Самые необходимые тригонометрические формулы
Для того чтобы сдать ЕГЭ по математике, вам понадобится около 20 формул тригонометрии. Это не много. Но их надо знать наизусть!
Вот таблица, в которой собраны основные тригонометрические формулы. Здесь все самое необходимое. Их легко выучить и применять.
Эти формулы применяются и в заданиях 1 части ЕГЭ по математике, и в заданиях 2 части.
Эта полезная табличка – только одна из многих страниц Справочника Анны Малковой для подготовки к ЕГЭ. Скачай Справочник бесплатно здесь.
Кроме того, надо знать определения синуса, косинуса и тангенса, а также значения этих функций для основных углов.
Первые 3 блока формул из нашей таблицы часто встречаются в заданиях 1 части ЕГЭ и в задаче из второй части, где надо решить тригонометрическое уравнение.
В первую очередь это основное тригонометрическое тождество:
sincos
Это формулы, которые показывают, как выразить тангенс через косинус и котангенс через синус угла.
tg
1 + ctg
Формулы синуса и косинуса двойного угла, формулы синуса суммы, косинуса разности, – все это надо знать, чтобы без ошибок решать тригонометрические уравнения.
А вот формулы суммы синусов и косинусов, а также преобразование произведения в сумму могут пригодиться при решении задач с параметрами.
Где же могут встретиться формулы из двух последних блоков, внизу таблицы?
Формулы понижения степени могут присутствовать и в тригонометрических уравнениях, и в «параметрах». И даже в задачах с физическим содержанием из 1 части ЕГЭ, если там вдруг попадется тригонометрия.
А универсальная тригонометрическая замена, когда мы выражаем синус и косинус угла альфа через тангенс половинного угла? А формулы синуса и косинуса тройных углов? Где же они применяются? Оказывается, они помогают решать задачи по геометрии из 2 части ЕГЭ. Так что их тоже стоит знать, если хотите сдать на высокий балл.
Обратите внимание, что в этой таблице нет формул приведения. О них мы рассказываем в отдельной статье нашего сайта.
Как же выучить тригонометрические формулы?
1. Учите формулы сразу. Не рассказывайте себе сказки о том, что в последнюю ночь перед ЕГЭ все выучите. Каждый день – один блок, то есть три-четыре формулы из нашей таблицы.
2. Тренируйтесь. Выучить иностранный язык проще всего тому, кто вынужден постоянно на нем говорить. Так и здесь. Для тренировки можно из классического задачника Сканави выбрать 20-50 заданий на преобразование тригонометрических выражений и доказательство тождеств.
3. Универсальный способ: ежедневно, садясь за уроки, берите чистый листок и выписывайте наизусть все тригонометрические формулы, какие помните. Когда всё готово — сверяете. И к экзамену вы будете помнить всё.
4. Еще один отличный способ. Вырежьте из плотной бумаги карточки. На одной пишете левую часть формулы. На другой – правую. Перемешиваете. И собираете. Любые формулы запоминаются легко и быстро!
5. И конечно, решаем задания ЕГЭ на применение этих формул. Начнем с задач 1 части, преобразование тригонометрических выражений.
Задача 1.
Найдите tg, если cos и
Решение:
Воспользуемся формулой:
tg tg x
Какой знак будет у тангенса, «плюс» или «минус»?
В условии дано, что , то есть это угол из четвертой четверти, значит tgx
tgx
Ответ: -3.
Задача 2.
Найдите если sin
Решение:
Воспользуемся формулой синуса двойного угла: sin2 = 2sincos
Ответ: 4.
Задача 3.
Найдите 24cos если sin
Решение:
Воспользуемся формулой косинуса двойного угла: cos 2 = 1 — 2sin
24cos2 = 24(1 — 2sin
Ответ: 22,08.
Задача 4.
Найдите если tg
Решение:
Вынесем косинус альфа за скобки в числителе и знаменателе:
Ответ: -9.
Задача 5.
Найдите значение выражения:
Решение:
Воспользуемся формулой синуса двойного угла:
sin2 = 2sincos тогда sincos =
Ответ: 10.
Задача 6.
Найдите значение выражения: cossin
Решение:
Вынесем общий множитель за скобки и воспользуемся формулой косинуса двойного угла:
cos = cos — sin
cos
Ответ: -1,5.
Задача 7.
Найдите значение выражения: tg
Решение:
Используя формулы приведения, получим: tg = tg = ctg
Пользуемся также тем, что тангенс и котангенс угла альфа — взаимно обратные величины,
Получим:
-50tg ctg
Ответ: -19.
Задача 8.
Найдите значение выражения: sin
Решение:
sinsin
cos cos cos
Мы вынесли за скобки множитель и применили формулу косинуса двойного угла, выразив его через квадрат синуса угла.
Ответ: 6.
Задача 9.
Найдите значение выражения: 5sin cos
Решение:
Воспользуемся формулой синуса двойного угла: sin = 2sincos Также применим одну из формул приведения: sin = -sin
5sin cos sin sin sin
Ответ: -1,25.
Задача 10.
Найдите значение выражения:
Решение:
Вынесем общий множитель за скобки и воспользуемся формулой косинуса двойного угла:
cos2 = 1 — 2
cos cos cos
Ответ: -3.
Задача 11.
Найдите значение выражения:
Решение:
Вынесем общий множитель за скобки и воспользуемся формулой косинуса двойного угла:
cos2 =
coscos cos
Ответ: 4,5.
Задача 12.
Найдите значение выражения:
Мы воспользовались периодичностью функции синус: sinsin В нашей задаче 374 = 360 + 14.
Ответ: — 6.
Задача 13.
Найдите значение выражения:
Решение:
Воспользуемся формулой синуса двойного угла: sin2 = 2sincos
sin cos sin sin sin
Ответ: 3,5.
Заметим, что если в задаче нам встретилось произведение синуса альфа на косинус альфа, то, скорее всего, нужно будет применять формулу синуса двойного угла.
Задача 14.
Найдите tg если cos и
Решение:
Вспомним основное тригонометрическое тождество: Выразим из этой формулы синус альфа:
sin
Какой же знак выбрать, «плюс» или «минус»?
Угол альфа в третьей четверти, значит, его синус отрицателен.
sin
tg
Ответ: 1,25.
Задача 15.
Найдите sin если cos и
Решение:
Как и в предыдущей задаче, выразим синус альфа из основного тригонометрического тождества:
sin
Дан угол альфа, принадлежащий второй четверти, значит, его синус положителен.
sin
Ответ: 0,9.
Задача 16.
Найдите tg если sin и
Решение:
Аналогично предыдущим задачам, выразим косинус альфа из основного тригонометрического тождества:
cos
Угол альфа в третьей четверти, значит, его косинус отрицателен.
cos , тогда tg
Ответ: 0,8.
Задача 17.
Найдите значение выражения: — 42tg tg
Решение:
-42tg tg -42tg tg -42tg ctg
Мы применили формулу приведения, а также то, что тангенс и котангенс угла альфа — взаимно обратные величины, и их произведение равно единице.
Ответ: -42.
Задача 18.
Найдите значение выражения: sin
Решение:
Воспользуемся формулами приведения:
Также мы применили основное тригонометрическое тождество. Сумма квадратов синуса и косинуса угла альфа равна единице.
Ответ: 4,8.
Задача 19.
Найдите значение выражения:
Решение:
Так как то заменим на по формуле приведения и воспользуемся формулой синуса двойного угла:
sin2 = 2sincos
Ответ: 4.
Задача 20.
Найдите значение выражения:
Решение:
Воспользуемся формулой косинуса двойного угла:
Ответ: -21.
Задача 21.
Найдите значение выражения:
Решение:
Воспользуемся формулой синуса двойного угла:
Ответ: -0,25.
Задача 22.
Найдите значение выражения:
Решение:
И здесь тоже была формула косинуса двойного угла, но только в другой форме.
Ответ: 3.
Задача 23.
Найдите значение выражения:
Решение:
А здесь мы просто вычислили косинус и синус табличного угла
Ответ: -13.
Задача 24.
Найдите значение выражения:
Решение:
Это задача на вычисление тригонометрических функций для табличного угла Если этот угол выразить в градусах, то он равен 45 градусов.
Ответ: 18.
Задача 25.
Найдите значение выражения:
Решение:
Используя формулы приведения, получим:
Лайфхак: если вам сложно запомнить формулы приведения, вы можете вместо них использовать формулы косинуса разности и синуса суммы.
Ответ: -2,5.
Посмотрим, как формулы тригонометрии применяются при решении уравнений.
Задача 26.
Решите уравнение:
Решение:
Воспользуемся формулой понижения степени: sin
Ответ:
Задача 27.
Решите уравнение:
Решение:
Воспользуемся формулой понижения степени:
Умножим обе части на два:
Воспользуемся формулой суммы косинусов: cos + cos = 2cos cos
cos6x + cos10x = 2cos8x cos2x.
Уравнение примет вид:
2cos8x cos2x + cos8x =0.
Вынесем общий множитель за скобки. Теперь произведение двух множителей равно нулю, а с этим мы умеем работать.
Ответ:
Все о решении тригонометрических уравнений здесь.
Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Самые необходимые тригонометрические формулы» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.
Публикация обновлена:
09.03.2023
Опубликовано 04.12.2014 — 11:35 — Лобышева Ирина Сергеевна
каждый год выпускаю классы и имею подборку тригонометрических формул используемых в обеих частях ЕГЭ, которыми хочу поделиться с Вами.
Скачать:
Вложение | Размер |
---|---|
trigonometriya.docx | 1.28 МБ |
Предварительный просмотр:
По теме: методические разработки, презентации и конспекты
Разработка урока алгебры в 10 классе по теме «Формулы тригонометрии»
Данный урок является обобщающим по теме «Тригонометрические формулы»…
Формулы тригонометрии
Обобщающий урок по теме в 10 классе по учебнику А.Г. Мордкович…
Основные формулы по тригонометрии
Приведены основные формулы по тригонометрии для 10 класса….
Тригонометрия. Сборник формул
Тригонометрия. Сборник формул…
Основные формулы тригонометрии
Основные формулы тригонометрии, которые необходимы при подготовке к ЕГЭ по математике…
Формулы тригонометрии
В презентации содержится материал о различных формулах по тригонометрии. Содержание презентации можно использовать как…
Тригонометрия учебник с формулами
Учебник по тригонометрии включает теоретический материал с формулами…
- Мне нравится
11 декабря 2020
В закладки
Обсудить
Жалоба
Шпаргалка по тригонометрии
Основные тригонометрические тождества и формулы.
shpargalka_po_trigonometrii.pdf
Содержание
Основные тригонометрические тождества.
Формулы приведения.
Формулы периодических углов.
Формулы суммы и разности углов.
Формулы двойного угла.
Формулы половинного угла (формулы понижения степени).
Формулы произведения тригонометрических функций.
Формулы суммы и разности тригонометрических функций.
Универсальная тригонометрическая подстановка (УТП).
Обратные тригонометрические функции (аркфункции).
Простые тригонометрические уравнения.
Алгебра — ЕГЭ Тригонометрия — ЕГЭ Геометрия — ЕГЭ Стереометрия — ЕГЭ Алгебра — ОГЭ Геометрия — ОГЭ