Функции белков егэ биология

в условии
в решении
в тексте к заданию
в атрибутах

Категория:

Атрибут:

Всего: 335    1–20 | 21–40 | 41–60 | 61–80 …

Добавить в вариант

Выберите примеры функций белков, осуществляемых ими на клеточном уровне жизни.

1)  обеспечивают транспорт ионов через мембрану

2)  входят в состав волос, перьев

3)  формируют кожные покровы

4)  антитела связывают антигены

5)  запасают кислород в мышцах

6)  обеспечивают работу веретена деления


В каких процессах проявляются защитные функции белков, и какие это белки?


Верны ли следующие утверждения о функциях белков в клетке?

А. Белки выполняют основную энергетическую функцию в организме.

Б. В белках реализуется наследственная информация организма.

1)  верно только А

2)  верно только Б

3)  верны оба суждения

4)  оба суждения неверны


Верны ли следующие суждения о функциях белков?

А. Все белки  — ферменты.

Б. Все ферменты  — белки.

1)  верно только А

2)  верно только Б

3)  верны оба суждения

4)  оба суждения неверны


Верны ли следующие утверждения о функциях белков в клетке?

А. Многие белки выполняют каталитическую функцию.

Б. Некоторые гормоны имеют белковую природу.

1)  верно только А

2)  верно только Б

3)  верны оба суждения

4)  оба суждения неверны


Сигнальную, двигательную, транспортную и защитную функции в клетке выполняют

Источник: ЕГЭ по биологии 30.05.2013. Основная волна. Дальний Восток. Вариант 2.


Белки, в отличие от нуклеиновых кислот,

1)  участвуют в образовании плазматической мембраны

2)  входят в состав хромосом

3)  участвуют в гуморальной регуляции

4)  осуществляют транспортную функцию

5)  выполняют защитную функцию

6)  переносят наследственную информацию из ядра к рибосоме

Источник: Демонстрационная версия ЕГЭ—2014 по биологии.


Какие функции выполняют углеводы в организме животных?

1)  каталитическую

2)  структурную

3)  запасающую

4)  гормональную

5)  сократительную

6)  энергетическую


Ферментативную, строительную, транспортную, защитную функции в клетке выполняют молекулы

Источник: ЕГЭ по биологии 30.05.2013. Основная волна. Центр, Урал. Вариант 3.


Какие функции выполняют липиды в организме животных?

1)  ферментативную

2)  запасающую

3)  энергетическую

4)  структурную

5)  сократительную

6)  рецепторную


Жиры, как и глюкоза, выполняют в клетке функцию


Все приведенные ниже признаки, кроме двух, являются функциями липидов. Определите два признака, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

1)  запасающую

2)  гормональную

3)  ферментативную

4)  переносчика наследственной информации

5)  энергетическую

Источник: РЕШУ ЕГЭ


Все приведённые ниже признаки, кроме двух, можно использовать для определения функций липидов в клетке. Определите два признака, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

1)  запасающая

2)  регуляторная

3)  транспортная

4)  ферментативная

5)  строительная


Функция простых углеводов в клетке  —

3) хранение наследственной информации

4) участие в биосинтезе белка


Выберите ТРИ функции ДНК в клетке

1)  посредник в передаче наследственной информации

2)  хранение наследственной информации

3)  кодирование аминокислот

4)  матрица для синтеза иРНК

5)  регуляторная

6)  структурирование хромосом


Основными химическими соединениями, определяющими индивидуальность организма, являютcя

1) вода и минеральные соли

3) соединения серы, фосфора

4) нуклеиновые кислоты и белки

Источник: Яндекс: Тренировочная работа ЕГЭ по биологии. Вариант 1.


Выберите ТРИ функции ДНК в клетке

1)  посредник в передаче наследственной информации

2)  хранение наследственной информации

3)  кодирование аминокислот

4)  матрица для синтеза иРНК

5)  регуляторная

6)  структурирование хромосом


Инородные белки, попавшие в организм человека, связываются, образуя комплексы с


В клетке липиды выполняют функцию


Моносахариды в клетке выполняют функции:

1)  энергетическую

2)  составных компонентов полимеров

3)  информационную

4)  составных компонентов нуклеиновых кислот

5)  защитную

6)  транспортную

Всего: 335    1–20 | 21–40 | 41–60 | 61–80 …

  

Строение и функции белков 

Краткий конспект в схемах и таблицах

belki shema 1

belki shema 2

belki shema 3

belki shema 4

Подробный конспект

Конспект включает подробное текстовое описание строения, свойств и функций белков в формате ЕГЭ по биологии.

перейти…

Термины по теме

Основные термины по теме «Строение и функции белков».

перейти…

Тестовые задания 

Раздел содержит тесты по теме «Строение и функции белков» в формате ЕГЭ для тренировки

перейти…

Список использованных источников

  1. Биология 11 класс. В.Б. Захаров, С.Г. Мамонтов, Н.И. Сонин, Е.Т. Захарова; Дрофа, 2010
  2. Биология. Общая биология. Базовый уровень: учебник для 10-11 классов. В.И. Сивоглазов, И.Б. Агафонова, Е.Т. Захарова; Дрофа, 2010
  3. Биология 10-11 класс. Сухорукова Л.Н., Кучменко В.С., Иванова Т.В.; Сфера, Просвещение
  4. Использованные рисунки, находящиеся в свободном доступе в Интернете

В видео-уроке использовались фрагменты:

https://www.youtube.com/watch?v=RCGTZw7E7tE

Белки — это высокомолекулярные соединения (биополимеры), мономерами которых яв­
ляются аминокислоты, соединенные пептидными связями.

Аминокислотой называют органическое соединение, имеющее карбоксильную и амино­
группу, а также радикал. В природе встречается около 200 аминокислот, которые
различаются взаимным расположением функциональных групп и радикалами, но только 
20 из них входят в состав белков. Такие аминокислоты называют протеиногенными. 

Не все протеиногенные аминокислоты могут синтези­
роваться в организме человека. Аминокислоты, которые
образуются в организме человека в необходимом коли­
честве, называют
заменимыми (их насчитывается 12),
а аминокислоты, которые не синтезируются и должны
поступать с пищей, —
незаменимыми (8). К незамени­
мым аминокислотам относят валин, изолейцин, лейцин, 
лизин, метионин, треонин, триптофан и фенилаланин. 

Уровни структурной организации белка. 

У белков различают первичную, вторичную,третичную и четвертичную структуры.

Первичная структура белка — это последовательность аминокислот, соединенных пептидной связью. Особенности аминокислотного состава белка обусловливают его
пространственную укладку — возникновение вторичной и третичной структур. Изменение
расположения хотя бы одной аминокислоты в первичной структуре влечет за собой измене­
ние более высоких структур, а также свойств белка в целом.

Вторичная структура представляет собой упорядоченную пространственную структуру
белковой молекулы в виде
спиралей или складок, поддерживаемых водородными связями, которые возникают между атомами кислорода и водорода. Более­менее длинные
участки со вторичной структурой имеют, например, кератины волос и ногтей, фиброин шелка.

Третичная структура белка является
формой пространственной укладки поли­
пептидной цепи в виде
глобулы (клубка),
поддерживаемой гидрофобными, водород­
ными, дисульфидными (S—S) и ионными
связями . Она характерна для
большинства белков организма, напри­
мер, миоглобина мышц.

Четвертичная структура — это про­
странственная организация нескольких
глобул, которая поддерживается слабы­
ми взаимодействиями (гидрофобными,
ионными, водородными и др.).
Четвертичная структура характер­
на для гемоглобина и хлорофилла.

По форме молекулы различают фи­
бриллярные
и глобулярные белки. Первые
из них вытянуты, как, например, колла­
ген соединительной ткани или кератины
волос и ногтей. Глобулярные же белки
имеют форму глобулы, как миоглобин
мышц.
 

Свойства белков. 

Одни белки хорошо растворимы в воде, а другие растворяются толь­
ко в растворах солей, щелочей, кислот или органических растворителях. Структура мо­лекулы белка и его функциональная активность зависят от условий окружающей среды. Утрата белковой молекулой структуры, вплоть до первичной, называется
денатурацией. Денатурация происходит вследствие изменения тем­пературы, рН, атмосферного давления, под действием кислот,
щелочей, солей тяжелых металлов, органических растворите­лей и др. Обратный процесс восстановления структуры назы­вается
ренатурацией, однако он не всегда возможен. Полное разрушение белковой молекулы называется деструкцией 

Функции белков:

Белки выполняют в клетке ряд функций: пластическую (стро­ительную), каталитическую (ферментативную), энергетическую, сигнальную (рецепторную), сократительную (двигатель­ную), транспортную, защитную, регуляторную и запаса­ющую.Строительная функция белков связана с их наличи­
ем в клеточных мембранах и структурных компонен­тах клетки. Энергетическая обусловлена тем, что при
расщеплении 1 г белка высвобождается 17,2 кДж энер­
гии. Белки — рецепторы мембран принимают участие
в восприятии сигналов окружающей среды и их пе­
редаче в клетке, а также в межклеточном узнавании.
Без белков невозможно движение клеток и организмов
в целом. Они составляют основу жгутиков и ресничек,
а также обеспечивают сокращение мышц и перемеще­
ние внутриклеточных компонентов. В крови человека
и многих животных белок гемоглобин переносит кисло­
род и часть углекислого газа, другие белки транспорти­руют ионы и электроны. Защитная роль белков связана
с иммунитетом: белок интерферон способен уничтожать
многие вирусы, а белки­антитела участвуют в иммун­
ных реакциях. Среди белков и пептидов есть регулято­
ры, например, гормон поджелудочной железы, инсулин,
регулирующий концентрацию глюкозы в крови. У неко­
торых организмов белки могут откладываться в запас,
как у бобовых в семенах, или у птиц и пресмыкающих­ся в яйцах.

Insert Flash

 ТЕСТ ДОМАШНИЙ

белки жиры углеводы

Справочная таблица.

f-b.docx
f-b.pdf

Название функции

Примеры белков

Где содержатся

Характеристика функции

1. Строительная (структурная)

Кератин

Волосяной покров, кости, ногти

Участие в образовании всех клеточных мембран и органоидов клетки.

Коллаген
Фиброин
Оссеин

Соединительная ткань, железы насекомых, кости

Образование нитей натурального шелка.

2. Регуляторная

Инсулин

Поджелудочная железа

Регулирует поступление и уровень глюкозы в крови.
Функция гормонов, влияющих на активность ферментов.

Гистоны
Гормон роста

В крови

3. Транспортная

Гемоглобин

Эритроциты крови

Переносит О2, питательные вещества   и СО2.

Альбумины

Кровь

Транспорт жирных кислот.

4. Каталитическая

Б-ферменты
Каталаза
Рибонуклеаза
Трипсин

Во всех клетках и тканях животных и растений

Ускоряют химические реакции, способствуют расщеплению питательных веществ и вредных соединений.

5. Защитная

Антитела крови
Фибриноген
Тромбин
Интерферон

Кровеносная система (лейкоциты)

Иммунная защита организмов. Свертывание крови. Подавляет развитие вирусов.

6. Сократительная

Актин
Миозин
Фибрилл

Мышечные волокна. Структура ресничек и жгутиков простейших

Сокращение мышц. Движение простейших. Все виды движений.

7. Энергетическая

Все белки

Клетки всех организмов

Источник энергии для клеток (1г белка – 17,6 кДж энергии)

8. Запасная (питательная)

Казеин

Молоко

Запас питательных веществ.

Альбумин

Яйца

Клейковина

Пшеница

Зеин

Кукуруза

Автор: Кистайкин Н.В.

Задумайтесь! Мы с вами состоит из миллиардов атомов. Все атомы находятся в круговороте, и
все атомы, которыми мы обладаем, в ком-то и где-то находились те 4,5 млрд. лет, которые существует Земля. Они были частями
животных, растений, грибов и бактерий — а сейчас принадлежат нам на короткое время.

Круговорот атомов

С химической точки зрения ответ на вопрос «Жив ли изучаемый объект?» — не представляется возможным. Понятию «жизнь» дано
колоссальное количество определений. Жизнь — это самовоспроизведение с изменением, способ существования белковых тел,
постоянный обмен веществ с внешней средой.

Мы приступаем к изучению неорганических и органических веществ клетки. Начнем с неотъемлемого компонента клетки,
благодаря которому жизнь на Земле в принципе стала возможна — вода.

Вода

Составляет 60-80% массы клетки. Молекула воды обладает уникальным свойством — полярностью, которое возникает из-за
разницы в электроотрицательности (ЭО) между атомами кислорода и водорода (у кислорода ЭО больше).

Вода полярная молекула

Поскольку молекула воды полярна, ее называют диполь. Между молекулами воды возникают непрочные водородные связи:
водородная связь начинается от отрицательно заряженного атома кислорода (2δ) одной молекулы воды и
тянется до положительно заряженного атома водорода другой молекулы воды (δ+)

По отношению к воде все вещества можно подразделить на два типа:

  • Гидрофильные (греч. hydro — вода и philéo — люблю) — вещества, которые хорошо растворяются в воде. Гидрофильными
    веществами являются сахара, соли, альдегиды, спирты, аминокислоты.
  • Гидрофобные (греч. hydro — вода и phobos — страх) — вещества, которые не растворяются в воде. Гидрофобными
    веществами являются жиры.

Роль воды в клетке трудно переоценить. Ее функции и свойства крайне важны:

  • Вода — универсальный растворитель
  • Большинство реакций, которые протекают в клетке, идут в растворе (водной среде). Полярность молекулы воды позволяет
    ей быть отличным растворителем для других гидрофильных (полярных) веществ.

  • Вода — терморегулятор
  • Вода может поглощать теплоту при минимальном изменении температуры. Это настоящее «спасение» для клеток: чуть только
    температура меняется, вода начинает поглощать избыток тепла, защищая клетку от перегревания. Выделяясь на поверхность
    кожи с потом, вода испаряется, поверхность кожи при этом охлаждается.

  • Вода — реагент
  • Она не только создает среду для реакций в клетке, но и сама активно участвует во многих из них. Расщепление питательных
    веществ, попавших в клетку, происходит за счет реакции гидролиза (греч. hydro — вода и lysis — расщепление).

  • Транспортная функция
  • Питательные вещества, газы перемещаются по организму с током крови. Вода составляет 90-92% плазмы крови, является ее основным
    компонентом. С помощью воды происходит не только доставка веществ к клеткам, но и удаление из организма побочных продуктов
    обмена веществ.

    Транспортная функция воды

  • Структурная функция
  • Вода придает тканям тургор (лат. turgor — наполнение) — внутреннее осмотическое давление в живой клетке, создающее
    напряжение оболочек клеток. Вода составляет от 60 до 95% цитоплазмы, придает клеткам форму. Изменение тургора клеток растений
    приводит к перемещениям их частей, раскрытию устьиц, цветков.

    Осмотическое давление — избыточное гидростатическое давление на раствор, отделенный от чистого растворителя с
    помощью полупроницаемой мембраны.

    Главное — понимать суть: если мы поместим живую клетку в гипертонический раствор, то
    вода (растворитель) устремится из клетки в раствор (в сторону большей концентрации соли) — это приведет к сморщиванию
    клеток.

    Если же клетка окажется
    в гипотоническом растворе, то вода извне устремится внутрь клетки (опять-таки в сторону большей концентрации солей),
    приводя при этом к разбуханию (и возможному разрыву) клетки.

    Эритроциты в гипер- и гипотоническом растворе

Элементы

Живая клетка — кладезь элементов таблицы Менделеева. Процент содержания различных элементов отличается, в связи с чем все они делятся на
3 группы:

  • Биогенные (основные) — C, H, O, N. Входят в состав органических соединений, составляют основную часть клетки
  • Макроэлементы (греч. makrós — большой) — составляют десятые и сотые доли в клетке: K, Na, Ca, Mg, Cl, P, S
  • Микроэлементы (греч. mikrós — маленький) — составляют тысячные доли в клетке: Zn, Cu, I, Co, Mn, Fe

Процентное содержание элемента не коррелирует с его важностью и биологической значимостью. Так, к примеру, микроэлемент
I играет важную роль в синтезе гормонов щитовидной железы: тироксина, трийодтиронина. За нормальные рост и развитие
организмов отвечают Zn, Mn, Cu.

Благоприятно влияют на сперматозоиды Zn, Ca, Mg, защищая их от оксидативного стресса (окисления). Невозможным становится
нормальное образование эритроцитов без должного уровня Fe и Cu.

Микроэлементы

Соли

В водной среде клетки соли диссоциируют (распадаются) на положительно заряженные ионы — катионы (Na+, K+,
Ca2+, Mg2+) и отрицательно заряженные — анионы (Cl, SO42-,
HPO42-, H2PO4).

Для процессов возбуждения клетки (нейрона, миоцита — мышечной клетки) внутри клетки должна поддерживаться низкая концентрация ионов Na+ и высокая концентрация ионов K+. В окружающей клетку среде все наоборот: много Na и мало K. В мембране существует
специальный натрий-калиевый насос, который поддерживает необходимое равновесие. Если это
соотношение нарушится, то нейрон не сможет сгенерировать нервный импульс, а клетка мышцы — сократиться.

Натрий-калиевый насос

Соли в клетке и организме выполняют ряд важных функций:

  • Участвуют в активации ферментов
  • Создают буферные системы (бикарбонтаную, фосфатную, белковую)
  • Поддерживают кислотно-щелочное состояние (КЩС)
  • Создают осмотическое давление клетки
  • Создают мембранный потенциал клеток (натрий-калиевый насос)
  • Являются основным минеральным составляющим скелета внутреннего и наружного (у моллюсков)

Функции солей в клетке

Мы переходим к органическим компонентам клетки, к которым относятся: жиры, углеводы, белки и нуклеиновые кислоты.

Белки, или пептиды (греч. πεπτος — питательный)

Белки — полимеры, мономерами которых являются аминокислоты. Белки представляют линейную структуру, образованную из
длинной цепи аминокислот, между которыми возникают пептидные связи. Пептидная связь образуется между карбоксильной
группой (COOH) одной аминокислоты и аминогруппой другой аминокислоты (NH2).

Образование пептидной связи

Между понятиями пептиды и белки существует определенная разница. Белки состоят из сотен тысяч аминокислот. Пептидами
называют небольшие белки, содержащие до 10 аминокислот. Ими являются некоторые гормоны: окситоцин,
вазопрессин, тиреолиберин — эти пептиды выполняют регуляторную функцию.

Выделяется несколько уровней пространственной организации белка:

  • Первичная — полипептидная цепь, в которой аминокислоты расположены линейно
  • Вторичная — полипептидная цепь закручивается в спираль, формируется α или β структура
  • Третичная — спирали скручиваются в глобулу (лат. globulus — шарик)
  • Четвертичная — образуется у сложных белков путем соединения нескольких глобул

Структуры белка

При резком изменении оптимальных для белка условий он подвергается денатурации: при этом происходит переход от
высших структур организации к низшим, или «раскручивание белка». Важно заметить, что аминокислотная последовательность (первичная структура белка) при этом не меняется, однако свойства белка меняются кардинально (теряется его гидрофильность).

Осмелюсь сделать заявление: вы часто начинаете свой день с денатурации белка. Простейший способ провести такой
эксперимент — пожарить яичницу. Заметьте, что изначально яичный белок прозрачный и текучий, но по итогу жарки эти свойства
утрачиваются: он становится непрозрачным и вязким.

Денатурация белка

Завершаем тему о белках изучением их функций:

  • Каталитическая (греч. katalysis — разрушение)
  • Белки — природные катализаторы, ускоряющие реакции в организме в десятки и сотни тысяч раз. Эту роль главным образом
    выполняют белки-ферменты (энзимы).

    Иногда в состав белков входят так называемые ко-факторы — небелковые соединения,
    которые необходимы ферменту для его биологической активности (в роли ко-факторов могут выступать Zn2+,
    Mg2+).

  • Строительная
  • Белки входят в состав клеточных мембран. Сложные белки: коллаген, эластин — входят в состав соединительных тканей организма,
    придавая им некоторую прочность и эластичность.

  • Регуляторная
  • Некоторые гормоны, регулирующие обменные процессы в организме, имеют белковое происхождение: инсулин, глюкагон,
    адренокортикотропный гормон (АКТГ).

  • Защитная
  • Говоря об этой функции, прежде всего, стоит вспомнить об антителах — иммуноглобулинах, которые синтезируют B-лимфоциты.
    Антитела нейтрализуют чужеродные организму антигены (разрушают бактерии).

    Антитела иммуноглобулины

    Помимо антител, защитную функцию выполняют
    также белки свертывающей системы крови (тромбин и фибриноген): они предохраняют организм от кровопотери.

    Фибриноген и фибрин

  • Энергетическая
  • При недостаточном питании в организме начинают окисляться молекулы белков. При расщеплении 1 г белков выделяется 17,6 кДж энергии.

  • Транспортная
  • Некоторые белки крови способны присоединять к себе и переносить различные молекулы. Альбумины участвуют в транспорте
    жирных кислот, глобулины — гормонов и некоторых ионов (Fe, Cu). Основной белок эритроцитов — гемоглобин — способен
    переносить кислород, углекислый и угарный газы (угарный конечно нежелательно ему переносить, будет отравление)

  • Сократительная
  • Двигательные белки, актин и миозин, на уровне саркомера обеспечивают сокращение мышц. При возбуждении мышечной
    ткани тонкие нити актина начинают тереться о толстые нити миозина, приводя к сокращению.

    Двигательные белки

  • Рецепторная
  • На поверхности мембраны белки образуют многочисленные рецепторы, которые, соединяясь с гормонами, приводят к
    изменению обмена веществ в клетке. Таким образом, гормоны реализуют воздействие на клетки органов-мишеней.

Жиры, или липиды (греч. lipos — жир)

С химической точки зрения жиры являются сложными эфирами, образованными трехатомным спиртом глицерином и высшими
карбоновыми кислотами (жирными кислотами). Среди их свойств надо выделить то, что они практически нерастворимы
в воде. Вспомните, как тяжело смыть жир с рук водой.

Почему именно мыло смывает жир с рук? Дело в том, что молекула мыла повторяет свойства жира: одна часть ее гидрофобна,
а другая гидрофильна. Мыло соединяется с молекулой жира гидрофобной частью, и вместе они легко смываются водой.

Моющее действие мыла

Приступим к изучению функций жиров:

  • Энергетическая
  • При окислении жиров выделяется много энергии: 1 г — 38,9 кДж. Это вдвое больше выделяющейся энергии при расщеплении
    1г углеводов.

  • Запасающая
  • Жиры имеют способность накапливаться в клетках, расположенных в подкожно-жировой клетчатке, внутренних органах.
    Эти запасы являются резервом организма на случай голодания или при недостаточном питании.

    В жирах также запасается вода: в 100 г жира содержится 107 мл воды. Многим пустынным животным (верблюдам)
    жировые запасы помогают длительное время обходиться без воды.

  • Структурная
  • Жиры входят в состав биологических мембран клеток человека вместе с белками. Из фосфолипидов построены мембраны всех
    клеток органов и тканей!

    Так, к примеру, холестерин — обязательный компонент мембраны, придает ей определенную жесткость и совершенно необходим
    для нормальной жизнедеятельности (заболевания возникают только при нарушении липидного обмена).

    Строение мембраны

  • Терморегуляция
  • Жиры обладают плохой теплопроводностью. Располагаясь в подкожно-жировой клетчатке, они образуют термоизолирующий слой.
    Особенно хорошо он развит у ластоногих (моржи и тюлени), китов, защищает их от переохлаждения.

  • Гормональная
  • Некоторые гормоны по строению относятся к жирам: половые (андрогены — мужские и эстрогены — женские), гормон
    беременности (прогестерон), кортикостероиды.

  • Участие в обмене веществ (метаболизме)
  • Производное жира — витамин D — принимает важное участие в обмене кальция и фосфора в организме. Он образуется
    в коже под действием ультрафиолетового излучения (солнечного света). При недостатке витамина D возникает заболевание —
    рахит.

    Рахит

Углеводы

Представляют собой органические соединения, состоящие из одной или нескольких молекул простых сахаров. Выделяется три основных
класса углеводов:

  • Моносахариды (греч. monos — единственный)
  • Простые сахара, легко растворяющиеся в воде и имеющие сладкий вкус. Моносахариды подразделяются на гексозы (имеют 6 атомов углерода)
    — глюкоза, фруктоза, и пентозы (имеют 5 атомов углерода) — рибоза и дезоксирибоза, входящие в состав нуклеиновых кислот.

  • Олигосахариды (греч. ὀλίγος — немногий)
  • При гидролизе олигосахариды распадаются на моносахариды. В состав олигосахаридов может входить от 2 до 10 моносахаридных остатков.
    Если в состав олигосахарида входят 2 остатка моносахарида, то его называют дисахарид. К дисахаридам относятся сахароза, лактоза,
    мальтоза. При гидролизе сахароза распадается на глюкозу и фруктозу.

    Олигосахариды

  • Полисахариды
  • Это биополимеры, в состав которых входят сотни тысяч моносахаридов. Они обладают высокой молекулярной массой,
    нерастворимы в воде, на вкус несладкие.

    Крахмал, целлюлоза, гликоген, хитин и муреин — все это биополимеры. Давайте вспомним, где они находятся.

    Клеточная стенка образована: у растений — целлюлозой, у грибов — хитином, у бактерий — муреином. Запасным питательным
    веществом растений является крахмал, животных — гликоген.

Целлюлоза

Перечислим функции, которые выполняют углеводы:

  • Энергетическая
  • В результате расщепления 1 г углеводов высвобождается 17,6 кДж энергии.

  • Запасающая
  • Запасным питательным веществом растений и животных соответственно являются крахмал и гликоген. Расщепление гликогена позволяет
    нам оставаться в сознании и быть активными между приемами пищи.

    Гликоген представляет собой разветвленную молекулу, состоящую
    из остатков глюкозы. За счет больших размеров такая молекула хорошо удерживается в клетке, а ее разветвленность позволяет ферментам
    быстро отщеплять множество молекул глюкозы одновременно.

    Гликоген

    Существуют заболевания, при которых распад
    гликогена нарушается: в результате нейроны не получают глюкозы (источника энергии, соответственно не синтезируются и молекулы АТФ). Из-за этого становятся возможны частые потери сознания.

  • Структурная (опорная)
  • Целлюлоза входит в состав клеточных стенок растений, придавая им необходимую твердость. Хитин образует клеточную стенку
    грибов и наружный скелет членистоногих.

Классификация углеводов

Нуклеиновые кислоты (от лат. nucleus — ядро)

Высокомолекулярные органические соединения, представленные двумя видами: ДНК (дезоксирибонуклеиновые кислоты) и РНК
(рибонуклеиновые кислоты). ДНК и РНК — биополимеры, мономером которых является нуклеотид. Запомните, что нуклеотид
состоит из 3 компонентов:

  • Азотистое основание
  • Для ДНК характерны следующие азотистые основания: аденин — тимин, гуанин — цитозин; для РНК: аденин — урацил,
    гуанин — цитозин. Исходя из принципа комплементарности, данные основания соответствуют друг другу, в результате
    чего между ними образуются связи.

    Между аденином и тимином образуется 2 водородные связи, а между гуанином и цитозином — 3.

    Азотистые основания

    Именно по этой причине количество аденина в молекуле ДНК всегда совпадает с количеством тимина. К примеру, если
    в ДНК 20% аденина, то с уверенностью можно сказать, что в ней 20% тимина. Выходит на оставшиеся основания — цитозин
    и гуанин — остается 60%, значит, цитозин и гуанин составляют в ДНК 30% каждый. Таким нехитрым образом, зная процент
    содержания одного основания, можно подсчитать все остальные.

  • Остаток сахара
  • В ДНК остаток сахара — дезоксирибоза, в РНК — рибоза.

  • Остаток фосфорной кислоты — фосфат
  • Строение ДНК

Мы подробно изучили структуру ДНК (дезоксирибонуклеиновой кислоты) — двойной правозакрученной спиральной молекулы. Теперь
настало время детально поговорить об РНК (рибонуклеиновой кислоте). Все виды РНК синтезируются на матрице — ДНК, различают
три вида РНК:

  • Рибосомальная РНК (рРНК)
  • Синтезируется в ядрышке. рРНК входит в состав
    малых и больших субъединиц рибосом. В процентном отношении рРНК составляет 80-90% всей РНК клетки.

  • Информационная РНК (иРНК, син. — матричная РНК, мРНК)
  • Синтезируется в ядре в ходе процесса транскрипции (лат. transcriptio — переписывание).
    Фермент РНК-полимераза строит цепь иРНК по принципу комплементарности с ДНК. Исходя из данного принципа,
    гуанин (Г) в молекуле ДНК соединяется с цитозином (Ц) в РНК. Далее соответственно: цитозин (Ц) — гуанин (Г),
    аденин (А) — урацил (У), тимин (Т) — аденин (А).

    Комплементарность ДНК и РНК

  • Транспортная РНК (тРНК)
  • Обеспечивает транспорт аминокислоты к рибосоме во время синтеза белка. Благодаря этому становится возможным
    соединение аминокислот друг с другом, образуется белок. тРНК имеет характерную форму клеверного листа.

    тРНК

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

ВикиЧтение

Биология [Полный справочник для подготовки к ЕГЭ]
Лернер Георгий Исаакович

2.3.3. Белки, их строение и функции

Белки – это биологические гетерополимеры, мономерами которых являются аминокислоты. Белки синтезируются в живых организмах и выполняют в них определенные функции.

В состав белков входят атомы углерода, кислорода, водорода, азота и иногда серы. Мономерами белков являются аминокислоты – вещества, имеющие в своем составе неизменяемые части аминогруппу NH2 и карбоксильную группу СООН и изменяемую часть – радикал. Именно радикалами аминокислоты отличаются друг от друга. Аминокислоты обладают свойствами кислоты и основания (они амфотерны), поэтому могут соединяться друг с другом. Их количество в одной молекуле может достигать нескольких сотен. Чередование разных аминокислот в разной последовательности позволяет получать огромное количество различных по структуре и функциям белков.

В белках встречается 20 видов различных аминокислот, некоторые из которых животные синтезировать не могут. Они получают их от растений, которые могут синтезировать все аминокислоты. Именно до аминокислот расщепляются белки в пищеварительных трактах животных. Из этих аминокислот, поступающих в клетки организма, строятся его новые белки.

Структура белковой молекулы. Под структурой белковой молекулы понимают ее аминокислотный состав, последовательность мономеров и степень скрученности молекулы, которая должна умещаться в различных отделах и органоидах клетки, причем не одна, а вместе с огромным количеством других молекул.

Последовательность аминокислот в молекуле белка образует его первичную структуру. Она зависит от последовательности нуклеотидов в участке молекулы ДНК (гене), кодирующем данный белок. Соседние аминокислоты связаны пептидными связями, возникающими между углеродом карбоксильной группы одной аминокислоты и азотом аминогруппы другой аминокислоты.

Длинная молекула белка сворачивается и приобретает сначала вид спирали. Так возникает вторичная структура белковой молекулы. Между СО и NH – группами аминокислотных остатков, соседних витков спирали, возникают водородные связи, удерживающие цепь.

Молекула белка сложной конфигурации в виде глобулы (шарика), приобретает третичную структуру. Прочность этой структуры обеспечивается гидрофобными, водородными, ионными и дисульфидными S-S связями.

Некоторые белки имеют четвертичную структуру, образованную несколькими полипептидными цепями (третичными структурами). Четвертичная структура так же удерживается слабыми нековалентными связями – ионными, водородными, гидрофобными. Однако прочность этих связей невелика и структура может быть легко нарушена. При нагревании или обработке некоторыми химическими веществами белок подвергается денатурации и теряет свою биологическую активность. Нарушение четвертичной, третичной и вторичной структур обратимо. Разрушение первичной структуры необратимо.

В любой клетке есть сотни белковых молекул, выполняющих различные функции. Кроме того, белки имеют видовую специфичность. Это означает, что каждый вид организмов обладает белками, не встречающимися у других видов. Это создает серьезные трудности при пересадке органов и тканей от одного человека к другому, при прививках одного вида растений на другой и т.д.

Функции белков. Каталитическая (ферментативная) – белки ускоряют все биохимические процессы, идущие в клетке: расщепление питательных веществ в пищеварительном тракте, участвуют в реакциях матричного синтеза. Каждый фермент ускоряет одну и только одну реакцию (как в прямом, так и в обратном направлении). Скорость ферментативных реакций зависит от температуры среды, уровня ее рН, а также от концентраций реагирующих веществ и концентрации фермента.

Транспортная – белки обеспечивают активный транспорт ионов через клеточные мембраны, транспорт кислорода и углекислого газа, транспорт жирных кислот.

Защитная – антитела обеспечивают иммунную защиту организма; фибриноген и фибрин защищают организм от кровопотерь.

Структурная – одна из основных функций белков. Белки входят в состав клеточных мембран; белок кератин образует волосы и ногти; белки коллаген и эластин – хрящи и сухожилия.

Сократительная – обеспечивается сократительными белками – актином и миозином.

Сигнальная – белковые молекулы могут принимать сигналы и служить их переносчиками в организме (гормонами). Следует помнить, что не все гормоны являются белками.

Энергетическая – при длительном голодании белки могут использоваться в качестве дополнительного источника энергии после того, как израсходованы углеводы и жиры.

ПРИМЕРЫ ЗАДАНИЙ

Часть А

А1. Последовательность аминокислот в молекуле белка зависит от:

1) структуры гена 3) их случайного сочетания

2) внешней среды 4) их строения

А2. Человек получает незаменимые аминокислоты путем

1) их синтеза в клетках 3) приема лекарств

2) поступления с пищей 4) приема витаминов

А3. При понижении температуры активность ферментов

1) заметно повышается

2) заметно понижается

3) остается стабильной

4) периодически изменяется

А4. В защите организма от кровопотерь участвует

1) гемоглобин 3) фибрин

2) коллаген 4) миозин

А5. В каком из указанных процессов белки не участвуют?

обмен веществ

кодирование наследственной информации

ферментативный катализ

транспорт веществ

А6. Укажите пример пептидной связи:

Часть В

В1. Выберите функции, характерные для белков

1) каталитическая 4) транспортная

2) кроветворная 5) рефлекторная

3) защитная 6) фотосинтетическая

В2. Установите соответствие между структурой белковой молекулы и ее особенностями



Часть С

С1. Почему продукты хранят в холодильнике?

С2. Почему продукты, подвергшиеся тепловой обработке, хранятся дольше?

СЗ. Объясните понятие «специфичность» белка, и какое биологическое значение имеет специфичность?

С4. Прочитайте текст, укажите номера предложений, в которых допущены ошибки и объясните их 1) Большая часть химических реакций в организме катализируется ферментами. 2) Каждый фермент может катализировать множество типов реакций. 3) У фермента есть активный центр, геометрическая форма которого изменяется в зависимости от вещества, с которым фермент взаимодействует. 4) Примером действия фермента может быть разложение мочевины уреазой. 5) Мочевина разлагается на двуокись углерода и аммиак, которым пахнет кошачий лоток с песком. 6) За одну секунду уреаза расщепляет до 30 ООО молекул мочевины, в обычных условиях на это потребовалось бы около 3 млн лет.

Данный текст является ознакомительным фрагментом.

Читайте также

Строение и функции ушей

Строение и функции ушей
Уши – орган слуха человека. Кроме этого они выполняют еще одну функцию в организме – участвуют в поддержании равновесия тела. Ухо состоит из трех отделов – наружного уха, среднего уха и внутреннего.

Строение ухаНаружное ухо включает ушную

2.7. Клетка – генетическая единица живого. Хромосомы, их строение (форма и размеры) и функции. Число хромосом и их видовое постоянство. Особенности соматических и половых клеток. Жизненный цикл клетки: интерфаза и митоз. Митоз – деление соматических клеток. Мейоз. Фазы митоза и мейоза. Развитие поло

2.7. Клетка – генетическая единица живого. Хромосомы, их строение (форма и размеры) и функции. Число хромосом и их видовое постоянство. Особенности соматических и половых клеток. Жизненный цикл клетки: интерфаза и митоз. Митоз – деление соматических клеток. Мейоз. Фазы

5.1.2. Строение и функции пищеварительной системы

5.1.2. Строение и функции пищеварительной системы
Основные термины и понятия, проверяемые в экзаменационной работе: Всасывание, органы, пищеварительная система, регуляция пищеварения, строение пищеварительной системы, система органов, ферменты.Пищеварительная система –

5.1.3.Строение и функции дыхательной системы

5.1.3.Строение и функции дыхательной системы
Основные термины и понятия, проверяемые в экзаменационной работе: альвеолы, легких, альвеолярный воздух, вдох, выдох, диафрагма, газообмен в легких и тканях, диффузия, дыхание, дыхательные движения, дыхательный центр, плевральная

5.1.4. Строение и функции выделительной системы

5.1.4. Строение и функции выделительной системы
Основные термины и понятия, проверяемые в экзаменационной работе: вторичная моча, извитые канальцы, капсула, мочевой пузырь, мочеточники, нефрон, первичная моча, почки, признаки заболевания почек, продукты выделения,

5.2.1. Строение и функции опорно-двигательной системы

5.2.1. Строение и функции опорно-двигательной системы
Основные термины и понятия, проверяемые в экзаменационной работе: верхние конечности, грудная клетка, кости (трубчатые, плоские), костная ткань, лицевой череп, мозговой череп, мышцы, надкостница, позвоночный столб, пояса

5.2.2.Кожа, ее строение и функции

5.2.2.Кожа, ее строение и функции
Кожа – один из важнейших органов человека, выполняющих защитную, терморегуляционную, выделительную, рецепторную функции. Ее общая поверхность составляет около 1,5—1,8 м2 . Производными кожи являются волосы, ногти, сальные и потовые железы.

5.2.3. Строение и функции системы органов кровообращения и лимфообращения

5.2.3. Строение и функции системы органов кровообращения и лимфообращения
Основные термины и понятия, проверяемые в экзаменационной работе: аорта, артерии, ацетилхолин, вены, давление крови, капилляры, клапаны (двустворчатые, трехстворчатые, полу лунные, карманные),

5.4.2. Строение и функции центральной нервной системы

5.4.2. Строение и функции центральной нервной системы
Центральная нервная система состоит из спинного и головного мозга.Строение и функции спинного мозга. Спинной мозг взрослого человека – это длинный тяж почти цилиндрической формы. Находится спиной мозг в позвоночном

5.4.3. Строение и функции вегетативной нервной системы

5.4.3. Строение и функции вегетативной нервной системы
Вегетативная нервная система (ВНС) координирует и регулирует деятельность внутренних органов, обмен веществ, гомеостаз. ВНС состоит из симпатического и парасимпатического отделов. Оба отдела иннервируют большинство

5.5. Анализаторы. Органы чувств, их роль в организме. Строение и функции. Высшая нервная деятельность. Сон, его значение. Сознание, память, эмоции, речь, мышление. Особенности психики человека

5.5. Анализаторы. Органы чувств, их роль в организме. Строение и функции. Высшая нервная деятельность. Сон, его значение. Сознание, память, эмоции, речь, мышление. Особенности психики человека

5.5.1 Органы чувств (анализаторы). Строение и функции органов зрения и слуха
Основные

5.5.1 Органы чувств (анализаторы). Строение и функции органов зрения и слуха

5.5.1 Органы чувств (анализаторы). Строение и функции органов зрения и слуха
Основные термины и понятия, проверяемые в экзаменационной работе: анализаторы, внутреннее ухо, евстахиева труба, зрительный анализатор, рецепторы, сетчатка, слуховой анализатор, среднее

Строение и функции сердечно-сосудистой системы

Строение и функции сердечно-сосудистой системы
С функциональной точки зрения сердечно-сосудистая система образована двумя родственными структурами. Первая состоит из сердца, артерий, капилляров и вен, которые обеспечивают замкнутый круговорот крови, вторая – из сети

Глава 1 Строение и функции иммунной системы

Глава 1 Строение и функции иммунной системы
Иммунология – наука о системе, обеспечивающей защиту организма от интервенции генетически чужеродных биологических структур, способных нарушить гомеостаз.Иммунная система является одной из систем жизнеобеспечения, без

Понравилась статья? Поделить с друзьями:
  • Функции банковской системы егэ
  • Функции атф егэ
  • Функции аппарата гольджи в клетке егэ
  • Функции административного права егэ
  • Функции адвокатуры егэ обществознание