Алгебра — ЕГЭ Тригонометрия — ЕГЭ Геометрия — ЕГЭ Стереометрия — ЕГЭ Алгебра — ОГЭ Геометрия — ОГЭ
Таблица всех формул по геометрии ОГЭ
Шпаргалка по планиметрии
Формулы для прямоугольного треугольника
Свойства медиан, биссектрис и высот
Свойства окружности
Свойства треугольников
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания,
берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта
готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием
сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом
администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта
и представлены на сайте исключительно для ознакомления. Авторские права на материалы
принадлежат их законным авторам. Частичное или полное копирование материалов сайта без
письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой
зрения авторов.
-
Главная
— -
Формулы и прочее
— -
Математика: Геометрия
Знание формул по геометрии является основой для успешной подготовки и сдачи различных экзаменов, в том числе и ЦТ или ЕГЭ по математике. Формулы по геометрии, которые надежно хранятся в памяти ученика — это основной инструмент, которым он должен оперировать при решении геометрических задач. На этой странице сайта представлены основные формулы по школьной геометрии.
Изучать основные формулы по школьной геометрии онлайн:
Как успешно подготовиться к ЦТ по физике и математике?
Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:
- Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен, где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
- Выучить все формулы и законы в физике, и формулы и методы в математике. На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
- Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.
Успешное, старательное и ответственное выполнение этих трех пунктов, а также ответственная проработка итоговых тренировочных тестов, позволит Вам показать на ЦТ отличный результат, максимальный из того, на что Вы способны.
Нашли ошибку?
Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на электронную почту (адрес электронной почты здесь). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.
Необходимый теоретический материал для успешной сдачи ОГЭ-9 по математике для учеников разной подготовленности
Класс: 9
Ключевые слова: математика , ОГЭ
1. Углы
Вертикальные углы равны (на рис. 1 и 3; 6 и 8 и др.).
Внутренние накрест лежащие углы при параллельных прямых и секущей равны. (на рис. 4 и 6; 1 и 7).
Сумма внутренних односторонних углов при параллельных прямых и секущей равна 180˚ (на рис. 4 и 7; 1 и 6).
Соответственные углы при параллельных прямых и секущей равны. (на рис. 3 и 7; 1 и 5 и др.).
Если одна из двух параллельных прямых перпендикулярна третьей прямой, то и другая перпендикулярна третьей прямой.
2. Медиана, биссектриса, высота
Биссектриса треугольника — отрезок, соединяющий вершину треугольника с точкой на противоположной стороне и делящий угол треугольника пополам.
Высота треугольника – перпендикуляр опущенный из вершины угла на противоположную сторону.
Медиана треугольника — это отрезок, соединяющий вершину треугольника с серединой противолежащей стороны.
В любом треугольники все биссектрисы пересекаются в одной точке, все медианы пересекаются в одной точке, все медианы пересекаются в одной точке.
3. Треугольник
Сумма углов в любом треугольнике 180˚.
Средняя линия треугольника – прямая проходящая через середины двух сторон. Средняя линия параллельна одной из сторон и равна половине этой стороны.
Виды треугольников: тупоугольный (один угол тупой), прямоугольный (один угол прямой 90˚), остроугольный (все углы острые, меньше 90˚).
Равнобедренный треугольник — треугольник, у которого равны две стороны.
Свойства равнобедренного треугольника:
- в равнобедренном треугольнике углы при основании равны;
- в равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой;
Равносторонний треугольник — треугольник, у которого все стороны равны. (все углы по 60 градусов)
Всякий равносторонний треугольник является равнобедренным, но не всякий равнобедренный — равносторонним.
Три признака равенства треугольников
I признак по двум сторонам и углу между ними
II признак (по стороне и прилежащим углам)
III признак (по трем сторонам)
Признаки подобия треугольников
I признак по двум равным углам
II признак по двум пропорциональным сторонам и углу между ними
III признак по трем пропорциональным сторонам
Площади подобных фигур относятся как коэффициент подобия в квадрате.
Объемы подобных фигур относятся как коэффициент подобия в кубе.
Треугольник называется прямоугольным, если один из его углов прямой.
Стороны, прилежащие к прямому углу называются катетами, а сторона, лежащая против прямого угла, – гипотенузой. (самая большая сторона это гипотенуза, две др катеты).
Свойства прямоугольного треугольника
Сумма острых углов прямоугольного треугольника равна 90 градусов.
Катет, лежащий против угла в 30˚, равен половине гипотенузы.
Центр описанной окружности прямоугольного треугольника лежит на середине гипотенузы.
Медиана прямоугольного треугольника, проведенная из вершины прямого угла на гипотенузу, является радиусом описанной около этого треугольника окружности.
Теорема Пифагора:
В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов: a² + b² = c².
Пифагоровы тройки:
Признаки равенства прямоугольных треугольников
- По двум катетам.
- По гипотенузе и катету.
- По катету и прилежащему острому углу.
- По катету и противолежащему острому углу.
- По гипотенузе и острому углу.
Признаки подобия прямоугольных треугольников:
- По острому углу.
- По пропорциональности двух катетов.
- По пропорциональности катета и гипотенузы.
Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.
Высота, проведенная из вершины прямого угла, разбивает прямоугольный треугольник на два подобных треугольника. Каждый из этих треугольников подобен исходному.
Высота прямоугольного треугольника: h=ab/c или h = (где АВ гипотенуза, СЕ высота опущенная на гипотенузу).
В прямоугольном треугольнике медиана, проведённая из вершины прямого угла, равна половине гипотенузы: m=c/2 (R=с/2=mc).
3. Четырехугольники
Сумма углов в любом четырехугольнике 360˚.
Параллелограмм
Параллелограммом называется четырёхугольник, противолежащие стороны которого попарно параллельны.
У параллелограмма противолежащие стороны равны и противолежащие углы равны.
Сумма любых двух соседних углов параллелограмма равна 180°.
Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.
Каждая диагональ делит параллелограмм на два равных треугольника.
Две диагонали параллелограмма делят его на четыре равновеликих треугольника.
Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.
Ромбом называется параллелограмм, у которого все стороны равны.
Диагонали ромба пересекаются под прямым углом и являются биссектрисами его углов.
Прямоугольник
Прямоугольником называется параллелограмм, у которого все углы прямые.
Диагонали прямоугольника равны и точкой пересечения делятся на четыре равных отрезка.
Квадрат.
Квадрат – это прямоугольник, у которого все стороны равны.
Диагонали квадрата равны и перпендикулярны.
Сторона и диагональ квадрата связаны соотношениями: .
Трапеция
Трапецией называется четырёхугольник у которого только две противолежащие стороны параллельны.
Параллельные стороны называются основаниями трапеции, непараллельные – боковыми сторонами.
Средняя линия трапеции параллельна её основаниям и равна их полусумме.
Равнобокой называется трапеция, у которой боковые стороны равны.
У равнобокой трапеции: диагонали равны; углы при основании равны; сумма противолежащих углов равна 180.
Стороны и диагональ равнобокой трапеции связаны соотношением: d² = ab+c².
Трапеция называется прямоугольной, если одна из её боковых сторон перпендикулярна основаниям.
4. Окружность
Отрезок, соединяющий центр окружности с любой точкой окружности называется радиусом (r) окружности.
Отрезок, соединяющий две точки окружности, называется хордой. Хорда, проходящая через центр окружности, называется диаметром окружности.
Прямая, имеющая с окружностью одну общую точку, называется касательной. Касательная и радиус проведенный в точку касания пересекаются под прямым углом.
Прямая, имеющая с окружностью две общие точки, называется секущей.
Центральный угол окружности – это угол, вершина которого лежит в центре окружности. Центральный угол равен дуге на которую он опирается.
Вписанный угол – это угол, вершина которого лежит на окружности, а стороны пересекают ее. Вписанный угол равен половине дуги на которую опирается.
Через три точки, не лежащие на одной прямой, можно провести окружность, и притом только одну.
Вписанный угол, опирающийся на диаметр равен 90˚.
Все вписанные углы, опирающиеся на одну и туже дугу равны.
Теорема косинусов:
Теорема синусов:
5. Формулы площадей
Геометрия. Урок 5. Окружность
Смотрите бесплатные видео-уроки на канале Ёжику Понятно.
Видео-уроки на канале Ёжику Понятно. Подпишись!
Содержание страницы:
- Определение окружности
- Отрезки в окружности
Определение окружности
Окружность – геометрическое место точек, равноудаленных от данной точки.
Эта точка называется центром окружности .
Отрезки в окружности
Радиус окружности R – отрезок, соединяющий центр окружности с точкой на окружности.
Хорда a – отрезок, соединяющий две точки на окружности.
Диаметр d – хорда, проходящая через центр окружности, он равен двум радиусам окружности ( d = 2 R ).
O A – радиус, D E – хорда, B C – диаметр.
Теорема 1:
Радиус, перпендикулярный хорде, делит пополам эту хорду и дугу, которую она стягивает.
Касательная к окружности – прямая, имеющая с окружностью одну общую точку.
Из одной точки, лежащей вне окружности, можно провести две касательные к данной окружности.
Теорема 2:
Отрезки касательных, проведенных из одной точки, равны ( A C = B C ).
Теорема 3:
Касательная перпендикулярна радиусу, проведенному к точке касания.
Дуга в окружности
Часть окружности, заключенная между двумя точками, называется дугой окружности .
Например, хорда A B стягивает две дуги: ∪ A M B и ∪ A L B .
Теорема 4:
Равные хорды стягивают равные дуги.
Если A B = C D , то ∪ A B = ∪ C D
Углы в окружности
В окружности существует два типа углов: центральные и вписанные.
Центральный угол – угол, вершина которого лежит в центре окружности.
∠ A O B – центральный.
Центральный угол равен градусной мере дуги, на которую он опирается . ∪ A B = ∠ A O B = α
Если провести диаметр, то он разобьёт окружность на две полуокружности. Градусная мера каждой полуокружности будет равна градусной мере развернутого угла, который на неё опирается.
Градусная мара всей окружности равна 360 ° .
Вписанный угол – угол, вершина которого лежит на окружности, а стороны пересекают окружность.
∠ A C B – вписанный.
Вписанный угол равен половине градусной меры дуги, на которую он опирается . ∠ A C B = ∪ A B 2 = α 2 ∪ A B = 2 ⋅ ∠ A C B = α
Теорема 5:
Вписанные углы, опирающиеся на одну и ту же дугу, равны .
∠ M A N = ∠ M B N = ∠ M C N = ∪ M N 2 = α 2
Теорема 6:
Вписанный угол, опирающийся на полуокружность (на диаметр), равен 90 ° .
∠ M A N = ∠ M B N = ∪ M N 2 = 180 ° 2 = 90 °
Длина окружности, длина дуги
Мы узнали, как измеряется градусная мера дуги окружности (она равна градусной мере центрального угла, который на нее опирается) и всей окружности целиком (градусная мера окружности равна 360 ° ). Теперь поговорим о том, что же такое длина дуги в окружности. Длина дуги – это значение, которое мы бы получили, если бы мерили дугу швейным сантиметром. Рассмотрим две окружности с разными радиусами, в каждой из которых построен центральный угол равный α .
Градусная мера дуги ∪ A B равна градусной мере дуги ∪ C D и равна α .
Но невооуруженным глазом видно, что длины дуг разные. Если градусная мера дуги окружности зависит только от величины центрального угла, который на неё опирается, то длина дуги окружности зависит ещё и от радиуса самой окружноси.
Длина окружности находится по формуле:
Длина дуги окружности , на которую опирается центральный угол α равна:
l α = π R 180 ∘ ⋅ α
Площадь круга и его частей
Теперь поговорим про площадь круга, площадь сектора и площадь сегмента.
Круг – часть пространства, которая находится внутри окружности.
Иными словами, окружность – это граница, а круг – это то, что внутри.
Примеры окружности в реальной жизни: велосипедное колесо, обруч, кольцо.
Примеры круга в реальной жизни: пицца, крышка от канализационного люка, плоская тарелка.
Площадь круга находится по формуле: S = π R 2
Сектор – это часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.
Примеры сектора в реальной жизни: кусок пиццы, веер.
Площадь кругового сектора, ограниченного центральным углом α находится по формуле: S α = π R 2 360 ° ⋅ α
Сегмент – это часть круга, ограниченная дугой и хордой, стягивающей эту дугу.
Примеры сегмента в реальной жизни: мармелад “лимонная долька”, лук для стрельбы.
Чтобы найти площадь сегмента, нужно сперва вычислить площадь кругового сектора, который данный сегмент содержит, а потом вычесть площадь треугольника, который образован центральным углом и хордой.
S = π R 2 360 ° ⋅ α − 1 2 R 2 sin α
Теорема синусов
Если вокруг произвольного треугольника описана окружность, то её радиус можно найти при помощи теоремы синусов:
a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R Достаточно знать одну из сторон треугольника и синус угла, который напротив неё лежит. Из этих данных можно найти радиус описанной окружности.
Примеры решений заданий из ОГЭ
Модуль геометрия: задания, связанные с окружностями.
Окружность. Основные теоремы
Определения
Центральный угол – это угол, вершина которого лежит в центре окружности.
Вписанный угол – это угол, вершина которого лежит на окружности.
Градусная мера дуги окружности – это градусная мера центрального угла, который на неё опирается.
Теорема
Градусная мера вписанного угла равна половине градусной меры дуги, на которую он опирается.
Доказательство
Доказательство проведём в два этапа: сначала докажем справедливость утверждения для случая, когда одна из сторон вписанного угла содержит диаметр. Пусть точка (B) – вершина вписанного угла (ABC) и (BC) – диаметр окружности:
Треугольник (AOB) – равнобедренный, (AO = OB) , (angle AOC) – внешний, тогда (angle AOC = angle OAB + angle ABO = 2angle ABC) , откуда (angle ABC = 0,5cdotangle AOC = 0,5cdotbuildrelsmileover) .
Теперь рассмотрим произвольный вписанный угол (ABC) . Проведём диаметр окружности (BD) из вершины вписанного угла. Возможны два случая:
1) диаметр разрезал угол на два угла (angle ABD, angle CBD) (для каждого из которых теорема верна по доказанному выше, следовательно верна и для исходного угла, который является суммой этих двух и значит равен полусумме дуг, на которые они опираются, то есть равен половине дуги, на которую он опирается). Рис. 1.
2) диаметр не разрезал угол на два угла, тогда у нас появляется ещё два новых вписанных угла (angle ABD, angle CBD) , у которых сторона содержит диаметр, следовательно, для них теорема верна, тогда верна и для исходного угла (который равен разности этих двух углов, значит, равен полуразности дуг, на которые они опираются, то есть равен половине дуги, на которую он опирается). Рис. 2.
Следствия
1. Вписанные углы, опирающиеся на одну и ту же дугу, равны.
2. Вписанный угол, опирающийся на полуокружность, прямой.
3. Вписанный угол равен половине центрального угла, опирающегося на ту же дугу.
Определения
Существует три типа взаимного расположения прямой и окружности:
1) прямая (a) пересекает окружность в двух точках. Такая прямая называется секущей. В этом случае расстояние (d) от центра окружности до прямой меньше радиуса (R) окружности (рис. 3).
2) прямая (b) пересекает окружность в одной точке. Такая прямая называется касательной, а их общая точка (B) – точкой касания. В этом случае (d=R) (рис. 4).
3) прямая (c) не имеет общих точек с окружностью (рис. 5).
Теорема
1. Касательная к окружности перпендикулярна радиусу, проведенному в точку касания.
2. Если прямая проходит через конец радиуса окружности и перпендикулярна этому радиусу, то она является касательной к окружности.
Следствие
Отрезки касательных, проведенных из одной точки к окружности, равны.
Доказательство
Проведем к окружности из точки (K) две касательные (KA) и (KB) :
Значит, (OAperp KA, OBperp KB) как радиусы. Прямоугольные треугольники (triangle KAO) и (triangle KBO) равны по катету и гипотенузе, следовательно, (KA=KB) .
Следствие
Центр окружности (O) лежит на биссектрисе угла (AKB) , образованного двумя касательными, проведенными из одной точки (K) .
Теорема об угле между секущими
Угол между двумя секущими, проведенными из одной точки, равен полуразности градусных мер большей и меньшей высекаемых ими дуг.
Доказательство
Пусть (M) – точка, из которой проведены две секущие как показано на рисунке:
Покажем, что (angle DMB = dfrac<1><2>(buildrelsmileover — buildrelsmileover)) .
(angle DAB) – внешний угол треугольника (MAD) , тогда (angle DAB = angle DMB + angle MDA) , откуда (angle DMB = angle DAB — angle MDA) , но углы (angle DAB) и (angle MDA) – вписанные, тогда (angle DMB = angle DAB — angle MDA = frac<1><2>buildrelsmileover — frac<1><2>buildrelsmileover = frac<1><2>(buildrelsmileover — buildrelsmileover)) , что и требовалось доказать.
Теорема об угле между пересекающимися хордами
Угол между двумя пересекающимися хордами равен полусумме градусных мер высекаемых ими дуг: [angle CMD=dfrac12left(buildrelsmileover+buildrelsmileoverright)]
Доказательство
(angle BMA = angle CMD) как вертикальные.
Из треугольника (AMD) : (angle AMD = 180^circ — angle BDA — angle CAD = 180^circ — frac12buildrelsmileover — frac12buildrelsmileover) .
Но (angle AMD = 180^circ — angle CMD) , откуда заключаем, что [angle CMD = frac12cdotbuildrelsmileover + frac12cdotbuildrelsmileover = frac12(buildrelsmileover + buildrelsmileover).]
Теорема об угле между хордой и касательной
Угол между касательной и хордой, проходящей через точку касания, равен половине градусной меры дуги, стягиваемой хордой.
Доказательство
Пусть прямая (a) касается окружности в точке (A) , (AB) – хорда этой окружности, (O) – её центр. Пусть прямая, содержащая (OB) , пересекает (a) в точке (M) . Докажем, что (angle BAM = frac12cdot buildrelsmileover) .
Обозначим (angle OAB = alpha) . Так как (OA) и (OB) – радиусы, то (OA = OB) и (angle OBA = angle OAB = alpha) . Таким образом, (buildrelsmileover = angle AOB = 180^circ — 2alpha = 2(90^circ — alpha)) .
Так как (OA) – радиус, проведённый в точку касания, то (OAperp a) , то есть (angle OAM = 90^circ) , следовательно, (angle BAM = 90^circ — angle OAB = 90^circ — alpha = frac12cdotbuildrelsmileover) .
Теорема о дугах, стягиваемых равными хордами
Равные хорды стягивают равные дуги, меньшие полуокружности.
И наоборот: равные дуги стягиваются равными хордами.
Доказательство
1) Пусть (AB=CD) . Докажем, что меньшие полуокружности дуги (buildrelsmileover=buildrelsmileover) .
(triangle AOB=triangle COD) по трем сторонам, следовательно, (angle AOB=angle COD) . Но т.к. (angle AOB, angle COD) — центральные углы, опирающиеся на дуги (buildrelsmileover, buildrelsmileover) соответственно, то (buildrelsmileover=buildrelsmileover) .
2) Если (buildrelsmileover=buildrelsmileover) , то (triangle AOB=triangle COD) по двум сторонам (AO=BO=CO=DO) и углу между ними (angle AOB=angle COD) . Следовательно, и (AB=CD) .
Теорема
Если радиус делит хорду пополам, то он ей перпендикулярен.
Верно и обратное: если радиус перпендикулярен хорде, то точкой пересечения он делит ее пополам.
Доказательство
1) Пусть (AN=NB) . Докажем, что (OQperp AB) .
Рассмотрим (triangle AOB) : он равнобедренный, т.к. (OA=OB) – радиусы окружности. Т.к. (ON) – медиана, проведенная к основанию, то она также является и высотой, следовательно, (ONperp AB) .
2) Пусть (OQperp AB) . Докажем, что (AN=NB) .
Аналогично (triangle AOB) – равнобедренный, (ON) – высота, следовательно, (ON) – медиана. Следовательно, (AN=NB) .
Теорема о произведении отрезков хорд
Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.
Доказательство
Пусть хорды (AB) и (CD) пересекаются в точке (E) .
Рассмотрим треугольники (ADE) и (CBE) . В этих треугольниках углы (1) и (2) равны, так как они вписанные и опираются на одну и ту же дугу (BD) , а углы (3) и (4) равны как вертикальные. Треугольники (ADE) и (CBE) подобны (по первому признаку подобия треугольников).
Тогда (dfrac = dfrac) , откуда (AEcdot BE = CEcdot DE) .
Теорема о касательной и секущей
Квадрат отрезка касательной равен произведению секущей на ее внешнюю часть.
Доказательство
Пусть касательная проходит через точку (M) и касается окружности в точке (A) . Пусть секущая проходит через точку (M) и пересекает окружность в точках (B) и (C) так что (MB . Покажем, что (MBcdot MC = MA^2) .
Рассмотрим треугольники (MBA) и (MCA) : (angle M) – общий, (angle BCA = 0,5cdotbuildrelsmileover) . По теореме об угле между касательной и секущей, (angle BAM = 0,5cdotbuildrelsmileover = angle BCA) . Таким образом, треугольники (MBA) и (MCA) подобны по двум углам.
Из подобия треугольников (MBA) и (MCA) имеем: (dfrac = dfrac) , что равносильно (MBcdot MC = MA^2) .
Следствие
Произведение секущей, проведённой из точки (O) , на её внешнюю часть не зависит от выбора секущей, проведённой из точки (O) :
источники:
http://epmat.ru/modul-geometriya/urok-5-okruzhnosti/
http://shkolkovo.net/theory/83
1. Углы
Вертикальные углы равны (на рис. 1 и 3; 6 и 8 и др.).
Внутренние накрест лежащие углы при параллельных прямых и секущей равны. (на рис. 4 и 6; 1 и 7).
Сумма внутренних односторонних углов при параллельных прямых и секущей равна 180˚ (на рис. 4 и 7; 1 и 6).
Соответственные углы при параллельных прямых и секущей равны. (на рис. 3 и 7; 1 и 5 и др.).
Если одна из двух параллельных прямых перпендикулярна третьей прямой, то и другая перпендикулярна третьей прямой.
2. Медиана, биссектриса, высота
Биссектриса треугольника — отрезок, соединяющий вершину треугольника с точкой на противоположной стороне и делящий угол треугольника пополам.
Высота треугольника – перпендикуляр опущенный из вершины угла на противоположную сторону.
Медиана треугольника — это отрезок, соединяющий вершину треугольника с серединой противолежащей стороны.
В любом треугольники все биссектрисы пересекаются в одной точке, все медианы пересекаются в одной точке, все медианы пересекаются в одной точке.
3. Треугольник
Сумма углов в любом треугольнике 180˚.
Средняя линия треугольника – прямая проходящая через середины двух сторон. Средняя линия параллельна одной из сторон и равна половине этой стороны.
Виды треугольников: тупоугольный (один угол тупой), прямоугольный (один угол прямой 90˚), остроугольный (все углы острые, меньше 90˚).
Равнобедренный треугольник — треугольник, у которого равны две стороны.
Свойства равнобедренного треугольника:
- в равнобедренном треугольнике углы при основании равны;
- в равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой;
Равносторонний треугольник — треугольник,
у которого все стороны равны. (все углы по 60 градусов)
Всякий равносторонний треугольник является равнобедренным,
но не всякий равнобедренный — равносторонним.
Три признака равенства треугольников
I признак по двум сторонам и углу между ними
II признак (по стороне и прилежащим углам)
III признак (по трем сторонам)
Признаки подобия треугольников
I признак по двум равным углам
II признак по двум пропорциональным сторонам и углу между ними
III признак по трем пропорциональным сторонам
Площади подобных фигур относятся как коэффициент подобия в квадрате.
Объемы подобных фигур относятся как коэффициент подобия в кубе.
Треугольник называется прямоугольным, если один из его углов прямой.
Стороны, прилежащие к прямому углу называются катетами, а сторона, лежащая против прямого угла, – гипотенузой. (самая большая сторона это гипотенуза, две др катеты).
Свойства прямоугольного треугольника
Сумма острых углов прямоугольного треугольника равна 90 градусов.
Катет, лежащий против угла в 30˚, равен половине гипотенузы.
Центр описанной окружности прямоугольного треугольника лежит на середине гипотенузы.
Медиана прямоугольного треугольника, проведенная из вершины прямого угла на гипотенузу, является радиусом описанной около этого треугольника окружности.
Теорема Пифагора:
В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов: a² + b² = c².
Пифагоровы тройки:
- 3, 4, 5
- 6, 8, 10
- 5, 12, 13
- 9, 12, 15
Признаки равенства прямоугольных треугольников
- По двум катетам.
- По гипотенузе и катету.
- По катету и прилежащему острому углу.
- По катету и противолежащему острому углу.
- По гипотенузе и острому углу.
Признаки подобия прямоугольных треугольников:
- По острому углу.
- По пропорциональности двух катетов.
- По пропорциональности катета и гипотенузы.
Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.
Высота, проведенная из вершины прямого угла, разбивает прямоугольный треугольник на два подобных треугольника. Каждый из этих треугольников подобен исходному.
Высота прямоугольного треугольника: h=ab/c или h = (где АВ гипотенуза, СЕ высота опущенная на гипотенузу).
В прямоугольном треугольнике медиана, проведённая из вершины прямого угла, равна половине гипотенузы: m=c/2 (R=с/2=mc).
3. Четырехугольники
Сумма углов в любом четырехугольнике 360˚.
Параллелограмм
Параллелограммом называется четырёхугольник, противолежащие стороны которого попарно параллельны.
У параллелограмма противолежащие стороны равны и противолежащие углы равны.
Сумма любых двух соседних углов параллелограмма равна 180°.
Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.
Каждая диагональ делит параллелограмм на два равных треугольника.
Две диагонали параллелограмма делят его на четыре равновеликих треугольника.
Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.
Ромб
Ромбом называется параллелограмм, у которого все стороны равны.
Диагонали ромба пересекаются под прямым углом и являются биссектрисами его углов.
Прямоугольник
Прямоугольником называется параллелограмм, у которого все углы прямые.
Диагонали прямоугольника равны и точкой пересечения делятся на четыре равных отрезка.
Квадрат.
Квадрат – это прямоугольник, у которого все стороны равны.
Диагонали квадрата равны и перпендикулярны.
Сторона и диагональ квадрата связаны соотношениями: .
Трапеция
Трапецией называется четырёхугольник у которого только две противолежащие стороны параллельны.
Параллельные стороны называются основаниями трапеции, непараллельные – боковыми сторонами.
Средняя линия трапеции параллельна её основаниям и равна их полусумме.
Равнобокой называется трапеция, у которой боковые стороны равны.
У равнобокой трапеции: диагонали равны; углы при основании равны; сумма противолежащих углов равна 180.
Стороны и диагональ равнобокой трапеции связаны соотношением: d² = ab+c².
Трапеция называется прямоугольной, если одна из её боковых сторон перпендикулярна основаниям.
4. Окружность
Отрезок, соединяющий центр окружности с любой точкой окружности называется радиусом (r) окружности.
Отрезок, соединяющий две точки окружности, называется хордой. Хорда, проходящая через центр окружности, называется диаметром окружности.
Прямая, имеющая с окружностью одну общую точку, называется касательной. Касательная и радиус проведенный в точку касания пересекаются под прямым углом.
Прямая, имеющая с окружностью две общие точки, называется секущей.
Центральный угол окружности – это угол, вершина которого лежит в центре окружности. Центральный угол равен дуге на которую он опирается.
Вписанный угол – это угол, вершина которого лежит на окружности, а стороны пересекают ее. Вписанный угол равен половине дуги на которую опирается.
Через три точки, не лежащие на одной прямой, можно провести окружность, и притом только одну.
Вписанный угол, опирающийся на диаметр равен 90˚.
Все вписанные углы, опирающиеся на одну и туже дугу равны.
Теорема косинусов:
a² = b² + c² – 2bccosa
Теорема синусов:
5. Формулы площадей
См. продолжение статьи