Геометрия вторая часть егэ профиль


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

В треугольнике АВС проведена биссектриса АМ. Прямая, проходящая через вершину В перпендикулярно АМ, пересекает сторону АС в точке N. АВ = 6; ВС = 5; АС = 9.

а)  докажите, что биссектриса угла С делит отрезок МN пополам

б)  пусть Р  — точка пересечения биссектрис треугольника АВС. Найдите отношение АР : РN.

Источник: ЕГЭ по математике 19.06.2014. Основная волна, резервная волна. Запад. Вариант 1


2

Диагональ AC прямоугольника ABCD с центром O образует со стороной AB угол 30°. Точка E лежит вне прямоугольника, причём ∠BEC = 120°.

а)  Докажите, что ∠CBE = ∠COE.

б)  Прямая OE пересекает сторону AD прямоугольника в точке K. Найдите EK, если известно, что BE = 40 и CE  =  24.


3

Медианы AA1, BB1 и CC1 треугольника ABC пересекаются в точке M. Известно, что AC  =  3MB.

а)  Докажите, что треугольник ABC прямоугольный.

б)  Найдите сумму квадратов медиан AA1 и CC1, если известно, что AC = 12.


4

На сторонах AC и BC треугольника ABC вне треугольника построены квадраты ACDE и BFKC. Точка M  — середина стороны AB.

а)  Докажите, что CM= дробь: числитель: 1, знаменатель: 2 конец дроби DK.

б)  Найдите расстояние от точки M до центров квадратов, если AC  =  10, BC  =  32 и ∠ACB  =  30°.

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2016


5

На гипотенузу AB прямоугольного треугольника ABC опустили высоту CH. Из точки H на катеты опустили перпендикуляры HK и HE.

а)  Докажите, что точки A, B, K и E лежат на одной окружности.

б)  Найдите радиус этой окружности, если AB = 12, CH = 5.

Пройти тестирование по этим заданиям

Угол между двумя прямыми Задача 1, Задача 2. Угол между прямой и плоскостью Задача1. Задача 2. Угол между двумя плоскостями Задача 1. Задача 2.   Расстояние от точки до прямой Задача 1. Задача 2. Расстояние от точки до плоскости Задача 1. Задача 2. Расстояние между скрещивающимися прямыми

  • Угол между двумя прямыми

Задача 1, Задача 2.

  • Угол между прямой и плоскостью

Задача1. Задача 2.

  • Угол между двумя плоскостями

Задача 1. Задача 2.

  • Расстояние от точки до прямой

Задача 1. Задача 2.

  • Расстояние от точки до плоскости

Задача 1. Задача 2.

  • Расстояние между скрещивающимися прямыми

Задача 1. Задача 2.

1.Определение: Две пересекающиеся прямые образуют смежные и вертикальные углы. Углом между двумя прямыми называется меньший из них. Угол между перпендикулярными прямыми равен 90°. Угол между параллельными прямыми равен 0°.

1.Определение: Две пересекающиеся прямые образуют смежные и вертикальные углы.

Углом между двумя прямыми называется меньший из них.

Угол между перпендикулярными прямыми равен 90°. Угол между параллельными прямыми равен 0°.

заменим одну прямую другой. DC 1 B – искомый.» width=»640″

С 1

D 1

2.Скрещивающиеся прямые

Углом между скрещивающимися прямыми называется угол между пересекающимися прямыми, которые параллельны данным скрещивающимся прямым.

B 1

А 1

С

D

В

А

В кубе A…C 1 прямые AD 1 и DC 1 –скрещивающиеся (т.к. лежат в разных плоскостях и не пересекаются). Пользуясь определением угла между скрещивающимися прямыми, получаем: AD 1 II BC 1 = заменим одну прямую другой. DC 1 B – искомый.

. Для решения задач C 2 первого типа, практически всегда приходиться применять формулы и теоремы. Теорема косинусов: Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними. При решении векторным способом : скалярное произведение векторов равно произведению их абсолютных величин на косинус угла между ними. a²=b² + c²- 2∙b∙c∙cos α

.

Для решения задач C 2 первого типа, практически всегда приходиться применять формулы и теоремы.

  • Теорема косинусов: Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними.
  • При решении векторным способом : скалярное произведение векторов равно произведению их абсолютных величин на косинус угла между ними.

a²=b² + c²- 2∙b∙c∙cos α

Ключевая задач а В единичном кубе А… D 1 найдите угол между прямыми АВ1 и ВС1 . D 1 C 1 B 1 А1 Рисунок С РЕШЕНИЕ D А В 6

Ключевая задач а

В единичном кубе А… D 1 найдите угол между прямыми АВ1 и ВС1 .

D 1

C 1

B 1

А1

Рисунок

С

РЕШЕНИЕ

D

А

В

6

С1 D 1 B 1 А1 С D А В

С1

D 1

B 1

А1

С

D

А

В

1.Прямые АВ1 и ВС1 - скрещивающиеся. Прямая А D 1 ll ВС1 2. Заменим прямую ВС1 прямой А D 1 3.Следовательно искомый D 1АВ1 4.Рассмотрим ∆ D 1АВ1 - равносторонний. Так как А D 1= D 1В1=В1А (куб единичный, данные стороны являются диагоналями соответствующих квадратов). Исходя из этого, по свойству углов в равностороннем треугольнике (все углы равны).  5.Искомый D 1АВ1=60° Ответ: 60° C 1 D 1 B 1 А1 С D А В 8

1.Прямые АВ1 и ВС1 — скрещивающиеся. Прямая А D 1 ll ВС1

2. Заменим прямую ВС1 прямой А D 1

3.Следовательно искомый D 1АВ1

4.Рассмотрим ∆ D 1АВ1 — равносторонний. Так как А D 1= D 1В1=В1А (куб единичный, данные стороны являются диагоналями соответствующих квадратов). Исходя из этого, по свойству углов в равностороннем треугольнике (все углы равны).

5.Искомый D 1АВ1=60°

Ответ: 60°

C 1

D 1

B 1

А1

С

D

А

В

8

Тренировочное задание В кубе А… D 1 найдите косинус угла между прямыми АВ и СА 1. D 1 C 1 Рисунок 1 Рисунок 2 B 1 А1 РЕШЕНИЕ 1 РЕШЕНИЕ 2 С D А В

Тренировочное задание

В кубе А… D 1 найдите косинус угла между прямыми АВ и СА 1.

D 1

C 1

Рисунок 1

Рисунок 2

B 1

А1

РЕШЕНИЕ 1

РЕШЕНИЕ 2

С

D

А

В

D 1 C 1 B 1 А1 С D А В

D 1

C 1

B 1

А1

С

D

А

В

C 1 D 1 B 1 А1 С D А В

C 1

D 1

B 1

А1

С

D

А

В

искомый угол В 1 А 1 С 3. В ∆А 1 В 1 С, так как А 1 В 1 С=90° (т.к. А 1 В 1 (ВВ 1 С 1 С), а значит по определению и любой прямой лежащей в этой плоскости А 1 В 1 В 1 С) 4. По определению косинуса: cos В 1 А 1 С= 5. А 1 В 1 =1 6. А 1 С²=1²+(√2)²=3, =А 1 С=√3 7. с os В 1 А 1 С=1/√3=√3/3 Ответ: √3/3 D 1 C 1 B 1 А1 С D А В 12″ width=»640″

1 СПОСОБ

1. АВ и А 1 С скрещивающиеся.

2. АВ II А 1 В 1 = искомый угол В 1 А 1 С

3. В ∆А 1 В 1 С, так как

А 1 В 1 С=90° (т.к. А 1 В 1 (ВВ 1 С 1 С), а значит по определению и любой прямой лежащей в этой плоскости А 1 В 1 В 1 С)

4. По определению косинуса:

cos В 1 А 1 С=

5. А 1 В 1 =1

6. А 1 С²=1²+(√2)²=3, =А 1 С=√3

7. с os В 1 А 1 С=1/√3=√3/3

Ответ: √3/3

D 1

C 1

B 1

А1

С

D

А

В

12

А 1 С (1;1;-1) 5. Пусть α угол между АВ и А 1 С, тогда cos α = АВ∙А 1 С=1+0+0=1 I АВ I = I А 1 С I = 6. с os α =1/(1∙√3)=1/√3=√3/3 Ответ: √3/3 2 СПОСОБ C 1 D 1 B 1 А1 С D А В» width=»640″

1 . Введем систему координат с началом в точке А и осями АВ(Ох); А D (Оу); АА 1 (О z );

2. Рассмотрим в данной системе координат векторы АВ и А 1 С

3. Найдем координаты вектора АВ (1;0;0)

4. А 1 (0;0;1); С (1;1;0) =А 1 С (1;1;-1)

5. Пусть α угол между АВ и А 1 С,

тогда cos α =

АВ∙А 1 С=1+0+0=1

I АВ I =

I А 1 С I =

6. с os α =1/(1∙√3)=1/√3=√3/3

Ответ: √3/3

2 СПОСОБ

C 1

D 1

B 1

А1

С

D

А

В

1 . Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость. 2. Угол между взаимно перпендикулярными прямой и плоскостью равен 90 . 3. Если прямая параллельна плоскости (или лежит в ней), то угол между ними считается равным 0 . В а С α י А α а ∩ α =А ВС α   ВАС – искомый угол

1 . Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость.

2. Угол между взаимно перпендикулярными прямой и плоскостью равен 90 .

3. Если прямая параллельна плоскости (или лежит в ней), то угол между ними считается равным 0 .

В

а

С

α י

А

α

а ∩ α =А

ВС α

ВАС – искомый угол

Замечания: Если находить угол между данной прямой и перпендикуляром к данной плоскости, обозначив его α′ , тогда искомый угол  α равен (90°- α′ ) В а С β י А β Находят АВС= α′ , тогда искомый ВАС=(90°- α′ ), т.к. ∆АВС – прямоугольный; а сумма острых углов в прямоугольном треугольнике равна 90°

Замечания:

Если находить угол между данной прямой и перпендикуляром к данной плоскости, обозначив его α′ ,

тогда искомый угол α равен (90°- α′ )

В

а

С

β י

А

β

Находят АВС= α′ , тогда искомый ВАС=(90°- α′ ),

т.к. ∆АВС – прямоугольный; а сумма острых углов в прямоугольном треугольнике равна 90°

Ключевая задача В правильной четырехугольной пирамиде SABCD , все ребра которой равны 1, найдите синус угла между прямой BE и плоскостью SAD , где Е – середина ребра SC . S E Рисунок РЕШЕНИЕ C D А B

Ключевая задача

В правильной четырехугольной пирамиде SABCD , все ребра которой равны 1, найдите синус угла между прямой BE и плоскостью SAD , где Е – середина ребра SC .

S

E

Рисунок

РЕШЕНИЕ

C

D

А

B

S F E S C D А B E F К S 1 C B H

S

F

E

S

C

D

А

B

E

F

К

S 1

C

B

H

1. Проведем SF II AB , SF = AB =1 2. В тетраэдре SB С F все ребра равны 1 и (ВС F) II (SAD) S F E C D А B

1. Проведем SF II AB , SF = AB =1

2. В тетраэдре SB С F все ребра равны 1 и (ВС F) II (SAD)

S

F

E

C

D

А

B

B К=(а∙√3)/2, т.е. B К= √3/2, = R 1 = √3/3 6. SS1= SS1= ; SS 1 = √6/3 ; EH =√6/6 7. EBH – искомый, sin B=EH/BE , BE – медиана, высота равностороннего треугольника, = BE = √3/2 8. sin B =(√6∙2)/(6∙√3)=√2/3 Ответ: √2/3 S E F К S1 B C H» width=»640″

3. Перпендикуляр EH опущенный из Е на плоскость (ВС F) равен половине высоты тетраэдра

4. Из ∆ SBS 1 S 1=90°, SB =1

5. BS 1 — радиус описанной окружности R 1 = 2/3∙ B К

B К – высота равностороннего треугольника, = B К=(а∙√3)/2, т.е. B К= √3/2, = R 1 = √3/3

6. SS1= SS1= ; SS 1 = √6/3 ; EH =√6/6

7. EBH – искомый, sin B=EH/BE ,

BE – медиана, высота равностороннего

треугольника, = BE = √3/2

8. sin B =(√6∙2)/(6∙√3)=√2/3

Ответ: √2/3

S

E

F

К

S1

B

C

H

Тренировочная задача В правильной четырехугольной пирамиде SABCD , все ребра которой равны 1.  Найдите синус угла между прямой BD и плоскостью (SBC). S Рисунок D РЕШЕНИЕ C O А B

Тренировочная задача

В правильной четырехугольной пирамиде SABCD , все ребра которой равны 1. Найдите синус угла между прямой BD и плоскостью (SBC).

S

Рисунок

D

РЕШЕНИЕ

C

O

А

B

S H D C O А B

S

H

D

C

O

А

B

1 . Проведем DH  (SBC) , тогда HBD -искомый угол между прямой BD и плоскостью ( BSC) ; 2. sin  HBD=DH/BD ; BD= √ 2 3. Для нахождения DH воспользуемся формулой объема пирамиды: V=1/3∙S осн ∙ H , где H -высота 4. Найдем объем пирамиды SCBD двумя способами: 1). V 1 =1/3∙S ∆ SBC ∙DH ; 2). V2=1/3∙S ∆ DBC ∙SO ; V 1 =1/3∙ ( a ² √ 3 /4 ) ∙DH= √ 3/12∙DH V 2 =1/3∙1/2 ∙ 1 ∙1∙SO=1/6 ∙SO 5. Найдем SO из ∆ SOA –прямоугольный  ( SOA=90 ° ) по т.Пифагора SO= ; SO = 6. V 2 =1/6∙ √ 2/2= √ 2/12 V 1 =V 2 = √ 3/12∙DH= √ 2/12 7. DH= √ 2/12∙12/ √ 3= √ 2/ √ 3= √ 6/3 8. sin  HBD= √ 6/3∙1/ √ 2= √ 6/3 √ 2= √ 3/3  Ответ:  √ 3/3 S H C D O А B

1 . Проведем DH (SBC) , тогда HBD -искомый угол между прямой BD и плоскостью ( BSC) ;

2. sin HBD=DH/BD ; BD= √ 2

3. Для нахождения DH воспользуемся формулой объема пирамиды: V=1/3∙S осн ∙ H , где H -высота

4. Найдем объем пирамиды SCBD двумя способами:

1). V 1 =1/3∙S ∆ SBC ∙DH ; 2). V2=1/3∙S ∆ DBC ∙SO ;

V 1 =1/3∙ ( a ² √ 3 /4 ) ∙DH= √ 3/12∙DH

V 2 =1/3∙1/2 ∙ 1 ∙1∙SO=1/6 ∙SO

5. Найдем SO из ∆ SOA –прямоугольный

( SOA=90 ° ) по т.Пифагора

SO= ; SO =

6. V 2 =1/6∙ √ 2/2= √ 2/12

V 1 =V 2 = √ 3/12∙DH= √ 2/12

7. DH= √ 2/12∙12/ √ 3= √ 2/ √ 3= √ 6/3

8. sin HBD= √ 6/3∙1/ √ 2= √ 6/3 √ 2= √ 3/3

Ответ: √ 3/3

S

H

C

D

O

А

B

Двугранный угол , образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру.  Величина двугранного угла принадлежит промежутку (0°; 180°).  Величина угла между пересекающимися плоскостями принадлежит промежутку (0°; 90°].  Угол между двумя параллельными плоскостями равен 0° .

Двугранный угол , образованный полуплоскостями измеряется величиной его линейного угла,

получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру.

Величина двугранного угла принадлежит промежутку (0°; 180°).

Величина угла между пересекающимися плоскостями принадлежит промежутку (0°; 90°].

Угол между двумя параллельными плоскостями равен 0° .

Ключевая задача В единичном кубе А…D1 найдите тангенс угла между плоскостями (АА1D) и (BDC1) Рисунок РЕШЕНИЕ

Ключевая задача

В единичном кубе А…D1 найдите тангенс угла между плоскостями (АА1D) и (BDC1)

Рисунок

РЕШЕНИЕ

E

E

Так как (АА 1 D 1 D) II ( BB 1 C 1 С)

  • Так как (АА 1 D 1 D) II ( BB 1 C 1 С)

( BDC 1 )∩(BB 1 CC 1 )=BC 1

2. Пусть Е-середина ВС 1 , (т.к. ∆ BC 1 C- прямоугольный, равнобедренный);

3. ВС=С C 1

4. CE BC 1 = DE BC 1 ;

5. т.е. DEC – линейный угол двугранного угла.

6. ECD=90°( по теореме о трех перпендикулярах);

7. tg DEC = DC/EC ; DC=1

8. Найдем EC = √2/2

Ответ: √2

E

Тренировочная задача В правильной четырехугольной пирамиде SABCD , все ребра которой равны 1. Найдите косинус двугранного угла, образованного гранями ( SBC) и (SCD) S Рисунок РЕШЕНИЕ C D А B

Тренировочная задача

В правильной четырехугольной пирамиде SABCD , все ребра которой равны 1. Найдите косинус двугранного угла, образованного гранями ( SBC) и (SCD)

S

Рисунок

РЕШЕНИЕ

C

D

А

B

S K D С O А B

S

K

D

С

O

А

B

1 . (SCB)∩(SDC)=SC 2. Построим линейный угол двугранного угла. 3. Пусть K – середина ребра SC ; 4. Т.к. ∆BSC и ∆ DSC - равносторонние, то медианы BK и DK являются высотами соответствующих треугольников; 5. Т.к. BK    SC и DK  SC , то  DKB- линейный угол искомого двугранного угла 6. DK=KB= (a²∙√3)/2 , где а=1, т.е. DK=KB =√3/2 7. DB=√2 (диагонали квадрата) 8. Из ∆ DKB по теореме косинусов найдем угол. cos ∠ DKB= ; cos ∠ DKB=  Ответ: (-1)/3 S K D C O А B

1 . (SCB)∩(SDC)=SC

2. Построим линейный угол двугранного угла.

3. Пусть K – середина ребра SC ;

4. Т.к. ∆BSC и ∆ DSC — равносторонние, то медианы BK и DK являются высотами соответствующих треугольников;

5. Т.к. BK SC и DK SC , то

DKB- линейный угол искомого

двугранного угла

6. DK=KB= (a²∙√3)/2 , где а=1, т.е.

DK=KB =√3/2

7. DB=√2 (диагонали квадрата)

8. Из ∆ DKB по теореме косинусов найдем угол.

cos ∠ DKB= ; cos ∠ DKB=

Ответ: (-1)/3

S

K

D

C

O

А

B

b a , AB а . AB – искомое расстояние. A Расстояние от точки до прямой , не содержащей эту точку, есть длина отрезка – перпендикуляра, проведенного из этой точки на прямую. Расстояние между двумя параллельными прямыми равно расстоянию от любой точки одной из этих прямых до другой прямой. b с B a A a a II b, А ϵ а, = АА 1 или АВ 1 – искомые расстояния b A 1 B 1″ width=»640″

A ϵ а; проводим с

а; через А прямую b II с; = b a ,

AB а .

AB – искомое расстояние.

A

Расстояние от точки до прямой , не содержащей эту точку, есть длина отрезка – перпендикуляра, проведенного из этой точки на прямую.

Расстояние между двумя параллельными прямыми равно расстоянию от любой точки одной из этих прямых до другой прямой.

b

с

B

a

A

a

a II b, А ϵ а, = АА 1 или АВ 1 – искомые расстояния

b

A 1

B 1

Ключевая задача В единичном кубе А…D 1 найдите расстояние от точки А до прямой BD 1 . D D 1  C 1  Рисунок A 1 B 1 РЕШЕНИЕ 1 РЕШЕНИЕ 2 РЕШЕНИЕ 3 D C A B B

Ключевая задача

В единичном кубе А…D 1 найдите расстояние от точки А до прямой BD 1 .

D

D 1

C 1

Рисунок

A 1

B 1

РЕШЕНИЕ 1

РЕШЕНИЕ 2

РЕШЕНИЕ 3

D

C

A

B

B

D 1  С1 A 1  B 1  H D C A B

D 1

С1

A 1

B 1

H

D

C

A

B

1. Из точки А опустим перпендикуляр на прямую BD 1 2. AH – искомое расстояние 3. Рассмотрим ∆ ABD 1 – прямоугольный ( D1AB =90°) 4. Из ∆ ABD 1 : AB =1, AD1 =√2 (по т.Пифагора), BD1 =√3 ( как диагональ единичного куба) 5. Найдем AH используя способ площадей. Найдем площадь ∆ ABD 1  двумя способами: 6. S 1 =1/2∙AD 1 ∙AB S 2 =1/2∙AH∙BD 1 7. S 1 = 1/2∙√2∙1=√2/2 ,  так как S 1  S 2 , то √2/2=1/2∙AH∙√3 8. Отсюда, AH = √ 6/3 Ответ: √6/3 1 СПОСОБ D 1  C 1  A 1  B 1 H D C A B 30

1. Из точки А опустим перпендикуляр на прямую BD 1

2. AH – искомое расстояние

3. Рассмотрим ∆ ABD 1 – прямоугольный

( D1AB =90°)

4. Из ∆ ABD 1 : AB =1, AD1 =√2 (по т.Пифагора), BD1 =√3 ( как диагональ единичного куба)

5. Найдем AH используя способ площадей. Найдем площадь ∆ ABD 1 двумя способами:

6. S 1 =1/2∙AD 1 ∙AB

S 2 =1/2∙AH∙BD 1

7. S 1 = 1/2∙√2∙1=√2/2 ,

так как S 1  S 2 , то √2/2=1/2∙AH∙√3

8. Отсюда, AH = √ 6/3

Ответ: √6/3

1 СПОСОБ

D 1

C 1

A 1

B 1

H

D

C

A

B

30

BAH= AD1H 7. Из подобия треугольников следует и пропорциональность сторон: AD 1 /BD 1 = AH/AB 8 . AH =( AD 1 ∙AB )/ BD 1 9. А H = ( √ 2∙1)/√3= √2/√3=(√2∙√3)/(√3∙√3)=√6/3 Ответ: √6/3 2 СПОСОБ D 1 C 1 A 1 B 1 H D C H A B» width=»640″

1. Из точки А опустим перпендикуляр на прямую BD 1

2. AH – искомое расстояние

3. Рассмотрим ∆ ABD 1 – прямоугольный

( D1AB =90°)

4. Из ∆ ABD 1 : AB =1, AD 1 =√2 (по т.Пифагора), BD 1 =√3 ( как диагональ единичного куба)

5. Рассмотрим ∆ BAD 1 и ∆ BHA .

6. ∆ BAD 1 ~ ∆ BHA по трем углам:

B – общий, BHA= BAD 1 =90°, =

BAH= AD1H

7. Из подобия треугольников следует и пропорциональность сторон: AD 1 /BD 1 = AH/AB

8 . AH =( AD 1 ∙AB )/ BD 1

9. А H = ( √ 2∙1)/√3= √2/√3=(√2∙√3)/(√3∙√3)=√6/3

Ответ: √6/3

2 СПОСОБ

D 1

C 1

A 1

B 1

H

D

C

H

A

B

AH=AB∙ sin ABD 1 = √6/3 Ответ: √6/3 3 СПОСОБ D 1 C 1 A 1 B 1 H D C A B» width=»640″

1. Из точки А опустим перпендикуляр на прямую BD 1

2. AH – искомое расстояние

3. Рассмотрим ∆ ABD 1 – прямоугольный

( D 1 AB =90°)

4. Из ∆ ABD 1 : AB =1, AD 1 =√2 (по т.Пифагора), BD 1 =√3

(как диагональ единичного куба)

5. Из ∆ ABD 1 : sin ABD 1 = √6/3

6 . = AH=AB∙ sin ABD 1 = √6/3

Ответ: √6/3

3 СПОСОБ

D 1

C 1

A 1

B 1

H

D

C

A

B

Тренировочное задание В правильной шестиугольной призме A…F 1 , все ребра которой равны 1. Найдите расстояние от точки B до прямой AD 1 . Рисунок РЕШЕНИЕ

Тренировочное задание

В правильной шестиугольной призме A…F 1 , все ребра которой равны 1. Найдите расстояние от точки B до прямой AD 1 .

Рисунок

РЕШЕНИЕ

1. В ∆ AD 1 B : AB=1 , AD1= ( Из ∆ ADD 1 ; D=90 °) 2. AD 1 = 3. BD 1 = ;( Из ∆ BDD 1 ; D=90 °) , BD 1 = 4. ∆ ABD 1 – прямоугольный ( D 1 BA=90 °) ( По теореме о трех перпендикулярах BD   AB) 5. Для нахождения расстояния от точки В до прямой AD1 : BH воспользуемся формулами площадей: 6. S ∆ ABD 1 =1/2∙AB∙BD 1 S ∆ ABD 1 =1/2∙1∙2=1 7. S ∆ ABD 1 =1/2∙AD1∙BH , где BH AD 1 8. BH=(2∙S ∆ ABD 1 )/ AD 1 ; BH=(2∙1)/√5=2/√5=2√5/5  Ответ: 2√5/5

1. В ∆ AD 1 B : AB=1 , AD1=

( Из ∆ ADD 1 ; D=90 °)

2. AD 1 =

3. BD 1 = ;( Из ∆ BDD 1 ; D=90 °) , BD 1 =

4. ∆ ABD 1 – прямоугольный ( D 1 BA=90 °)

( По теореме о трех перпендикулярах BD AB)

5. Для нахождения расстояния от точки В до прямой AD1 : BH воспользуемся формулами площадей:

6. S ∆ ABD 1 =1/2∙AB∙BD 1

S ∆ ABD 1 =1/2∙1∙2=1

7. S ∆ ABD 1 =1/2∙AD1∙BH ,

где BH AD 1

8. BH=(2∙S ∆ ABD 1 )/ AD 1 ;

BH=(2∙1)/√5=2/√5=2√5/5

Ответ: 2√5/5

A  Расстояние от точки до плоскости , не содержащей эту точку, есть длина отрезка перпендикуляра, опущенного из этой точки на плоскость.  Расстояние между прямой и параллельной ей плоскостью равно длине их общего перпендикуляра.  Расстояние между прямой и параллельной ей плоскостью равно расстоянию от любой точки этой прямой до плоскости. B C α Из точки А проведены к плоскости α перпендикуляр АВ и наклонная АС. Точка В – основание перпендикуляра, точка С – основание наклонной, ВС – проекция наклонной АС на плоскость α .

A

Расстояние от точки до плоскости , не содержащей эту точку, есть длина отрезка перпендикуляра, опущенного из этой точки на плоскость.

Расстояние между прямой и параллельной ей плоскостью равно длине их общего перпендикуляра.

Расстояние между прямой и параллельной ей плоскостью равно расстоянию от любой точки этой прямой до плоскости.

B

C

α

Из точки А проведены к плоскости α перпендикуляр АВ и наклонная АС. Точка В – основание перпендикуляра, точка С – основание наклонной, ВС – проекция наклонной АС на плоскость α .

с АС; Аналогично доказывается и обратное утверждение.» width=»640″

А

Для решения задач такого типа приходится применять теорему о трех перпендикулярах:

Если прямая, проведенная на плоскости через основание наклонной, перпендикулярна ее проекции, то она перпендикулярна наклонной. И обратно: если прямая на плоскости перпендикулярна наклонной, то она перпендикулярна и проекции наклонной.

A י

β

α

B

c

C

AB α ; AC – наклонная; с – прямая, проходящая через основание С наклонной, с Є α ; Проведем С A י II AB ; С A י α ; Через AB и A י С проведем β ; с СА י ; если

с СВ, то с β = с АС;

Аналогично доказывается и обратное утверждение.

Ключевая задача В единичном кубе АВС D А 1 В 1 С 1 D 1 найдите расстояние от точки А до плоскости В D А 1 Рисунок РЕШЕНИЕ 1 РЕШЕНИЕ 2 РЕШЕНИЕ 3 РЕШЕНИЕ 4

Ключевая задача

В единичном кубе АВС D А 1 В 1 С 1 D 1 найдите

расстояние от точки А до плоскости В D А 1

Рисунок

РЕШЕНИЕ 1

РЕШЕНИЕ 2

РЕШЕНИЕ 3

РЕШЕНИЕ 4

H O

H

O

1 СПОСОБ 1. О – середина BD , 2. Т . к. AC и BD –диагонали квадрата; AC BD 3. Значит по теореме о трех перпендикулярах BD  A 1 О 4. ( BDA 1 ) ∩ (АА 1 О)=А 1 О По признаку BD (А A 1 О) 5. Искомый перпендикуляр, опущенный из точки А на плоскость ( BDA 1 ) является высота AH прямоугольного ∆ А A 1 О 6. АА 1 =1; АО=√2/2; А 1 О= 7. Найдем А H используя способ площадей. Площадь ∆АА 1 О найдем двумя способами. 8. S ∆АА 1 О =(1/2)∙ АА 1 ∙ А O S ∆АА 1 О =(1/2)∙1∙  ( √ 2/2)=√2/4 9. S ∆АА 1 О =(1/2)∙ А 1 О ∙ А H , А H=  Ответ: √3/3 H О

1 СПОСОБ

1. О – середина BD ,

2. Т . к. AC и BD –диагонали квадрата;

AC BD

3. Значит по теореме о трех перпендикулярах BD A 1 О

4. ( BDA 1 ) ∩ (АА 1 О)=А 1 О

По признаку BD (А A 1 О)

5. Искомый перпендикуляр, опущенный из точки А на плоскость ( BDA 1 ) является высота AH прямоугольного ∆ А A 1 О

6. АА 1 =1; АО=√2/2; А 1 О=

7. Найдем А H используя способ площадей.

Площадь ∆АА 1 О найдем двумя способами.

8. S ∆АА 1 О =(1/2)∙ АА 1 ∙ А O

S ∆АА 1 О =(1/2)∙1∙ ( √ 2/2)=√2/4

9. S ∆АА 1 О =(1/2)∙ А 1 О ∙ А H ,

  • А H=

Ответ: √3/3

H

О

AH=A О ∙sin A О H=√ 3 /3 Ответ: √ 3 /3 2 СПОСОБ H О» width=»640″

1. О – середина BD ,

2. Тогда AC и BD –диагонали квадрата; AC BD

3. Значит по теореме о трех перпендикулярах BD A 1 О

4. ( BDA 1 ) ∩ (АА 1 О)=А 1 О

По признаку BD (А A 1 О)

5. Искомый перпендикуляр, опущенный из точки А на плоскость ( BDA 1 ) является высота AH прямоугольного

∆ А A 1 О

6. АА 1 =1; АО=√2/2; А 1 О=

7. Из ∆ A А 1 О: sin A ОА 1 =√6/3 ,

= AH=A О ∙sin A О H=√ 3 /3

Ответ: √ 3 /3

2 СПОСОБ

H

О

HA О = A А 1H 7. Из подобия треугольников следует и пропорциональность сторон: A А 1/ ОА 1= AH/A О 8 . AH =( A А 1∙A О)/А 1 О 9. А H = Ответ: √3/3 3 СПОСОБ H О» width=»640″

1. О – середина BD ,

2. Тогда AC и BD –диагонали квадрата;

AC BD

3. Значит по теореме о трех перпендикулярах BD A 1 О

4. ( BDA 1 ) ∩ (АА 1 О)=А 1 О

По признаку BD (А A 1 О)

5. Искомый перпендикуляр, опущенный из точки А на плоскость ( BDA 1 ) является высота AH прямоугольного ∆ А A 1 О

6. АА 1 =1; АО=√2/2; А 1 О=

7. Рассмотрим ∆АОА 1 и ∆ H О A .

6. ∆АОА 1~ ∆ H О A по трем углам:

О – общий, О HA= О A А 1=90°, = HA О = A А 1H

7. Из подобия треугольников следует и пропорциональность сторон: A А 1/ ОА 1= AH/A О

8 . AH =( A А 1∙A О)/А 1 О

9. А H =

Ответ: √3/3

3 СПОСОБ

H

О

Рассмотрим пирамиду AA 1 BD и найдем объем двумя способами. Пусть AH -искомый перпендикуляр V=1/3∙S осн∙ H , где H -высота 1). V 1 =1/3∙S ∆А BD ∙AA 1 ; 2). V 2 =1/3∙S ∆ A 1 BD ∙AH ; V 1 =1/3∙1/2 ∙ 1 =1/6 V 2 = , где а=√2 AH =  Ответ: √3/3 4 СПОСОБ H О

Рассмотрим пирамиду AA 1 BD и найдем объем двумя способами.

Пусть AH -искомый перпендикуляр

V=1/3∙S осн∙ H , где H -высота

1). V 1 =1/3∙S ∆А BD ∙AA 1 ; 2). V 2 =1/3∙S ∆ A 1 BD ∙AH ;

V 1 =1/3∙1/2 ∙ 1 =1/6

V 2 = , где а=√2

AH =

Ответ: √3/3

4 СПОСОБ

H

О

Тренировочная задача В единичном кубе A … D 1 найдите расстояние от точки А до плоскости ( BDC 1 ). D1 C1 B1 А 1 Рисунок РЕШЕНИЕ D С А В

Тренировочная задача

В единичном кубе A … D 1 найдите расстояние от точки А до плоскости ( BDC 1 ).

D1

C1

B1

А 1

Рисунок

РЕШЕНИЕ

D

С

А

В

D1 C1 B1 А 1 D С K А В H

D1

C1

B1

А 1

D

С

K

А

В

H

Воспользуемся формулами объемов для пирамиды C 1 BAD . Пусть AH -искомое расстояние V=1/3∙S осн∙ H , где H -высота 1). V 1 =1/3∙S ∆А BD∙ СС 1 ; СС 1 =1; S ∆А BD =1/2∙1∙1=1/2 V 1 =1/3∙1/2 ∙ 1 =1/6 2). V 2 =1/3∙S ∆С 1 BD∙AH ; S ∆С 1 BD =  ( a² ∙√ 3 /4 ) , где а=√2 S ∆С 1 BD = (2∙√ 3 /4 )=√3/2 V 2 =1/3∙ √3/2 ∙AH =√3/6 ∙AH Из 1) и 2) 1/6= √3/6 ∙AH AH =(1/6)∙(6/√3)=1/√3=√3/3 Ответ: √3/3 D1 C1 B1 А 1 D С K А В H

Воспользуемся формулами объемов для пирамиды C 1 BAD .

Пусть AH -искомое расстояние

V=1/3∙S осн∙ H , где H -высота

1). V 1 =1/3∙S ∆А BD∙ СС 1 ;

СС 1 =1; S ∆А BD =1/2∙1∙1=1/2

V 1 =1/3∙1/2 ∙ 1 =1/6

2). V 2 =1/3∙S ∆С 1 BD∙AH ;

S ∆С 1 BD = ( a² ∙√ 3 /4 ) , где а=√2

S ∆С 1 BD = (2∙√ 3 /4 )=√3/2

V 2 =1/3∙ √3/2 ∙AH =√3/6 ∙AH

Из 1) и 2)

1/6= √3/6 ∙AH

AH =(1/6)∙(6/√3)=1/√3=√3/3

Ответ: √3/3

D1

C1

B1

А 1

D

С

K

А

В

H

β А а  Расстояние между двумя скрещивающимися прямыми равно длине отрезка их общего перпендикуляра.  Две скрещивающиеся прямые имеют общий перпендикуляр и притом только один.  Он является общим перпендикуляром параллельных плоскостей, проходящих через эти прямые. а י α γ В b а и b –скрещивающиеся прямые; а II а י ; а י ∩ b=B ; a י  Є  α , b Є  α , a Є  β , β II α , АВ – искомое расстояние

β

А

а

Расстояние между двумя скрещивающимися прямыми равно длине отрезка их общего перпендикуляра.

Две скрещивающиеся прямые имеют общий перпендикуляр и притом только один.

Он является общим перпендикуляром параллельных плоскостей, проходящих через эти прямые.

а י

α

γ

В

b

а и b –скрещивающиеся прямые;

а II а י ; а י ∩ b=B ;

a י Є α , b Є α , a Є β , β II α ,

АВ – искомое расстояние

Ключевая задача В правильной четырехугольной пирамиде SABCD , все ребра которой равны 1. Найдите расстояние между прямыми SA и BC . S Рисунок РЕШЕНИЕ C D А B

Ключевая задача

В правильной четырехугольной пирамиде SABCD , все ребра которой равны 1. Найдите расстояние между прямыми SA и BC .

S

Рисунок

РЕШЕНИЕ

C

D

А

B

S H D C E F O А B

S

H

D

C

E

F

O

А

B

расстояние между скрещивающимися прямыми SA и ВС равно расстоянию от прямой ВС до плоскости ( SAD ); 4. Пусть E и F соответственно середины ребер AD и BC . Тогда искомым перпендикуляром будет высота FH ∆ SEF . 5. В ∆ SEF : EF =АВ=1; SE=SF -высоты равнобедренных ∆ SAD и ∆ SBC соответственно, = SE=SF =√3/2 SO – высота четырехугольной пирамиды из прямоугольного ∆ SOF по теореме Пифагора: SO =√2/2. 6. Найдем FH используя способ площадей. Площадь ∆ SEF найдем двумя способами. 7. S ∆ SEF=(1/2)∙EF∙SO S ∆ SEF=(1/2)∙1∙ ( √ 2/2)=√2/4 8. S ∆ SEF=(1/2)∙SE∙HF , = HF=(√2/4)/((1/2)∙√3/2)=(√2/4)/(√3/4)= = √2/√3=√6/3 . Ответ: √6/3 S H D C E O F А B» width=»640″

1. Прямые ВС и SA — скрещивающиеся

2. Прямая ВС ( SBC ); Прямая SA ( SAD );

3. ВС II ( SAD ) = расстояние между скрещивающимися прямыми SA и ВС равно расстоянию от прямой ВС до плоскости ( SAD );

4. Пусть E и F соответственно середины ребер AD и BC .

Тогда искомым перпендикуляром будет высота FH ∆ SEF .

5. В ∆ SEF : EF =АВ=1; SE=SF -высоты равнобедренных ∆ SAD и ∆ SBC соответственно, = SE=SF =√3/2

SO – высота четырехугольной пирамиды из прямоугольного ∆ SOF по теореме Пифагора: SO =√2/2.

6. Найдем FH используя способ площадей.

Площадь ∆ SEF найдем двумя способами.

7. S ∆ SEF=(1/2)∙EF∙SO

S ∆ SEF=(1/2)∙1∙ ( √ 2/2)=√2/4

8. S ∆ SEF=(1/2)∙SE∙HF ,

= HF=(√2/4)/((1/2)∙√3/2)=(√2/4)/(√3/4)=

= √2/√3=√6/3 .

Ответ: √6/3

S

H

D

C

E

O

F

А

B

Тренировочная задача В правильной шестиугольной призме A…F 1 , все ребра которой равны 1. Найдите расстояние между прямыми AA 1 и CF 1 . Рисунок РЕШЕНИЕ

Тренировочная задача

В правильной шестиугольной призме A…F 1 , все ребра которой равны 1. Найдите расстояние между прямыми AA 1 и CF 1 .

Рисунок

РЕШЕНИЕ

M

M

Прямые АА 1 и СF 1 -скрещивающиеся Расстояние между прямыми АА 1 и СF 1 равно расстоянию между параллельными плоскостями (АВВ 1 А 1 ) и (FCC 1 F 1 ), в которых лежат эти прямые. A 1 B 1 C 1 D 1 E 1 F 1  - правильный шестиугольник; A 1 B 1 II F 1 C 1 ; B 1 D 1  F 1 C 1 ; B 1 M ∩ F 1 C 1 =M B 1 M – искомое расстояние Из ∆ B 1 C 1 D 1  по теореме косинусов B 1 D 1 =√3, B 1 M =1/2∙B 1 D 1 =√3/2 Ответ: √3/2 M

Прямые АА 1 и СF 1 -скрещивающиеся

Расстояние между

прямыми АА 1 и СF 1 равно

расстоянию между

параллельными плоскостями (АВВ 1 А 1 ) и (FCC 1 F 1 ), в которых

лежат эти прямые.

A 1 B 1 C 1 D 1 E 1 F 1 — правильный шестиугольник; A 1 B 1 II F 1 C 1 ; B 1 D 1 F 1 C 1 ; B 1 M ∩ F 1 C 1 =M

B 1 M – искомое расстояние

Из ∆ B 1 C 1 D 1 по теореме косинусов B 1 D 1 =√3,

B 1 M =1/2∙B 1 D 1 =√3/2

Ответ: √3/2

M

Если вы участвуете в конкурсе от Максима Олеговича
— решайте задачи
в полном тестировании ЭГЭ с бланком ответов.

14. Задачи по стереометрии

1

В правильной треугольной призме (ABCA_1B_1C_1) сторона основания (AB) равна (12), а боковое ребро (AA_1) равно (6). На ребре (B_1C_1) отмечена точка (L) так, что (B_1L=2). Точки (K, M) – середины ребер (AB) и (A_1C_1) соответственно. Плоскость (alpha) параллельна прямой (AC) и содержит точки (K) и (L).

а) Докажите, что прямая (BM) перпендикулярна плоскости (alpha).

б) Найдите объем пирамиды, вершины которой – точка (M), а основание – сечение данной призмы плоскостью (alpha).

(ЕГЭ 2016, основная волна)

Добавить задание в избранное

2

Решите систему [begin{cases}
log_{4-x}(16-x^2)leqslant 1\[3ex]
2x+1-dfrac{21x+39}{x^2+x-2}geqslant -dfrac1{x+2}
end{cases}]

(ЕГЭ 2013, основная волна)

Добавить задание в избранное

16. Задачи по планиметрии

3

Четырехугольник (ABCD) вписан в окружность, причем (angle
ACD=90^circ)
, (angle ACB=angle BAD), (AD=2), (CD=frac65).

Найдите длину отрезка (BC).

Добавить задание в избранное

17. Сложные задачи прикладного характера

4

Под какой процент следует взять кредит в банке I, выдаваемый на 5 лет, чтобы переплата по такому кредиту была такой же, как в банке II, выдающему тот же кредит на 17 лет под (10%) годовых, если выплачиваются оба кредита дифференцированными платежами?

Добавить задание в избранное

5

Найдите все значения параметра (a), при каждом из которых система уравнений [begin{cases}
begin{aligned}
&(x-3)(y+3x-9)=|x-3|^3\
&y=x+a
end{aligned}
end{cases}]

имеет ровно четыре различных решения.

(ЕГЭ 2016, резерв)

Добавить задание в избранное

19. Задачи на теорию чисел

6

Известно, что (P(x)) – многочлен.

а) Верно ли, что при любом (ainmathbb{R}) многочлен (P(x) — P(a)) делится без остатка на ((x — a))?

б) Может ли быть так, что при любом (ainmathbb{R}) многочлен (P(x) — P(a)) делится без остатка на ((x + a))?

Добавить задание в избранное

60b2cd90-cf85-4bff-87e9-b49187e118a9

ЕГЭ по профильной математике необходимо сдавать тем выпускникам, которые планируют поступить в вуз на специальность, связанную с точными науками. Корректность решения профильной математики может влиять не только на зачисление в университет – от результатов экзамена зависит выдача красного аттестата, добавляющего абитуриентам до 10 дополнительных баллов. Именно поэтому так важны грамотные методы подготовки к ЕГЭ, охватывающие все типы заданий.

Содержание

Структура второй части экзамена по профильной математике

Вторая часть ЕГЭ по профильной математике состоит из 7 заданий. Решения всех задач обязательно должны быть развернутыми, чтобы эксперты смогли отследить ход мыслей экзаменуемого и проверить работу на соответствие всем критериям.

Уровень сложности заданий во второй части ЕГЭ по профильной математике:

  • Задачи 12-16 – повышенный;
  • Задачи 17-18 – высокий.

Максимальный первичный балл за экзамен – 31, 20 из которых составляет вторая часть.

Особенности оценивания заданий, максимальные баллы за верное решение:

  • Задание 12 – два балла;
  • Задача 13 – три балла;
  • Задание 14 – два балла;
  • Задача 15 – два балла;
  • Задание 16 – три балла;
  • Задача 17 – четыре балла;
  • Задание 18 – четыре балла.

1f7bb8f3-3bc3-4c2e-b0cb-9b9d0a8ae7c9

Что нужно знать и уметь решать, чтобы сдать ЕГЭ по профильной математике? Особенности, требования, которые можно обнаружить в документах ФИПИ

  • Решение уравнений и неравенств;
  • Методы работы с математическими моделями;
  • Решение задач с геометрическими фигурами (планиметрия и стереометрия);
  • Методы работы с точками координат;
  • Методы работы с векторами;
  • Решение выражений с вычислениями и преобразованиями;
  • Решение заданий по функциям: степенные функции; показательные функции; логарифмические функции; тригонометрические функции; обратные тригонометрические функции.

Регулярные курсы по подготовке к олимпиадам и ЕГЭ

Поступаем в вуз мечты без проблем!

В части номер два графики функций отсутствуют, но их трижды можно встретить в тесте:

  • Номер 6 – найти количество точек на графике функции;
  • Номер 9 – найти на графике функций определенное значение, учитывая отмеченные точки;
  • Номер 11 – найти наименьшее/наибольшее значение функции на отрезке.

c982dcf9-45cf-4fc8-bb5b-e5f512aa1575

Типы заданий во второй части ЕГЭ по профильной математике

❗️Особенности❗️

Для получения максимальных баллов нужно решить уравнение, а также найти его корни, принадлежащие определенному отрезку.

Какие виды уравнений №12 могут встретиться в ЕГЭ в части номер два:

  • Рациональные уравнения;
  • Иррациональные уравнения;
  • Логарифмические уравнения;
  • Показательные уравнения;
  • Тригонометрические уравнения.

❗️Особенности❗️

Стереометрическая задача включает в себя два пункта, первым из которых всегда идет доказательство. Во второй части вопроса можно обнаружить разные формулировки заданий.  

Что может требоваться в пункте «б»:

  • Расстояние между прямыми и плоскостями;
  • Расстояние от точки до прямой;
  • Расстояние от точки до плоскости;
  • Периметр или площадь сечения многогранников;
  • Объемы многогранников;
  • Углы: угол между плоскостями; угол между прямой и плоскостью; угол между скрещивающимися прямыми.

❗️Особенности❗️

В данном задании нужно найти решение неравенства, а также подробно расписать метод выполнения.

Какие виды неравенств могут встретиться в части номер два:

  • Рациональные неравенства;
  • Неравенства, содержащие радикалы;
  • Показательные неравенства;
  • Логарифмические неравенства;
  • Неравенства с логарифмами по переменному основанию;
  • Неравенства с модулем.

❗️Особенности❗️

Во второй части ЕГЭ по профильной математике встречаются задачи разного рода, например, задачи на оптимальный выбор, вклады, а также кредиты.

❗️Особенности❗️

В основе 16 номера заложена задача по планиметрии, в которой могут попасться многоугольники, окружности, окружности с треугольниками, окружности с четырехугольниками.

Задание состоит из двух подпунктов: в первом нужно расписать доказательство, во втором требуется найти отношение, длину, радиус, площадь, сумму квадратов, расстояние. 

❗️Особенности❗️

№17 в ЕГЭ по профильной математике – задача, в которой нужно найти значение параметра.

Какие типы задач могут встретиться:

  • Уравнения с параметром;
  • Неравенства с параметром;
  • Системы с параметром;
  • Расположение корней квадратного трехчлена;
  • Координаты;
  • Функции, зависящие от параметра.

❗️Особенности❗️

Последная задача во второй части ЕГЭ по профильной математике – одно из самых сложных заданий, с которым школьники справляются реже всего. В №18 3 подпункта, влияющих на итоговые баллы. Чтобы получить максимальные 4 балла, необходимо дать развернутый ответ на каждый вопрос.

Типы задач, которые нужно уметь решать:

  • Числа и их свойства;
  • Числовые наборы на карточках и досках;
  • Последовательности и прогрессии;
  • Сюжетные задачи.

703e444f-0906-4fec-8a35-71170e018192

План подготовки к ЕГЭ по профильной математике

Оптимальное время для подготовки к ЕГЭ по профильной математике – 2 года. Чтобы сдать экзамен на высокие баллы и решить всю часть номер два, потребуется знание целых блоков теории по алгебре и геометрии. Но одной теорией ограничиться нельзя – нужна регулярная практика с помощью решения демоверсий и заданий прошлых лет. И чем меньше времени будет до начала ЕГЭ, тем больше усилий придется приложить, чтобы побороть вторую часть.

Иногда написание экзамена по профильной математике становится вынужденной мерой – вузы в начале учебного года меняют требования к абитуриентам, включая «профиль» в список обязательных предметов для зачисления.

За год возможно освоить алгебру, планиметрию, стереометрию, научиться применять формулы, выучить все свойства и признаки, усвоить алгоритмы решения задач, если готовиться к ЕГЭ под руководством опытных преподавателей.

fd6cb93c-03d5-48e1-b9e9-f17f07162dff

Советы по подготовке к ЕГЭ по профильной математике

Совет №1. При решении заданий всегда обращайтесь к формулам

Формулы значительно облегчают процесс нахождения ответа, убирая лишние действия, требующие длительных сложных расчетов. На ЕГЭ с собой нельзя взять справочник с формулами (можно проносить только два типа канцелярских принадлежностей – черные гелевые ручки и линейку), поэтому придется запоминать все в ходе подготовки.

Что пригодится, чтобы решить весь ЕГЭ, включая часть номер два:

  • Формулы сокращенного умножения;
  • Формулы прогрессии (арифметической, а также геометрической);
  • Свойства степеней;
  • Свойства логарифмов;
  • Формулы для нахождения вероятности;
  • Тригонометрические формулы (двойного угла, суммы и разности аргументов, а также другие тригонометрические сведения);
  • Формулы по геометрии;
  • Производные;
  • Первообразные.

Совет №2. Для исследования функций и геометрических фигур требуются качественные рисунки

Функции и фигуры обязательно должны быть изображены разборчиво и отражать все условия задачи. Рисунки не нужно делать мелкими – большая картинка дает больше пространства для внесения записей. Качественная передача функций, точек и геометрических фигур помогает проецировать информацию в мозг для поиска решений.

Совет №3. Выучите свойства фигур и формулы нахождения площадей, объемов, периметров

Зачастую трудности возникают из-за путаницы в элементах и свойствах фигур, что осложняет решения и подстановку чисел в формулы. В ходе подготовки нужно выучить и понять теорию, которая требуется на практике.

Также запомните 3 пункта – виды углов при параллельных прямых и секущей:

  • Накрест лежащие углы;
  • Соответственные углы;
  • Односторонние углы.

Как поступить в МФТИ?

Стать студентом топового технического вуза – реально!

Совет №4. Разбивайте все задачи на пункты

После прочтения задачи выписывайте все вопросы, на которые требуется дать ответ. Ставьте галочки напротив пунктов по мере выполнения. Такая тактика может очень выручить, предотвратив невнимательность и забывчивость при решении.

Совет №5. Можно (и даже нужно!) решать олимпиадные задачи

Вторая часть ЕГЭ по математике по силам тем ученикам, которые в ходе подготовки решили сотни задач, развивающих логику. Вопросы повышенной сложности в экзамене можно сопоставить с заданиями из олимпиад, поэтому претендентам на высокие баллы нужно обязательно прибегать к сборникам с задачами из математических интеллектуальных соревнований.  

fd6cb93c-03d5-48e1-b9e9-f17f07162dff

Пособия для подготовки к ЕГЭ по профильной математике

  1. А. Р. Рязановский «Математика. Профильный уровень. Тематический тренажер. Теория вероятностей и элементы статистики. ЕГЭ-2023»
  1. С. А. Шестаков «ЕГЭ-2023. Математика. Профильный уровень. 30 типовых вариантов экзаменационных заданий»
  1. В. В. Митрошин «ЕГЭ-2023. Математика. Профильный уровень. Тренировочные варианты»

27f77fef-868e-4746-af5a-ff3f5d564738

Выводы

Часть номер два в ЕГЭ по профильной математике могут решить только те выпускники, которые усердно готовились к экзаменам, используя эффективные подходы к пониманию непростой науки, а также применяя различные методы выполнения задач.  

Поделиться в социальных сетях

Какое задание из второй части вам дается сложнее всего?

Межтекстовые Отзывы

Посмотреть все комментарии

Читайте также

Планиметрия

Подобие треугольников

Два треугольника называются подобными, если их углы соответственно равны, а стороны одного треугольника больше сходственных сторон другого треугольника в некоторое число раз.

Число $k$ — коэффициент подобия (показывает во сколько раз стороны одного треугольника больше сторон другого треугольника.)

  1. Периметры подобных треугольников и их линейные величины (медианы, биссектрисы, высоты) относятся друг к другу как коэффициент подобия $k$.
  2. Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.

Признаки подобия треугольников:

  1. Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.
  2. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между ними равны, то такие треугольники подобны.
  3. Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

Площади фигур

Площадь треугольника

  1. $S={a·h_a}/{2}$, где $h_a$ — высота, проведенная к стороне $а$
  2. $S={a·b·sin⁡α}/{2}$, где $a,b$ — соседние стороны, $α$ — угол между этими соседними сторонами.
  3. Формула Герона $S=√{p(p-a)(p-b)(p-c)}$, где $р$ — это полупериметр $p={a+b+c}/{2}$
  4. $S=p·r$, где $r$ — радиус вписанной окружности
  5. $S={a·b·c}/{4R}$, где $R$ — радиус описанной окружности
  6. Для прямоугольного треугольника $S={a·b}/{2}$, где $а$ и $b$ — катеты прямоугольного треугольника.
  7. Для равностороннего треугольника $S={a^2 √3}/{4}$, где $а$ — длина стороны.

Площади четырехугольников

Прямоугольник

$S=a·b$, где $а$ и $b$ — смежные стороны.

Ромб

$S={d_1·d_2}/{2}$, где $d_1$ и $d_2$ — диагонали ромба

$S=a^2·sin⁡α$, где $а$ — длина стороны ромба, а $α$ — угол между соседними сторонами.

Трапеция

$S={(a+b)·h}/{2}$, где $а$ и $b$ — основания трапеции, $h$ — высота трапеции.

Квадрат

$S=a^2$, где $а$ — сторона квадрата.

Параллелограмм

$S=a·b·sinα$, где $а$ и $b$ — длины сторон параллелограмма, а $α$ — угол между этими сторонами.

Пропорциональные отрезки в прямоугольном треугольнике

В прямоугольном треугольнике с прямым углом $С$ и высотой $СD$:

Квадрат высоты, проведенной к гипотенузе, равен произведению отрезков, на которые высота поделила гипотенузу.

$CD^2=DB·AD$

В прямоугольном треугольнике : квадрат катета равен произведению гипотенузы на проекцию этого катета на гипотенузу.

$CB^2=AB·DB$

$AC^2=AB·AD$

Произведение катетов прямоугольного треугольника равно произведению его гипотенузы на высоту, проведенную к гипотенузе.

$AC·CB=AB·CD$

Метрические соотношения в окружности

1. Две касательные, проведенные к окружности из одной точки, равны, и центр окружности лежит на биссектрисе угла между ними.

2. Если хорды $АС$ и $BD$ пересекаются в некоторой точке $N$, то произведение отрезков одной хорды равно произведению отрезков другой хорды.

$AN·NC=BN·ND$

Пример:

Хорды $АВ$ и $CD$ пересекаются в точке $Е$. Найдите $ЕD$, если $АЕ=16, ВЕ=9, СЕ=ED$.

Решение:

Если хорды $АВ$ и $СD$ пересекаются в некоторой точке $Е$, то произведение отрезков одной хорды равно произведению отрезков другой хорды.

$AЕ·ЕВ=СЕ·ЕD$

Так как $СЕ=ED$, данное выражение можно записать в виде:

$ЕD^2=AЕ·ЕВ$

Подставим числовые значения

$ЕD^2=16·9$

$ЕD=√{16·9}=4·3=12$

Ответ: $12$

3. Если из одной точки к одной окружности проведены две секущие, то произведение первой секущей на ее внешнюю часть равно произведению второй секущей на свою внешнюю часть.

$АС·ВС=EC·DC$

4. Если из одной точки к окружности проведены секущая и касательная, то произведение секущей на ее внешнюю часть равно квадрату длины касательной.

$BD·СB=AB^2$

Вписанные и описанные окружности для четырехугольников.

1. Если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.

$АВ+CD=BC+AD$

2. Если сумма противоположных углов четырехугольника равна $180°$, то только тогда около него можно описать окружность.

$∠В+∠D=180°$

$∠A+∠C=180°$

Вневписанные окружности

Вневписанной окружностью треугольника называется окружность, касающаяся одной из его сторон и продолжений двух других.

Для каждого треугольника существует три вневписанных окружности, которые расположены вне треугольника, центрами вневписанных окружностей являются точки пересечения биссектрис внешних углов треугольника.

Точки $О_1, О_2$ и $О_3$ – центры вневписанных окружностей.

Связь площади треугольника с радиусами вневписанных окружностей.

Введем обозначения:

$S$ — площадь треугольника;

$p$ — полупериметр треугольника;

$a, b, c$ — стороны треугольника;

$r_a, r_b, r_c$ — радиусы вневписанных окружностей касающиеся соответственно сторон $a, b$ и $c$;

Для данных обозначений справедливы равенства:

$r_a={S}/{p-a};$

$r_b={S}/{p-b};$

$r_c={S}/{p-c}.$

Пример:

В прямоугольном треугольнике $АВС$ угол $С=90°, АС=6, ВС=8$. Найдите радиус вневписанной окружности, касающейся гипотенузы.

Решение:

Радиус вневписанной окружности, касающейся стороны $АВ$ равен:

$r_{АВ}={S}/{p-АВ}$, где $S$ — площадь треугольника, $р$ — полупериметр треугольника.

Чтобы подставить в формулу данные, найдем сначала площадь треугольника и его полупериметр.

Площадь прямоугольного треугольника равна половине произведения катетов:

$S={АС·АВ}/{2}={6·8}/{2}=24$

Нам неизвестна гипотенуза, найдем ее по теореме Пифагора:

$АВ=√{АС^2+СВ^2}=√{6^2+8^2}=√{100}=10$

Зная все стороны, вычислим полупериметр:

$р={6+8+10}/{2}=12$

Теперь можем все данные подставить в формулу нахождения радиуса вневписанной окружности:

$r_{АВ}={S}/{p-АВ}={24}/{12-10}={24}/{2}=12$

Ответ: $12$

Биссектриса

Биссектриса – это линия, которая делит угол пополам.

Свойства биссектрисы:

1. В равнобедренном треугольнике биссектриса, проведённая из вершины к основанию, является также и медианой, и высотой.

2. Если точка лежит на биссектрисе, то расстояния от неё до сторон угла равны.

$AD=DC$

3. Три биссектрисы в треугольнике пересекаются в одной точке, эта точка является центром вписанной в треугольник окружности.

4. Биссектриса угла в параллелограмме отсекает равнобедренный треугольник.

5. Биссектрисы смежных углов перпендикулярны.

6. В треугольнике биссектриса угла делит противоположную сторону на отрезки, отношение которых такое же, как отношение сторон треугольника, между которыми эта биссектриса прошла.

${AB}/{AC}={BA_1}/{A_1C}$

7. Для нахождения длины биссектрисы справедлива формула:

$АА_1=√{АВ·АС-ВА_1·А_1 С}$

Медиана

Медиана — это линия, проведенная из вершины треугольника к середине противоположной стороны.

Свойства медиан:

1. Медиана делит треугольник на два равновеликих треугольника, т.е. на два треугольника, у которых площади равны.

$S_1=S_2$

2. Медианы пересекаются в одной точке и этой точкой делятся в отношении два к одному, считая от вершины.

3. В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы и радиусу описанной около этого треугольника окружности.

4. Для нахождения длины медианы, проведенной к стороне «с», справедлива формула:

$М_с={√{2(а^2+b^2)-c^2}}/{2}$

Высота

Высота в треугольнике — это линия, проведенная из вершины треугольника к противоположной стороне под углом в 90 градусов.

$BB_1$ — высота

Свойства высот:

1. Три высоты (или их продолжения) пересекаются в одной точке.

2. При пересечении двух высот получаются подобные треугольники:

$∆АА_1 В~∆СС_1В;$

$∆АС_1 М~∆СМА1$

3. Угол между высотами в остроугольном треугольнике равен углу между сторонами, к которым эти высоты проведены.

4. Высоты треугольника обратно пропорциональны его сторонам:

$h_a:h_b:h_c={1}/{a}:{1}/{b}:{1}/{c}$

Теорема синусов

Во всяком треугольнике стороны относятся как синусы противолежащих углов:

${a}/{sin⁡α}={b}/{sinβ} ={c}/{sinγ} =2R$, где $R$ — радиус описанной около треугольника окружности.

Пример:

В треугольнике $АВС ВС=16, sin∠A={4}/{5}$. Найдите радиус окружности, описанной вокруг треугольника $АВС$.

Решение:

Воспользуемся теоремой синусов:

Отношение стороны к синусу противолежащего угла равно двум радиусам описанной окружности

${ВС}/{sin⁡A} =2R$

Далее подставим числовые данные и найдем $R$

${16·5}/{4}=2R$

$R={16·5}/{4·2}=10$

Ответ: $10$

Теорема косинусов

Квадрат одной из сторон треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:

$a^2=b^2+c^2-2·b·c·cosα.$

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • Геометрический смысл производной егэ профиль теория
  • Герои россии моей сочинение
  • Геометрический смысл производной егэ профиль задания
  • Герои россии герои нашего двора сочинение
  • Геометрические формулы егэ все геометрические формулы для егэ

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии