Функции центриолей егэ

в условии
в решении
в тексте к заданию
в атрибутах

Категория:

Атрибут:

Всего: 77    1–20 | 21–40 | 41–60 | 61–77

Добавить в вариант

Все перечисленные ниже признаки, кроме двух, используются для описания клетки, электронная микрофотография которой изображена на рисунке. Определите два признака, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

1)  содержит клеточную стенку из целлюлозы

2)  генетический материал представлен замкнутой молекулой ДНК

3)  может иметь выросты оболочки  — пили

4)  в цитоплазме обнаруживаются центриоли клеточного центра

5)  не содержит мембранных органелл


Все перечисленные ниже признаки, кроме двух, можно использовать для описания клетки животного. Определите два признака, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

1)  способна к фагоцитозу

2)  происходит фотосинтез

3)  имеется клеточная стенка из хитина

4)  содержит центриоли

5)  поддерживает форму с помощью цитоскелета

Раздел: Царство Животные


Перечисленные ниже термины, кроме двух, используются для характеристики органоида клетки, обозначенного на рисунке вопросительным знаком. Определите два термина, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

1)  мембранный органоид

2)  репликация

3)  расхождение хромосом

4)  центриоли

5)  веретено деления


Рассмотрите таблицу «Структуры клетки» и заполните пустую ячейку, вписав соответствующий термин.

Структуры клетки Функция
Хромосомы Хранение и передача наследственной информации клетки и организма
Биологическое окисление

Рассмотрите таблицу «Структуры клетки» и заполните пустую ячейку, вписав соответствующий термин.

Структуры клетки Функция
Сборка полипептидной цепи
Митохондрия Биологическое окисление

Установите соответствие между характеристиками и отделами растений: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ХАРАКТЕРИСТИКА

А.  в клетках содержатся разнообразные

пластиды

Б.  хорошо развиты органы и ткани

В.  в клетках может присутствовать

клеточный центр

Г.  образуют подвижные гаметы

Д.  зигота делится мейозом

Е.  в жизненном цикле преобладает

спорофит

ОТДЕЛ

1.  Зелёные водоросли

2.  Покрытосеменные

Запишите в таблицу выбранные цифры под соответствующими буквами.

А Б В Г Д Е

К функциям клеточного центра относится

1) хранение наследственной информации

2) осуществление процессов транскрипции

4) участие в клеточном делении

Источник: Яндекс: Тренировочная работа ЕГЭ по биологии. Вариант 3.


Установите соответствие между названием органоидов и наличием или отсутствием у них клеточной мембраны: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ОРГАНОИДЫ

А)  вакуоли

Б)  лизосомы

В)  клеточный центр

Г)  рибосомы

Д)  пластиды

Е)  аппарат Гольджи

НАЛИЧИЕ МЕМБРАНЫ

1)  мембранные

2)  немембранные

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

A Б В Г Д Е

Задания Д2 № 822

Какую функцию выполняет в клетке клеточный центр

1) принимает участие в клеточном делении

2) является хранителем наследственной информации

3) отвечает за биосинтез белка

4) является центром матричного синтеза рибосомной РНК


Одна из функций клеточного центра  —

1) управление биосинтезом белка

2) формирование ядерной оболочки

3) образование веретена деления

4) перемещение веществ в клетке

Источник: ЕГЭ по биологии 30.05.2013. Основная волна. Сибирь. Вариант 3.


Установите соответствие между характеристикой клетки и типом организации этой клетки.

ХАРАКТЕРИСТИКА

А)  Клеточный центр участвует в образовании веретена деления.

Б)  В цитоплазме находятся лизосомы.

В)  Хромосома образована кольцевой ДНК.

Г)  Отсутствуют мембранные органоиды.

Д)  Клетка делится митозом.

Е)  Мембрана образует мезосомы.

ТИП КЛЕТОЧНОЙ ОРГАНИЗАЦИИ

1)  прокариотический

2)  эукариотический

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

А Б В Г Д E

Источник: ЕГЭ по биологии 09.04.2016. Досрочная волна


Все перечисленные ниже термины, кроме двух, используют для описания клетки, изображённой на рисунке. Определите два термина, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

1.  мезосомы

2.  рибосомы

3.  нуклеоид

4.  клеточный центр

5.  митоз


Выберите три верных ответа из шести и запишите цифры, под которыми они указаны.

Какие из перечисленных ниже признаков можно использовать для описания клетки бактерии?

1)  содержит клеточную стенку из целлюлозы

2)  генетический материал представлен замкнутой молекулой ДНК

3)  может иметь выросты оболочки — пили

4)  в цитоплазме обнаруживаются центриоли клеточного центра

5)  не содержит мембранных органелл

6)  рибосомы отсутствуют


Задания Д2 № 819

Образование лизосом и рост мембран эндоплазматической сети происходит благодаря деятельности


Какие процессы происходят в клетке в период интерфазы?

1)  синтез белков в цитоплазме

2)  спирализация хромосом

3)  синтез иРНК в ядре

4)  редупликация молекул ДНК

5)  растворение ядерной оболочки

6)  расхождение центриолей клеточного центра к полюсам клетки


На рисунке изображена половая клетка животных – сперматозоид. Какие структуры обозначены цифрами 1, 2, 3? Какие функции они выполняют? Что произойдёт со сперматозоидом, если на этапе формирования повредить его центросому (клеточный центр)? Ответ поясните.


Задания Д2 № 824

Какую функцию в клетке выполняет клеточный центр?

1) формирует большую и малую субъединицы рибосом

2) формирует нити веретена деления

3) синтезирует гидролитические ферменты

4) накапливает АТФ в интерфазе


Система плоских цистерн с отходящими от них трубочками, заканчивающимися пузырьками,  — это


К одномембранным органоидам клетки относят


В процессе митоза клеточный центр отвечает за

1) образование веретена деления

4) перемещение цитоплазмы

Всего: 77    1–20 | 21–40 | 41–60 | 61–77

Строение и функции клеточного центра


Строение и функции клеточного центра

4.7

Средняя оценка: 4.7

Всего получено оценок: 373.

4.7

Средняя оценка: 4.7

Всего получено оценок: 373.

Немембранная органелла, состоящая из двух цилиндрических структур, называется клеточным центром или центросомой или центриолями. Строение и функции клеточного центра связаны с делением клетки.

Материал подготовлен совместно с учителем высшей категории, кандидатом биологических наук Факторович Лилией Витальевной.

Опыт работы учителем биологии — более 31 года.

Строение

Органелла была обнаружена в 1875 году немецким биологом Вальтером Флеммингом. Центросома чаще всего располагается рядом с ядром или комплексом Гольджи. Размер органеллы не превышает 0,5 мкм в длину и 0,2 мкм в диаметре. Клеточный центр присутствует только в животной клетке и в клетках водорослей. В клетках высших растений, грибов, некоторых простейших центросома не наблюдается.

Строение центриолей

Рис. 1. Строение центриолей.

Клеточный центр состоит из двух центриолей, расположенных друг к другу под прямым углом. Каждая центриоль – белковая структура, образованная девятью триплетами микротрубочек. Триплет означает три трубочки в ряд, т.е. всего в центриоли 27 микротрубочек. Триплеты соединены белковыми нитями по кругу, образуя цилиндр. В центре цилиндра располагается белковый стержень, к которому прикреплены все триплеты. На поперечном сечении центриоль напоминает цветок, лепестки которого направлены в одну сторону.

Центросома с микротрубочками

Рис. 2. Центросома с микротрубочками.

Подробное описание компонентов центросомы описано в таблице «Строение и функции клеточного центра».

Компоненты

Особенности строения

Функции

Центриоли

– Микротрубочки;

– белковые нити;

– белковый стержень (ось)

Производят микротрубочки с помощью белков, т.е. являются ЦОМТ – центром организации микротрубочек. В S-фазе интерфазы удваиваются путём самосборки, расходятся к полюсам клетки и выстраивают веретено деления

Сателлиты – придатки материнской центриоли

– Ножки, соединённые с центриолью;

– головка или фокус схождения микротрубочек (ФСМТ)

Производят микротрубочки, собирают и разбирают веретено деления

Микротрубочки

Белок тубулин. Имеют минус-концы, связанные с центриолью и плюс-концы, расходящиеся к периферии клетки

Прикрепляются с двух сторон (от каждой пары центриолей) во время митоза к центромерам хромосом, формируя веретено деления. Удерживая части хромосом, микротрубочки начинают разбираться от центриолей, тем самым оттягивая хромосомы к полюсам и способствуя делению клетки

Матрикс или центросомное гало

Различные белки

Окружает центросому. В микроскопе выглядит как более светлое пятно цитоплазмы, окружающее клеточный центр. Принимает участие в сборке микротрубочек. Вместе с сателлитами и отходящими от них микротрубочками образуется центросферу, окружающую центриоли

Формирование веретена деления

Рис. 3. Формирование веретена деления.

Конструкция, которую образуют две центриоли, называется диплосомой. В ней различают материнскую и дочернюю центриоли. Только материнская центриоль производит микротрубочки. Дочерняя располагается перпендикулярно к материнской.

Функции

Помимо образования веретена деления и участия в митозе органоид выполняет другие функции:

ТОП-4 статьи

которые читают вместе с этой

Топ похожих

  • формирует цитоскелет, состоящий из микротрубочек, пронизывающих цитоплазму;
  • участвует в образовании жгутиков и ресничек, формируя остевую нить – аксонему;

Цитоскелет необходим для движения цитоплазмы, что способствует метаболизму. В некоторых организмах центриоли присутствуют только в клетках, несущих жгутики или реснички.

Несмотря на способность к самоудвоению, центросома не имеет ДНК. Однако в составе присутствует РНК, но её назначение в клеточном центре остаётся неясным.

Заключение

Что мы узнали?

Узнали кратко о строении и функциях клеточного центра в клетке. Это важная органелла животной клетки, которая производит микротрубочки, выстраивает веретено деления и цитоскелет, участвует в образовании подвижных органелл – жгутиков и ресничек. Центросома состоит из двух белковых структур – центриолей. От материнской центриоли отходят сателлиты, которые выстраивают микротрубочки. Две центриоли образуют диплосому, окружённую матриксом.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

  • Avrora Poison

    10/10

Оценка доклада

4.7

Средняя оценка: 4.7

Всего получено оценок: 373.


А какая ваша оценка?

Вопрос 1. Каковы функции клеточного цент­ра?

Клеточный центр выполняет функцию формирования внутреннего скелета клет­ки (цитоскелета). Цитоскелет представля­ет собой сеть микротрубочек, пронизывающих цитоплазму, поддерживающих форму клетки, обеспечивающих движе­ние органоидов клетки, а также работу специализированных органоидов движе­ния — ресничек и жгутиков.

Клеточный центр обеспечивает также и нормальное деление клетки. Центриоли клеточного центра расходятся к полюсам делящейся клетки и образуют веретено деления, благодаря которому из одной ма­теринской впоследствии образуются две дочерние клетки.

Центриоли представлены цилиндрика­ми, образованными множеством микро­трубочек. Центриоли, расположенные под прямым углом друг относительно друга, находятся вблизи от ядра и образуют кле­точный центр.

Вопрос 2. Каковы функции центриолей в клетке?

Центриоли входят в состав клеточного центра и обеспечивают нормальное деле­ние клетки. Перед ее делением центриоли расходятся к полюсам, образуя веретено деления клетки.

Вопрос 3. В чем сходство и различие между ресничками и жгутиками?

У органоидов движения клетки много общего. Реснички и жгутики являются специализированными органоидами дви­жения клетки, они образованы микротру­бочками. В основании и жгутика, и рес­нички лежит базальное тельце, которое укрепляет их в цитоплазме клетки. Меха­низм движения ресничек и жгутиков оди­наков, в его основе лежит скольжение микротрубочек друг относительно друга. Сходство этих органоидов движения за­ключается также и в том, что на их работу расходуется энергия АТФ.

Различаются реснички и жгутики раз­мерами. Жгутики в несколько раз длин­нее ресничек. Кроме того, реснички, изги­баясь волнообразно, обеспечивают клетке плавное, медленное передвижение. Жгу­тик же осуществляет вращательные дви­жения, что позволяет клетке активно пе­ремещаться.

Вопрос 4. Назовите примеры клеточных включений.

Временные образования в клетке на­зывают клеточными включениями. К ним относятся гранулы крахмала, гли­когена или белка, мелкие капли жира, кристаллы солей.

2.6. Клеточный центр. Органоиды движения. Клеточные включения

4.7 (94.84%) 31 votes

На этой странице искали :

  • каковы функции клеточного центра
  • функции клеточного центра
  • клеточный центр функции
  • каковы функции центриолей в клетке
  • клеточный центр выполняет функции

Органоиды клетки

Органоиды

Органоиды (органеллы) — постоянные клеточные структуры, обеспечивающие выполнение клеткой специфических функций. Каждый органоид имеет определенное строение и выполняет определенные функции. В зависимости от особенностей строения, различают:

  • мембранные органоиды — имеющие мембранное строение, причем они могут быть:
  • одномембранными (эндоплазматический ретикулум, аппарат Гольджи, лизосомы, вакуоли растительных клеток);
  • двумембранными (митохондрии, пластиды);
  • немембранные органоиды — не имеющие мембранного строения (хромосомы, рибосомы, клеточный центр и центриоли, реснички и жгутики с базальными тельцами, микротрубочки, микрофиламенты).

Есть органоиды, свойственные всем клеткам, – митохондрии, клеточный центр, аппарат Гольджи, рибосомы, эндоплазматический ретикулум, лизосомы. Их называют органоидами общего значения. Имеются органоиды, характерные только для определенных типов клеток, специализированных к выполнению определенной функции (например, миофибриллы, обеспечивающие сокращение мышечного волокна). Их называют специальными органоидами.

Эндоплазматическая

сеть  (ЭС)

Одномембранный органоид, представляющий собой систему мембран, формирующих цистерны и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство — полость ЭС. Мембраны с одной стороны связаны с наружной цитоплазматической мембраной, с другой — с наружной оболочкой ядерной мембраны. Наибольшего развития ЭС достигает в клетках с интенсивным обменом веществ. В среднем он составляет от 30 до 50 % всего объема клетки.

Различают три вида ЭС:

  • шероховатая, содержащая на своей поверхности рибосомы и представляющий собой совокупность уплощенных мешочков;
  • гладкая, мембраны которой рибосом не несут, по строению он ближе к трубчатому;
  • промежуточная — частично гладкая, частично шероховатая; большая часть ЭС клеток представлена именно этим видом.

Функции ЭС:

  • разделяет цитоплазму клетки на изолированные отсеки (компартменты), обеспечивая тем самым пространственное отграничение друг от друга множества параллельно идущих реакций;
  • содержит мультиферментные системы, обеспечивающие поэтапное протекание биосинтетических процессов;
  • осуществляет синтез и расщепление углеводов и липидов (гладкая ЭС);
  • обеспечивает синтез белка (шероховатая ЭС);
  • накапливает в каналах и полостях, а затем транспортирует к органоидам клетки продукты биосинтеза;
  • служит местом образования цистерн аппарата Гольджи (промежуточная ЭС).

Аппарат Гольджи

Пластинчатый комплекс, комплекс Гольджи (рис). Одномембранный органоид, обычно расположенный около клеточного ядра (в животных клетках часто вблизи клеточного центра). Представляет собой стопку уплощенных цистерн с расширенными краями, с которой связана система мелких одномембранных пузырьков (пузырьки Гольджи). Каждая стопка обычно состоит из 4-6 цистерн. Число стопок Гольджи в клетке колеблется от одной до нескольких сотен.

Рис. Аппарат Гольджи:

1 — секретирующий полюс; 2 — формирующий полюс; 3 — цистерны аппарата Гольджи; 4 — пузырьки Гольджи.

Пузырьки Гольджи в основном сконцентрированы на стороне, примыкающей к ЭПР, и по периферии стопок. Полагают, что они переносят в аппарат Гольджи белки и липиды, молекулы которых, передвигаясь из цистерны в цистерну, подвергаются химической модификации. Важнейшая функция комплекса Гольджи — выведение из клетки различных секретов (ферментов, гормонов), поэтому он хорошо развит в секреторных клетках. У аппарата Гольджи выделяют две разные стороны:

  • формирующуюся, связанную с ЭПР, поскольку именно оттуда поступают небольшие пузырьки, несущие в аппарат Гольджи белки и липиды;
  • зрелую, образующую трубчатый ретикулум (сеть), от которого постоянно отпочковываются пузырьки, несущие белки и липиды в разные компартменты клетки или за ее пределы.

Наружная часть аппарата Гольджи постоянно расходуется в результате отшнуровывания пузырьков, а внутренняя — постепенно формируется за счет деятельности ЭПР.

Функции аппарата Гольджи:

  • транспорт и химическая модификация поступающих в него веществ;
  • синтез сложных углеводов из простых сахаров;
  • образование лизосом.

Лизосомы[1]

Самые мелкие одномембранные органоиды клетки, представляющие собой пузырьки диаметром 0,2-0,8 мкм, содержащие около 40 гидролитических ферментов (протеазы, липазы, нуклеазы, фосфотазы), активных в слабокислой среде (рис. 285). Образование лизосом происходит в аппарате Гольджи, куда из ЭС поступают синтезированные в нем ферменты. Расщепление веществ с помощью ферментов называют лизисом, отсюда и название органоида.

Различают:

Рис. 285. Лизосомы:

1 — первичная лизосома; 2 — митохондрия, окруженная мембраной; 3 — автофагичнеская вакуоль; 4 — переваривание митохондрии; 5 — эндоцитоз; 6 — образование вторичной вакуоли; 7 — переваривание; 8 — остаточное тельце; 9 — выделение содержимого остаточного тельца путем экзоцитоза; 10 — выделение лизосомных ферментов путем экзоцитоза.

  • первичные лизосомы — лизосомы, отшнуровавшиеся от аппарата Гольджи и содержащие ферменты в неактивной форме;
  • вторичные лизосомы — лизосомы, образовавшиеся в результате слияния первичных лизосом с пиноцитозными или фагоцитозными вакуолями; в них происходит перева-

ривание и лизис поступивших в клетку веществ (поэтому часто их называют пищеварительными вакуолями):

  • Продукты переваривания усваиваются цитоплазмой клетки, но часть материала так и остается непереваренной. Вторичная лизосома, содержащая этот непереваренный материал, называется остаточным тельцем. Путем экзоцитоза непереваренные частицы удаляются из клетки.
  • Вторичная лизосома, переваривающая отдельные составные части клетки, называется автофагической вакуолью. Подлежащие уничтожение части клетки окружаются одинарной мембраной, обычно отделяющейся от гладкого ЭПР, а затем образовавшийся мембранный мешочек сливается с первичной лизосомой, в результате чего и происходит образование автофагической вакуоли.

Иногда с участием лизосом происходит саморазрушение клетки. Этот процесс называют автолизом. Обычно это происходит при некоторых процессах дифференцировки (например, замена хрящевой ткани костной, исчезновение хвоста у головастика лягушек).

Функции лизосом:

  • участие во внутриклеточном переваривании питательных веществ;
  • разрушение структур клетки и ее самой при старении;
  • участие в процессах дифференцировки в ходе эмбрионального развития.

Митохондрии[2]

Двумембранные органоиды эукариотической клетки, обеспечивающие организм энергией (рис. 286). Они имеют палочковидную, нитевидную, шаровидную, спиральную, чашевидную и т.д.  форму.  Длина  митохондрий  1,5-10 мкм,  диаметр — 0,25-1,00 мкм.

Количество митохондрий в клетке колеблется в широких пределах, от 1 до 100 тыс., и зависит от ее метаболической активности. Число митохондрий может увеличиваться путем деления, так как эти органоиды имеют собственную ДНК.

Рис. 286. Митохондрия:

1 — наружная мембрана; 2 — внутренняя мембрана; 3 — кристы; 4 — матрикс.

Наружная мембрана митохондрий гладкая, внутренняя мембрана образует многочисленные впячивания (гребни) или трубчатые выросты — кристы[3], обладающие строго специфичной проницаемостью и системами активного транспорта. Число крист может колебаться от нескольких  де-

сятков до нескольких сотен и даже тысяч, в зависимости от функций клетки.

Они увеличивают поверхность внутренней мембраны, на которой размещаются мультиферментные системы, участвувующие в синтезе молекул АТФ.

Внутренняя мембрана содержит белки двух главных типов:

  • белки дыхательной цепи;
  • ферментный комплекс, называемый АТФ-синтетазой, отвечающий за синтез основного количества АТФ.

Наружная мембрана отделена от внутренней межмембранным пространством.

Внутреннее пространство митохондрий заполнено гомогенным веществом — матриксом. В матриксе содержатся кольцевые молекулы митохондриальной ДНК, специфические иРНК, тРНК и рибосомы (прокариотического типа), осуществляющие автономный биосинтез части белков, входящих в состав внутренней мембраны. Но большая часть генов митохондрии перешла в ядро, и синтез многих митохондриальных белков происходит в цитоплазме. Кроме того, содержатся ферменты, образующие молекулы АТФ. Митохондрии способны размножаться путем деления или отшнуровывания мелких фрагментов.

Функции митохондрий:

  • кислородное расщепление углеводов, аминокислот, глицерина и жирных кислот с образованием АТФ;
  • синтез митохондриальных белков.

Рибосомы

Немембранные органоиды, встречающиеся в клетках всех организмов. Это мелкие органеллы, представленные глобулярными частицами диаметром порядка 20 нм (рис. 287). Рибосомы состоят из двух субъединиц неравного размера — большой и малой,  на которые  они

Рис. 287. Рибосома:

1 — малая субъединица; 2 — большая субъединица.

 могут диссоциировать. В состав рибосом входят белки и рибосомальные РНК (рРНК). Молекулы рРНК составляют 50-63% массы рибосомы и образуют ее структурный каркас. Большинство белков специфически связано с определенными участками рРНК. Некоторые белки входят в состав рибосом только во время биосинтеза белка.

Различают два основных типа рибосом: эукариотические (с константами седиментации целой рибосомы — 80S[4], малой субъединицы — 40S, большой — 60S)  и  прокариотические  (соответст-

венно 70S, 30S, 50S). В состав рибосом эукариот входит 4 молекулы рРНК и около 100 молекул белка, прокариот — 3 молекулы рРНК и около 55 молекул белка.

В зависимости от локализации в клетке, различают

  • свободные рибосомы — рибосомы, находящиеся в цитоплазме, синтезирующие белки для собственных нужд клетки;
  • прикрепленные рибосомы — рибосомы, связанные большими субъединицами с наружной поверхностью мембран ЭПР, синтезирующие белки, которые поступают в комплекс Гольджи, а затем секретируются клеткой.

Во время биосинтеза белка рибосомы могут «работать» поодиночке или объединяться в комплексы — полирибосомы (полисомы). В таких комплексах они связаны друг с другом одной молекулой иРНК.

Рибосомы эукариот образуются в ядрышке. Сначала на ядрышковой ДНК синтезируются рРНК, которые затем покрываются поступающими из цитоплазмы рибосомальными белками, расщепляются до нужных размеров и формируют субъединицы рибосом. Полностью сформированных рибосом в ядре нет. Объединение субъединиц в целую рибосому происходит в цитоплазме, как правило, во время биосинтеза белка.

Рис. 288. Клеточный центр:

1. — материнская центриоль; 2 — дочерние центриоли; 3 — микротрубочки.

Центриоли[5] 

Центриоль представляет собой цилиндр (длиной 0,3 мкм и диаметром 0,1 мкм), стенка которого образована девятью группами из трех слившихся микротрубочек (9 триплетов), соединенных между собой через определенные интервалы поперечными сшивками. Часто центриоли объединены в пары, где они расположены под прямым углом друг к другу. Если центриоль лежит в основании реснички или жгутика, то ее называют базальным тельцем.

Почти во всех животных клетках имеется пара центриолей, являющихся срединным элементом центросомы, или клеточного центра (рис. 288). Перед делением центриоли расходятся к противоположным полюсам и возле каждой из них

возникает дочерняя центриоль. От  центриолей, расположенных на разных полюсах клетки, образуются микротрубочки, растущие навстречу друг другу. Они формируют митотическое веретено, способствующее равномерному распределению генетического материала между дочерними клетками, являются центром организации цитоскелета. Часть нитей веретена прикрепляется к  хромосомам. В клетках высших растений клеточный центр центриолей не имеет.

Центриоли относятся к самовоспроизводящимся органоидам цитоплазмы. Они возникают в результате дупликации уже имеющихся. Это происходит при расхождении центриолей. Незрелая центриоль содержит 9 одиночных микротрубочек; по-видимому, каждая микротрубочка является матрицей при сборке триплетов, характерных для зрелой центриоли.

 Ядро

Наиболее важный компонент эукариотических клеток. Безъядерная клетка долго не существует. Ядро также не способно к самостоятельному существованию.

Рис. 289. Ядро:

1 — гетерохроматин; 2 — эухроматин; 3 — ядрышко; 4 — ядерная оболочка; 5 — пора ядерной оболочки; 6 — кариоплазма.

Большинство клеток имеет одно ядро, но встречаются и многоядерные клетки (у ряда простейших, в скелетных мышцах позвоночных). Число ядер может достигать нескольких десятков. Некоторые высокоспециализированные клетки утрачивают ядро (эритроциты млекопитающих и клетки ситовидных трубок у покрытосеменных растений).

Форма и размер ядер клеток разнообразны. Обычно ядро имеет диаметр от 3 до 10 мкм. Форма в большинстве   случаев  связана  с  формой

клетки, но часто отличается от нее. Как правило, имеет шаровидную или овальную форму, реже может быть сегментированным, веретеновидным.

Главными функциями ядра являются:

  • хранение генетической информации и передача ее дочерним клеткам в процессе деления;
  • контроль жизнедеятельности клетки путем регуляции синтеза различных белков.
  • В состав ядра входят (рис. 289):
  • ядерная оболочка;
  • кариоплазма[6] (нуклеоплазма[7], ядерный сок);
  • хроматин[8];
  • ядрышки.

Ядерная оболочка

Ядро отграничено от остальной цитоплазмы ядерной оболочкой, состоящей из двух мембран типичного строения. Между мембранами имеется узкая щель, заполненная полужидким веществом, — перинуклеарное пространство. В некоторых местах обе мембраны сливаются друг с другом, образуя ядерные поры, через которые происходит обмен веществ между ядром и цитоплазмой. Из ядра в цитоплазму и обратно вещества могут попадать также вследствие отшнуровывания впячиваний и выростов ядерной оболочки.

Несмотря на активный обмен веществ, ядерная оболочка обеспечивает различия в химическом составе ядерного сока и цитоплазмы, что необходимо для нормального функционирования ядерных структур. Наружная ядерная мембрана со стороны, обращенной в цитоплазму, покрыта рибосомами, придающими ей шероховатость, внутренняя мембрана гладкая. Ядерная оболочка — часть мембранной системы клетки. Выросты внешней ядерной мембраны соединяются с каналами эндоплазматической сети, образуя единую систему сообщающихся каналов.

Кариоплазма

Кариоплазма — внутреннее содержимое ядра. Представляет собой гелеобразный матрикс, в котором располагаются хроматин и одно или несколько ядрышек. В состав ядерного сока входят различные белки (в том числе ферменты ядра), свободные нуклеотиды, а также продукты жизнедеятельности ядрышка и хроматина.

Ядрышко

Третья характерная для ядра клетки структура — ядрышко, представляющее собой округлое плотное тельце, погруженное в ядерный сок. Количество ядрышек зависит от функционального состояния ядра и может колебаться от 1 до 5–7 и более (даже в одной и той же клетке). Ядрышки обнаруживаются только в неделящихся ядрах, во время митоза они исчезают, а после завершения деления возникают вновь. Ядрышко не является самостоятельной структурой ядра. Оно образуется в результате концентрации в определенном участке кариоплазмы участков хромосом, несущих информацию о структуре рРНК. Эти участки хромосом называют ядрышковыми организаторами. Они содержат многочисленные копии генов, кодирующих рРНК. Поскольку в ядрышке интенсивно идет процесс синтеза рРНК и формирование субъединиц рибосом, можно говорить, что ядрышко — это скопление рРНК и рибосом на разных этапах формирования.

Хроматин

Хроматином называют глыбки, гранулы и сетевидные структуры ядра, интенсивно окрашивающиеся некоторыми красителями и отличающиеся по форме от ядрышка. Хроматин представляет собой молекулы ДНК, связанные с белками — гистонами. В зависимости от степени спирализации различают:

  • эухроматин — деспирализованные (раскрученные) участки хроматина, имеющие вид тонких, неразличимых при световой микроскопии нитей, слабо окрашивающихся и генетически активных;
  • гетерохроматин — спирализованные и уплотненные участки хроматина, имеющие вид глыбок или гранул, интенсивно окрашивающихся и генетически не активных.

Хроматин представляет собой форму существования генетического материала в неделящихся клетках и обеспечивает возможность удвоения и реализации заключенной в нем информации.

В процессе деления клеток ДНК спирализуется и хроматиновые структуры образуют хромосомы.

Хромосомами называются постоянные компоненты ядра клетки, имеющие особую организацию, функциональную и морфологическую специфичность, способные к самовоспроизведению и сохранению свойств на протяжении всего онтогенеза. Хромосомы — плотные, интенсивно окрашивающиеся структуры (отсюда и их название). Впервые они были обнаружены Флемингом (1882) и Страсбургером (1884). Термин “хромосома” предложил Вальдейер в 1888 г.

Функции хромосом:

  • хранение наследственной информации;
  • использование наследственной информации для создания и поддержания клеточной организации;
  • регуляция считывания наследственной информации;
  • самоудвоение генетического материала;
  • передача генетического материала от материнской клетки к дочерним.

Главными химическими компонентами хромосом являются ДНК (40%) и белки (60%). Основным компонентом хромосом является ДНК, так как в ее молекулах закодирована наследственная информация, белки же выполняют структурную и регуляторную функции.

Различают две основные формы хромосом, приуроченные к определенным фазам и периодам митотического цикла:

  • митотическая, свойственная периоду митоза и представляющая собой интенсивно окрашенное, плотное тельце;
  • интерфазная, соответствующая хроматину ядер интерфазных клеток и представляющая собой более или менее рыхло расположенные нитчатые образования и глыбки.

Реорганизация хромосом происходит в процессе спирализации (конденсации) или деспирализации (деконденсации). В неделящихся клетках хромосомы находятся в деконденсированном состоянии, так как только в этом случае может считываться заложенная в них информация. Во время деления клетки спирализацией достигается плотная упаковка наследственного материала, что важно для перемещения хромосом во время митоза. Общая длина ДНК клетки человека — 2 метра, совокупная же длина всех хромосом клетки — всего лишь 150 мкм.

Все сведения о хромосомах получены при изучении метафазных хромосом. Каждая метафазная хромосома состоит из двух хроматид, являющихся дочерними хромосомами (рис. 290). В процессе митоза они разойдутся в дочерние клетки и станут самостоятельными хромосомами. Хроматиды— сильно спирализованные идентичные  молекулы  ДНК,  образо-

вавшиеся в результате репликации. Они соединяются между собой в области первичной перетяжки (центромеры), к  которой прикрепляются нити веретена деления. Фрагменты, на которые первичная перетяжка делит хромосому, называются плечами, а концы хромосомы — теломерами. Теломеры предохраняют концы хромосом от слипания, способствуя тем самым сохранению целостности хромосом. В зависимости от места положения центромеры различают (рис. 291):

Рис. 290. Строение метафазной хромосомы:

1 — дочерние хроматиды; 2 — плечи; 3 — первичная перетяжка; 4 — вторичная перетяжка; 5 — спутник; 6 — теломеры.

  • метацентрические хромосомы — равноплечие, то есть плечи приблизительно одинаковой длины;
  • субметацентрические хромосомы — умеренно неравноплечие, то есть одно плечо короче другого;
  • акроцентрические хромосомы — резко неравноплечие, то есть одно плечо практически отсутствует.

Рис. 291. Типы метафазных хромосом:

1, 2 — метацентрические; 3, 4 — субметацентрические; 5 — акроцентрическая; 6 — спутничная.

Некоторые хромосомы имеют вторичные перетяжки, возникающие в участках неполной конденсации хроматина. Они являются ядрышковыми организаторами. Иногда вторичная перетяжка очень длинная и отделяет от основного тела хромосомы небольшой участок — спутник. Такие хромосомы называют спутничными.

Хромосомы обладают индивидуальными особенностями: длиной, положением центромеры, формой.

Каждый вид живых организмов имеет в своих клетках определенное и постоянное число хромосом. Хромосомы ядра одной клетки всегда парные. Каждая пара образована хромосомами, имеющими одинаковый размер, форму, положение первичной и вторичной перетяжек. Такие хромосомы называют гомологичными. У человека 23 пары гомологичных хромосом. Совокупность количественных (число и размеры) и качественных (форма) признаков хромосомного набора соматической клетки называется кариотипом. Число хромосом в кариотипе всегда четное, так как соматические клетки имеют две одинаковые по форме и размеру хромосомы: одну — отцовскую, другую — материнскую. Хромосомный набор всегда видоспецифичен, то есть, характерен только для данного вида организмов. Если в ядрах клеток хромосомы образуют гомологичные пары, то такой набор хромосом называют диплоидным (двойным) и обозначают — 2n. Количество ДНК, соответствующее диплоидному набору хромосом, обозначают 2с. Диплоидный набор хромосом характерен для соматических клеток. В ядрах половых клеток каждая хромосома представлена в единственном числе. Такой набор хромосом называют гаплоидным (одинарным) и обозначают — n. У человека диплоидный набор содержит 46 хромосом, а гаплоидный — 23.


[1] от греч. lysis — разложение, распад, растворение и soma — тело

[2] греч. mitos — нить и chondrion — зернышко, крупинка

[3] лат. “криста” — гребень, вырост

[4] S (сведберг) — единица, характеризующая скорость седиментации (осаждения) в центрифуге. Чем больше число S, тем выше скорость седиментации.

[5] от лат. centrum, греч. kentron — срединная точка, центр и греч. meros — часть, доля

Понравилась статья? Поделить с друзьями:
  • Функции центрального банка решу егэ
  • Функции центрального банка для егэ
  • Функции ценных бумаг егэ обществознание
  • Функции цен егэ обществознание
  • Функции цветка егэ