Логарифмы
Предыдущую статью о показательных уравнениях мы начали с уравнения 2x = 8. Там всё было ясно: x = 3.
А теперь рассмотрим уравнение 2x = 7.
По графику функции y = 2x мы видим, что это уравнение имеет корень, и притом единственный.
Ясно, что этот корень — не целое число (так как 22 = 4, 23 = 8). Более того, оказывается, что он не является даже рациональным числом, т. е. не представляется в виде обыкновенной дроби. Интуитивно мы чувствуем лишь, что он меньше 3, но не намного.
Этот корень обозначается log27 (читается: «логарифм семи по основанию два»). Он является иррациональным числом, т. е. бесконечной непериодической десятичной дробью. Калькулятор даёт: log27 = 2,807354922057604107…
Итак, наше число log27 — это показатель степени, в которую надо возвести 2, чтобы получить 7.
Теперь дадим общее определение логарифма. Пусть a > 0 и a ≠ 1 (условия те же, что и для основания показательной функции).
Определение. Логарифм положительного числа b по основанию a (обозначается logab) — это показатель степени, в которую надо возвести a, чтобы получить b.
Иными словами,
Например:
так как ;
, так как ;
так как ;
, так как .
Логарифм с основанием 10 называется десятичным и обозначается lg. Например, lg 100 = 2, lg 1000 = 3, lg 0,01 = −2.
Логарифм с основанием e называется натуральным и обозначается ln.
Обратите внимание: логарифм определён только для положительных чисел. Причина заключается в том, что показательная функция может принимать лишь положительные значения. Например, число log2(−4) не существует: в какую бы степень мы ни возводили 2, мы никогда не получим −4.
Не забывайте также про ограничения на основание логарифма: 0 < a < 1 или a > 1.
Основные формулы
По определению, logab — это показатель степени, в которую надо возвести число a, чтобы получить число b:
Формула (1) называется основным логарифмическим тождеством.
Вот еще один вариант записи основного логарифмического тождества:
logaax=x.
Перечислим свойства логарифмов. Они являются простыми следствиями правил действия со степенями. Все логарифмы ниже считаются определёнными.
Логарифм произведения — это сумма логарифмов:
loga(bc) = logab + logac. | (2) |
Логарифм частного — это разность логарифмов:
. | (3) |
Показатель степени логарифмируемого числа «спрыгивает» перед логарифмом:
(4) |
Показатель степени основания логарифма тоже «спрыгивает», но в виде обратного числа:
(5) |
Формулы (4) и (5) вместе дают:
. | (6) |
В частности, если m = n, мы получаем формулу:
. | (7) |
Например, .
Наконец, важнейшая формула перехода к новому основанию:
. | (8) |
В частности, если c = b, то logbb = 1, и тогда:
. | (9) |
Приведём несколько примеров из банка заданий.
1. (применили формулу (2) суммы логарифмов).
2. (применили основное логарифмическое тождество(1)).
3. (применили формулу (4)).
4. (применили формулу (9), перейдя к новому основанию 0,8).
5. (применили формулу (3) разности логарифмов).
Немного истории
Теперь вы поняли, что такое логарифмы и как ими пользоваться. Но для чего они всё-таки нужны? Или это просто такая математическая игрушка с хитрой инструкцией по применению?
Понятие логарифма и логарифмические таблицы появились в 17 веке, и значение их было огромно.
Это в наши дни вычисления не представляют труда — у каждого есть калькулятор. А как считали в «докомпьютерные» времена?
Складывать и вычитать можно было на счётах, а вот умножать и делить приходилось «в столбик» — медленно и трудно.
В 15–17 веках, в эпоху великих географических открытий, стали бурно развиваться торговля, экономика и наука. Требования к математике росли: расчёты становились более сложными, а точность — например, для решения навигационных задач — нужна была всё более высокая.
Необходим был инструмент, позволяющий упростить и ускорить расчёты, и таким инструментом явились логарифмы.
Предположим, что b и c — большие числа, которые надо перемножить. Появление таблиц логарифмов (например, с основанием 10) существенно упростило эту задачу. Теперь вычислителю достаточно было найти по таблицам десятичные логарифмы чисел b и c, сложить их (на счётах) и получить логарифм произведения: lgb + lgc = lg(bc).
А затем по таблице логарифмов найти само произведение чисел b и c.
Недаром французский математик и астроном Лаплас сказал, что изобретение логарифмов удлинило жизнь вычислителей. Логарифмическая линейка (которой инженеры пользовались до 70-х годов двадцатого века) была не менее прогрессивным изобретением, чем современный калькулятор.
Но это еще не всё! Мы не занимались бы логарифмами, если бы они имели лишь историческую, «музейную» ценность. О неожиданных применениях логарифмов мы расскажем в следующей статье, посвящённой логарифмической функции.
Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Логарифмы» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.
Публикация обновлена:
09.03.2023
18
Фев 2013
Категория: Справочные материалы
Логарифм. Определение. Свойства логарифмов
2013-02-18
2021-06-18
Логарифм числа по основанию определяется как показатель степени, в которую нужно возвести основание , чтобы получить число .
Обозначение читается как логарифм по основанию .
Например, , так как ( – основание степени, – показатель степени)
ЛОГАРИФМЫ
ОСНОВНОЕ ТОЖДЕСТВО
СВОЙСТВА
,
Свойства, тождество, определение выполняются при
Чаще всего используют логарифмы
– с основанием (натуральный логарифм), кратко –
– с основанием (десятичный логарифм), кратко –
Автор: egeMax |
комментариев 14
| Метки: Логарифмы, шпаргалки-таблицы
Всего: 35 1–20 | 21–35
Добавить в вариант
Найдите значение выражения
Источник: Апробация базового ЕГЭ по математике, 13—17 октября: вариант 166702.
Найдите значение выражения
Решите уравнение Если уравнение имеет более одного корня, в ответе укажите меньший из них.
Решите уравнение Если уравнение имеет более одного корня, в ответе укажите меньший из них.
Найдите значение выражения
Источник: Апробация базового ЕГЭ по математике, 13—17 октября: вариант 120911.
Найдите значение выражения
Источник: Апробация базового ЕГЭ по математике, 13—17 октября: вариант 166081.
Найдите значение выражения
Источник: Апробация базового ЕГЭ по математике, 13—17 октября: вариант 166084.
Найдите значение выражения
Источник: Апробация базового ЕГЭ по математике, 13—17 октября: вариант 166212.
Найдите значение выражения
Источник: Апробация базового ЕГЭ по математике, 13—17 октября: вариант 137751.
Найдите значение выражения
Источник: Апробация базового ЕГЭ по математике, 13—17 октября: вариант 137753.
Найдите значение выражения
Источник: Апробация базового ЕГЭ по математике, 13—17 октября: вариант 152742.
Найдите значение выражения
Источник: Апробация базового ЕГЭ по математике, 13—17 октября: вариант 152744.
Найдите значение выражения
Источник: Апробация базового ЕГЭ по математике, 13—17 октября: вариант 153692.
Найдите значение выражения
Источник: Апробация базового ЕГЭ по математике, 13—17 октября: вариант 166704.
Каждому из четырёх неравенств в левом столбце соответствует одно из решений в правом столбце. Установите соответствие между неравенствами и их решениями.
Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:
Каждому из четырёх неравенств в левом столбце соответствует одно из решений в правом столбце. Установите соответствие между неравенствами и их решениями.
РЕШЕНИЯ
Номер в банке ФИПИ: 59750B
Каждому из четырёх неравенств в левом столбце соответствует одно из решений в правом столбце. Установите соответствие между неравенствами и их решениями.
РЕШЕНИЯ
Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:
Номер в банке ФИПИ: 6E05B2
Каждому из четырёх неравенств в левом столбце соответствует одно из решений в правом столбце. Установите соответствие между неравенствами и их решениями.
Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:
Номер в банке ФИПИ: 96353F
Найдите значение выражения
Найдите значение выражения
Всего: 35 1–20 | 21–35
Логарифм: что это? Все формулы. Простейшие уравнения и неравенства
Что такое логарифм
Свойства логарифма
Логарифмические уравнения
Логарифмические неравенства
Сейчас речь пойдет о трех страшных буквах: l o g.
Существовать в нашем бытии они просто так не могут. Обязательно должен быть какой-нибудь индекс — число снизу (основание логарифма) и число после букв (аргумент логарифма).
Прежде, чем мы перейдем к тому, что такое логарифм, решим парочку подводящих примеров.
Чтобы справиться с этим примером, мы проговариваем в голове: какое число нужно дважды (т.к. корень квадратный) умножить само на себя, чтобы получить 81.
А этот пример можно решить по алгоритму (решения показательных уравнений), а можно так же провести разговор с самим собой (главное не вслух, я считаю это нормально, но кого-то вы можете напугать разговором с самим собой): сколько раз нужно число 3 умножить само на себя, чтобы получить 27. Постепенным перемножением мы дойдем до ответа.
Тогда, если дело касается логарифма:
можно сказать так: в какую степень нужно возвести 3 (число снизу — основание логарифма), чтобы получить 27 (число слева — аргумент логарифма). Не напоминает выше стоящий пример?
На самом деле в этом и заключается основная формула (определение логарифма):
Логарифм говорит нам (кому-то кричит): логарифм числа «b» по основанию «a» равняется числу «c». Тогда без логарифма это можно сформулировать так: чтобы получить число «b», требуется число «a» возвести в степень «c». Логарифм — это действие, обратное возведению в степень.
У отца log есть два родных сына: ln и lg. Так же, как сыновья отличаются возрастом (мы говорим о максимальной точности), так и эти логарифмы отличаются основанием (числовым индексом снизу).
Данные логарифмы придумали для упрощения записи. На самом деле в прикладной математики именно логарифмы по такому основанию встречаются чаще всех остальных. А мы все в глубине души народ ленивый, так что почему бы себе жизнь не упростить?
Что нужно запомнить: ln — это обычный логарифм только по основанию e ( e — это число Эйлера, e = 2,7182…, мой номер телефона, кстати, — это последние 11 цифр числа Эйлера, так что буду ждать звонка).
А lg — это обычный логарифм по основанию 10 (10ая система — это система счисления, в которой мы живем, столько пальцев на руках у среднего человека. В общем 10 — это как 9, только на 1 больше).
Как мы не можем существовать без еды, воды, интернета… Так и логарифм не представляет свое существование без ОДЗ.
Всегда, когда существует логарифм, должно быть:
«Почему это так?» — это первый вопрос, который я предоставляю тебе. Советую начать с того, что логарифм — это обратное действие от возведения в степень.
А теперь разберем теорию на практике:
В какую степень нужно возвести два (число в основании), чтобы получить шестнадцать (аргумент логарифма).
Два нужно четыре раза умножить само на себя, чтобы получить 16.
Ответ: 4.
lg — это логарифм по основанию 10. 10 нужно 3 раза умножить само на себя, чтобы получить 1000.
А теперь посложнее, перейдем по определнию к показательному уравнению :
Следующий пример поможет нам узнать первую формулу логарифмов:
Преобразуем выражение по определению логарифма и получим показательное уравнение. Единица — это же любое значение в нулевой степени?
Тогда можно сделать вывод, что при любом основании и аргументе логарифма, равном 1, все эти логарифмы будут равны нулю.
Нетрудно тогда понять, что есть еще одно следствие:
В какую степень нужно возвести 2, чтобы получить 2? Напряжем все свои извилины и получим — один!
Дальше будут формулы, которые я позволю себе не выводить, чтобы не испугать неискушенных в математике читателей.
Хотя мой вам совет: отследить, откуда эта формула появилась. У логарифмов самое главное помнить, что логарифм — это действие, обратное возведению в степень.
Основное логарифмическое тождество:
В какую степень нужно возвести 3, чтобы получить 9? Значит, логарифм в показателе степени равен двум.
Это единственная формула, где логарифм в показатели степени. Видишь логарифм в степени? Тебе поможет только эта формула.
Еще примерчик, двойка перед логарифмом никак не влияет, формула все так же работает:
А вот квадрат в логарифме тоже быть может, только лучше сначала разложить:
Дальше с этим ничего сделать не сможем.
Дальнейшие формулы тоже уникальны, это тебе не косинус двойного угла.
Видим сложение логарифмов, выпускаем эту формулы:
А вот примерчик, чтобы порадовать тебя этой формулой, только наоборот:
Видим разность логарифмов, выпускаем эту формулы:
А теперь сразу сумма и разность. По отдельности логарифмы не найти, но вместе они и мы сила:
Теперь посмотрим на степени у аргмента логарифма:
Пример:
А в основании тоже можно? Нужно!
Минус два — это степень у основания:
А все вместе можно? Конечно, логарифмы — это такая свобода:
А здесь нужно будет соединить две формулы: 1) вынесение степени из основания и 2) разность логарифмов
С основными формулами разобрались, теперь для решения более сложных уравнений/выражений.
Формула перехода к новому основанию:
Обрати внимание, чем она отличается от разности логарифмов (4). Тут мы делим один логарифм на другой, а там деление происходит под логарифмом.
Тут все просто, разве что стоит вспомнить, что квадратный корень — это степень одна вторая.
Тут первым действием воспользуемся изучаемой формулой, а дальше каждый логарифм в виде числа, потихонечку−полегонечку.
Последняя формула, меняем местами аргумент и основание логарифма:
Используется тоже нечасто, но если ее не знаешь, то никак не выкрутишься через другие формулы.
Простенький примерчик:
Закрепим обе формулы. Используем формулу (9), после (8), а так же не забудь порадовать десятичные дроби — переведи их в обыкновенные, а они порадуют тебя. Теперь посмотрим еще на пару примеров:
Логарифм в логарифме, что может быть прекраснее? Только решенный логарифм в логарифме.
Начинаем с внутреннего:
И постепенно раскрываем каждый последующий:
После того, как с формулами разобрались, (а их всего 9! Согласись, несложно выучить?), перейдем к уравнениям.
Все логарифмические уравнения решаем по одному из двух алгоритмов.
Первый появляется из определения логарифма:
Только не забываем про ОДЗ:
Второй вариант, когда логарифм с одним основанием равен логарифму с точно таким же основнанием:
Не забываем про ОДЗ, тогда получится:
Подставив в ОДЗ x = 15, видим, что все выполняется!
Обязательно только логарифм (без всяких множителей и т.п.) с одним основанием должен быть равен другому логарифму с таким же основанием:
Здесь перед логарифмами стоят разные множители, поэтому прежде всего нужно их внести в логарифм (6 формула), а после убрать логарифмы:
Если стоят одинаковые множители, их можно сократить сразу или сократить на общий множитель:
Бывает, что с одной стороны уравнения есть сумма логарифмов (4) или обычное число, сокращать их сразу нельзя! Только после того, как приведем и левую, и правую часть к одному логарифму:
Что же касается неравенств, убирать логарифмы можно так же, как и в уравнениях, только здесь нужно внимательно смотреть на значение оснований. Если основание логарифма лежит в диапазоне 0 < a < 1 (также как в показательных неравенствах), то после зачеркивания логарифмов знак меняется на противоположный:
Если же основание а > 1, то убираем логарифмы без смены знака и дорешиваем обычное неравенство:
Вывод:
- Л О Г — это не три страшные буквы, а обратное действие возведению в степень.
- Хоть формул и целых девять, но они никак не пересекаются. Решая пример и ориентируясь в формулах, ты будешь однозначно выбирать необходимую формулу.
- Видишь логарифм — ищи ОДЗ и решай его в первую очередь!
- Решение уравнений происходит по одному из двух вариантов и больше никак.
- В неравенствах главное — помнить об основании логарифма, когда зачеркиваем логарифмы.
Будь в курсе новых статеек, видео и легкого математического юмора.
Логарифмы в заданиях ЕГЭ
Логарифмы в заданиях ЕГЭ
Борисова Елена Леонидовна,
учитель математики
высшей квалификационной категории
МОУ Левобережная средняя школа
г.Тутаева ярославской области.
Большая часть заданий, включенных в ЕГЭ, представляет собой задания на вычисление
значений числовых логарифмических выражений. При подготовке следует обратить внимание на
формулу перехода к новому основанию логарифма и следствия из нее. Задачи на использование
этих формул в школьных учебниках практически не встречаются.
Проверяемые элементы:
Владение понятием логарифм
Знание основных свойств логарифмов
Умение выполнять тождественные преобразования логарифмических выражений.
Вариант 1.
Найдите значение выражения:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
Вариант 2.
Найдите значение выражения:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
Вариант 3.
Найдите значение выражения:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
Вариант 4.
Найдите значение выражения:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
Вариант 5.
Найдите значение выражения:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
Вариант 6.
Найдите значение выражения:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
Вариант 7.
Найдите значение выражения:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
Вариант 8.
Найдите значение выражения:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
Вариант 9.
Найдите значение выражения:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
Вариант 10.
Найдите значение выражения:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
Вариант 11.
Найдите значение выражения:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
Вариант 12.
Найдите значение выражения:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
Вариант 13.
Найдите значение выражения:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
Вариант 14.
Найдите значение выражения:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
Вариант15.
Найдите значение выражения:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
Используемые источники:
1. ЕГЭ: 4000 задач с ответами по математике. Все задания «Закрытый сегмент». Базовый и
профильный уровни /И.В.Ященко, И.Р.Высоцкий, А.В.Забелин и др.; под редакцией И.В.Ященко. –
М.: Издательство «Экзамен», 2016. – 640 с. (Серия «Банк заданий ЕГЭ»)
2. http://reshuege.ru/
3. http://www.yaklass.ru/materiali?mode=lsntheme&themeid=10
4. http://nsportal.ru/shkola/algebra/library/2012/01/09/svoystva-logarifmov-trenirovochnye-zadaniya