Логарифмы
Предыдущую статью о показательных уравнениях мы начали с уравнения 2x = 8. Там всё было ясно: x = 3.
А теперь рассмотрим уравнение 2x = 7.
По графику функции y = 2x мы видим, что это уравнение имеет корень, и притом единственный.
Ясно, что этот корень — не целое число (так как 22 = 4, 23 = 8). Более того, оказывается, что он не является даже рациональным числом, т. е. не представляется в виде обыкновенной дроби. Интуитивно мы чувствуем лишь, что он меньше 3, но не намного.
Этот корень обозначается log27 (читается: «логарифм семи по основанию два»). Он является иррациональным числом, т. е. бесконечной непериодической десятичной дробью. Калькулятор даёт: log27 = 2,807354922057604107…
Итак, наше число log27 — это показатель степени, в которую надо возвести 2, чтобы получить 7.
Теперь дадим общее определение логарифма. Пусть a > 0 и a ≠ 1 (условия те же, что и для основания показательной функции).
Определение. Логарифм положительного числа b по основанию a (обозначается logab) — это показатель степени, в которую надо возвести a, чтобы получить b.
Иными словами,
Например:
так как ;
, так как ;
так как ;
, так как .
Логарифм с основанием 10 называется десятичным и обозначается lg. Например, lg 100 = 2, lg 1000 = 3, lg 0,01 = −2.
Логарифм с основанием e называется натуральным и обозначается ln.
Обратите внимание: логарифм определён только для положительных чисел. Причина заключается в том, что показательная функция может принимать лишь положительные значения. Например, число log2(−4) не существует: в какую бы степень мы ни возводили 2, мы никогда не получим −4.
Не забывайте также про ограничения на основание логарифма: 0 < a < 1 или a > 1.
Основные формулы
По определению, logab — это показатель степени, в которую надо возвести число a, чтобы получить число b:
Формула (1) называется основным логарифмическим тождеством.
Вот еще один вариант записи основного логарифмического тождества:
logaax=x.
Перечислим свойства логарифмов. Они являются простыми следствиями правил действия со степенями. Все логарифмы ниже считаются определёнными.
Логарифм произведения — это сумма логарифмов:
loga(bc) = logab + logac. | (2) |
Логарифм частного — это разность логарифмов:
. | (3) |
Показатель степени логарифмируемого числа «спрыгивает» перед логарифмом:
(4) |
Показатель степени основания логарифма тоже «спрыгивает», но в виде обратного числа:
(5) |
Формулы (4) и (5) вместе дают:
. | (6) |
В частности, если m = n, мы получаем формулу:
. | (7) |
Например, .
Наконец, важнейшая формула перехода к новому основанию:
. | (8) |
В частности, если c = b, то logbb = 1, и тогда:
. | (9) |
Приведём несколько примеров из банка заданий.
1. (применили формулу (2) суммы логарифмов).
2. (применили основное логарифмическое тождество(1)).
3. (применили формулу (4)).
4. (применили формулу (9), перейдя к новому основанию 0,8).
5. (применили формулу (3) разности логарифмов).
Немного истории
Теперь вы поняли, что такое логарифмы и как ими пользоваться. Но для чего они всё-таки нужны? Или это просто такая математическая игрушка с хитрой инструкцией по применению?
Понятие логарифма и логарифмические таблицы появились в 17 веке, и значение их было огромно.
Это в наши дни вычисления не представляют труда — у каждого есть калькулятор. А как считали в «докомпьютерные» времена?
Складывать и вычитать можно было на счётах, а вот умножать и делить приходилось «в столбик» — медленно и трудно.
В 15–17 веках, в эпоху великих географических открытий, стали бурно развиваться торговля, экономика и наука. Требования к математике росли: расчёты становились более сложными, а точность — например, для решения навигационных задач — нужна была всё более высокая.
Необходим был инструмент, позволяющий упростить и ускорить расчёты, и таким инструментом явились логарифмы.
Предположим, что b и c — большие числа, которые надо перемножить. Появление таблиц логарифмов (например, с основанием 10) существенно упростило эту задачу. Теперь вычислителю достаточно было найти по таблицам десятичные логарифмы чисел b и c, сложить их (на счётах) и получить логарифм произведения: lgb + lgc = lg(bc).
А затем по таблице логарифмов найти само произведение чисел b и c.
Недаром французский математик и астроном Лаплас сказал, что изобретение логарифмов удлинило жизнь вычислителей. Логарифмическая линейка (которой инженеры пользовались до 70-х годов двадцатого века) была не менее прогрессивным изобретением, чем современный калькулятор.
Но это еще не всё! Мы не занимались бы логарифмами, если бы они имели лишь историческую, «музейную» ценность. О неожиданных применениях логарифмов мы расскажем в следующей статье, посвящённой логарифмической функции.
Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Логарифмы» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.
Публикация обновлена:
09.03.2023
Факт 1.
(bullet) Логарифм по основанию (a) от (b) – это число (t), которое показывает, в какую степень нужно возвести (a), чтобы получить (b).
Ограничения: числа (a) и (b) такие, что (a>0, ane 1, b>0).
[Large{{color{blue}{log_a{b}=tquadLeftrightarrowquad
a^t=b }}}]
Т.к. мы имеем право возводить в любую степень, то (tin
mathbb{R}).
Таким образом, верно основное логарифмическое тождество [{Large{a^{log_ab}=b}}]
(bullet) Справедливы следующие формулы: [{large{begin{array}{|ll|l|}
hline qquad qquad qquad qquad {small{text{Формулы}}}
&& qquad qquad{small{text{Ограничения}}}\
&&\
hline textbf{(1)} log_a1=0&&a>0, ane 1\
&&\
textbf{(2)} log_aa=1 &&a>0, ane 1\
&&\
textbf{(3)} log_{a}{b^m}=mlog_a|b|&(m —
{small{text{четн.}}})&a>0, ane 1, bne 0\
&&\
textbf{(4)}log_{a}{b^m}=mlog_ab& (m —
{small{text{нечетн.}}})&a>0, ane 1, b>0\
&&\
textbf{(5)} log_{a^n}{b}=frac 1nlog_{|a|}b&(n —
{small{text{четн.}}})&ane 0, ane 1, b>0\
&&\
textbf{(6)}log_{a^n}b=frac1nlog_ab&(n —
{small{text{нечетн.}}})&a>0, ane 1, b>0\
&&\
textbf{(7)} log_a{bc}=log_a|b|+log_a|c|&&a>0, ane 1, bcne 0\
&&\
textbf{(8)}
log_a{dfrac bc}=log_a|b|-log_a|c|&&a>0, ane 1,bcne 0 \
&&\
textbf{(9)}
a^{log_ab}=b &&a>0, ane 1, b>0\
&&\
textbf{(10)}c^{log_ab}=b^{log_ac}&&a>0, ane 1, b>0, c>0\
&&\
textbf{(11)} log_abcdot log_bc=log_ac && a>0, ane 1,b>0, bne 1, c>0\
&&\
textbf{(11′}) log_bc=dfrac{log_ac}{log_ab}&&a>0, ane 1,b>0, bne 1, c>0\
&&\
&&\
{small{text{ЧАСТНЫЕ СЛУЧАИ:}}}&& \
textbf{(12)} log_abcdot log_ba=1 && a>0, ane 1, b>0, bne 1\
&&\
textbf{(12′}) log_ab=dfrac1{log_ba}&&a>0, ane 1, b>0, bne 1\
&&\ hline
end{array}}}]
Заметим, что при выполнении ограничений данные формулы верны в обе стороны!
Свойства логарифмов (формулы) таблица шпаргалка
Основный свойства и формулы логарифмов
Логарифм единицы
1. loga1 = 0 ⇔ a>0, a≠1
Логарифм основания
2. logaa = 1 ⇔ a>0, a≠1
Логарифм произведения
3. loga(b⋅c) = loga b + loga c ⇔ a>0, b>0, c>0,a≠1
${log _6}2 + {log _6}3 ={log _6}(2⋅3) ={log _6}6=1$
Логарифм частного
4. ${text{lo}}{{text{g}}_a}frac{b}{c} = {log _a}b — {log _a}c$ ⇔ a>0, b>0, c>0,a≠1
${log _2}frac{2}{5} = {log _2}2 — {log _2}5 = 1 — {log _2}5$
Логарифм степени
5. logabn = n⋅loga b ⇔ a>0, b>0, a≠1
${text{3lo}}{{text{g}}_8}4 = {log _8}{4^3} = {log _8}64 = 2$
Формула перехода от одного основания логарифма к другому
6. ${text{lo}}{{text{g}}_a}b = frac{{{{log }_c}b}}{{{{log }_c}a}}$
${text{lo}}{{text{g}}_{text{4}}}3 = frac{{{{log }_3}3}}{{{{log }_3}4}} = frac{1}{{{{log }_3}4}}$
7. ${text{lo}}{{text{g}}_a}b = frac{1}{{{{log }_b}a}}$ ⇔ a>0, b>0, a≠1, b≠1
${text{lo}}{{text{g}}_{125}}5 = frac{1}{{{{log }_5}125}} = frac{{text{1}}}{{text{3}}}$
Логарифм степени
8. ${text{lo}}{{text{g}}_{{a^n}}}b = frac{1}{n}{text{lo}}{{text{g}}_a}b$ ⇔ a>0, b>0, a≠1, n≠0
${text{lo}}{{text{g}}_{25}}5 = {log _{{5^2}}}5 = frac{{text{1}}}{{text{2}}}{log _5}5 = frac{1}{2}$
9. ${text{lo}}{{text{g}}_{{a^{frac{{text{n}}}{{text{m}}}}}}}b = frac{m}{n} cdot {text{lo}}{{text{g}}_a}b$ ⇔ a>0, b>0, a≠1
${text{lo}}{{text{g}}_{{{text{2}}^{frac{{text{3}}}{{text{4}}}}}}}2 = frac{4}{3}{log _2}2 = frac{4}{3}$
10. ${a^{{{log }_с}b}} = {b^{{{log }_c}a}}$ ⇔ a>0, b>0, c>0, a≠1, b≠1, c≠1
${8^{{{log }_2}5}} = {5^{{{log }_2}8}} = {{text{5}}^{text{3}}} = {text{125}}$
Основное логарифмическое тождество (подробно см. здесь.)
11. aloga b = b ⇔ a>0, b>0, a≠1
Дополнительные свойства логарифма:
$log_ax^{2m}=2m log_a|x|,x≠0,m∈N$
$log_ax=log_{a^n}x^n, x>0,n∈R,a≠1,a>0$
$log_{a^k} x^m=frac{m}{k}log_ax, x>0,m∈R,k∈R,k≠0,a≠1,a>0$
Логарифм числа – это показатель степени, в которую нужно возвести одно число, чтобы получить другое.
Если число b в степени y равняется x:
by = x
Значит логарифм числа x по основанию b равен y:
y = logb(x)
Например:
24 = 16
log2(16) = 4
-
Логарифм как обратная функция к показательной
- Натуральный логарифм (ln)
- Обратный логарифм
- Таблица свойств логарифмов
- Логарифмическая функция
- График функции логарифма
Логарифм как обратная функция к показательной
Логарифмическая функция y = logb(x) является обратной функцией к показательной x=b y.
Так что, если мы вычислим показательную функцию логарифма х (х > 0), получится:
f (f -1(x)) = blogb(x) = x
Или если мы вычислим логарифм показательной функции х:
f -1(f (x)) = logb(bx) = x
Натуральный логарифм (ln)
Натуральный логарифм – это логарифм по основанию е.
ln(x) = loge(x)
Число e – это константа, которая может определяться как предел:
или так:
Обратный логарифм
Обратный логарифм (или антилогарифм) числа n – это число, логарифм которого по основанию a равен числу n.
ant logan = an
Таблица свойств логарифмов
Ниже представлены основные свойства логарифмов в табличном виде.
Логарифмическая функция
Функция, которая определена формулой f(x)=loga(x) – это логарифмическая функция с основанием a. При этом a>0, a≠1.
График функции логарифма
График логарифмической функции (логарифмика) может быть двух типов, в зависимости от значения основания a: