Функции егэ математика профиль теория

Функции ЕГЭ по математике

08.11.2013

Материал для подготовки к ЕГЭ по математике на тему: «Функции».

Содержание темы:

3.  ФУНКЦИИ
3.1.  Основные понятия и определения
3.2.  Графики элементарных функций
3.3.  Преобразования графиков функций 
3.4.  Изображения некоторых множеств точек на плоскости
Тест для проверки теоретических знаний
Примеры
Задачи для самостоятельного решения
Контрольный тест 

Рекомендуем использовать этот материал при тщательной подготовке к сдаче ЕГЭ на высокий балл.

В теме содержатся теория и практические задания различного уровня сложности.

Смотреть в PDF:

Или прямо сейчас: Скачайте в pdf файле.

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания,
берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта
готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием
сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом
администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта
и представлены на сайте исключительно для ознакомления. Авторские права на материалы
принадлежат их законным авторам. Частичное или полное копирование материалов сайта без
письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой
зрения авторов.

💡 Если Вы — учитель математики, то Вы можете создавать готовые карточки для учеников с индивидуальными заданиями и с ответами для отработки заданий на графики функций. Данные задачи доступны в Конструкторе бесплатно.

3. На рисунке изображён график функции

y=3x^2+bx+c

. Найдите

f(6)

.

[Ответ: 10]

Смотреть видеоразбор похожего >>

4. На рисунке изображён график функции

y=ax^2+12x+c

. Найдите

f(7)

.

[Ответ: -74]

Смотреть видеоразбор похожего >>

5. На рисунке изображён график функции

y=ax^2+bx+12

. Найдите

f(-7)

.

[Ответ: 19]

Смотреть видеоразбор похожего >>

6. На рисунке изображён график функции

y=ax^2+bx+c

. Найдите

f(1)

.

[Ответ: 49]

Смотреть видеоразбор похожего >>

7. На рисунке изображён график функции

y=ax^2+bx+c

, где числа

a

,

b

и

c

— целые. Найдите

f(-5)

.

[Ответ: -29]

Смотреть видеоразбор похожего >>

8. На рисунке изображён график функции

f(x)=frac{k}{x}+a

. Найдите

f(0.1)

.

[Ответ: -17]

Смотреть видеоразбор похожего >>

9. На рисунке изображён график функции

f(x)=frac{k}{x}+a

. Найдите, при каком значении

x

значение функции равно

-4.4

.

[Ответ: -12.5]

Смотреть видеоразбор похожего >>

10. На рисунке изображён график функции

f(x)=frac{k}{x+a}

. Найдите

f(-3.5)

.

[Ответ: 6]

Смотреть видеоразбор похожего >>

11. На рисунке изображён график функции

f(x)=frac{k}{x+a}

. Найдите значение

x

, при котором

f(x) = 10

.

[Ответ: 0.6]

Смотреть видеоразбор похожего >>

12. На рисунке изображён график функции

f(x)=frac{kx+a}{x+b}

. Найдите

k

.

[Ответ: 1]

Смотреть видеоразбор похожего >>

13. На рисунке изображён график функции

f(x)=frac{kx+a}{x+b}

. Найдите

a

.

[Ответ: 2]

Смотреть видеоразбор похожего >>

14. На рисунке изображён график функции

f(x)=b+log_ax

. Найдите

f(frac{1}{9})

.

[Ответ: 3]

Смотреть видеоразбор похожего >>

15. На рисунке изображён график функции

f(x)=b+log_ax

. Найдите значение

x

, при котором

f(x)=-11

.

[Ответ: 64]

Смотреть видеоразбор похожего >>

16. На рисунке изображён график функции

f(x)=log_a(x+b)

. Найдите

f(26)

.

[Ответ: -2]

Смотреть видеоразбор похожего >>

17. На рисунке изображён график функции

f(x)=log_a(x+b)

. Найдите значение

x

, при котором

f(x)=4

.

[Ответ: 82]

Смотреть видеоразбор похожего >>

18. На рисунке изображён график функции

f(x) = a^x+b

. Найдите

f(-2)

.

[Ответ: 22]

Смотреть видеоразбор похожего >>

19. На рисунке изображён график функции

f(x) = a^x+b

. Найдите значение

x

, при котором

f(x) = 77

.

[Ответ: -4]

Смотреть видеоразбор похожего >>

20. На рисунке изображён график функции

f(x) = a^{x+b}

. Найдите

f(4)

.

[Ответ: 9]

Смотреть видеоразбор похожего >>

21. На рисунке изображён график функции

f(x) = a^{x+b}

. Найдите значение

x

, при котором

f(x) = 64

.

[Ответ: 8]

Смотреть видеоразбор похожего >>

22. На рисунке изображён график функции

f(x) = ksqrt{x}

. Найдите

f(8.41)

.

[Ответ: 8.7]

Смотреть видеоразбор похожего >>

23. На рисунке изображён график функции

f(x) = ksqrt{x}

. Найдите значение

x

, при котором

f(x)=-6.75

.

[Ответ: 7.29]

Смотреть видеоразбор похожего >>

24. На рисунке изображены графики функций

f(x)=-4x+22

и

g(x)=ax^2+bx+c

, которые пересекаются в точках A и B. Найдите абсциссу точки B.

[Ответ: 9]

Смотреть видеоразбор похожего >>

25. На рисунке изображены графики функций

f(x)=-6x-28

и

g(x)=ax^2+bx+c

, которые пересекаются в точках A и B. Найдите ординату точки B.

[Ответ: 38]

Смотреть видеоразбор похожего >>

26. На рисунке изображены графики функций

f(x)=frac{k}{x}

и

g(x)=ax+b

, которые пересекаются в точках A и B. Найдите абсциссу точки B.

[Ответ: 0.2]

Смотреть видеоразбор похожего >>

27. На рисунке изображены графики функций

f(x)=frac{k}{x}

и

g(x)=ax+b

, которые пересекаются в точках A и B. Найдите ординату точки B.

[Ответ: 20]

Смотреть видеоразбор похожего >>

28. На рисунке изображены графики двух линейных функций. Найдите абсциссу точки пересечения графиков.

[Ответ: -2.08]

Смотреть видеоразбор похожего >>

29. На рисунке изображены графики двух линейных функций. Найдите ординату точки пересечения графиков.

[Ответ: -2.4]

Смотреть видеоразбор похожего >>

30. На рисунке изображены графики двух линейных функций. Найдите абсциссу точки пересечения графиков.

[Ответ: -11.3]

Смотреть видеоразбор похожего >>

31. На рисунке изображены графики двух линейных функций. Найдите ординату точки пересечения графиков.

[Ответ: 6.8]

Смотреть видеоразбор похожего >>

32. На рисунке изображены графики функций

f(x) = 2x^2+16x+30

и

g(x) = ax^2+bx+c

, которые пересекаются в точках A и B. Найдите абсциссу точки B.

[Ответ: -9]

Смотреть видеоразбор похожего >>

33. На рисунке изображены графики функций

f(x) = -2x^2-3x+1

и

g(x) = ax^2+bx+c

, которые пересекаются в точках A и B. Найдите ординату точки B.

[Ответ: -13]

Смотреть видеоразбор похожего >>

34. На рисунке изображены графики функций

f(x)=asqrt{x}

и

g(x)=kx+b

, которые пересекаются в точке A. Найдите абсциссу точки A.

[Ответ: 3.24]

Смотреть видеоразбор похожего >>

35. На рисунке изображены графики функций

f(x)=asqrt{x}

и

g(x)=kx+b

, которые пересекаются в точке A. Найдите ординату точки A.

[Ответ: 9]

Смотреть видеоразбор похожего >>

36. На рисунке изображён график функции

f(x) = asin{x}+b

. Найдите

a

.

[Ответ: 2]

Смотреть видеоразбор похожего >>

37. На рисунке изображён график функции

f(x) = asin{x}+b

. Найдите

b

.

[Ответ: 1,5]

Смотреть видеоразбор похожего >>

38. На рисунке изображён график функции

f(x) = acos{x}+b

. Найдите

a

.

[Ответ: 1,5]

Смотреть видеоразбор похожего >>

39. На рисунке изображён график функции

f(x) = acos{x}+b

. Найдите

b

.

[Ответ: −1]

Смотреть видеоразбор похожего >>

40. На рисунке изображён график функции

f(x) = a;tg{x}+b

. Найдите

a

.

[Ответ: 2]

Смотреть видеоразбор похожего >>

41. На рисунке изображён график функции

f(x) = a;tg{x}+b

. Найдите

b

.

[Ответ: −1,5]

Смотреть видеоразбор похожего >>

Самый наглядный способ представления информации – графический. Этот тезис применим и в математике. А при правильном подходе график может дать гораздо больше информации о поведении функции, чем просто положении точек на координатной плоскости.

Что может рассказать график $ y=f(x) $?

1. Область определения функции – значения аргумента $ x $, которые можно «подать на вход». Аргумент откладывается на горизонтальной оси.

2. Область значения функции – значения функции $ y $, получаемые «на выходе». Значения отмечаются на вертикальной оси.

3. Непрерывность функции. Для всех ли аргументов существуют значения?

4. Промежутки монотонности функции (возрастания или убывания).

Функция называется возрастающей, если большему значению аргумента соответствует большее значение функции то есть  $ x_{1} < x_{2}Rightarrow y_{1} < y_{2} $.

Если же большему значению аргумента соответствует меньшее значение функции (то есть  $ x_{1} < x_{2}Rightarrow y_{1} > y_{2} $), то функция называется убывающей.

Существуют функции, которые всегда возрастают (например,  $ y=x^{3} $) или всегда убывают (например,  $ y=-x $).

Но чаще функции имеют несколько промежутков возрастания и убывания. Например, функция  $ y=x^{2} $ убывает при  $ x in (0; +infty) $ и возрастает при  $ x in (- infty; 0) $.

А график функции косинус имеет множество таких промежутков, сменяющих друг друга.

5. Точки минимума и максимума.

Значения аргумента, в которых функция перестает возрастать и начинает убывать, называются точками максимума. Если же в них, наоборот, функция перестает убывать и начинает возрастать – точками минимума. На графике  $ y = sin(x) $ красным отмечены точки минимума, синим – максимума.

Всегда возрастающие и убывающие функции таких точек не имеют.

6. Ограниченность функции. Есть ли значения, за которые функция «не заходит»?

Функции могут быть неограниченными; ограниченными сверху, снизу, слева, справа, а также сразу с нескольких сторон.

Уже знакомая нам функция косинуса, например, ограничена и сверху, и снизу. Парабола  $ y=x^{2} $ ограничена снизу. А график функции  $ y=x^{3} $неограничен нигде.

7. Четность функции.

Функция называется четной, если выполняется равенство  $ f(-x)=f(x) $. Такой функцией является парабола  $ y=x^{2} $ так как верно, что  $ -x^{2} = x^{2} $. Наглядным признаком четности является симметрия графика относительно оси ОY.

Если выполняется равенство $ f(-x)=-f(x) $, то функция считается нечетной. Примером такого типа функций может служить кубическая парабола  $ y=x^{3} $ для которой  $ (-x)^{3} = -x^{3} $. График нечетной функции будет симметричен относительно начала координат.

Не всякую функцию можно отнести одной из этих групп. Если не выполняется ни одно из названных условий, говорят, что функция не обладает четностью.

Рассмотрим функцию $ y = (x+2)^{2} $ и исследуем ее $ на четность.

$ y(-x) = (-x+2)^{2} = (-1(x-2))^{2} = (-1)^{2} cdot (x-2)^{2} = (x-2)^{2} $

Видно, что   $ (x-2)^{2} neq (x+2)^{2} = y(x);$ и $ (x-2)^{2} neq -(x+2)^{2} = -y(x) $

То есть данная функция не является ни четной, ни нечетной.

8. Периодичность функции.

Если с какого-то момента график функции начинает повторяться, то такая функция называется периодичной. Таким свойством обладают все тригонометрические функции.

Помимо вышеназванных свойств у функций и их графиков есть особенные признаки, которые позволяют быстро и схематично их изобразить. Рассмотрим самые часто встречающиеся в математике зависимости.

Линейная функция

Формула $ y=kx+b, k neq 0 $
График
Особые свойства $ k=tga $ тангенс угла наклона, $ b $ точка пересечения с $ OY $
Область определения $ R $
Область значения $ R $
Непрерывность да
Монотонность $ k > 0 $ — возростает, $ k < 0 $ — убывает
Точки минимума и максимума нет
Ограниченность неограничено
Четность нечетная
Периодичность нет

Квадратичная функция (парабола)

Формула $ y=ax^{2}+bx+c, a neq 0 $
График
Особые свойства $ a > 0 $ ветви направлены вверх, $ a < 0 $ $ b $ — точка пересечения с $ OY $ $ x_{вершины}=frac{-b}{2a} $
Область определения $ R $
Область значения $ R $
Непрерывность да
Монотонность При $ a > 0 (-infty;x_{вершины}) $ — убывает $ x_{вершины};+infty $ — возростает. При $ a < 0 $ — наоборот.
Точки минимума и максимума $ a > 0 x_{вершины} $ — точка минимума, при $ a < 0 $ — максимума
Ограниченность При $ a > 0 $ ограничена снизу, при $ a < 0 $ — сверху
Четность $ b=0 $ — четная, $ b neq 0 $ — не обладает четностью
Периодичность нет

Кубическая парабола

Формула $ y=ax^{3}+b, a neq 0 $
График
Особые свойства $ b $ — точка пересечения с $ OY $
Область определения $ R $
Область значения $ R $
Непрерывность да
Монотонность При $ a > 0 $ — возростает, $ a < 0 $ — убывает.
Точки минимума и максимума нет
Ограниченность Неограничена
Четность $ b=0 $ — нечетная, иначе — не обладает четностью
Периодичность нет

Квадратный корень

Формула $ y=a sqrt {x}, a neq 0 $
График
Особые свойства График располагается справа от нуля
Область определения $ x geq 0 $
Область значения $ a geq 0 Rightarrow y geq 0 $ $ a leq 0 Rightarrow y leq 0 $
Непрерывность да
Монотонность При $ a > 0 $ — возростает, $ a < 0 $ — убывает.
Точки минимума и максимума $ a > 0 — x = 0 $ точка минимума, $ a < 0 — x = 0 $ точка максимума
Ограниченность При $ a > 0 $ ограничена снизу и слева, при $ a < 0 $ — сверху и слева
Четность Не обладает четностью
Периодичность нет

Гипербола

Формула $ y= frac{k}{x}, k neq 0 $
График
Особые свойства График имеет 2 асимптоты (прямые, к которым бесконечно приближается, но никогда не пересекает) $ x=0, y=0 $
Область определения $ x neq 0 $
Область значения $ y neq 0 $
Непрерывность Разрыв в точке $ x neq 0 $
Монотонность $ k > 0 $ убывает $ (-infty ; 0) $, возрастает $ (0;+infty) $ \ $ k < 0 $ возрастает $ (-infty ; 0) $, убывает $ (0;+infty) $
Точки минимума и максимума нет
Ограниченность Неограничена
Четность Нечетная
Периодичность Нет

Окружность

Формула $ (x-a)^{2} + (y-b)^{2}= R^{2} $
График
Особые свойства Центр окружности в точке $ a, b $, радиус $ R $
Область определения $ R $
Область значения $ R $
Непрерывность Да
Монотонность  
Точки минимума и максимума нет
Ограниченность С 4 сторон
Четность При $ a=b=0 $ — четная, иначе не обладает четностью
Периодичность Нет

Показательная функция

Формула $ y=a^{x}, a > 0, a neq 1 $
График
Особые свойства Все показательные функции проходят через точку (0,1)
Область определения $ R $
Область значения $ (0;+infty) $
Непрерывность Да
Монотонность $ a > 1 $ — возрастает, $ 0 < a < 1 $ — убывает
Точки минимума и максимума нет
Ограниченность Ограничена с низу
Четность Не обладает четностью
Периодичность Нет

Логарифмическая функция

Формула $ y=log_{a}x, a > 0, a neq 1 $
График
Особые свойства Все показательные функции проходят через точку (1,0)
Область определения $ (0;+infty) $
Область значения $ R $
Непрерывность Да
Монотонность $ a > 1 $ — возрастает, $ 0 < a < 1 $ — убывает
Точки минимума и максимума нет
Ограниченность Нет
Четность Нет
Периодичность Нет

Синус

Формула $ y=sin(x) $
График
Особые свойства  
Область определения $ R $
Область значения [-1;1]
Непрерывность Да
Монотонность Да
Точки минимума и максимума Точки минимума $ frac{pi}{2}+2pi k, kin Z $, точки минимума $ -frac{pi}{2}+2pi k, kin Z $
Ограниченность Сверху и снизу
Четность Нечетная
Периодичность Период $ 2pi $

Косинус

Формула $ y=cos(x) $
График
Особые свойства  
Область определения $ R $
Область значения [-1;1]
Непрерывность Да
Монотонность Да
Точки минимума и максимума Точки минимума $ 2pi k, kin Z $, точки минимума $ pi+2pi k, kin Z $
Ограниченность Сверху и снизу
Четность Четная
Периодичность Период $ 2pi $

Тангенс

Формула $ y=tgx $
График
Особые свойства Имеет бесконечное число асимптот  
Область определения $ x neq frac{pi}{2}+pi k, kin Z $
Область значения $ R $
Непрерывность Разрыв в точках $ (-frac{pi}{2}+pi k; frac{pi}{2}+pi k), k in Z $
Монотонность Возрастает на каждом промежутке $ x neq frac{pi}{2}+pi k, kin Z $
Точки минимума и максимума Нет
Ограниченность Нет
Четность Четная
Периодичность Период $ pi $

Котангенс

Формула $ y=ctgx $
График
Особые свойства Имеет бесконечное число асимптот  
Область определения $ x neq pi k, kin Z $
Область значения $ R $
Непрерывность Разрыв в точках $ x = pi k, kin Z $
Монотонность Убывает на каждом промежутке $ (pi k, pi + pi k), k in Z $
Точки минимума и максимума Нет
Ограниченность Нет
Четность Нечетная
Периодичность Период $ pi $

Преобразование графиков функции

График любой зависимости можно построить по точкам. Но в некоторых случаях гораздо проще преобразовать график какой-либо известной функции с помощью сдвигов, отражений и растяжений.

1. Симметрия относительно оси  $ OX: f(x) rightarrow — f(x) $

Все абсциссы остаются неизменными, а все ординаты меняют знак на противоположный.

2. Симметрия относительно оси  $ OY: f(x) rightarrow f(-x) $

Все ординаты графика остаются неизменными, а абсциссы меняют знак на противоположный.

При таком преобразовании четной функции, график остается неизменным.

3. Сдвиг вдоль оси $ OX: f(x) rightarrow f(x-a) $

Ординаты остаются неизменными, а абсциссам прибавляется  $ a $. Если  $ a > 0 $, то график сдвигается вправо, иначе – влево.

4. Сдвиг вдоль оси  $ OY: f(x) rightarrow f(x)+b $

Абсциссы не меняются, а к ординатам прибавляется  $ : b $. При  $ b > 0 $ график сдвигается вверх, иначе – вниз.

Обратите внимание, что в пункте 3. перед $ a $ стоит знак «–», в то время как в 4. перед  $ b $ стоит «+». При этом знаки параметров  $ a,b $ могут быть любыми.

5. Сжатие и растяжение вдоль оси  $ OX: f(x) rightarrow f(ax), a > 0 $

Ординаты остаются неизменными, а абсциссы делятся на $ a $. Точки пересечения графика функции с осью  $ OY $ остаются на месте.

6. Сжатие и растяжение вдоль оси  $ OY: f(x) rightarrow kf(x), k > 0 $

Абсциссы остаются неизменными, а ординаты умножаются на $ k $. Точки пересечения графика функции с осью  $ OX $ остаются на месте.

7. Модуль функции: $ f(x) rightarrow|;f(x);| $

Точки с положительными ординатами остаются на месте, точки с отрицательными ординатами отбражаются симметрично относительно оси  $ OX $.

8. Модуль аргумента: $ f(x) rightarrow f(|x|) $

Точки, соответствующие отрицательным абсциссами, стираются. Точки с положительными абсциссами остаются на месте, а так же отображаются симметрично относительно оси  $ OY $. Функция становится четной.

Приведенные выше преобразования можно комбинировать и выполнять друг за другом.

Пример 1.

Построите график функции $ y=-2(x-3)^{2}+4 $.

Данный график можно получить из $ y=x^{2} $ последовательными сжатием вдоль оси  $ OY $ в 2 раза, сдвигом вдоль оси  $ OX $ на 3 вправо, сдвигом вдоль оси  $ OY $ на 4 вверх и отражением относительно оси  $ OX $.

В ЕГЭ 2022 года добавили новую задачу на графики функций. Для решения этой задачи нужно сначала определить формулу функции, а затем вычислить ответ на вопрос задачи. И если вычисление ответа по известной формуле обычно не составляет труда, то вот определение самой формулы часто ставит школьников в тупик. Поэтому мы разберем три разных подхода к этому вопросу.

Замечание. Про то как определяется формула у прямой и параболы я написала в этой и этой статьях. Поэтому здесь в примерах я буду использовать другие функции – дробные, иррациональные, показательные и логарифмические, но все три описанных здесь способа работают и для линейных, и для квадратичных функций в том числе.

1 способ – находим формулу по точкам

Этот способ подходит вообще для любой девятой задачи, но занимает достаточно много времени и требует хорошего навыка решения систем уравнений.

Давайте разберем алгоритм на примере конкретной 9-ой задачи ЕГЭ:

задача с гиперболой

Алгоритм:

1. Находим 2 точки с целыми координатами. Обычно они выделены жирно, но если это не так, то не проблема найти их самому.
Пример:

находим две точки с целыми координатами

2. Подставляем эти координаты в «полуфабрикат» функции. Вместо (f(x))– координату игрек, вместо (x) – икс. Получается система.

составляем уравнения

3. Решаем эту систему и получаем готовую формулу.

решаем систему

4. Готово, функция найдена, можно переходить ко второму этапу – вычислению (f(-8)). Если вы вдруг не знаете, что это значит – в конце статьи я рассматриваю этот момент более подробно.

отвечаем на вопрос задачи

Давайте посмотрим метод еще раз на примере с логарифмической функцией.
Пример:

Пример с логарифмической функцией

2 способ – преобразование графиков функций

Этот способ сильно быстрее первого, но требует больше знаний. Для использования преобразований функций нужно знать, как выглядят функции без изменения и как преобразования их меняют. Наиболее удобно использовать этот способ для иррациональной функции ((y=sqrt{x}) ) и функции обратной пропорциональности ((y=frac{1}{x})).

Вот как выглядит применение этого способа:

преобразование графиков функций

Для использования этого способа надо знать, как выглядят изначальные функции:

Виды функций

И понимать, как меняются функции от преобразований:

Преобразование графиков функций

примеры преобразований функций

Преобразование показательной функции Преобразование гипербол

Часто даже по «полуфабрикату» функции понятно, какие преобразования сделали с функцией:

как по формуле определить какие были преобразования с функцией

Пример:

пример с функцией обратной пропорциональности

3 способ – гибридный

Идеально подходит для логарифмических и показательных функций, так как обычно у таких функций неизвестно основание и с помощью преобразований его не найти. С другой стороны, независимо от оснований любая показательная функция должна проходить через точку ((0;1)), а любая логарифмическая — через точку ((1;0)).

показательная и логарифмическая функция

По смещению этих точек легко понять, как именно двигали функцию, но только если ее не растягивали, а лишь перемещали вверх-вниз, влево-вправо (как обычно и бывает в задачах на ЕГЭ).

Основание же лучше находить уже следующим действием, используя подстановку координат точки в «полуфабрикат» функции.

пример с логарифмической функцией

пример с логарифмической функцией

Как отвечать на вопросы в задаче, когда уже определили функцию

— Если просят найти (f)(любое число), то нужно это число подставить в готовую функцию вместо икса.
Пример:

что значит найти f от числа

— Если просят найти «при каком значении x значение функции равно *любому числу*», то надо решить уравнение, в одной части которого будет функция, а в другой — то самое число. Аналогично надо поступить, если просят «найти корень уравнения (f(x)=) *любое число*».
Пример:

найдите, при каком значении x значение функции равно 8

— Если просят найти абсциссу точки пересечения – надо приравнять 2 функции и решить получившееся уравнение. Корень уравнения и будет искомой абсциссой. Аналогично надо делать в задачах, где даны две точки пересечения (A)(*любое число*;*другое число*) и (B(x_0;y_0)) и просят найти (x_0).
Пример:

найдите точку пересечения функций

— Если просят найти ординату точки пересечения – надо приравнять 2 функции, найти иксы и подставить подходящий икс в любую функцию. Точно также решаем если просят найти (y_0) точки пересечения двух функций.
Пример:

найдите ординату точки пересечения

— Иногда просят найти просто какой-либо из коэффициентов функции. Тогда надо просто восстановить функцию и записать в ответ то, о чем спросили:
Пример:

найдите k

Понятие функции

Функция — это зависимость y от x, где x является независимой переменной или аргументом функции, а y — зависимой переменной или значением функции. Функция — это соответствие между двумя множествами, причем каждому элементу первого множества соответствует один и только один элемент второго множества.

Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие значения функции. Вот, какими способами ее можно задать:

  • Табличный способ — помогает быстро определить конкретные значения без дополнительных измерений или вычислений.

  • Графический способ — наглядно.

  • Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.

  • Словесный способ.

Область определения функции — это множество всех допустимых значений аргумента (переменной x). Геометрически — это проекция графика функции на ось Ох.

Например, для функции вида

область определения выглядит так

  • х ≠ 0, потому что на ноль делить нельзя. Записать можно так: D (y): (-∞; 0) ⋃ (0; +∞).

Область значений функции — множество всех значений, которые функция принимает на области определения. Геометрически — это проекция графика функции на ось Оy.

Например, естественная область значений функции y = x2 — это все числа больше либо равные нулю. Можно записать вот так: Е (у): [0; +∞).

Получай лайфхаки, статьи, видео и чек-листы по обучению на почту

Альтернативный текст для изображения

Реши домашку по математике на 5.

Подробные решения помогут разобраться в самой сложной теме.

Реши домашку по математике на 5.

Понятие графика функции

Графиком функции y = f(x) называется множество точек (x; y), координаты которых связаны соотношением y = f(x). Само равенство y = f(x) называется уравнением данного графика.

График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу.

Проще говоря, график функции показывает множество всех точек, координаты которых можно найти, просто подставив в функцию любые числа вместо x.

Для примера возьмём самую простую функцию, в которой аргумент равен значению функции, то есть y = x.

В этом случае нам не придётся вычислять для каждого аргумента значение функции, так как они равны, поэтому у всех точек нашего графика абсцисса будет равна ординате.

Отметим любые три точки на координатной плоскости, например: L (-2; -2), M (0; 0) и N (1; 1).

Понятие графика функции

Если мы последовательно от наименьшего значения аргумента к большему соединим отмеченные точки, то у нас получится прямая линия. Значит графиком функции y = x является прямая. На графике это выглядит так:

Понятие графика функции рис 2

Надпись на чертеже y = x — это уравнение графика. Ставить надпись с уравнением на чертеже удобно, чтобы не запутаться при решении задач.

Важно отметить, что прямая линия бесконечна в обе стороны. Хоть мы и называем часть прямой графиком функции, на самом деле на чертеже изображена только малая часть графика.

Запоминаем!

Не обязательно делать чертеж на целый тетрадный лист, можно выбрать удобный для вас масштаб, который отразит суть задания.

Исследование функции

Важные точки графика функции y = f(x):

  • стационарные и критические точки;

  • точки экстремума;

  • нули функции;

  • точки разрыва функции.

Стационарные точки — точки, в которых производная функции f(x) равна нулю.

Критические точки — точки, в которых производная функции f(x) равна нулю либо не существует. Стационарные точки являются подмножеством множества критических точек.

Экстремум в математике — максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум — точка экстремума называется точкой минимума, а если максимум — точкой максимума.

Нули функции — это значения аргумента, при которых значение функции равно нулю.

Асимптота — прямая, которая обладает таким свойством, что расстояние от точки графика функции до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат. По способам их отыскания выделяют три вида асимптот: вертикальные, горизонтальные, наклонные.

Функция непрерывна в точке k, если предел функции в данной точке равен значению функции в этой точке:

Если функция f(x) не является непрерывной в точке x = a, то говорят, что f(x) имеет разрыв в этой точке.

Неприрывные функции, разрыв в точке

Если нам нужно построить график незнакомой функции, когда заранее невозможно представить вид графика, полезно применять схему исследования свойств функции. Она поможет составить представление о графике и приступить к построению по точкам.

Схема построения графика функции:

 

  1. Найти область определения функции.

  2. Найти область допустимых значений функции.

  3. Проверить не является ли функция четной или нечетной.

  4. Проверить не является ли функция периодической.

  5. Найти точку пересечения с осью OY (если она есть).

  6. Вычислить производную и найти критические точки, определить промежутки возрастания и убывания.

  7. Промежутки знакопостоянства.

  8. Асимптоты.

  9. На основании проведенного исследования построить график функции.

Построение графика функции

Чтобы понять, как строить графики функций, потренируемся на примерах или воспользуйтесь онлайн тренажером.

Задача 1. Построим график функции Задача 1. Построим график функции

Как решаем:

Упростим формулу функции:

Задача 1. Упростим формулупри х ≠ -1.

График функции — прямая y = x — 1 с выколотой точкой M (-1; -2).

Построение графика функции, задача 1

Задача 2. Построим график функцииЗадача 2. Построим график функции

Как решаем:

Выделим в формуле функции целую часть:

Выделим целую часть

График функции — гипербола, сдвинутая на 3 вправо по x и на 2 вверх по y и растянутая в 10 раз по сравнению с графиком функции Гипербола. График функции

Гипербола

Задача 3. Построить графики функций:

а) y = 3x — 1

б) y = -x + 2

в) y = 2x

г) y = -1

Как решаем:

Воспользуемся методом построения линейных функций «по точкам».

а) y = 3x — 1

Задача 3. Построение функции по точкам 1

Как видим, k = 3 > 0 и угол наклона к оси Ox острый, b = -1 — смещение по оси Oy.

б) y = -x + 2

Задача 3. Построение функции по точкам 2

k = -1 > 0 и b = 2 можно сделать аналогичные выводы, как и в первом пункте.

в) y = 2x

Пример построения графика функции

k = 2 > 0 — угол наклона к оси Ox острый, b = 0 — график проходит через начало координат.

г) y = -1

Задача 3. Построение функции по точкам 4

k = 0 — константная функция, прямая проходит через точку b = -1 и параллельно оси Ox.

Задача 4. По виду графика определить знаки коэффициентов общего вида функции y = ax2 + bx + c.

 

  1. Знаки коэффициентов 1

  2. Знаки коэффициентов 2

  3. Знаки коэффициентов 3

Как решаем:

Вспомним, как параметры a, b и c определяют положение параболы.

  1. Ветви вниз, следовательно, a < 0.

    Точка пересечения с осью Oy — c = 0.

    Координата вершины Координата вершины 1

  2. Ветви вверх, следовательно, a > 0.

    Точка пересечения с осью Oy — c > 0.

    Координата вершины Координата вершины 2, т.к. неизвестное число при делении на положительное дает отрицательный результат, то это число отрицательное, следовательно, b > 0.

  3. Ветви вниз, следовательно, a < 0.

    Точка пересечения с осью Oy — c > 0.

    Координата вершины Координата вершины 3, т.к. неизвестное число при делении на отрицательное дает в результате положительное, то это число отрицательное, следовательно, b < 0.

Задача 5. Построить графики функций:

а) y = x² + 1

б) Задача 5. Построить графики функций 2

в) y = (x — 1)² + 2

г) Задача 5. Построить графики функций 4

д) Задача 5. Построить графики функций 5

Как решаем:

Построить графики можно при помощи элементарных преобразований.

Если построен график функции y = f(x), то при a > 0 следующие графики получаются с помощью сдвига графика f(x).

  • y = f(x) + a — график функции y = f(x) сдвигается на a единиц вверх;

  • y = f(x) − a — график функции y = f(x) сдвигается на a единиц вниз;

  • y = f(x + a) — график функции y = f(x) сдвигается на a единиц влево;

  • y = f(x − a) — график функции у = f(x) сдвигается на a единиц вправо.

Преобразование график по типу y = mf(x): y = f(x) → y = mf(x), где m — положительное число.

  • Если m > 1, то такое преобразование графика называют растяжением вдоль оси y с коэффициентом m.

    Растяжение графика функции вдоль оси y

  • Если m < 1, то такое преобразование графика называют сжатием к оси x с коэффициентом 1/m.

    Сжатие графика функции к оси x

а) Задача 5. Решение 1

Преобразование в одно действие типа f(x) + a.

y = x²

Задача 5.1

Сдвигаем график вверх на 1:

y = x² + 1

Задача 5.2

б)Задача 5.2.1

Преобразование в одно действие типа f(x — a).

Задача 5.2.2

Сдвигаем график вправо на 1:

Задача 5.3

в) y = (x — 1)² + 2

В этом примере два преобразования, выполним их в порядке действий: сначала действия в скобках f(x — a), затем сложение f(x) + a.

y = x²

Задача 5.3.1

Сдвигаем график вправо на 1:

y = (x — 1)²

Задача 5.3.2

Сдвигаем график вверх на 2:

y = (x — 1)² + 2

Задача 5.3.4

г) Задача 5.4

Преобразование в одно действие типа Задача 5.4.1

y = cos(x)

Задача 5.4.2

Растягиваем график в 2 раза от оси ординат вдоль оси абсцисс:

Задача 5.4.3

Задача 5.4.4

д) Задача 5.5

Мы видим три преобразования вида f(ax), f (x + a), -f(x).

Чтобы выполнить преобразования, посмотрим на порядок действий: сначала умножаем, затем складываем, а уже потом меняем знак. Чтобы применить умножение ко всему аргументу модуля в целом, вынесем двойку за скобки в модуле.

Задача 5.5.1
Задача 5.5.2
Задача 5.5.3

Сжимаем график в два раза вдоль оси абсцисс:

Задача 5.5.4
5.5.5

Сдвигаем график влево на 1/2 вдоль оси абсцисс:

5.5.6
5.5.7

Отражаем график симметрично относительно оси абсцисс:

5.5.8
5.5.9

Алгебра и начала математического анализа, 11 класс

Урок №48. Функции. Свойства функций и их графики. Исследование функций.

Перечень вопросов, рассматриваемых в теме:

  • функция, аргумент функции, значение функции
  • график функции, преобразование графика функции
  • свойства функции, исследование свойств функции

Глоссарий по теме урока

Определение

Зависимость переменной у от переменной х называется функцией, если каждому значению х соответствует единственное значение у.

х – независимая переменная, аргумент,

у — зависимая переменная, значение функции

Определение

Множество значений аргумента функции называется областью определения функции и обозначается D(y).

Определение

Множество значений, которые принимает сама функция, называется множеством значений функции и обозначается Е(у).

Определение

Функция у = f(х) называется четной, если она обладает двумя свойствами:

  1. область определения этой функции симметрична относительно 0;
  2. для любого х из области определения выполняется равенство f(-х)=f(х).

Функция у = f(х) называется нечетной, если она обладает двумя свойствами:

  1. область определения этой функции симметрична относительно 0;

для любого х из области определения выполняется равенство f(-х)=-f(х).

Определение

Значения аргумента, при которых значение функции равно 0, называются корнями (нулями) функции.

Определение

Функция у=f(x) возрастает на промежутке (а; в), если для любых х1, х2 из этого промежутка, таких, что х12, выполняется неравенство у12.

Функция у=f(x) убывает на промежутке (а; в), если для любых х1, х2 из этого промежутка, таких что, х12, выполняется неравенство у12.

Основная литература:

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл.– М.: Просвещение, 2015. С. 98-118, 271-307.

Дополнительная литература:

Шахмейстер А.Х. Построение и преобразование графиков. Параметры. Ч.2-3. СПб.: Петроглиф; М.: МЦНМО, 2016. 392 с. С.73-307.

Открытые электронные ресурсы:

Образовательный портал “Решу ЕГЭ”.

https://mathb-ege.sdamgia.ru/test?theme=177

Решу ЕГЭ образовательный портал для подготовки к экзаменам https://ege.sdamgia.ru/.

Открытый банк заданий ЕГЭ ФИПИ, Элементы комбинаторики, статистики и теории вероятностей, базовый уровень. Элементы комбинаторики, статистики и теории вероятностей. Базовый уровень. http://ege.fipi.ru/.

Теоретический материал для самостоятельного изучения

1. Исследование функции и построение графика

Схема исследования функции на примере функции

1) Область определения функции

Знаменатель дроби не равен нулю:

Получили область определения

D(y)=

  1. Множество значений функции

Отыскание Е(у) можно свести к решению уравнения с параметром у. Все значения параметра у, при которых уравнение имеет хотя бы одно решение, и составят Е (у).

Получили

  1. Четность / нечетность функции

D(y)= — симметрична относительно нуля

,

следовательно, функция четная и ее график симметричен относительно оси ОУ

  1. Нули функции

Для нахождения нулей функции необходимо решить уравнение

Уравнение не имеет действительных корней, значит, нулей у данной функции нет, ее график не пересекает ось ОХ

  1. Промежутки знакопостоянства

у>0 при

у<0 при

  1. Монотонность

Найдем производную

Найдем точки, в которых производная равна нулю или не существует: х=0, х=-1, х=1.

Определим знаки производной в полученных промежутках.

точки -1, 1 – выколоты, 0 — закрашена

Производная положительна, а значит, функция возрастает при .

Производная отрицательна, а значит, функция убывает при

  1. Экстремум

х=0 – стационарная точка.

В ней производная меняет знак с плюса на минус, следовательно, х=0 – точка максимума.

Значение функции в точке максимума

  1. Дополнительные точки

у(0,5)= у(-0,5)=-5/3; у(2)=у(-2)=5/3; у(3)= у(-3)=5/4

  1. Отразим найденные свойства графически, построим график функции

2. Решение задачи на оптимизацию

Задачи на отыскание наибольших или наименьших значений величин решаются по определенному плану.

В решении таких задач выделяют 3 основных этапа:

1 этап. «Перевод» задачи на язык функций:

  1. вводят независимую переменную х
  2. выявляют оптимизируемую величину у, для которой надо найти наибольшее или наименьшее значение
  3. выражают у через х и другие известные величины
  4. устанавливают по условию задачи границы изменения переменной х

2 этап. Исследуют составленную функцию на наибольшее или наименьшее значение (в зависимости от условия задачи) с помощью производной или элементарными средствами.

3 этап. Интерпретация найденного решения для поставленной задачи – «перевод» полученного математического результата на язык задачи.

Рассмотрим план решения на примере задачи.

Задача. В распоряжении начальника имеется бригада рабочих в составе 24 человек. Их нужно распределить на день на два объекта. Если на первом объекте работает t человек, то их суточная зарплата составляет 4t2 у.е. Если на втором объекте работает t человек, то их суточная зарплата составляет t2 у.е. Как нужно распределить на эти объекты бригаду рабочих, чтобы выплаты на их суточную зарплату оказались наименьшими? Сколько у.е. в этом случае придется заплатить рабочим?

Решение:

1 этап. Ведем переменную, выразим нужные компоненты, составим искомую функцию.

Пусть на 1 объект направлено х рабочих, суточная зарплата которых составит 4x2 у.е.

Тогда на 2 объект направлено (24 — x) рабочих – суточная заработная плата (24 — x)2 (у.е.)

Всем рабочим нужно заплатить 4x2+(24 — x)2 = 5x2 -48x+576 (у.е.)

Причем 0≤ x ≤ 24, x ϵ N.

2 этап.

Рассмотрим функцию f(x)=5x2-48x+576.

Функция квадратичная, старший коэффициент положителен, следовательно, наименьшее значение в вершине при x0 = 4,8 .

3 этап. Перевод на язык задачи

Поскольку x ϵ N, подходящим будет ближайшее к вершине натуральное значение, x=5 (рабочих) – на 1 объекте.

24-5=19 (рабочих) – на 2 объекте.

Наименьшее значение f(5)=125+240-576=461 (у.е.) – наименьшая суточная выплата.

Примечание: исследовать функцию также можно было с помощью производной.

Ответ: 5 рабочих на 1 объекте, 19 – на втором, 461 у.е. – наименьшая суточная выплата.

Примеры и разбор решения заданий тренировочного модуля

1. Исследуйте функции на четность.

Функции

у=0

у=sin(x+5π/2)

у=lg(x+10)

Решение:

  1. у=0

область определения – множество действительных чисел – симметрична относительно нуля

у(-х)=0, что можно интерпретировать и как у(х), и как –у(х). К тому же график этой функции – прямая, совпадающая с осью ОХ, — симметричен относительно оси ОУ и относительно начала координат.

Данная функция одновременно четна и нечетна.

  1. у=sin(x+5π/2)

область определения – множество действительных чисел – симметрична относительно нуля

преобразуем функцию, применив формулы приведения: sin(x+5π/2)=cos x

у= cos x – четная функция, значит, исходная функция также четная

  1. у=lg(x+10)

логарифмируемое выражение должно быть положительным

x+10>0; x>-10

D(y): x>-10

Область определения несимметрична относительно 0, значит, в проверке второго условия нет необходимости, — функция общего вида.

Найдем область определения D(f)

Проверим второе условие

Полученное в результате подстановки –х в функцию выражение, очевидно, не равно f(x), не дает пока понимания о выполнении условия нечетности.

Зайдем с другого конца, выразим -f(x):

домножим на сопряженное

Теперь можем сделать вывод: f(-x)=-f(x), функция нечётная.

Ответ:

Функции

Четность / нечетность

у=0

и четная, и нечетная

у=sin(x+5π/2)

четная

у=lg(x+10)

общего вида

нечетная

2.

Решение:

Используем функциональный подход при решении данной задачи. Представим каждое из уравнений как функции. Построим их графики. Единственное решение системы будем интерпретировать как единственную точку пересечения графиков функций первого и второго уравнений.

Второе уравнение проще, но содержит параметр. Перепишем его в явном виде для функции, выразив у: у=-х+а.

В таком виде понятно, что данное уравнение задает множество прямых, параллельных у=-х.

Первое уравнение содержит квадратные корни, что накладывает ограничения: х≥-4, у<7

Сгруппируем в скобках первое, третье и пятое слагаемые, второе и четвертое, получим:

Приравнивая каждый из множителей числителя к нулю, получаем прямые: у=4, у=х+3, х=-4, точнее, с учетом ограничений, части прямых.

Выполним построения выделенных функций.

Условию задачи удовлетворяют только такие прямые второго уравнения у=-х+а, которые пересекают графики первого уравнения только в одной точке.

Анализируя рисунок, получаем: а ≤ -5, а ≥11, а=5.

Ответ:

Понравилась статья? Поделить с друзьями:
  • Функции дыхательной системы егэ
  • Функции крови в организме человека егэ
  • Функции диафрагмы егэ
  • Функции кровеносной системы егэ
  • Функции деятельности обществознание егэ