Фотосинтез егэ биология картинка

Общая схема процесса фотосинтеза

Общая схема процесса фотосинтеза

Скачать

Биосинтез углеводов фотосинтез

Биосинтез углеводов фотосинтез

Скачать

Темновая фаза фотосинтеза 9 класс

Темновая фаза фотосинтеза 9 класс

Скачать

Схема фотосинтеза 9 класс биология

Схема фотосинтеза 9 класс биология

Скачать

Схема процесса фотосинтеза

Схема процесса фотосинтеза

Скачать

Фотосистемы фотосинтеза схема

Фотосистемы фотосинтеза схема

Скачать

Схема процесса фотосинтеза 6 класс

Схема процесса фотосинтеза 6 класс

Скачать

Схема отражающая процесс фотосинтеза

Схема отражающая процесс фотосинтеза

Скачать

Фотосинтез ЕГЭ биология таблица

Фотосинтез ЕГЭ биология таблица

Скачать

Световая фаза фотосинтеза схема ЕГЭ

Световая фаза фотосинтеза схема ЕГЭ

Скачать

Световая фаза фотосинтеза схема ЕГЭ

Световая фаза фотосинтеза схема ЕГЭ

Скачать

Световая фаза фотосинтеза ЕГЭ

Световая фаза фотосинтеза ЕГЭ

Световая фаза фотосинтеза 9 класс биология

Световая фаза фотосинтеза 9 класс биология

Скачать

Хлорофилл фотосинтез

Хлорофилл фотосинтез

Скачать

Схема процесса фотосинтеза

Схема процесса фотосинтеза

Скачать

Таблица реакции фотосинтеза биология 10 класс

Таблица реакции фотосинтеза биология 10 класс

Скачать

Фотолиз воды при фотосинтезе

Фотолиз воды при фотосинтезе

Строма хлоропласта фаза

Строма хлоропласта фаза

Скачать

Схема фотосинтеза 10 класс биология

Схема фотосинтеза 10 класс биология

Фотосинтез порядок схема

Фотосинтез порядок схема

Скачать

Схема фотосинтеза 9 класс биология

Схема фотосинтеза 9 класс биология

Скачать

Процесс фотосинтеза световая фаза схема

Процесс фотосинтеза световая фаза схема

Скачать

Световая фаза фотосинтеза 10 класс

Световая фаза фотосинтеза 10 класс

Скачать

Цикл Кальвина с4

Цикл Кальвина с4

Скачать

Схема фотосинтеза 9 класс биология

Схема фотосинтеза 9 класс биология

Скачать

Фотосинтез схема подготовка к ЕГЭ по биологии

Фотосинтез схема подготовка к ЕГЭ по биологии

Скачать

Схема фотосинтеза у растений

Схема фотосинтеза у растений

Скачать

Роль углекислого газа в фотосинтезе

Роль углекислого газа в фотосинтезе

Скачать

Процесс фотосинтеза 6 класс биология

Процесс фотосинтеза 6 класс биология

Скачать

Общая схема фотосинтеза 9 класс

Общая схема фотосинтеза 9 класс

Скачать

Биология 9 класс Биосинтез углеводов фотосинтез

Биология 9 класс Биосинтез углеводов фотосинтез

Скачать

Механизм фотосинтеза

Механизм фотосинтеза

Скачать

Фотосистемы фотосинтеза схема

Фотосистемы фотосинтеза схема

Скачать

Мезофилл листа фотосинтез

Мезофилл листа фотосинтез

Скачать

Этапы фотосинтеза схема

Этапы фотосинтеза схема

Скачать

Схема фотосинтеза у растений

Схема фотосинтеза у растений

Скачать

Световая фаза фотосинтеза схема

Световая фаза фотосинтеза схема

Скачать

Отоинтез Хема на хлоропласте

Отоинтез Хема на хлоропласте

Скачать

Фотосинтез схема световая фаза и темновая

Фотосинтез схема световая фаза и темновая

Скачать

Световая фаза фотосинтеза схема

Световая фаза фотосинтеза схема

Скачать

Реакции световой фазы фотосинтеза

Реакции световой фазы фотосинтеза

Скачать

Световая фаза фотосинтеза

Световая фаза фотосинтеза

Скачать

Опыт доказывающий необходимость углекислого газа для фотосинтеза

Опыт доказывающий необходимость углекислого газа для фотосинтеза

Скачать

Схема фотосинтеза 6 класс биология схема

Схема фотосинтеза 6 класс биология схема

Скачать

Фотосинтез. Фотосинтетический аппарат растения

Фотосинтез. Фотосинтетический аппарат растения

Скачать

Схема процесса фотосинтеза

Схема процесса фотосинтеза

Скачать

Схема процесса фотосинтеза

Схема процесса фотосинтеза

Скачать

Схема световой и Темновой фазы фотосинтеза 10 класс

Схема световой и Темновой фазы фотосинтеза 10 класс

Скачать

Биология 10 класс пластический обмен фотосинтез хемосинтез

Биология 10 класс пластический обмен фотосинтез хемосинтез

Скачать

Чем растения отличаются от других царств живой природы? Несмотря на то, что отличий масса, скорее всего, в первую очередь вы подумаете о фотосинтезе. Так что именно о фотосинтезе на ЕГЭ и ОГЭ мы сейчас и поговорим.

фотосинтез егэ

Фотосинтез на ЕГЭ и ОГЭ по биологии 2022 — это просто

Что такое фотосинтез?

Почему растения фотосинтезируют? Стандартный ответ: «Потому что они зеленые». 

На самом деле, растения получили способность к фотосинтезу благодаря наличию симбиотических органоидов — хлоропластов,  в которых и происходят темновая и световая фазы, а в хлоропластах содержится пигмент хлорофилл, именно он окрашивает растения в зеленый цвет. 

Фотосинтез — одна из реакций обмена веществ. Как любая реакция метаболизма, он идет поэтапно (световая и темновая фазы) и с участием ферментов. Фотосинтез относится к реакциям пластического обмена. Особенность пластического обмена в том, что органические вещества синтезируются, а энергия на это тратится. 

Фотосинтез — это синтез органических веществ из неорганических веществ с использованием энергии солнечного света.

Далее разберем подробно обе фазы и процессы, происходящие в них.

Как идет процесс фотосинтеза?

Световая фаза фотосинтеза для ЕГЭ и ОГЭ

Световая фаза проходит в хлоропластах на тилакоидах. Там хранится пигмент хлорофилл, с которого все начинается — именно из-за него растения имеют зеленую окраску. Квант света попадает на тилакоид и возбуждает молекулу хлорофилла. В этот момент инициируется процесс фотосинтеза. При этом выделяется энергия АТФ. 

Самые внимательные из вас могут заметить некоторую несостыковку. Почему выделяется? Это же реакция пластического обмена, а не энергетического, значит, энергия должна тратиться. Да, действительно при фотосинтезе выделяется АТФ, но она не накапливается и не тратится на другие реакции, как при энергетическом обмене, а вся уходит на фотосинтез. Поэтому это реакция анаболизма, хоть и с выделением АТФ. 

Параллельно идет фотолиз воды. 

Название процесса говорит само за себя: «фото» — свет, «лизис» — расщепление. Буквально переводится как расщепление воды на свету. Легко запомнить, что проходит фотолиз в световую фазу. 

На что же может распасться молекула воды? На свободный кислород и водород. У каждого из этих элементов свой путь. 

Кислород — это сильный окислитель, буквально смерть для любой неспециализированной клетки, поэтому растения быстро от него избавляются, выделяя в атмосферу как побочный продукт. А уже из атмосферы аэробные организмы (в том числе, растения) поглощают его и используют для дыхания. Так что нам повезло! Не было бы процесса фотосинтеза, не было бы кислорода и что было бы с жизнью на нашей планете представить сложно. 

Но помимо кислорода, выделяется еще водород, если бы он был человеком, мы бы сказали, что он растерян и нуждается в помощи. На помощь к нему приходит молекула-переносчик НАДФ (полное ее название —никотинамиддинуклеотидфосфат, но мы ласково зовем ее НАДФ). Она использует водород для восстановления до НАДФ*Н2. Задача этой молекулы переносить водород из тилакоидов в строму, поэтому мы называем ее молекула-переносчик. На этом световая фаза заканчивается.

Резюмируем

  • Квант света возбуждает молекулу хлорофилла
  • Инициируется процесс фотосинтеза
  • Выделяется АТФ
  • Фотолиз воды
  • Кислород выходит в окружающую среду как побочный продукт фотосинтеза
  • Водород соединяется с молекулой переносчиком НАДФ*

Темновая фаза фотосинтеза для ЕГЭ и ОГЭ

В некоторых источниках эту фазу еще называют светонезависимой фазой. Действительно, название «темновая стадия» часто вызывает затруднения. Кажется, что световая проходит на свету, а темновая тогда в темноте, но это не так. Для темновой фазы действительно не нужен свет, соответственно, у нее есть варианты — может  проходить и на свету, и в темноте. Она идет  практически параллельно со световой и в ней используются продукты, образовавшиеся в световой фазе. 

Для того чтобы фазы друг другу не мешали, они проходят в разных частях хлоропласта. Световая, как мы уже выяснили, идет на тилакоидах, а темновая в строме — это внутренняя полужидкая среда хлоропласта.

фотосинтез огэ

Фотосинтез на ОГЭ и ЕГЭ. Источник: открытый банк заданий ФИПИ

В строму приходят АТФ, молекула-переносчик приносит водород. Но из водорода и энергии ничего органического создать не получится, нужны еще элементы. Растения нашли гениальный выход, они используют вещество, которого достаточно в атмосфере, следовательно, за него нет конкуренции. Это вещество — углекислый газ. 

Дальше начинается очень сложный циклический процесс, который называется цикл Кальвина. Мы не будем слишком подробно его рассматривать, это не пригодится для государственных экзаменов, но именно в нем активно работают ферменты, и на него тратится энергия АТФ, полученная в световой фазе. В результате цикла Кальвина образуется шестиуглеродный сахар-глюкоза. Далее эта глюкоза может быть переработана в крахмал и откладываться растением как запасной углевод. 

Резюмируем

  • Фиксация СО2
  • Цикл Кальвина
  • Синтез глюкозы
  • Образование крахмала

Значение фотосинтеза

На Земле, пожалуй, практически не существует процессов, которые повлияли на эволюцию планеты так же сильно, как фотосинтез. Давайте разберем основные значения фотосинтеза:

  • Сформировалась атмосфера с высоким содержанием кислорода, пригодная для дыхания. Аэробные организмы, включая человека, проводят энергетический обмен с использованием кислорода и получают энергию для жизнедеятельности.
  • Возникновение озонового слоя. Вследствие фотосинтеза в атмосфере накопился кислород, что привело к появлению озонового экрана. Жизнь, которая до этого вынуждена была развиваться под водой, боясь ультрафиолета, смогла выйти на сушу и освоить ее.
  • Синтез органических веществ. Растения — автотрофные организмы, сами производят органические вещества, которые затем используют гетеротрофы. Вещества, которые образуют растения в процессе фотосинтеза, являются первичным источником веществ и энергии практически для всех живых организмов.

Примеры заданий на фотосинтез в ЕГЭ и ОГЭ по биологии

 Вопросы по фотосинтезу встречаются как в ЕГЭ, так и в ОГЭ. Причем, если для 9 класса достаточно знать что это такое и основные этапы, то для ЕГЭ необходимо понимание последовательности процессов. Кстати, актуальна эта тема для решения новых заданий по экспериментам (2 и 22 линии в ЕГЭ 2022).  

Задание на фотосинтез в ОГЭ по биологии

фотосинтез огэ

Задание на фотосинтез в ОГЭ по биологии. Источник: открытый банк ФИПИ

Решение. Типичный вопрос для первой части ОГЭ из открытого банка ФИПИ. Какие из этих процессов происходят во время фотосинтеза? Возбуждение молекул хлорофилла квантом света, расщепление (фотолиз) воды и образование глюкозы. 

Во время фотосинтеза, наоборот, выделяется кислород, как побочный продукт, и поглощается углекислый газ. А синтез белка вообще проходит на рибосомах.

Ответ. 123

Задание на фотосинтез в ЕГЭ по биологии

фотосинтез егэ

Задание на фотосинтез в ЕГЭ по биологии. Источник: демоверсии ФИПИ

Решение. Это задание из открытого варианта 2021 года (в 2021 эти варианты заменяли варианты досрочного ЕГЭ). Необходимо соотнести процессы и фазы. В световой фазе происходит возбуждение молекулы хлорофилла, фотолиз воды и образование энергии. В темновую фазу фиксируется углекислый газ и восстановление углерода водородом для синтеза глюкозы.

Ответ. 12212

Конечно, процесс фотосинтеза значительно сложнее, чем мы с вами разобрали. Да и на ОГЭ и ЕГЭ проверяют знание многих других тем. Чтобы сдать экзамен на высокий балл, надо знать анатомию, зоологию, генетику, микробиологию и даже психологию. При этом недостаточно только хорошо разбираться в основных темах. Надо уметь избегать ловушек экзаменаторов, вчитываться в формулировки заданий и оформлять ответы в четком соответствии с критериями. Поэтому необходимо готовиться к ОГЭ и ЕГЭ по биологии системно.

Экзамен по биологии — не шутка. Если вы хотите сдать его на 90+, записывайтесь на мои курсы подготовки к ОГЭ или ЕГЭ. Мы разберемся со всеми темами, которые спрашивают в 9 или 11 классе, научимся решать задания быстро и правильно, а также разберем основные лайфхаки, которые помогут вам не стрессовать. Я также проведу с вами пробный экзамен в формате реального ОГЭ или ЕГЭ, чтобы вы были готовы к любым неожиданностям. После мы разберем все ошибки и поймем, как избежать их в будущем. Приходите на мои занятия, и я помогу вам сдать ОГЭ или ЕГЭ на самый высокий балл!

Типы питания

По типу питания живые организмы делятся на автотрофы, гетеротрофы и миксотрофы. Автотрофы (греч. αὐτός — сам + τροφ — пища)
— организмы, которые самостоятельно способны синтезировать органические вещества из неорганических. Гетеротрофы (греч. ἕτερος
— иной + τροφή — пища) — организмы, использующие для питания готовые органические вещества.

Наконец, миксотрофы (греч. μῖξις — смешение + τροφή — пища) — организмы, которые могут использовать как гетеротрофный, так и
автотрофный способ питания. К примеру, эвглена зеленая на свету начинает фотосинтезировать, а в темноте питается гетеротрофно.

Типы питания живых организмов

Фотосинтез

Фотосинтез (греч. φῶς — свет и σύνθεσις — синтез) — сложный химический процесс преобразования энергии квантов света в
энергию химических связей. В результате фотосинтеза происходит синтез органических веществ из неорганических.

Фотосинтез

Этот процесс уникален и происходит только в растительных клетках, а также у некоторых бактерий. Фотосинтез осуществляется при участии хлорофилла (греч. χλωρός — зелёный и φύλλον — лист) — зеленого пигмента, окрашивающего органы растений в
зеленый цвет. Существуют и другие вспомогательные пигменты, которые вместе с хлорофиллом выполняют светособирающую
или светозащитную функции.

Ниже вы увидите сравнение строения хлорофилла и гемоглобина. Обратите внимание, что в центре молекулы хлорофилла находится
ион Mg.

Строение хлорофилла и гемоглобина

В высшей степени гениально значение процесса фотосинтеза подчеркнул русский ученый К.А. Тимирязев: «Все органические вещества,
как бы они ни были разнообразны, где бы они ни встречались, в растении ли, в животном или человеке, прошли через лист, произошли
от веществ, выработанных листом. Вне листа или, вернее, вне хлорофиллового зерна в природе не существует лаборатории, где бы выделялось
органическое вещество. Во всех других органах и организмах оно превращается, преобразуется, только здесь оно образуется вновь
из вещества неорганического»

Более подробно мы обсудим значение фотосинтеза в завершение этой статьи. Фотосинтез состоит из двух фаз: светозависимой (световой)
и светонезависимой (темновой). Я рекомендую использовать названия светозависимая и светонезависимая, так как они способствуют
более глубокому (и правильному!) пониманию фотосинтеза.

Светозависимая фаза (световая)

Эта фаза происходит только на свету на мембранах тилакоидов в хлоропластах. В ней принимают участие различные ферменты,
белки-переносчики, молекулы АТФ-синтетазы и зеленый пигмент хлорофилл.

Строение хлоропласта

Хлорофилл выполняет две функции: поглощения и передачи энергии. При воздействии кванта света хлорофилл теряет электрон,
переходя в возбужденное состояние. С помощью переносчиков электроны скапливаются с наружной поверхности мембраны тилакоидов,
тем временем внутри тилакоида происходит фотолиз воды (разложение под действием света):

H2O —> H+ + OH

Гидроксид-ионы отдают лишний электрон, превращаясь в реакционно способные радикалы OH, которые собираются вместе и образуют молекулу воды и свободный кислород (это побочный продукт, который в дальнейшем удаляется в ходе газообмена).

4OH —> 2H2O + O2

Образовавшиеся при фотолизе воды протоны (H+) скапливаются с внутренней стороны мембраны тилакоидов, а
электроны — с внешней. В результате по обе стороны мембраны накапливаются противоположные заряды.

При достижении критической разницы, часть протонов проталкивается на внешнюю сторону мембраны через канал АТФ-синтетазы.
В результате этого выделяется энергия, которая может быть использована для фосфорилирования молекул АДФ:

Световая фаза фотосинтеза - светозависимая фаза

Протоны, попав на поверхность мембраны тилакоидов, соединяются с электронами и образуют атомарный водород, который
используется для восстановления молекулы-переносчика НАДФ (никотинамиддинуклеотидфосфат). Благодаря этому окисленная
форма — НАДФ+ превращается в восстановленную — НАДФ∗H2.

Предлагаю создать квинтэссенцию из полученных нами знаний. Итак, в результате светозависимой фазы фотосинтеза образуются:

  • Свободный кислород O2 — в результате фотолиза воды
  • АТФ — универсальный источник энергии
  • НАДФ∗H2 — форма запасания атомов водорода

Кислород удаляется из клетки как побочный продукт фотосинтеза, он совершенно не нужен растению. АТФ и НАДФ∗H2
в дальнейшем оказываются более полезны: они транспортируются в строму хлоропласта и принимают участие в светонезависимой
фазе фотосинтеза.

Светонезависимая (темновая) фаза

Светонезависимая фаза происходит в строме (матриксе) хлоропласта постоянно: и днем, и ночью — вне зависимости от
освещения.

При участии АТФ и НАДФ∗H2 происходит восстановление CO2 до глюкозы C6H12O6.
В светонезависимой фазе происходит цикл Кальвина, в ходе которого и образуется глюкоза. Для образования одной молекулы глюкозы
требуется 6 молекул CO2, 12 НАДФ∗H2 и 18 АТФ.

Темновая фаза фотосинтеза - светонезависимая фаза

Таким образом, в результате темновой (светонезависимой) фазы фотосинтеза образуется глюкоза, которая в дальнейшем может быть преобразована
в крахмал, служащий для запасания питательных веществ у растений.

Значение фотосинтеза

Значение фотосинтеза невозможно переоценить. Уверенно утверждаю: именно благодаря этому процессу жизнь на Земле приобрела такие
чудесные и изумительные формы, какие мы видим вокруг себя: удивительные растения, прекрасные цветы и самые разнообразные животные.

В разделе эволюции мы уже обсуждали, что изначально в составе атмосферы Земли не было кислорода: миллиарды лет назад его начали вырабатывать
первые фотосинтезирующие бактерии — сине-зеленые водоросли (цианобактерии). Постепенно кислород накапливался, и со временем на Земле
стало возможно аэробное (кислородное) дыхание. Возник озоновый слой, защищающий все живое на нашей планете от губительного ультрафиолета.

Озоновый слой

Говоря о роли фотосинтеза, выделим следующие функции, объединяющиеся в так называемую космическую роль растений. Итак, растения за счет фотосинтеза:

  • Синтезируют органические вещества, являющиеся пищей для всего живого на планете
  • Преобразуют энергию света в энергию химических связей, создают органическую массу
  • Растения поддерживают определенный процент содержания O2 в атмосфере, очищают ее от избытка CO2
  • Способствуют образованию защитного озонового экрана, поглощающего губительное для жизни ультрафиолетовое излучение

Дождевые леса Амазонии

Хемосинтез (греч. chemeia – химия + synthesis — синтез)

Хемосинтез — автотрофный тип питания, который характерен для некоторых микроорганизмов, способных создавать органические
вещества из неорганических. Это осуществляется за счет энергии, получаемой при окислении других неорганических соединений
(железо- , азото-, серосодержащих веществ).

Хемосинтез был открыт русским микробиологом С.Н. Виноградским в 1888 году. Большинство хемосинтезирующих бактерий относится
к аэробам, для жизни им необходим кислород.

Хемосинтез у нитрифицирующих бактерий

При окислении неорганических веществ выделяется энергия, которую организмы запасают в виде энергии химических связей.
Так нитрифицирующие бактерии последовательно окисляют аммиак до нитрита, а затем — нитрата. Нитраты могут быть усвоены
растениями и служат удобрением.

Помимо нитрифицирующих бактерий, встречаются:

  • Серобактерии — окисляют H2S —> S 0 —> (S+4O3)2- —> (S+6O4)2-
  • Железобактерии — окисляют Fe+2 —>Fe+3
  • Водородные бактерии — окисляют H2 —> H+12O
  • Карбоксидобактерии — окисляют CO до CO2
Значение хемосинтеза

Хемосинтезирующие бактерии являются неотъемлемым звеном круговорота в природе таких элементов как: азот, сера, железо.

Нитрифицирующие бактерии обеспечивают переработку (нейтрализацию) ядовитого вещества — аммиака. Они также обогащают
почву нитратами, которые очень важны для нормального роста и развития растений.

Усвоение нитратов происходит за счет клубеньковых бактерий на корнях бобовых
растений, однако важно помнить, что клубеньковые (азотфиксирующие) бактерии, в отличие от нитрифицирующих бактерий, питаются гетеротрофно.

Клубеньковые бактерии

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Фотосинтез

Автор статьи — Л.В. Окольнова.

фотосинтез

Определение довольно простое, уравнение тоже суммарное. оно не описывает сам процесс — сложный и многоступенчатый.

В этой статье мы не будем разбирать все стадии, мы разберем только две основные фазы фотосинтеза — световую и темновую, а также основные процессы, которые происходят в это время в организме растения.

Световая фаза фотосинтеза.

Днем растения работают как солнечные батарейки — аккумулируют энергию света солнца:
● на мембранах тилакойдов хлоропластов молекулы хлорофилла поглощают (аккумулируют) свет,

строение-хлоропластов

● происходит синтез АТФ,

атф

● образуется НАДФ — кофермент.

Кофермент (коэнзим) — это биологический катализатор, но ферментом его назвать нельзя, т.к. у него не белковая природа, который ускоряет и направляет протекание окислительно-восстановительных процессов. Он понадобится на следующей — темновой фазе процесса .

●происходит расщепление (фотолиз) воды: 2H20 = 4H+ + 4e- + O2­.

растение выделяет кислород
.

Темновая фаза фотосинтеза.

Это уже фаза синтеза. Энергия, полученная в ходе световой фазы, идет на восстановление CO2 до молекулы глюкозы.

Этот процесс происходит уже в строме.

Общая схема фотосинтеза:

общая

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Фотосинтез» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
08.03.2023

История открытия фотосинтеза

В настоящее время школьники впервые знакомятся со сложными процессами фотосинтеза уже в 6 классе.

Но еще 300-400 лет назад ответ на вопрос «откуда растения берут питательные вещества для строительства своих клеток?» занимал умы ученых во всем мире.

Первым и очевидным ответом было предположение, что из земли. Однако, в далеком 1600 году фламандский ученый Ян Батист ван Гельмонт решил проверить влияние почвы на рост растений и провел уникальный в своей простоте опыт. Естествоиспытатель взял веточку ивы и бочку с почвой. Предварительно их взвесил. А затем посадил отросток ивы в бочку с почвой.

Долгие пять лет ван Гельмонт поливал молодое деревце лишь дождевой водой. А через пять лет выкопал деревце, и вновь взвесил отдельно деревце и отдельно почву. Каково же было его удивление, когда весы показали, что деревце увеличило свой вес практически в тридцать раз, и совсем не походило на тот скромный прутик, что был посажен в кадку. А вес почвы уменьшился всего на 56 граммов.

Ученый сделал вывод. что почва практически не дает строительного материала растениям, а все необходимые вещества растение получает из воды.

После ван Гельмонта различные ученые повторили его опыт, и сложилась так называемая «водная теория питания растений».

Одним из тех, кто попытался возразить этой теории был М.В. Ломоносов. И строил он свои возражения на том, что на пустых, скудных северных землях с редкими дождями растут высокие, мощные деревья. Михаил Васильевич предположил, что часть питательных веществ растения впитывают через листья, но доказать свою теорию экспериментально он не смог.

И как часто бывает в науке, помог его величество случай.

Однажды нерадивая мышь, решившая поживиться церковными запасами, случайно перевернула банку и оказалась в ловушке. И через некоторое время погибла. К нашей удаче, эту мышь в банке обнаружил Джозеф Пристли, который был не просто священником, а по совместительству ученым-химиком, и очень интересовался химией газов и способами очистки испорченного воздуха. И тут церковным мышам не повезло. Они стали участницами различных опытов английского ученого.

Джозеф Пристли ставил под одну банку горящую свечу, а в другую сажал мышь. Свеча тухла, грызун погибал.

В наше время его самого зоозащитники посадили бы в банку, но в далеком 1771 году ученому никто не помешал продолжить свои опыты. Пристли посадил мышь в банку, где до этого потухла свеча. Животное погибло еще быстрее.

И тогда Пристли сделал вывод, что раз все живое на Земле до сих пор не погибло, Бог (мы же помним, что Пристли был священником), придумал некий процесс, чтобы воздух вновь был пригоден для жизни. И скорее всего, основная роль в нем принадлежит растениям.

Чтобы доказать это, ученый взял воздух из банки где погибла мышь, и разделил его на две части. В одну банку он поставил мяту в горшочке. А другая банка ждала своего часа. Через 8 дней растение не только не погибло, а даже выпустило несколько новых побегов. И он опять посадил грызунов в банки. В той, где росла мята — мышь была бодра и закусывала листиками. А в той, где мяты не было — практически моментально лежала дохлая мышиная тушка.

Рисунок 1

Опыты Пристли вдохновили ученых, и во всем мире начали отлавливать мелких грызунов и пытаться повторить его эксперименты.

Но мы же помним, что Пристли был священником и весь день, до вечерней службы мог заниматься исследованиями.

А Карл Шееле, аптекарь из Швейцарии, экспериментировал в домашней лаборатории в свободное от работы время, т.е. по ночам, и мыши дохли у него независимо от присутствия мяты в банке. В результате его экспериментов получалось, что растения не улучшают воздух, а делают его непригодным для жизни. И Шееле обвинил Пристли в обмане научной общественности. Пристли не уступил, и в результате противостояния ученых было установлено, что для восстановления воздуха растениям необходим солнечный свет.

Именно эти опыты положили начало изучению фотосинтеза.

Исследование фотосинтеза стремительно продолжалось. Уже в 1782 году, спустя всего лишь 11 лет после исследований Пристли, швейцарский ботаник Жан Сенебье доказал, что органоиды растений разлагают углекислый газ в присутствии солнечного света. И практически еще сто лет провальных и удачных экспериментов понадобилась ученым разных специальностей, чтобы в 1864 году немецкий ученый Юлиус Сакс смог доказать, что растения потребляют углекислый газ и выделяют кислород в соотношении 1:1.

Биология. 6 класс. Рабочая тетрадь №1.

Биология. 6 класс. Рабочая тетрадь № 1.

Рабочая тетрадь разработана к учебнику «Биология. 6 класс» (авт. И.Н. Пономарева, О.А. Корнилова, В.С. Кучменко), входящему в систему «Алгоритм успеха». Содержит проблемные и тестовые задания, позволяющие учителю организовывать дифференцированную практическую работу шестиклассников, формировать основные биологические понятия, эффективно осуществлять контроль знаний, привлекая учащихся к самооценке учебной деятельности.

Купить

Значение фотосинтеза для жизни на Земле

И теперь становится понятна важность процесса фотосинтеза для жизни на земле. Именно благодаря этому сложному химическом процессу стало возможно зарождение жизни на земле и существование человека.

Кто-то может возразить, что на Земле есть места, где не растут ни деревья ни кустарники, например, пустыни или Арктические льды. Ученые доказали, что доля кислорода, выделяемого зеленой массой лесов, кустарников и трав — т. е. растений, что обитают на поверхности суши, составляет всего около 20% газообмена, а 80% кислорода приходится на мельчайшие морские и океанские водоросли, которые потоками воздуха переносятся по всей планете, позволяя дышать животным в экстремальных, практически лишенных растительности регионах нашей удивительной планеты.

Благодаря фотосинтезу вокруг нашей планеты сформировался защитный озоновый экран, защищающий все живое на земле от космической и солнечной радиации, и живые организмы смогли выйти на сушу из глубин океана.

Подробнее о «великой кислородной революции» можно прочитать в учебнике «Биология 10-11 классы» под редакцией А.А. Каменского на портале LECTA.

К сожалению, в настоящее время кислород потребляют не только живые существа, но и промышленность. Уничтожаются тропические леса, загрязняются океаны, что приводит к снижению газообмена и увеличению дефицита кислорода.

Определение и формула фотосинтеза

Определение и формула фотосинтеза

Слово фотосинтез состоит из двух частей: фото — «свет» и синтез — «соединение», «создание». Если подходить к определению упрощенно, то фотосинтез — это превращение энергии света в энергию сложных химических связей органических веществ при участии фотосинтетических пигментов. У зеленых растений фотосинтез происходит в хлоропластах.

Схема фотосинтеза, на первый взгляд, проста:

Вода + квант света + углекислый газ → кислород + углевод

или (на языке формул):

6СО2 + 6Н2О → С6Н12О6 + 6О2

Если копнуть поглубже и посмотреть на лист в электронный микроскоп, выяснится удивительная вещь: вода и углекислый газ ни в одной из структурных частей листа непосредственно друг с другом не взаимодействуют.

Фазы фотосинтеза

К фотосинтезу способны не только растения, но и многие одноклеточные животные благодаря специальным органоидам, которые называются хлоропласты.

Хлоропласты — это пластиды зеленого цвета фотосинтезирующих эукариот. В состав хлоропластов входят:

  1. две мембраны;
  2. стопки гранов;
  3. диски тилакоидов;
  4. строма — внутреннее вещество хлоропласта;
  5. люмен — внутреннее вещество тилакоида.

Сложный процесс фотосинтеза состоит из двух фаз: световой и темновой. Как понятно из названия, световая (светозависимая) фаза происходит с участием квантов света. Название темновая фаза вовсе не означает, что процесс происходит в темноте. Более точное определение — светонезависимая. Т.е. для реакций, происходящих в этой этой фазе, свет не нужен, а протекает она одновременно со световой, только в других отделах хлоропласта.

Многие делают ошибку, говоря, что в процессе фотосинтеза происходит производство растениями такого необходимого человечеству кислорода. На самом деле фотосинтез — это синтез углеводов (например, глюкозы), а кислород — лишь побочный продукт реакции.

Световая фаза фотосинтеза

Световая фаза фотосинтеза происходит на мембранах тилакоидов. Фотон света, попадая на хлорофилл, возбуждает его и происходит выделение электронов и скопление отрицательно заряженных электронов на мембране. После того, как хлорофилл потерял все свои электроны, квант света продолжает воздействовать на воду, вызывая фотолиз Н2О.

Н2О → Н+ + ОН-

Положительно заряженные протоны водорода накапливаются на внутренней мембране тилакоида.

Получается такой бутерброд: с одной стороны отрицательно заряженные электроны хлорофилла, с другой – положительно заряженные протоны водорода, а между ними – внутренняя мембрана тилакоида.

Гидроксильные ионы идут на производство кислорода:

4ОН → О2 + 2Н2О

Когда количество протонов водорода и электронов достигает максимума, запускается специальный переносчик — АТФ-синтаза. АТФ-синтаза выталкивает протоны водорода в строму, где их подхватывает специальный переносчик никотинамиддинуклеотидфосфат или сокращенно НАДФ. НАДФ — специфический переносчик протонов водорода в реакциях углеводов.

Прохождение протонов водорода через АТФ-синтазу сопровождается синтезом молекул АТФ из АДФ и фосфата или фотофосфорилированием, в отличие от окислительного фосфорилирования.

На этом световая фаза фотосинтеза заканчивается, а НАДФН+ и АТФ переходят в темновую фазу.

Повторим ключевые процессы световой фазы фотосинтеза:

  1. Фотон попадает на хлорофилл с выделением электронов.
  2. Фотолиз воды.
  3. Выделение кислорода.
  4. Накопление НАДФН+.
  5. Накопление АТФ.

У некоторых растений фотосинтез идет по упрощенному варианту, который называется «циклическое фосфорилирование» и разбирается этот процесс в учебнике «Биология 10-11 классы» под редакцией А. А. Каменского на портале LECTA.

Темновая фаза фотосинтеза

Темновая фаза фотосинтеза — совокупность ферментативных реакций, которые происходят в строме хлоропласта. Результатом таких реакций является восстановление поглощенного СО2 при помощи НАДФН+ и АТФ из световой фазы, а еще – синтез сложных органических веществ.

В настоящее время учеными открыто три различных варианта реакций, протекающих в темновую фазу фотосинтеза.

В зависимости от метаболизма, СО2 растения делят на:

  1. С3-растения — большинство сельскохозяйственных культур, произрастающих в умеренном климате, у которых в результате реакций СО2 превращается в фосфоглицериновую кислоту.
  2. С4-растения — растения тропиков и субтропиков, наиболее живучие сорняки. У этих растений в результате реакций СО2 превращается в оксалоацетат.
  3. САМ-растения — особый тип С4-фотосинтеза у растений, испытывающих дефицит влаги.

Более подробно остановимся на реакциях С3-фотосинтеза, присущих большинству растений и носящих название цикл Калвина.

Мелвин Калвин, американский химик, в 1961 году за определение последовательности реакций при усвоении СО2 был удостоен Нобелевской премии в области химии.

Рисунок 2

В ходе реакций цикла образуется глюкоза. Чтобы получилась всего лишь одну молекулу глюкозы, последовательные реакции цикла Кальвина одна за другой происходят целых шесть раз и на ее построение тратится шесть молекул СО2, восемнадцать молекул АТФ, двенадцать НАДФН+ и двадцать четыре протона.

В ходе дальнейших исследований с меченым радиоактивным углеродом было установлено, что у некоторых тропических и субтропических растений синтез углеводов идет другим путем. И в 1966 году австралийские ученые М. Хетч и К. Слэк описали С4-фотосинтез, который в их честь называется циклом Хетча-Слэка.

Главное отличие этих путей фотосинтеза в том, что у С3-растений процесс фотосинтеза протекает лишь в клетках мезофилла, а у С4-растений как в клетках мезофилла, так и в клетках обкладки сосудистых пучков.

На первый взгляд, увеличение количества реакций может показаться лишенным смысла. Однако в природе не существует ничего бессмысленного или излишнего. И путь С4-фотосинтеза — эволюционное приспособление растений к более сухому и жаркому климату. Произрастание в условиях ограниченного водоснабжения привело к снижению транспирации для уменьшения потерь воды, что в свою очередь привело к дефициту диоксида углерода и необходимости его концентрации в клетках обкладки.

Рисунок 3

Также существует еще один уникальный механизм фотосинтеза, характерный для суккулентов. Он носит название САМ (crassulaceae acid metabolism)— «путь фотосинтеза». Химические реакции напоминают путь метаболизма С4, однако здесь химические реакции разделены не в пространстве, а во времени. Диоксид углерода накапливается в темное время суток.

Протекание фотосинтетических реакций в таком варианте позволяет растениям осуществлять процесс фотосинтеза в условиях значительного дефицита влаги. Считается, что данный путь фотосинтеза сформировался самым последним в ходе эволюции.

Рисунок 4

Изучая пути фотосинтеза, Вы могли заметить, что в ходе эволюции вырабатываются уникальные приспособительные механизмы к различным условиям существования: от засушливых пустынь до морских глубин.

Тайны живой природы помогут открыть электронные учебники по биологии на портале LECTA.


#ADVERTISING_INSERT#

Понравилась статья? Поделить с друзьями:
  • Фотосинтез для егэ презентация
  • Фотосинтез для егэ по биологии
  • Фотосинтез все для егэ
  • Фотосинтез 11 класс егэ биология
  • Фрагменты органных сочинений по музыке 6 класс кратко