круглая скобка плюс f левая круглая скобка x правая круглая скобка g' левая круглая скобка x правая круглая скобка ;

4.  левая круглая скобка дробь: числитель: f левая круглая скобка x правая круглая скобка , знаменатель: g левая круглая скобка x правая круглая скобка конец дроби правая круглая скобка в степени левая круглая скобка prime правая круглая скобка = дробь: числитель: f' левая круглая скобка x правая круглая скобка g левая круглая скобка x правая круглая скобка минус f левая круглая скобка x правая круглая скобка g' левая круглая скобка x правая круглая скобка , знаменатель: g в квадрате левая круглая скобка x правая круглая скобка конец дроби ;

5.  левая квадратная скобка f левая круглая скобка g левая круглая скобка x правая круглая скобка правая круглая скобка правая квадратная скобка в степени левая круглая скобка prime правая круглая скобка =f' левая круглая скобка g левая круглая скобка x правая круглая скобка правая круглая скобка g' левая круглая скобка x правая круглая скобка .

Уравнение касательной к графику функции y=f левая круглая скобка x правая круглая скобка в его точке  левая круглая скобка x_0;f левая круглая скобка x_0 правая круглая скобка правая круглая скобка :

y=f' левая круглая скобка x_0 правая круглая скобка левая круглая скобка x минус x_0 правая круглая скобка плюс f левая круглая скобка x_0 правая круглая скобка .

Таблица первообразных для некоторых элементарных функций

Правила нахождения первообразных

Пусть F левая круглая скобка x правая круглая скобка ,G левая круглая скобка x правая круглая скобка ― первообразные для функций f левая круглая скобка x правая круглая скобка и g левая круглая скобка x правая круглая скобка соответственно, a, b, k ― постоянные, k не равно 0. Тогда:

F левая круглая скобка x правая круглая скобка плюс G левая круглая скобка x правая круглая скобка ― первообразная для функции f левая круглая скобка x правая круглая скобка плюс g левая круглая скобка x правая круглая скобка ;

aF левая круглая скобка x правая круглая скобка ― первообразная для функции af левая круглая скобка x правая круглая скобка ;

 дробь: числитель: 1, знаменатель: k конец дроби F левая круглая скобка kx плюс b правая круглая скобка ― первообразная для функции f левая круглая скобка kx плюс b правая круглая скобка ;

— Формула Ньютона-Лейбница:  принадлежит t пределы: от a до b, f левая круглая скобка x правая круглая скобка dx=F левая круглая скобка b правая круглая скобка минус F левая круглая скобка a правая круглая скобка .

1. Треугольник

Пусть a,b,c ― длины сторон BC, AC, AB треугольника ABC соответственно; p= дробь: числитель: a плюс b плюс c, знаменатель: 2 конец дроби ― полупериметр треугольника ABC; A, B, C ― величины углов BAC, ABC, ACB треугольника ABC соответственно; h_a,h_b,h_c ― длины высот AA2, BB2, CC2 треугольника ABC соответственно; R ― радиус окружности, описанной около треугольника ABC; r — радиус окружности, вписанной в треугольник ABC; S_vartriangle ABC ― площадь треугольника ABC. Тогда имеют место следующие соотношения:

 дробь: числитель: a, знаменатель: синус A конец дроби = дробь: числитель: b, знаменатель: синус B конец дроби = дробь: числитель: c, знаменатель: синус C конец дроби =2R (теорема синусов);

c в квадрате =a в квадрате плюс b в квадрате минус 2ab косинус C (теорема косинусов);

S_vartriangle ABC= дробь: числитель: 1, знаменатель: 2 конец дроби ah_a;

S_vartriangle ABC= дробь: числитель: 1, знаменатель: 2 конец дроби ab синус C;

S_vartriangle ABC= дробь: числитель: abc, знаменатель: 4R конец дроби ;

S_vartriangle ABC=pr;

S_vartriangle ABC= корень из p левая круглая скобка p минус a правая круглая скобка левая круглая скобка p минус b правая круглая скобка левая круглая скобка p минус c правая круглая скобка .

Наверх
2. Четырёхугольники

Параллелограмм

Параллелограммом называется четырехугольник, противоположные стороны которого попарно параллельны.

Прямоугольником называется параллелограмм, у которого все углы прямые.

Ромбом называется параллелограмм, все стороны которого равны.

Квадратом называется прямоугольник, все стороны которого равны. Из определения следует, что квадрат является ромбом, следовательно, он обладает всеми свойствами прямоугольника и ромба.

Трапецией называется четырехугольник, две стороны которого параллельны, а две другие не параллельны.

Площадь четырехугольника

Площадь параллелограмма равна произведению его основания на высоту.

Площадь параллелограмма равна произведению двух его смежных сторон на синус угла между ними.

Площадь трапеции равна произведению полусуммы ее оснований на высоту.

Площадь четырехугольника равна половине произведения его диагоналей на синус угла между ними.

Наверх

3. Окружность и круг

Соотношения между элементами окружности и круга

Пусть r — радиус окружности, d — ее диаметр, C — длина окружности, S — площадь круга, l_n градусов  — длина дуги в n градусов, l_ альфа  — длина дуги в  альфа радиан, S_n градусов  — площадь сектора, ограниченного дугой в n градусов, S_ альфа  — площадь сектора, ограниченного дугой в  альфа радиан. Тогда имеют место следующие соотношения:

Вписанный угол

Вписанный угол измеряется половиной дуги, на которую он опирается.

Вписанные углы, опирающиеся на одну и ту же дугу, равны.

Вписанный угол, опирающийся на полуокружность, — прямой.

Вписанная окружность

Центр окружности, вписанной в многоугольник, есть точка равноудаленная от всех сторон этого многоугольника, ― точка пересечения биссектрис углов этого многоугольника. Таким образом, в многоугольник можно вписать окружность, и притом только одну, тогда и только тогда, когда биссектрисы его углов пересекаются в одной точке.

В четырехугольник можно вписать окружность тогда и только тогда, когда суммы его противоположных сторон равны.

Описанная окружность

Центр окружности, вписанной в многоугольник, есть точка равноудаленная от всех вершин этого многоугольника, ― точка пересечения серединных перпендикуляров к сторонам этого многоугольника. Таким образом, около многоугольника можно описать окружность, и притом только одну, тогда и только тогда, когда серединные перпендикуляры к сторонам этого многоугольника пересекаются в одной точке.

Около четырехугольника можно описать окружность тогда и только тогда, когда суммы его противоположных углов равны 180 градусов.

Наверх

4. Призма

Пусть H ― высота призмы, AA1 ― боковое ребро призмы, P_осн ― периметр основания призмы, S_осн ― площадь основания призмы, S_бок ― площадь боковой поверхности призмы, S_полн ― площадь полной поверхности призмы, V ― объем призмы, P_bot  ― периметр перпендикулярного сечения призмы, S_bot  ― площадь перпендикулярного сечения призмы. Тогда имеют место следующие соотношения:

S_бок=P_bot AA_1;

S_полн=2S_осн плюс S_бок;

V=S_bot AA_1;

V=S_оснH.

Свойства параллелепипеда:

— противоположные грани параллелепипеда равны и параллельны;

— диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам;

— квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.

Наверх

5. Пирамида

Пусть H ― высота пирамиды, P_осн ― периметр основания пирамиды, S_осн ― площадь основания пирамиды, S_бок ― площадь боковой поверхности пирамиды, S_полн ― площадь полной поверхности пирамиды, V ― объем пирамиды. Тогда имеют место следующие соотношения:

S_полн=S_осн плюс S_бок;

V= дробь: числитель: 1, знаменатель: 3 конец дроби S_оснH .


Замечание.
Если все двугранные углы при основании пирамиды равны  бета , а высоты всех боковых граней пирамиды, проведенные из вершины пирамиды, равны h_бок, то S_бок= дробь: числитель: 1, знаменатель: 2 конец дроби P_оснh_бок= дробь: числитель: S_осн, знаменатель: косинус бета конец дроби .

Наверх

6. Усечённая пирамида

Пусть H ― высота усеченной пирамиды, P_1 и P_2 ― периметры оснований усеченной пирамиды, S_1 и S_2 ― площади оснований усеченной пирамиды, S_бок ― площадь боковой поверхности усеченной пирамиды, S_полн ― площадь полной поверхности усеченной пирамиды, V ― объем усеченной пирамиды.

Тогда имеют место следующие соотношения:

S_полн=S_1 плюс S_2 плюс S_бок;

V= дробь: числитель: 1, знаменатель: 3 конец дроби H левая круглая скобка S_1 плюс S_2 плюс корень из S_1S_2 правая круглая скобка .

Замечание. Если все двугранные углы при основании пирамиды равны  бета , а высоты всех боковых граней пирамиды, проведенные из вершины пирамиды, равны h_бок, то: S_бок= дробь: числитель: 1, знаменатель: 2 конец дроби левая круглая скобка P_1 плюс P_2 правая круглая скобка h_бок= дробь: числитель: |S_1 минус S_2|, знаменатель: косинус бета конец дроби .

Наверх

7. Цилиндр

Пусть h ― высота цилиндра, r ― радиус цилиндра, S_бок ― площадь боковой поверхности цилиндра, S_полн ― площадь полной поверхности цилиндра, V ― объем цилиндра.

Тогда имеют место следующие соотношения:

S_бок=2 Пи rh;

S_полн=2 Пи r левая круглая скобка r плюс h правая круглая скобка ;

V= Пи r в квадрате h.

Наверх

8. Конус

Пусть h ― высота конуса, r ― радиус основания конуса, l ― образующая конуса, S_бок ― площадь боковой поверхности конуса, S_полн ― площадь полной поверхности конуса, V ― объем конуса.

Тогда имеют место следующие соотношения:

S_бок= Пи rl;

S_полн= Пи r левая круглая скобка r плюс l правая круглая скобка ;

V= дробь: числитель: 1, знаменатель: 3 конец дроби Пи r в квадрате h.

Наверх

9. Усечённый конус

Пусть h ― высота усеченного конуса, r и r_1 ― радиусы основания усеченного конуса, l ― образующая усеченного конуса, S_бок ― площадь боковой поверхности усеченного конуса, V ― объем усеченного конуса. Тогда имеют место следующие соотношения:

S_бок= Пи левая круглая скобка r плюс r_1 правая круглая скобка l;

V= дробь: числитель: 1, знаменатель: 3 конец дроби Пи h левая круглая скобка r в квадрате плюс rr_1 плюс r_1 в квадрате правая круглая скобка .

Наверх

10. Сфера и шар

Пусть R ― радиус шара, D ― его диаметр, S ― площадь ограничивающей шар сферы, S_h ― площадь сферической поверхности шарового сегмента (шарового слоя), высота которого равна h, V ― объем шара, V_сегм ― объем сегмента, высота которого равна h, V_сект ― объем сектора, ограниченного сегментом, высота которого равна h. Тогда имеют место следующие соотношения:

Наверх

Формулы для профильного ЕГЭ-2022 по математике

Формулы сокращённого умножения
Арифметическая и геометрическая прогрессии
Вероятность
Свойства степеней
Свойства логарифмов
Тригонометрия
Производные
Первообразные
Геометрия

Формулы сокращённого умножения

`(a + b)^2=a^2 + 2ab + b^2`  
`(a − b)^2=a^2 − 2ab + b^2`  
`a^2 − b^2=(a + b)(a − b)`  
   
`a^3 + b^3=(a + b)(a^2 − ab + b^2)`  
`a^3 − b^3=(a − b)(a^2 + ab + b^2)`  
   
`(a + b)^3=a^3 + 3a^2b + 3ab^2 + b^3`
`(a − b)^3=a^3 − 3a^2b + 3ab^2 − b^3`

Прогрессии

Арифметическая прогрессия:

`a_n=a_(n-1)+d`
`a_n=a_1+(n-1)*d`
`S_n=((a_1+a_n)*n)/2`

Геометрическая прогрессия:

`b_n=b_(n-1)*q`
`b_n=b_1*q^(n-1)`
`S_n=((q^n-1)*b_1)/(q-1)`
Бесконечно убывающая: `S=b_1/(1-q)`

Вероятность

Вероятность события A: `P(A)=m/n`
     
События происходят A и B происходят одновременно `A*B`  
Независимые события: `P(A*B)=P(A)*P(B)`
Зависимые события: `P(A*B)=P(A)*P(B|A)`
     
Происходит или событие A, или B `A+B`  
Несовместные события: `P(A+B)=P(A)+P(B)`
Совместные события: `P(A+B)=P(A)+P(B)-P(A*B)`

Свойства степеней

`a^0=1` `a^1=a`
`a^(-1)=1/a` `a^(-n)=1/a^n`
`a^(1/2)=sqrt(a)` `a^(1/n)=root(n)(a)`
`a^m*a^n=a^(m+n)` `a^m/a^n=a^(m-n)`
`(a*b)^n=a^n*b^n` `(a/b)^n=a^n/b^n`
`(a^m)^n=a^(m*n)` `a^(m/n)=root(n)(a^m)`

Свойства логарифмов

`log_ab=c``a^c=b`
`log_a1=0`  
`log_aa=1`  
`log_a(b*c)=log_ab+log_ac`  
`log_a(b/c)=log_ab-log_ac`  
`log_ab^n=n*log_ab`  
`log_(a^m)b=1/m*log_ab`  
`log_ab=1/(log_ba)`  
`log_ab=(log_cb)/(log_ca)`  
`a^(log_cb)=b^(log_ca)`  
`a^(log_ab)=b`  

Тригонометрия

`alpha` `0` `pi/6` `pi/4` `pi/3` `pi/2` `pi` `(3pi)/2` `2pi`
`0^circ` `30^circ` `45^circ` `60^circ` `90^circ` `180^circ` `270^circ` `360^circ`
`sinalpha` `0` `1/2` `sqrt(2)/2` `sqrt(3)/2` `1` `0` `-1` `0`
`cosalpha` `1` `sqrt(3)/2` `sqrt(2)/2` `1/2` `0` `-1` `0` `1`
`text(tg)alpha` `0` `sqrt(3)/3` `1` `sqrt(3)` `infty` `0` `infty` `0`
`text(ctg)alpha` `infty` `sqrt(3)` `1` `sqrt(3)/3` `0` `infty` `0` `infty`

Основные соотношения

`sin^2alpha+cos^2alpha=1`
`text(tg)alpha=sinalpha/cosalpha=1/(text(ctg)alpha)`  

Формулы двойного угла

`cos2alpha={(cos^2alpha-sin^2alpha),(1-2sin^2alpha),(2cos^2alpha-1):}`
`sin2alpha=2sinalphacosalpha`  
`text(tg)2alpha=(2text(tg)alpha)/(1-text(tg)^2alpha)`  

Формулы суммы и разности аргументов

`sin(alpha+-beta)=sinalphacosbeta+-cosalphasinbeta`
`cos(alpha+-beta)=cosalphacosbeta∓sinalphasinbeta`
`text(tg)(alpha+-beta)=(text(tg)alpha+-text(tg)beta)/(1∓text(tg)alpha*text(tg)beta)`

Преобразование суммы и разности в произведение

`sinalpha+-sinbeta=2sin((alpha+-beta)/2)cos((alpha∓beta)/2)`
`cosalpha+cosbeta=2cos((alpha+beta)/2)cos((alpha-beta)/2)`
`cosalpha-cosbeta=-2sin((alpha+beta)/2)sin((alpha-beta)/2)`

Формулы половинного аргумента

`sin(alpha/2)=+-sqrt((1-cosalpha)/2)`
`cos(alpha/2)=+-sqrt((1+cosalpha)/2)`
`text(tg)(alpha/2)=+-sqrt((1-cosalpha)/(1+cosalpha))=(1-cosalpha)/sinalpha=sinalpha/(1+cosalpha)`  

Обратные тригонометрические функции

`sinx=A` `x=(-1)^k*arcsinA + pik`
или
`{(x=arcsinA + 2pik),(x=pi-arcsinA+2pik):}`
`kinZZ`
`cosx=A` `x=±arccosA + 2pik` `kinZZ`
`tg x=A` `x=text(arctg) A + pik` `kinZZ`
`ctg x=A` `x=text(arcctg) A + pik` `kinZZ`

Также некоторые тригонометрические соотношения смотрите в разделе Геометрия.

Производные

Основные правила дифференцирования

`(u+-v)’=u’+-v’`  
`(u*v)’=u’*v+u*v’`  
`(u/v)^’=(u’*v-u*v’)/v^2`  
`[f(g(x))]’=f'(g(x))*g'(x)`

Уравнение касательной

`y=f(x_0)+f'(x_0)*(x-x_0)`
 

Производные элементарных функций

`C’=0` `(C*x)’=C`  
`(x^m)’=mx^(m-1)` `(sqrtx)’=1/(2sqrtx)`  
`(1/x)^’=-1/x^2`  
`(e^x)’=e^x` `(lnx)’=1/x`  
`(a^x)’=a^x*lna` `(log_ax)’=1/(xlna)`
`(sinx)’=cosx` `(cosx)’=-sinx`  
`(text(tg)x)’=1/cos^2x` `(text(ctg)x)’=-1/sin^2x`  
`(arcsinx)’=1/sqrt(1-x^2)` `(arccosx)’=-1/sqrt(1-x^2)`
`(text(arctg))=1/(1+x^2)’` `(text(arcctg))’=-1/(1+x^2)`  

Также некоторые сведения про производные смотрите в описании задач
№14 (база), №7 (профиль), №12 (профиль).

Первообразные

Первообразная: `F'(x)=f(x)`      
Неопределённый интеграл: `intf(x)dx=F(x)+C`    
Определённый интеграл (формула Ньютона-Лейбница): `int_a^bf(x)dx=F(b)-F(a)`

Таблица первообразных

`f(x)` `F(x)` `f(x)` `F(x)`
`a` `ax`      
`x^n` `x^(n+1)/(n+1)`   `1/x` `lnx`
`e^x` `e^x`   `a^x` `a^x/lna`
`sinx` `-cosx`   `cosx` `sinx`
`1/cos^2x` `text(tg)x`   `1/sin^2x` `-text(ctg)x`
`1/(x^2+a^2)` `1/atext(arctg)x/a`   `1/(x^2-a^2)` `1/(2a)ln|(x-a)/(x+a)|`
`1/sqrt(a^2-x^2)` `text(arcsin)x/a`   `1/sqrt(x^2+a)` `ln|x+sqrt(x^2+a)|`

Геометрия

Планиметрия (2D)

Площади фигур:

Окружность: `S=pir^2`  
Треугольник: `S=1/2ah`  
Параллелограмм: `S=ah`  
Четырёхугольник: `S=1/2d_1d_2sinvarphi`
Трапеция: `S=(a+b)/2*h`  

Стереометрия (3D)

Призма: `V=S_(осн)h`  
Пирамида: `V=1/3S_(осн)h`  
Конус: `V=1/3S_(осн)h`  
`S_(бок)=pirl`  
Цилиндр: `V=pir^2h`
  `S_(бок)=2pirh`
Шар: `V=4/3pir^3`  
`S=4pir^2`  

Математика – обязательный предмет на ЕГЭ, ее придется сдавать всем выпускникам – по базовому или профильному уровню. Какие требования предъявляются к школьнику на ЕГЭ по математике, что можно и что нельзя с собой брать на экзамен: разъяснения Рособрнадзора.

Выпускники российских школ в среду, 29 мая будут сдавать ЕГЭ по математике. Минпросвещения в 2019 году изменило порядок проведения этого экзамена: если раньше школьник мог выбрать для сдачи и базовый, и профильный уровень, то сейчас такой возможности нет. Эксперты решили, что проходить тестирование сразу по двум уровням не имеет смысла: те, кто выбирает профиль, легко выполнит и базу, и наоборот –  выбравшие базовый уровень с профильным просто не справятся.

Изменения в правилах проведения ЕГЭ по математике вызывают вопросы у школьников и родителей: что можно с собой брать на экзамен того или другого уровня, и есть ли какие-либо отличия в правилах проведения экзамена.

Предметы, разрешенные на ЕГЭ по профильной математике

Перечень того, что допускается проносить на ЕГЭ, ежегодно устанавливается Рособрнадзором и Минпросом. В 2019 году список совсем небольшой, с собой можно взять только ручку (гелевую, черную) и линейку. Справочники, которым разрешено пользоваться, выпускники могут попросить непосредственно на экзамене.

Категорически не разрешается проносить:

  • смартфоны;
  • планшеты;
  • калькуляторы;
  • справочные материалы.

Нарушение установленных правил может привести к тому, что ученика выгонят.

Задания ЕГЭ по математике профильного уровня

Выпускники, выбравшие профиль, должны будут выполнить 19 заданий разного уровня сложности, самые сложные помечаются звездочкой. Эксперты отмечают, что в 2019 году задания стали сложнее, особенно во второй части (с 13 по 19 пункты). Так, 14-я задача сформулирована таким образом, что школьнику потребуется произвести дополнительные построения, подразумевающие хорошее пространственное воображение и безусловное понимание материала. 17-я и 18-я задачи также требует уверенного владения предметом и способностью видеть, какие графические процессы скрываются за формулами: просто подставить данные под какую-либо формулу не получится.

Разработчики заданий для ЕГЭ по математике профильного уровня подчеркивают, что с каждым годом они изменяются таким образом, чтобы как можно точнее выявить способность учеников к самостоятельному мышлению и нестандартным решениям.

Экзамен по профильной математике продлится 253 минуты.

Полный сборник красиво оформленных школьных формул по алгебре и геометрии.

В пособии содержатся все разделы школьной математики, все формулы и даны подробные описания к каждому из них.

Смотреть в PDF: Скачайте pdf файл.

Можете записаться на занятия к репетитору математики, если что-то не понятно.

По разделам:

Степени и корни:

степени и корни

  Сокращенное умножение

:

сокращенное умножение

  Квадратный трехчлен: квадратное уравнение, формулы Виета, разложение на множители:
 квадратный трехчлен


 

Логарифмы:
 логарифмы

 

Формулы тригонометрии, тождества:
 формулы тригонометрии, тождества

 

Тригонометрические уравнения:
 тригонометрические уравнения, простейшие

 

Значения тригонометрических функций:
 значения тригонометрических функций

 

Формулы приведения:
 формулы приведения

 

Сумма и разность углов:
 сумма и разность углов

 

Формулы двойного и тройного аргумента:
 формулы двойного и тройного аргумента

 

Формулы половинного аргумента:
 формулы половинного аргумента

 

Сумма и разность тригонометрических функций:
 сумма и разность в тригонометрии

 

Произведение тригонометрических функций:
 произведение в тригонометрии

 

Производная: признаки возрастания, убывания, минимума функции:
 производные

 

Дифференциальное исчисление:
 дифферецниальное исчесление

 

Геометрия: формулы площадей. Прямоугольники, окружности, трапеции:
 
геометрия
 

Стереометрия: объёмы, площади поверхностей:

стереометрия

Обратиться к репетитору по математике.

Формулы для ЕГЭ по математике

На ЕГЭ формулами пользоваться нельзя, нужно их помнить! 

В этой подборке формул использованы 3 основных принципа, для упрощения запоминания:

  • Выбраны только те формулы, которые могут встретиться на ЕГЭ по математике (это лишь часть того, что изучено в школе);
  • Формулы разобраны на тематические блоки;
  • Блоки формул выделены цветовым фоном, который позволяет, всего после нескольких обращений, вспоминать картинку и буквально читать с нее нужную формулу.

Как легко запомнить именно нужные формулы из всего курса математики? 

Для подготовки нужно выбрать такое оформление математических формул, чтобы они отложились в памятки наиболее эффективно. 

Обобщающий тест по русскому языку

Рейтинговый контроль по русскому языку (10-11 классы).


Минпросвещения вводит исполнение гимна России во всех школах с 1 сентября

Образование | Сегодня, 15:00

Исполнение гимна РФ и поднятие государственного флага в начале учебной недели будут проводиться в каждой школе с 1 сентября следующего учебного года, заявил во вторник глава министерства просвещения Сергей Кравцов на первом всероссийском школьном историческом форуме «Сила в правде!» в Музее Победы.


Консультация по биологии

Биология | Сегодня, 14:58

Разработчики экзаменационных материалов, учителя и выпускники, расскажут, как подготовиться к экзамену, об особенностях заданий в ЕГЭ и ответят на вопросы старшеклассников.


Главные формулы для егэ по профильной математике

Разработчики КИМ считают, что для решения задач математики ЕГЭ базового уровня достаточно знания формул, представленных в справочных материалах – они выдаются на экзамене в индивидуальном комплекте вместе с КИМ. В «официальную шпаргалку», которой можно пользоваться во время проведения ЕГЭ, входят:

  • таблица квадратных чисел от 0 до 99;
  • свойства арифметического квадратного корня;
  • формулы сокращенного умножения;
  • корни квадратного уравнения;
  • свойства степени и логарифма;
  • теорема Пифагора;
  • формула расчета длины окружности и площади круга;
  • расчет средней линии треугольника и трапеции;
  • радиус вписанной и описанной окружности правильного треугольника;
  • формулы расчета площади планиметрических фигур;
  • вычисление поверхностей и объемов тел;
  • основные тригонометрические функции и тождества;
  • график линейной функции;
  • геометрический смысл производной.

Понять, нужны ли еще какие-то формулы для ЕГЭ по математике, поможет решение тренировочных тестов, например, содержащихся в открытом банке заданий на сайте ФИПИ. Для подстраховки можно изучить КЭС (кодификатор элементов содержания), актуальный в текущем учебном году. В нем перечислены все темы, которые выносятся на экзамен.

Дробно рациональные уравнения

  • Если дробь равна нулю, то числитель равен нулю, а знаменатель не равен нулю.
  • Если хотя бы в одной части рационального уравнения содержится дробь, то уравнение называется дробно-рациональным.

Чтобы решить дробно рациональное уравнение, необходимо:

  1. Найти значения переменной, при которых уравнение не имеет смысл (ОДЗ)
  2. Найти общий знаменатель дробей, входящих в уравнение;
  3. Умножить обе части уравнения на общий знаменатель;
  4. Решить получившееся целое уравнение;
  5. Исключить из его корней те, которые не удовлетворяют условию ОДЗ.

Если в уравнении участвуют две дроби и числители их равные выражения, то знаменатели можно приравнять друг к другу и решить полученное уравнение, не обращая внимание на числители. НО учитывая ОДЗ всего первоначального уравнения

Тригонометрия

Пусть имеется прямоугольный треугольник:

Тогда, определение синуса:

Основное тригонометрическое тождество:

Простейшие следствия из основного тригонометрического тождества:

Синус двойного угла:

Косинус двойного угла:

Тангенс двойного угла:

Котангенс двойного угла:

Тригонометрические формулы сложения

Тригонометрические формулы преобразования суммы в произведение

Произведение синуса и косинуса:

Формулы понижения степени

Формула понижения степени для косинуса:

Формула понижения степени для тангенса:

Формула понижения степени для котангенса:

Формула половинного угла для тангенса:

Формула половинного угла для котангенса:

Формулы приведения задаются в виде таблицы:

Особенности уровней ЕГЭ по математике

В 2015 году ЕГЭ по математике разделили на базовый и профильный уровни. Это упростило жизнь выпускникам, которые не планируют поступать на специальности, связанные с математикой. Если ЕГЭ по математике нужен только для получения аттестата, можно сдать его облегченную версию, оставив время и силы для профильных экзаменов.

Базовый уровень ЕГЭ по математике

Как устроен базовый ЕГЭ по математике? Экзамен идет 180 минут, он состоит из 21 задания, за каждое из которых можно получить 1 балл. Этот экзамен единственный, который переводится не в 100-бальную систему, а в оценки.

Пока перевод баллов ЕГЭ по математике базового уровня в оценки не опубликован ФИПИ, но мы добавим его в статью, как только появится официальная информация.

В ЕГЭ по математике базового уровня 6 тематических блоков:

Тематические блоки, ЕГЭ по математике 2022, базовый уровень

Подробнее про базовый ЕГЭ по математике, включая разбор всех заданий, читайте здесь, а мы перейдём к профильному.

Профильный уровень ЕГЭ по математике

Данный экзамен, как и остальные ЕГЭ, переводится в 100-бальную систему.

Пока перевод баллов ЕГЭ по математике профильного уровня в 100-бальную систему пока не опубликован ФИПИ. Мы добавим его в статью, как только появится официальная информация.

Экзамен состоит из двух частей: Часть 1 с кратким ответом, а Часть 2 — с развернутым. Длится он 235 минут. Всего есть 18 заданий, которые разделены на 3 блока: алгебра, геометрия и реальная математика. Максимальное количество первичных баллов — 31.

База, профиль — неважно, к какому именно уровню вы готовитесь. В любом случае надо не только правильно решить каждое задание, но и оформить его так, чтобы проверяющие ни к чему не придрались

Нарисовать и описать график, расписать решение уравнения или задачи… И это не все: нужно еще и внести ответы в бланк без ошибок. И все это — за ограниченный период времени! Так можно перенервничать и запороть даже самую простую задачку. А на ЕГЭ — каждый балл на счету.Поэтому на своих занятиях я сразу показываю своим ученикам, как правильно оформлять каждое задание в ЕГЭ по математике. Мы разбираем все критерии и учимся правильно отвечать на вопросы. А еще я всегда помогаю ученикам закрыть пробелы в знаниях и объясняю сложные темы столько раз, сколько нужно. И куда же без лайфхаков? Всегда рассказываю лучший способ решения типичных заданий. Так что мои ученики приходят на экзамены подготовленными и не нервничают, когда видят задачу. Хотите также? Приходите ко мне на курсы подготовки к ЕГЭ по математике — научу!

Несовместные события

Два события $А$ и $В$ называют несовместными, если отсутствуют исходы, благоприятствующие одновременно как событию
$А$, так и событию $В$. (События, которые не могут произойти одновременно)

Вероятность суммы двух несовместных событий $A$ и $B$ равна сумме вероятностей этих
событий:

На экзамене по алгебре школьнику достается один вопрос их всех экзаменационных. Вероятность
того, что это вопрос на тему «Квадратные уравнения», равна $0,3$. Вероятность того, что это вопрос на тему
«Иррациональные уравнения», равна $0,18$. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите
вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Данные события называются несовместные, так как школьнику достанется вопрос ЛИБО по теме «Квадратные уравнения»,
ЛИБО по теме «Иррациональные уравнения». Одновременно темы не могут попасться. Вероятность суммы двух
несовместных событий $A$ и $B$ равна сумме вероятностей этих событий:

Теория к заданию 4 из ЕГЭ по математике (профильной)

Вероятностью события $А$ называется отношение числа благоприятных для $А$ исходов к числу всех
равновозможных исходов

$P(A)=/$, где $n$ – общее количество возможных исходов, а $m$ – количество исходов, благоприятствующих событию
$А$.

Вероятность события — это число из отрезка $$

В фирме такси в наличии $50$ легковых автомобилей. $35$ из них чёрные, остальные — жёлтые.
Найдите вероятность того, что на случайный вызов приедет машина жёлтого цвета.

Найдем количество желтых автомобилей:

Всего имеется $50$ автомобилей, то есть на вызов приедет одна из пятидесяти. Желтых автомобилей $15$,
следовательно, вероятность приезда именно желтого автомобиля равна $<15>/<50>=<3>/<10>=0,3$

Противоположные события

Два события называются противоположными, если в данном испытании они несовместимы и одно из них обязательно
происходит. Вероятности противоположных событий в сумме дают 1.Событие, противоположное событию $А$, записывают
$<(А)><->$.

Независимые события

Два события $А$ и $В$ называются независимыми, если вероятность появления каждого из них не зависит от того,
появилось другое событие или нет. В противном случае события называются зависимыми.

Вероятность произведения двух независимых событий $A$ и $B$ равна произведению этих
вероятностей:

Иван Иванович купил два различных лотерейных билета. Вероятность того, что выиграет первый
лотерейный билет, равна $0,15$. Вероятность того, что выиграет второй лотерейный билет, равна $0,12$. Иван Иванович
участвует в обоих розыгрышах. Считая, что розыгрыши проводятся независимо друг от друга, найдите вероятность того,
что Иван Иванович выиграет в обоих розыгрышах.

Вероятность $Р(А)$ — выиграет первый билет.

Вероятность $Р(В)$ — выиграет второй билет.

События $А$ и $В$ – это независимые события. То есть, чтобы найти вероятность того, что они произойдут оба
события, нужно найти произведение вероятностей

Несовместные события

Два события $А$ и $В$ называют несовместными, если отсутствуют исходы, благоприятствующие одновременно как событию
$А$, так и событию $В$. (События, которые не могут произойти одновременно)

Вероятность суммы двух несовместных событий $A$ и $B$ равна сумме вероятностей этих
событий:

На экзамене по алгебре школьнику достается один вопрос их всех экзаменационных. Вероятность
того, что это вопрос на тему «Квадратные уравнения», равна $0,3$. Вероятность того, что это вопрос на тему
«Иррациональные уравнения», равна $0,18$. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите
вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Данные события называются несовместные, так как школьнику достанется вопрос ЛИБО по теме «Квадратные уравнения»,
ЛИБО по теме «Иррациональные уравнения». Одновременно темы не могут попасться. Вероятность суммы двух
несовместных событий $A$ и $B$ равна сумме вероятностей этих событий:

Совместные события

Два события называются совместными, если появление одного из них не исключает появление другого в одном и том же
испытании. В противном случае события называются несовместными.

Вероятность суммы двух совместных событий $A$ и $B$ равна сумме вероятностей этих событий минус
вероятность их произведения:

В холле кинотеатра два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится
кофе, равна $0,6$. Вероятность того, что кофе закончится в обоих автоматах, равна $0,32$. Найдите вероятность того,
что к концу дня кофе закончится хотя бы в одном из автоматов.

Обозначим события, пусть:

$А$ = кофе закончится в первом автомате,

$В$ = кофе закончится во втором автомате.

$A·B =$ кофе закончится в обоих автоматах,

$A + B =$ кофе закончится хотя бы в одном автомате.

По условию, $P(A) = P(B) = 0,6; P(A·B) = 0,32$.

События $A$ и $B$ совместные, вероятность суммы двух совместных событий равна сумме вероятностей этих событий,
уменьшенной на вероятность их произведения:

$P(A + B) = P(A) + P(B) − P(A·B) = 0,6 + 0,6 − 0,32 = 0,88$

Формулы для базового ЕГЭ-2022 по математике

Формулы сокращённого умножения

`(a + b)^2=a^2 + 2ab + b^2`
`(a − b)^2=a^2 − 2ab + b^2`
`a^2 − b^2=(a + b)(a − b)`
`a^3 + b^3=(a + b)(a^2 − ab + b^2)`
`a^3 − b^3=(a − b)(a^2 + ab + b^2)`
`(a + b)^3=a^3 + 3a^2b + 3ab^2 + b^3` Эти две формулы заучивать не обязательно, но желательно
`(a − b)^3=a^3 − 3a^2b + 3ab^2 − b^3`

Прогрессии

Геометрическая прогрессия:
`b_n=b_(n-1)*q`
`b_n=b_1*q^(n-1)`
`S_n=((q^n-1)*b_1)/(q-1)`
Бесконечно убывающая: `S=b_1/(1-q)`

Вероятность

Вероятность события A: `P(A)=m/n` m — число благоприятных событийn — общее число событий
События происходят A и B происходят одновременно `A*B`
Независимые события: `P(A*B)=P(A)*P(B)` Когда вероятность одного события (А) не зависит от другого события (B)
Зависимые события: `P(A*B)=P(A)*P(B|A)` `P(B|A)` — вероятность события B при условии, что событие A наступило
Происходит или событие A, или B `A+B`
Несовместные события: `P(A+B)=P(A)+P(B)` Когда невозможно наступление обоих событий одновременно, т.е. `P(A*B)=0`
Совместные события: `P(A+B)=P(A)+P(B)-P(A*B)` Когда оба события могут наступить одновременно

Свойства степеней

`a^0=1` `a^1=a`
`a^(-1)=1/a` `a^(-n)=1/a^n`
`a^(1/2)=sqrt(a)` `a^(1/n)=root(n)(a)`
`a^m*a^n=a^(m+n)` `a^m/a^n=a^(m-n)`
`(a*b)^n=a^n*b^n` `(a/b)^n=a^n/b^n`
`(a^m)^n=a^(m*n)` `a^(m/n)=root(n)(a^m)`

Свойства логарифмов

`log_ab=c«a^c=b` Определение логарифма
`log_a1=0`
`log_aa=1`
`log_a(b*c)=log_ab+log_ac`
`log_a(b/c)=log_ab-log_ac`
`log_ab^n=n*log_ab`
`log_(a^m)b=1/m*log_ab`
`log_ab=1/(log_ba)`
`log_ab=(log_cb)/(log_ca)`
`a^(log_cb)=b^(log_ca)`
`a^(log_ab)=b`

Геометрия

Планиметрия (2D)
Тригонометрия: `sinA=a/c` `cosA=b/c`
`text(tg)A=sinA/cosA=a/b`
Теорема косинусов: `c^2=a^2+b^2-2ab*cosC`
Теорема синусов: `a/sinA=b/sinB=c/sinC=2R` где R — радиус описанной окружности
Уравнение окружности: `(x-x_0)^2+(y-y_0)^2=R^2` где `(x_0;y_0)` — координаты центра окружности
Соотношение вписанного и центрального углов: `beta=alpha/2=(uualpha)/2`
Описанная окружность, треугольник: `R=(abc)/(4S)` См. также теорему синусов. Центр лежит на пересечении срединных перпендикуляров.
Вписанная окружность, треугольник: `r=S/p` где p — полупериметр многоугольника. Центр лежит на пересечении биссектрис.
Описанная окружность, четырёхугольник: `alpha+gamma=beta+delta=180^circ`
Вписанная окружность, четырёхугольник: `a+c=b+d`
Свойство биссектрисы: `a/x=b/y`
Теорема о пересекающихся хордах: `AM*BM=CM*DM` Эти теоремы необходимо уметь выводить
Теорема об угле между касательной и хордой: `alpha=1/2uuAB`
Теорема о касательной и секущей: `CM^2=AM*BM`
Теорема об отрезках касательных: `AB=AC`

Площади фигур:

Окружность: `S=pir^2`
Треугольник: `S=1/2ah`
Параллелограмм: `S=ah`
Четырёхугольник: `S=1/2d_1d_2sinvarphi` У ромба `varphi=90^@`
Трапеция: `S=(a+b)/2*h`

Обратные тригонометрические функции и простейшие тригонометрические уравнения

Арккосинус

Если, $|а|≤1$, то $arccos а$ – это такое число из отрезка $$, косинус которого равен $а$.

$arcos(-a) = π-arccos⁡a$, где $0≤а≤1$

Уравнение вида $cos t=a$, eсли, $|а|≤1$, имеет решение

$t=±arccos ⁡ a+2πk; k∈Z$

Частные случаи

$cos t =1, t = 2πk;k∈Z$

$cos t = 0, t = <π>/<2>+πk;k∈Z$

$cos t = -1, t=π+2πk;k∈Z$

Найдите наименьший положительный корень уравнения $сos<2πx>/<3>=-<√3>/<2>$

Далее избавимся от всех величин, мешающих иксу. Для этого разделим обе части уравнения на $<2π>/<3>$

Чтобы найти наименьший положительный корень, подставим вместо $k$ целые значения

Нам подходит $1,25$ – это и есть результат

Арксинус

Если, $|а|≤1$, то $arcsin a$ – это такое число, из отрезка $[-<π>/<2>;<π>/<2>]$, синус которого равен $а$.

$arcsin(-a)= — arcsin a$, где $0≤а≤1$

Если, $|а|≤1$, то уравнение $sin t =a$ можно решить и записать двумя способами:

$1. t_1 = arcsin a+2πk;k∈Z$

$t_2 = (π- arcsin a)+ 2πk;k∈Z$

$2. t=(-1)^n arcsin ⁡ a+πn; n∈Z$

$3.$ Частные случаи

Арктангенс

$arctg a$ — это такое число, из отрезка $[-<π>/<2>;<π>/<2>]$, тангенс которого равен $а$.

Основные формулы для профильного ЕГЭ

Выпускники, планирующие сдавать профиль, ставятся в более жесткие условия, чем те, кто выбрал базовый уровень. Учитывая то, что они видят перспективу своего дальнейшего обучения по направлениям, тесно или напрямую связанным с математикой, к их знаниям предъявляются повышенные требования. В частности, на официальные справочные материалы особенно рассчитывать не приходится. Все, что в них есть, это 5 тригонометрических тождеств.

Основываясь на данных, опубликованных на сайте ФИПИ, с большой долей вероятности потребуется знание следующих формул для сдачи ЕГЭ по профильной математике:

  • правила сокращенного умножения;
  • арифметическая и геометрическая прогрессии;
  • основы вероятностной теории;
  • свойства степеней и логарифмов;
  • азы тригонометрии (формулы двойного угла, суммы и разности аргументов; алгоритм преобразования разности и суммы в произведение; обратные функции);
  • производная (правила дифференцирования, элементарнее функции и уравнение касательной);
  • первообразная;
  • двухмерная планиметрия;
  • правила нахождения площадей геометрических фигур;
  • трехмерная стереометрия.

Опытные учителя и репетиторы собрали все формулы по математике, которые приходилось использовать на ЕГЭ в последние три года:

  1. ЕГЭ по математике – формулы для алгебры и начал анализа
  2. Формулы ЕГЭ – математика, раздел геометрия

Материалы для скачивания – в формате pdf.

Выученные назубок формулы к ЕГЭ по математике – это только часть пути к успешной сдаче, надо еще научиться правильно применять их. Хорошую практику даст решение сложных задач.

Квадратное уравнение и формула разложения квадратного трехчлена на множители

Пусть квадратное уравнение имеет вид:

Тогда дискриминант находят по формуле:

Если D > 0, то квадратное уравнение имеет два корня, которые находят по формуле:

Если D = 0, то квадратное уравнение имеет один корень (его кратность: 2), который ищется по формуле:

Если D < 0, то квадратное уравнение не имеет корней. В случае когда квадратное уравнение имеет два корня, соответствующий квадратный трехчлен может быть разложен на множители по следующей формуле:

Если квадратное уравнение имеет один корень, то разложение соответствующего квадратного трехчлена на множители задается следующей формулой:

Только в случае если квадратное уравнение имеет два корня (т.е. дискриминант строго больше ноля) выполняется Теорема Виета. Согласно Теореме Виета, сумма корней квадратного уравнения равна:

Произведение корней квадратного уравнения может быть вычислено по формуле:

Парабола

График параболы задается квадратичной функцией:

При этом координаты вершины параболы могут быть вычислены по следующим формулам. Икс вершины:

Игрек вершины параболы:

Независимые события

Два события $А$ и $В$ называются независимыми, если вероятность появления каждого из них не зависит от того,
появилось другое событие или нет. В противном случае события называются зависимыми.

Вероятность произведения двух независимых событий $A$ и $B$ равна произведению этих
вероятностей:

Иван Иванович купил два различных лотерейных билета. Вероятность того, что выиграет первый
лотерейный билет, равна $0,15$. Вероятность того, что выиграет второй лотерейный билет, равна $0,12$. Иван Иванович
участвует в обоих розыгрышах. Считая, что розыгрыши проводятся независимо друг от друга, найдите вероятность того,
что Иван Иванович выиграет в обоих розыгрышах.

Вероятность $Р(А)$ — выиграет первый билет.

Вероятность $Р(В)$ — выиграет второй билет.

События $А$ и $В$ – это независимые события. То есть, чтобы найти вероятность того, что они произойдут оба
события, нужно найти произведение вероятностей

Формулы для ОГЭ-2022 по математике

Формулы сокращённого умножения

`(a + b)^2=a^2 + 2ab + b^2`
`(a − b)^2=a^2 − 2ab + b^2`
`a^2 − b^2=(a + b)(a − b)`
`a^3 + b^3=(a + b)(a^2 − ab + b^2)`
`a^3 − b^3=(a − b)(a^2 + ab + b^2)`
`(a + b)^3=a^3 + 3a^2b + 3ab^2 + b^3` Эти две формулы заучивать не обязательно, но желательно
`(a − b)^3=a^3 − 3a^2b + 3ab^2 − b^3`

Прогрессии

Геометрическая прогрессия:
`b_n=b_(n-1)*q`
`b_n=b_1*q^(n-1)`
`S_n=((q^n-1)*b_1)/(q-1)`
Бесконечно убывающая: `S=b_1/(1-q)`

Вероятность

Вероятность события A: `P(A)=m/n` m — число благоприятных событийn — общее число событий
События происходят A и B происходят одновременно `A*B`
Независимые события: `P(A*B)=P(A)*P(B)` Когда вероятность одного события (А) не зависит от другого события (B)
Зависимые события: `P(A*B)=P(A)*P(B|A)` `P(B|A)` — вероятность события B при условии, что событие A наступило
Происходит или событие A, или B `A+B`
Несовместные события: `P(A+B)=P(A)+P(B)` Когда невозможно наступление обоих событий одновременно, т.е. `P(A*B)=0`
Совместные события: `P(A+B)=P(A)+P(B)-P(A*B)` Когда оба события могут наступить одновременно

Свойства степеней

`a^0=1` `a^1=a`
`a^(-1)=1/a` `a^(-n)=1/a^n`
`a^(1/2)=sqrt(a)` `a^(1/n)=root(n)(a)`
`a^m*a^n=a^(m+n)` `a^m/a^n=a^(m-n)`
`(a*b)^n=a^n*b^n` `(a/b)^n=a^n/b^n`
`(a^m)^n=a^(m*n)` `a^(m/n)=root(n)(a^m)`

Геометрия

Планиметрия (2D)
Тригонометрия: `sinA=a/c` `cosA=b/c`
`text(tg)A=sinA/cosA=a/b`
Теорема косинусов: `c^2=a^2+b^2-2ab*cosC`
Теорема синусов: `a/sinA=b/sinB=c/sinC=2R` где R — радиус описанной окружности
Уравнение окружности: `(x-x_0)^2+(y-y_0)^2=R^2` где `(x_0;y_0)` — координаты центра окружности
Соотношение вписанного и центрального углов: `beta=alpha/2=(uualpha)/2`
Описанная окружность, треугольник: `R=(abc)/(4S)` См. также теорему синусов. Центр лежит на пересечении срединных перпендикуляров.
Вписанная окружность, треугольник: `r=S/p` где p — полупериметр многоугольника. Центр лежит на пересечении биссектрис.
Описанная окружность, четырёхугольник: `alpha+gamma=beta+delta=180^circ`
Вписанная окружность, четырёхугольник: `a+c=b+d`
Свойство биссектрисы: `a/x=b/y`
Теорема о пересекающихся хордах: `AM*BM=CM*DM` Эти теоремы необходимо уметь выводить
Теорема об угле между касательной и хордой: `alpha=1/2uuAB`
Теорема о касательной и секущей: `CM^2=AM*BM`
Теорема об отрезках касательных: `AB=AC`

Площади фигур:

Применение формул сокращенного умножения

1. Квадрат суммы раскладывается на квадрат первого числа плюс удвоенное произведение первого числа на второе число и плюс квадрат второго числа.

2. Квадрат разности раскладывается на квадрат первого числа минус удвоенное произведение первого числа на второе и плюс квадрат второго числа.

3. Разность квадратов раскладывается на произведение разности чисел и их сумму.

4. Куб суммы равен кубу первого числа плюс утроенное произведение квадрата первого на второе число плюс утроенное произведение первого на квадрат второго числа плюс куб второго числа.

5. Куб разности равен кубу первого числа минус утроенное произведение квадрата первого на второе число плюс утроенное произведение первого на квадрат второго числа и минус куб второго числа.

6. Сумма кубов равна произведению суммы чисел на неполный квадрат разности.

7. Разность кубов равна произведению разности чисел на неполный квадрат суммы.

Задание №8 ЕГЭ по математике профильного уровня

объемы фигур ЕГЭ по математике

Тогда диагональ куба

3 комментариев

откуда берем 4 первоначально?

Радиус (R) – это диаметр (D) поделить на 2, следовательно, R^2 = (D/2)^2 (возводим числитель и знаменатель в квадрат), получаем D^2/4

Формула диагонали квадрата = а√3 значит а√3=√48,; а=√48:3=√16=4, сторона равна 4, значит Vкуба равно а*а*а=64.

Какие формулы понадобятся на егэ по математике профильный уровень

В сборник для подготовки к ЕГЭ по математике добавлены новые материалы! Материалы подходят для сдачи базового и профильного уровней, они представлены согласно следующему плану:
● краткая теория по базовому курсу;
● теория по вычислениям и преобразованиям (базовый уровень);
● теория по профильному уровню
● решение каждого задания профильного курса
● основные формулы по планиметрии и стереометрии;
● решение геометрических задач;
● задачи по алгебре:
• на движение;
• на совместную работу;
• на проценты;
• на сплавы и смеси;
● материалы по алгебре и геометрии;
● теория по каждому заданию (1-12);
● основные теоремы и определения по геометрии;
● теория по 86 темам:

• Графики числовых функций
1-3. Преобразование графиков
4. Чтение графиков
• Неравенства (1)
1. Числовые неравенства и их свойства
2. Графическое решение неравенств
3. Двойное неравенство
4. Числовые промежутки
5. Линейные неравенства
6. Системы линейных неравенств
7. Квадратные неравенства
8. Дробно — рациональные неравенства
• Неравенства (2)
1. Метод интервалов
2. Показательные неравенства
3. Логарифмические неравенства
4. Тригонометрические неравенства
5. Графическое решение неравенств
6. Неравенства с двумя переменными
• Производные
1. Производные основных функций
2. Вычисление производной
3. Исследование функции с помощью производной
4. Касательная к графику функции
5. Наибольшее и наименьшее значения функций
6. График производной функции
7. Вторая производная функции. Выпуклость функции, точки экстремумов и перегиба
• Решение уравнений (1)
1. Линейные уравнение с одной переменной
2-3. Системы уравнений с двумя переменными
4. Неполные квадратные уравнения
5. Квадратные уравнения
6. Теорема Виета
7. Дробные уравнения
8. Уравнения с двумя переменными и их графики
9. Графическое решение уравнений
10. Графическое решение систем линейных уравнений
11. Графическое решение систем НЕлинейных уравнений
12. Выражения. Тождества. Уравнения
• Решение уравнений (2)
1. Методы решения уравнений
2-3. Иррациональные уравнение
4. Показательные уравнения
5. Логарифмические уравнения
6. Тригонометрические уравнения
7-8. Решение тригонометрических уравнений
9. Графическое решение уравнений
• Тригонометрия и логарифмы
1-3. Формулы тригонометрии
4-6. Логарифм и его свойства
• Формулы и преобразование выражений
1-2. Формулы сокращенного умножения
3. Степени с натуральным и целым показателями
4. Степень с рациональным показателем
5. Квадратный корень и его свойства
6. Действия с квадратными корнями
7. Корни натуральной степени
8. Одночлены и многочлены
9. Действия с многочленами
10. Разложение многочлена на множители
• Функции (1)
1. Прямая пропорциональность
2. Обратная пропорциональность
3. Линейная функция
4. Функции y=x2 и y=x3
5. Функции с корнем
6-7. Квадратичная функция
8. Функции и их графики
• Функции (2)
1. Тригонометрическая окружность. Синус и косинус угла
2. Тригонометрическая окружность. Тангенс и котангенс угла
3. Тригонометрические функции — синус и косинус
4. Тригонометрические функции — тангенс и котангенс
5. Обратные тригонометрические функции — арксинус и арккосинус
6. Обратные тригонометрические функции — арктангенс и арккотангенс
7. Степенная функция
8. Показательная функция
9. Логарифмическая функция
10. Графики функций
11. Взаимно-обратные функции
12. Свойства функций
13. Асимптоты графиков функций
• Числа, последовательности, проценты
1. Числовые множества
2. Числовые последовательности
3. Арифметическая прогрессия
4-5. Геометрическая прогрессия
6. Сложные проценты

• Многоугольник
1. Свойства параллелограммов
2. Трапеция
3. Признаки параллелограмма и его видов
4. Свойства многоугольников
5. Теорема Фалеса
6. Правильные треугольник и четырехугольник
7. Правильные шестиугольник и восьмиугольник
8-9. Площадь многоугольника
• Окружность
1. Окружность. Хорды и касательные
2. Окружность, описанная около треугольника
3. Окружность, вписанная в треугольник
4. Центральные и вписанные углы
5. Свойства хорд и секущих
6. Вписанные и описанные четырехугольники
7. Длина окружности и площадь круга
• Треугольник
1. Виды треугольников. Равные треугольники
2. Признаки равенства треугольников
3. Основные линии в треугольнике
4. Равнобедренный треугольник
5. Отношения отрезков в треугольнике
6. Прямоугольный треугольник
7. Теорема Пифагора
8. Синус, косинус, тангенс прямоугольного треугольника
9. Подобие треугольников
10. Теорема косинусов
11. Теорема синусов
12-13. Площадь треугольника
• Углы
1. Измерение отрезков и углов
2. Смежные и вертикальные углы
3. Биссектриса угла. Перпендикулярные прямые
4. Признаки параллельности прямых
5. Свойства параллельных прямых
6. Сумма углов треугольника. Внешний угол

Понравилась статья? Поделить с друзьями:
  • Формулы егэ математика профильный уровень геометрия
  • Формулы егэ математика профильный уровень 1 часть
  • Формулы егэ математика профиль алгебра
  • Формулы доступные на егэ по математике
  • Формулы для эксель егэ информатика