Гибридизация химия егэ теория

Типы связей в молекулах органических веществ. Гибридизация атомных орбиталей углерода. Радикал. Функциональная группа.

Типы связей в молекулах органических веществ

Одна из характеристик химических связей — тип перекрывания орбиталей атомов в молекуле.
По характеру перекрывания различают σ-(сигма) и π‑(пи) связи.

σ-Связь — это связь, в которой перекрывание орбиталей происходит вдоль оси, соединяющей ядра атомов.

σ-Связь может быть образована любыми типами орбиталей (s, p, d, гибридизованными).

σ-Связь — это основная связь в молекуле, которая преимущественно образуется между атомами.

Между двумя атомами возможна только одна σ-связь.

Виды σ-связей

π-Связь — это связь, в которой перекрывание орбиталей происходит в плоскости, перпендикулярной оси, соединяющей ядра атомов, сверху и снизу от оси связи.

π-Связь образуется при перекрывании только р- (или d) орбиталей, перпендикулярных линии связи и параллельных друг другу.

π-Связь является дополнительной к σ-связи, она менее прочная и легче разрывается при химических реакциях.

Одинарная связь

С–С, С–Н, С–О

Двойная связь

С=С, С=О

Тройная связь

С≡С, С≡N

σ-связь σ-связь + π-связь σ-связь + две π-связи

Гибридизация атомных орбиталей углерода

Электронная формула атома углерода в основном состоянии: 

+6С 1s22s22p2

+6С  1s   2s   2p 

В возбужденном состоянии: один электрон переходит с 2s-подуровня на 2р-подуровень.

+6С* 1s22s12p3

+6С* 1s2   2s1  2p3 

Таким образом, в возбужденном состоянии углерод содержит четыре неспаренных электрона, может образовать четыре химические связи и проявляет валентность IV в соединениях.

При образовании четырех химических связей атомом углерода происходит гибридизация атомных орбиталей.

Гибридизация атомных орбиталей — это выравнивание электронной плотности атомных орбиталей разного типа с образованием новых, молекулярных орбиталей, форма и энергия которых одинаковы.

В гибридизацию вступают атомные орбитали с небольшой разницей в энергии (как правило, орбитали одного энергетического уровня). В зависимости от числа и типа орбиталей, участвующих в гибридизации, для атома углерода возможны sp3, sp2 и sp-гибридизация.

sp3-Гибридизация

В sp3-гибридизацию вступают одна s-орбиталь и три p-орбитали. При этом образуются четыре sp3-гибридные орбитали:

Изображение с портала orgchem.ru

Четыре sp3-гибридные орбитали атома углерода взаимно отталкиваются, и располагаются в пространстве так, чтобы угол между орбиталями был максимально возможным.

Поэтому четыре гибридные орбитали углерода в состоянии sp3-гибридизации направлены в пространстве под углом 109о 28’  друг к другу, что соответствует тетраэдрическому строению.

Например, в молекуле метана CH4 атомы водорода располагаются в пространстве в вершинах тетраэдра, центром которого является атом углерода. Валентный угол Н–С–Н в метане равен 109о 28’

Молекулам линейных алканов с большим числом атомов углерода соответствует зигзагообразное расположение атомов углерода.

Например, пространственное строение н-бутана

sp2-Гибридизация

В sp2-гибридизацию вступают одна s-орбиталь и две p-орбитали. Одна p-орбиталь не гибридизуется:

Три sp2-гибридные орбитали атома углерода взаимно отталкиваются, и располагаются в пространстве так, чтобы угол между орбиталями был максимально возможным.

Поэтому три sp2-гибридные орбитали атома углерода направлены в пространстве под углом 120о друг к другу, что соответствует плоскому строению (треугольник).

При этом негибридная р-орбиталь располагается перпендикулярно плоскости, в которой расположены три гибридные sp2— орбитали.

Изображение с портала orgchem.ru

Например, молекула этилена C2H4 имеет плоское строение. Сигма-связь между атомами углерода образуется за счет перекрывания sp2-гибридных орбиталей. Пи-связь между атомами углерода образуется за счет перекрывания негибридных р-орбиталей.

Модель молекулы этилена:

sp-Гибридизация

В sp-гибридизацию вступают одна s-орбиталь и одна p-орбиталь. Две p-орбитали не  вступают в гибридизацию:

Две sp-гибридные орбитали атома углерода направлены в пространстве под углом 180о друг к другу, что соответствует линейному строению.

Изображение с портала orgchem.ru

При этом две р-орбитали располагаются перпендикулярно друг другу и перпендикулярно линии, на которой расположены гибридные орбитали.

Например, молекула ацетилена имеет линейное строение.

Типы связей в молекулах органических веществ.

В органических соединениях углерод всегда четырехвалентен. В возбужденном состоянии в его атоме происходит разрыв пары $2s^3$-электронов и переход одного из них на р-орбиталь:

Такой атом имеет четыре неспаренных электрона и может принимать участие в образовании четырех ковалентных связей.

На основании приведенной электронной формулы валентного уровня атома углерода можно было бы ожидать, что на нем находится один $s$-электрон (сферическая симметричная орбиталь) и три $р$-электрона, имеющих взаимно перпендикулярные орбитали ($2р_х, 2р_у, 2p_z$-орбиталь). В действительности же все четыре валентных электрона атома углерода полностью эквивалентны и углы между их орбиталями равны $109°28’$. Кроме того, расчеты показывают, что каждая из четырех химических связей углерода в молекуле метана ($СН_4$) на $25%$ является $s-$ и на $75%$ — $p$-связью, т.е. происходит смешивание $s-$ и $р-$состояний электронов. Это явление называют гибридизацией, а смешанные орбитали — гибридными.

Атом углерода в $sp^3$-валентном состоянии имеет четыре орбитали, на каждой из которых находится по одному электрону. В соответствии с теорией ковалентной связи он имеет возможность образовывать четыре ковалентные связи с атомами любых одновалентных элементов ($СН_4, CHCl_3, CCl_4$) или с другими атомами углерода. Такие связи называются $σ$-связями. Если атом углерода имеет одну $С—С$ связь, то он называется первичным ($Н_3С—СН_3$), если две — вторичным ($Н_3С—СН_2—СН_3$), если три — третичным (), а если четыре — четвертичным ().

Одной из характерных особенностей атомов углерода является их способность образовывать химические связи за счет обобщения только $р$-электронов. Такие связи называются $π$-связями. $π$-связи в молекулах органических соединений образуются только в присутствии $σ$-связей между атомами. Так, в молекуле этилена $Н_2С=СН_2$ атомы углерода связаны $σ-$ и одной $π$-связью, в молекуле ацетилена $НС=СН$ — одной $σ-$ и двумя $π$-связями. Химические связи, образовавшиеся с участием $π$-связей, называются кратными (в молекуле этилена — двойная, в молекуле ацетилена — тройная), а соединения с кратными связями — ненасыщенными.

Явление $sp^3$-, $sp^2$- и $sp$ — гибридизации атома углерода.

При образовании $π$-связей изменяется гибридное состояние атомных орбиталей атома углерода. Так как образование $π$-связей происходит за счет р-электронов, то в молекулах с двойной связью электроны будут иметь $sp^2$-гибридизацию (была $sp^3$, но один р-электрон отходит на $π$-орбиталь), а с тройной — $sp$-гибридизацию (два р-электрона отошли на $π$-орбиталь). Характер гибридизации изменяет направленность $σ$-связей. Если при $sp^3$-гибридизации они образовывают пространственно разветвленные структуры ($а$), то при $sp^2$-гибридизации все атомы лежат в одной плоскости и углы между $σ$-связями равны $120°$(б), а при $sp$-гибридизации молекула линейна (в):

При этом оси $π$-орбиталей перпендикулярны оси $σ$-связи.

Как $σ$-, так и $π$-связи являются ковалентными, значит, должны характеризоваться длиной, энергией, пространственной направленностью и полярностью.

Характеристики одинарных и кратных связей между атомами С.

Молекула Тип гибридизации Валентный угол Длина связи, нм Энергия связи, кДж/моль
$CH_3-CH_3$ $sp^3$ $109°5’$ $0.154$ $369$
$CH_2=CH_2$ $sp^2$ $120°$ $0.134$ $712$
$CH≡CH$ $sp^3$ $180°$ $0.120$ $962$

Радикал. Функциональная группа.

Одной из особенностей органических соединений является то, что в химических реакциях их молекулы обмениваются не отдельными атомами, а группами атомов. Если эта группа атомов состоит только из атомов углерода и водорода, то она называется углеводородным радикалом, если же она имеет атомы других элементов, то она называется функциональной группой. Так, например, метил ($СН_3$—) и этил ($С_2Н_5$—) являются углеводородными радикалами, а оксигруппа (—$ОН$), альдегидная группа (), нитрогруппа (—$NO_2$) и т. д. являются функциональными группами спиртов, альдегидов и азотсодержащих соединений соответственно.

Как правило, функциональная группа определяет химические свойства органического соединения и поэтому является основой их классификации.

Большинство органических соединений имеют молекулярное строение. Атомы в веществах с молекулярным типом строения всегда образуют только ковалентные связи друг с другом, что наблюдается и в случае органических соединений. Напомним, что ковалентным называется такой вид связи между атомами, который реализуется за счет того, что атомы обобществляют часть своих внешних электронов с целью приобретения электронной конфигурации благородного газа.

По количеству обобществлённых электронных пар ковалентные связи в органических веществах можно разделить на одинарные, двойные и тройные. Обозначаются данные типы связей в графической формуле соответственно одной, двумя или тремя чертами:

винилацетилен развернутая формула

Кратность связи приводит к уменьшении ее длины, так одинарная С-С связь имеет длину 0,154 нм, двойная С=С связь – 0,134 нм, тройная С≡С связь – 0,120 нм.

Типы связей по способу перекрывания орбиталей

Как известно, орбитали могут иметь различную форму, так, например, s-орбитали имеют сферическую, а p-гантелеобразную форму. По этой причине связи также могут отличаться по способу перекрывания электронных орбиталей:

• ϭ-связи – образуются при перекрывании орбиталей таким образом, что область их перекрывания пересекается линией, соединяющей ядра. Примеры ϭ-связей:

сигма-связь

• π-связи – образуются при перекрывании орбиталей, в двух областях – над и под линией соединяющей ядра атомов. Примеры π-связей:

пи-связь

Как узнать, когда в молекуле есть π- и ϭ-связи?

При ковалентном типе связи ϭ-связь между любыми двумя атомами есть всегда, а π-связь имеет только в случае кратных (двойных, тройных) связей. При этом:

  • Одинарная связь – всегда является ϭ-связью
  • Двойная связь всегда состоит из одной ϭ- и одной π-связи
  • Тройная связь всегда образована одной ϭ- и двумя π-связями.

Укажем данные типы связей в молекуле бутин-3-овой кислоты:

бутиновая кислота формула

Гибридизация орбиталей атома углерода

Гибридизацией орбиталей называют процесс, при котором орбитали, изначально имеющие разные формы и энергии смешиваются, образуя взамен такое же количество гибридных орбиталей, равных по форме и энергии.

Так, например, при смешении одной s- и трех p-орбиталей образуются четыре sp3-гибридных орбитали:

sp3-гибридизация

В случае атомов углерода в гибридизации всегда принимает участие s-орбиталь, а количество p-орбиталей, которые могут принимать участие в гибридизации варьируется от одной до трех p-орбиталей.

Как определить тип гибридизации атома углерода в органической молекуле?

В зависимости от того, со скольким числом других атомов связан какой-либо атом углерода, он находится либо в состоянии sp3, либо в состоянии sp2, либо в состоянии sp-гибридизации:

Количество атомов, с которыми связан атом углерода Тип гибридизации атома углерода Примеры веществ
4 атома sp3  CH4 – метан
3 атома sp2  H2C=CH2 – этилен
2 атома sp  HC≡CH — ацетилен

Потренируемся определять тип гибридизации атомов углерода на примере следующей органической молекулы:пропиновая кислота гибридизация

  • Первый атом углерода связан с двумя другими атомами (1H и 1C), значит он находится в состоянии sp-гибридизации.
  • Второй атом углерода связан с двумя атомами – sp-гибридизация
  • Третий атом углерода связан с четырьмя другими атомами (два С и два Н) – sp3-гибридизация
  • Четвертый атом углерода связан с тремя другими атомами (2О и 1С) – sp2-гибридизация.

Радикал. Функциональная группа

Под термином радикал, чаще всего подразумевают углеводородный радикал, являющийся остатком молекулы какого-либо углеводорода без одного атома водорода.

Название углеводородного радикала формируется, исходя из названия соответствующего ему углеводорода заменой суффикса –ан на суффикс –ил.

Формула углеводорода Название углеводорода Формула радикала Название радикала
CH4 метан -CH3 метил
C2H6 этан 2Н5 этил
C3H8 пропан 3Н7 пропил
СnН2n+2 …ан nН2n+1 … ил

Функциональная группа — структурный фрагмент органической молекулы (некоторая группа атомов), который отвечает за её конкретные химические свойства.

В зависимости того, какая из функциональных групп в молекуле вещества является старшей, соединение относят к тому или иному классу.

функциональные группы

R – обозначение углеводородного заместителя (радикала).

Радикалы могут содержать кратные связи, которые тоже можно рассматривать как функциональные группы, поскольку кратные связи вносят вклад в химические свойства вещества.

Если в молекуле органического вещества содержится две или более функциональных группы, такие соединения называют полифункциональными.

Гомология

Гомологи́ческий ряд — ряд химических соединений одного структурного типа (например, алканы или алифатические спирты — спирты жирного ряда), отличающихся друг от друга по составу на определенное число повторяющихся структурных единиц — так называемую гомологическую разность. Гомо́логи — вещества, входящие в один и тот же гомологический ряд.

Простейший пример гомологического ряда — алканы (общая формула СnH2n+2): метан CH4, этан C2H6, пропан С3H8 и т. д.; гомологической разностью этого ряда является метиленовое звено —СН2—.

То есть каждый класс имеет гомологический ряд и все вещества в этом ряду будут является гомологами друг другу.

Гибридизация

Гибридизация орбиталей — гипотетический процесс смешения разных (s, p, d, f) орбиталей центрального атома многоатомной молекулы с возникновением одинаковых орбиталей, эквивалентных по своим характеристикам.

sp3 Гибридизация — гибридизация, в которой участвуют атомные орбитали одного s— и трех p—электронов

Четыре sp3—гибридные орбитали симметрично ориентированны в пространстве под углом 109°28′ (рис. 2).

Пространственная конфигурация молекулы, центральный атом которой образован sp3 —гибридными орбиталями —тетраэдр.

Тетраэдрическая пространственная конфигурация молекулы, центральный атом которой образован sp3—гибридными орбиталями

Однако не всегда пространственная конфигурация молекулы соответствует тетраэдру, это зависит от числа атомов в молекуле. Рассмотрим подобный случай на примере молекул воды и аммиака. NH3. Валентность атома азота — III, его пять электронов внешнего уровня занимают четыре орбитали, значит, тип гибридизации — sp3, но только три орбитали принимают участие в образовании химической связи. Тетраэдр без одной вершины превращается в пирамиду. Поэтому у молекулы аммиака форма молекулы пирамидальная, угол связи искажается до 107°30′. Аналогичные рассуждения о строении молекулы воды (H2O) приводят нас к тому, что кислород находится в sp3 гибридном состоянии, а форма молекулы — угловая, угол связи составляет 104°27′.

представлена модель молекулы метана (CH4), в которой атом углерода подвергается sp3—гибридизации.

sp2—Гибридизация — гибридизация, в которой участвуют атомные орбитали одного s— и двух p—электронов

В результате гибридизации образуются три гибридные sp2 орбитали, расположенные в одной плоскости под углом 120° друг к другу

Пространственная конфигурация молекулы, центральный атом которой включает в себя sp2—гибридные орбитали, представлена на рисунке:

Этот тип гибридизации наблюдается, например в молекуле BCl3.

Модель этой молекулы изображена на рисунке:

Модель молекулы BCl3

Примеры соединений, в которых наблюдается sp2—гибридизация: SO3, BCl3, BF3, AlCl3, CO32-, NO3. Кроме того, sp2—гибридизация характерна для всех этиленовых углеводородов (алкенов) (общая формула CnH2n), карбоновых кислот и ароматических углеводородов (аренов) и других органических соединений: C2H4 (этилен), C4H8, C6H12, C6H6 (бензол), C8H10, C9H12, CH3COOH, C6H5OH (фенол), СH2O (формальдегид), C5H9NO4 (глутаминовая кислота) и др. Атомы углерода, находящиеся во втором валентном состоянии (sp2—гибридизация) связаны друг с другом двойными химическими связями. При sp2—гибридизации атом углерода образует три σ—связи и одну π—связь с соседними атомами углерода представлена на рисунке:

sp — Гибридизация (линейная)

Одна s— и одна р—орбиталь смешиваются, образуя две равноценные sp—орбитали, расположенные под углом 180°, т.е. на одной оси.

Гибридные sp—орбитали участвуют в образовании двух s—связей. Две р—орбитали не гибридизованы и расположены во взаимно перпендикулярных плоскостях.

p—Орбитали образуют в соединениях две p—связи.

Для простоты изображения пространственного строения sp—атома обычно рисуют р—орбитали в форме электронных облаков, а гибридные орбитали изображают прямыми линиями.

Углерод в sp—гибридном состоянии присутствует:

  • в соединениях с тройной связью

в соединениях типа R2C=C=CR2.

Гибридизация электронных орбиталей: sp3, sp2 и sp.

Гибридизация sp3, sp2 и sp в органической химии с практическими примерами.

Введение

Зачем нам теория гибридизации?

Вот один ответ на это. Экспериментально подтверждено, что атом углерода в метане (CH4) и других алканах имеет тетраэдрическую структуру.

  • Напомним, что в тетраэдрической геометрии все углы имеют 109,5°, а связи имеют одинаковую длину.
  • Помните также, что ковалентные связи образуются в результате перекрывания орбиталей и совместного использования двух электронов между атомами.

Итак, чтобы предсказать валентность и геометрию атома углерода, мы рассмотрим его электронную конфигурацию и орбитали.

C – 1s 2 2s 2 2p 2

Валентные электроны — те, которые находятся на 2s и 2p орбиталях, и те, которые участвуют в связывании и химических реакциях.

Электронная конфигурация углерода

Из конфигурации электронов видно, что невозможно создать четыре одинаковые по длине, энергии и всем остальным параметрам связи, потому что одна из орбиталей является сферической s, а остальные три — p — орбиталями.

  • И именно здесь мы нуждаемся в теории, которая может помочь нам объяснить известную геометрию и валентность атома углерода во многих органических молекулах.

Гибридизация это теория, которая используется для объяснения определенных молекулярных геометрий, которые в противном случае были бы невозможны.

Гибридизация sp3

Теперь давайте посмотрим, как это происходит, используя метан в качестве примера.

На первом этапе один электрон перепрыгивает с 2s на 2p орбиталь. Это приводит к возбужденному состоянию углерода:

Возбужденное состояние углерода

Обратите внимание, что электрон движется вперед, так как p — оболочка выше по энергии, чем s — оболочка, и это не является энергетически выгодным, но мы увидим, как это компенсируется на следующем этапе, когда орбитали смешаны (гибридизованы).

  • Таким образом, на следующем этапе s и p — орбитали углерода в возбужденном состоянии гибридизуются с образованием четырех одинаковых по размеру, форме и энергии орбиталей.

Образование sp3 гибридизации

Количество гибридных орбиталей всегда совпадает с количеством смешанных орбиталей.

Итак, четыре орбитали (одна 2s + три 2p) смешаны, и в результате получается четыре sp3 орбитали. Это гибридные орбитали, которые похожи на s и p — орбитали.

  • Таким образом, мы называем их sp3, потому что они образованы из одной s орбитали и трех p орбиталей.

Образование этих вырожденных гибридных орбиталей компенсирует энергию подъема s — p — перехода, поскольку они имеют меньшую энергию, чем p — орбитали.

Четыре sp3 — гибридизованные орбитали располагаются в тетраэдрической геометрии и образуют связи, перекрывая s — орбитали четырех водородов: это объясняет симметричную геометрию метана (CH4), где все связи имеют одинаковую длину и угол связи.

Метан, sp3 гибридизация

Все четыре связи C — H в метане являются одинарными связями, которые образуются путем лобового (или конечного) перекрытия sp3 — орбиталей углерода и s — орбитали каждого водорода.

Связи, которые образуются путем встречного перекрытия орбиталей, называются σ (сигма) связями, потому что электронная плотность сосредоточена на оси, соединяющей атомы C и H.

Этан — CH3-CH3 и другие алканы

Если вместо одного водорода мы подключим другой sp3 — гибридизированный углерод, мы получим этан:

Этан, гибридизация

И, следовательно, во всех алканах существует сигма — связь между атомами углерода и атомами углерод — водород, и атомы углерода sp3 гибридизуются с тетраэдрической геометрией:

Пример гибридизации алкана (пентан)

Чтобы обобщить это, любой атом с четырьмя группами (или атом или одинокая пара) является sp3 гибридизированным.

  • И если посмотреть на это, то, чтобы четыре группы были как можно дальше друг от друга, как мы знаем из теории отталкивания электронных пар, группы должны находиться на одинаковых четырех орбиталях, что возможно только в гибридизации sp3.

Например, какая гибридизация кислорода в следующей молекуле?

Этанол, гибридизация

Кислород связан с двумя атомами и имеет две неподеленные пары. Всего — четыре группы, и именно поэтому он sp3 гибридизован.

Гибридизация sp2

Когда атом углерода находится в возбужденном состоянии, sp3 — гибридизация не является единственным вариантом смешивания орбиталей.

Гибридизация sp2 происходит, когда s — орбиталь смешивается только с двумя p — орбиталями, в отличие от трех p — орбиталей в гибридизации sp3.

  • Итак, три орбитали смешаны, и в результате получаются три гибридные орбитали, которые называются sp2 — гибридными орбиталями.

sp2 гибридизация

Получающиеся 3 sp2 — орбитали затем располагаются в тригональной плоской геометрии (120°).

Важным отличием здесь по сравнению с гибридизацией sp3 является неучтенная (негибридизированная) p — орбиталь, которая не участвовала в гибридизации. Эта орбиталь расположена под углом 90° к плоскости тригонального расположения трех орбиталей sp2:

Геометрия sp2 гибридизации

Гибридизация углерода в этилене — C2H4

Два sp2 — гибридизированных атома углерода могут образовывать сигма — связь, перекрывая одну из трех sp2 — орбиталей и связываясь с двумя атомами водорода каждый, и два атома водорода образуют сигма — связь с каждым углеродом, перекрывая их s — орбитали с двумя другими sp2 — орбиталями.

Этилен, гибридизация

Это создает три связи для каждого углерода и одну орбиталь слева.

  • Помните, стандартная валентность углерода равна четырем, и ей положено иметь четыре связи.

Эта четвертая связь образована параллельным перекрытием двух 2p — орбиталей на каждом атоме углерода. Этот тип связи путем параллельного перекрытия орбиталей называется π-связью.

Итак, два атома углерода в этилене, который является первым членом семейства алкенов, имеют двойную связь.

  • В каждой двойной связи есть одна сигма и одна π-связь.

Геометрия двойной связи

Вот некоторые ключевые параметры гибридизации sp2 и двойных связей, которые вам необходимо знать:

* Все атомы на двойной связи находятся в одной плоскости;

* Угол между атомами составляет 120°;

* Угол между плоскостью и p — орбиталями составляет 90°.

Гибридизация sp

При sp — гибридизации s — орбиталь углерода в возбужденном состоянии смешивается только с одной из трех 2p — орбиталей.

Это называется sp — гибридизацией, потому что две орбитали (одна s и одна p) смешаны:

sp гибридизация

Получающиеся две sp — гибридные орбитали затем располагаются в линейной геометрии (180°), а две негибридизованные 2p — орбитали располагаются под углом 90°:

Геометрия sp гибридизации

Давайте посмотрим, как это происходит в ацетилене — C2H2. Два атома углерода образуют сигма — связь, перекрывая sp — орбитали.

Ацетилен, гибридизация

Один водород связывается с каждым атомом углерода, перекрывая его орбиталь с другой орбиталью.

Две p — орбитали каждого углерода перекрываются, образуя две π-связи.

Основные параметры sp гибридизации и тройной связи:

* Все атомы имеют линейную структуру;

* Угол между атомами составляет 180°;

* В тройной связи есть одна σ (сигма) и две π (пи) связи.

Гибридизация других элементов

В заключение, все, что мы обсуждали выше, относится не только к углероду.

Теория гибридизации работает с тем же принципом для всех других важных элементов в органической химии, таких как кислород, азот, галогены и многие другие.

Типы связей в молекулах органических веществ. Гибридизация атомных орбиталей углерода. Радикал. Функциональная группа

Большинство органических соединений имеют молекулярное строение. Атомы в веществах с молекулярным типом строения всегда образуют только ковалентные связи друг с другом, что наблюдается и в случае органических соединений. Напомним, что ковалентным называется такой вид связи между атомами, который реализуется за счет того, что атомы обобществляют часть своих внешних электронов с целью приобретения электронной конфигурации благородного газа.

По количеству обобществлённых электронных пар ковалентные связи в органических веществах можно разделить на одинарные, двойные и тройные. Обозначаются данные типы связей в графической формуле соответственно одной, двумя или тремя чертами:

винилацетилен развернутая формула

Кратность связи приводит к уменьшении ее длины, так одинарная С-С связь имеет длину 0,154 нм, двойная С=С связь – 0,134 нм, тройная С≡С связь – 0,120 нм.

Типы связей по способу перекрывания орбиталей

Как известно, орбитали могут иметь различную форму, так, например, s-орбитали имеют сферическую, а p-гантелеобразную форму. По этой причине связи также могут отличаться по способу перекрывания электронных орбиталей:

• ϭ-связи – образуются при перекрывании орбиталей таким образом, что область их перекрывания пересекается линией, соединяющей ядра. Примеры ϭ-связей:

сигма-связь

• π-связи – образуются при перекрывании орбиталей, в двух областях – над и под линией соединяющей ядра атомов. Примеры π-связей:

пи-связь

Как узнать, когда в молекуле есть π- и ϭ-связи?

При ковалентном типе связи ϭ-связь между любыми двумя атомами есть всегда, а π-связь имеет только в случае кратных (двойных, тройных) связей. При этом:

  • Одинарная связь – всегда является ϭ-связью
  • Двойная связь всегда состоит из одной ϭ- и одной π-связи
  • Тройная связь всегда образована одной ϭ- и двумя π-связями.

Укажем данные типы связей в молекуле пропиновой кислоты:

бутиновая кислота формула

Гибридизация орбиталей атома углерода

Гибридизацией орбиталей называют процесс, при котором орбитали, изначально имеющие разные формы и энергии смешиваются, образуя взамен такое же количество гибридных орбиталей, равных по форме и энергии.

Так, например, при смешении одной s- и трех p-орбиталей образуются четыре sp3-гибридных орбитали:

sp3-гибридизация

В случае атомов углерода в гибридизации всегда принимает участие s-орбиталь, а количество p-орбиталей, которые могут принимать участие в гибридизации варьируется от одной до трех p-орбиталей.

Как определить тип гибридизации атома углерода в органической молекуле?

В зависимости от того, со скольким числом других атомов связан какой-либо атом углерода, он находится либо в состоянии sp3, либо в состоянии sp2, либо в состоянии sp-гибридизации:

Количество атомов, с которыми связан атом углерода Тип гибридизации атома углерода Примеры веществ
4 атома sp3  CH4 – метан
3 атома sp2  H2C=CH2 – этилен
2 атома sp  HC≡CH — ацетилен

Потренируемся определять тип гибридизации атомов углерода на примере следующей органической молекулы:

• Первый атом углерода связан с двумя другими атомами (1H и 1C), значит он находится в состоянии sp-гибридизации.

  • Второй атом углерода связан с двумя атомами – sp-гибридизация
  • Третий атом углерода связан с четырьмя другими атомами (два С и два Н) – sp3-гибридизация
  • Четвертый атом углерода связан с тремя другими атомами (2О и 1С) – sp2-гибридизация.

Радикал. Функциональная группа

Под термином радикал, чаще всего подразумевают углеводородный радикал, являющийся остатком молекулы какого-либо углеводорода без одного атома водорода.

Название углеводородного радикала формируется, исходя из названия соответствующего ему углеводорода заменой суффикса –ан на суффикс –ил.

Формула углеводорода Название углеводорода Формула радикала Название радикала
CH4 метан -CH3 метил
C2H6 этан 2Н5 этил
C3H8 пропан 3Н7 пропил
СnН2n+2 …ан nН2n+1 … ил

Функциональная группа — структурный фрагмент органической молекулы (некоторая группа атомов), который отвечает за её конкретные химические свойства.

В зависимости того, какая из функциональных групп в молекуле вещества является старшей, соединение относят к тому или иному классу.

функциональные группы

R – обозначение углеводородного заместителя (радикала).

Радикалы могут содержать кратные связи, которые тоже можно рассматривать как функциональные группы, поскольку кратные связи вносят вклад в химические свойства вещества.

Если в молекуле органического вещества содержится две или более функциональных группы, такие соединения называют полифункциональными.

Автор: С.И. Широкопояс https://scienceforyou.ru/

Гомология

Гомологи́ческий ряд — ряд химических соединений одного структурного типа (например, алканы или алифатические спирты — спирты жирного ряда), отличающихся друг от друга по составу на определенное число повторяющихся структурных единиц — так называемую гомологическую разность. Гомо́логи — вещества, входящие в один и тот же гомологический ряд.

Простейший пример гомологического ряда — алканы (общая формула СnH2n+2): метан CH4, этан C2H6, пропан С3H8 и т. д.; гомологической разностью этого ряда является метиленовое звено —СН2—.

То есть каждый класс имеет гомологический ряд и все вещества в этом ряду будут является гомологами друг другу.

Гибридизация

Гибридизация орбиталей — гипотетический процесс смешения разных (s, p, d, f) орбиталей центрального атома многоатомной молекулы с возникновением одинаковых орбиталей, эквивалентных по своим характеристикам.

sp3 Гибридизация — гибридизация, в которой участвуют атомные орбитали одного s— и трех p—электронов

Четыре sp3—гибридные орбитали симметрично ориентированны в пространстве под углом 109°28′ (рис. 2).

Пространственная конфигурация молекулы, центральный атом которой образован sp3 —гибридными орбиталями —тетраэдр.

Тетраэдрическая пространственная конфигурация молекулы, центральный атом которой образован sp3—гибридными орбиталями

Однако не всегда пространственная конфигурация молекулы соответствует тетраэдру, это зависит от числа атомов в молекуле. Рассмотрим подобный случай на примере молекул воды и аммиака. NH3. Валентность атома азота — III, его пять электронов внешнего уровня занимают четыре орбитали, значит, тип гибридизации — sp3, но только три орбитали принимают участие в образовании химической связи. Тетраэдр без одной вершины превращается в пирамиду. Поэтому у молекулы аммиака форма молекулы пирамидальная, угол связи искажается до 107°30′. Аналогичные рассуждения о строении молекулы воды (H2O) приводят нас к тому, что кислород находится в sp3 гибридном состоянии, а форма молекулы — угловая, угол связи составляет 104°27′.

представлена модель молекулы метана (CH4), в которой атом углерода подвергается sp3—гибридизации.

sp2—Гибридизация — гибридизация, в которой участвуют атомные орбитали одного s— и двух p—электронов

В результате гибридизации образуются три гибридные sp2 орбитали, расположенные в одной плоскости под углом 120° друг к другу

Пространственная конфигурация молекулы, центральный атом которой включает в себя sp2—гибридные орбитали, представлена на рисунке:

Этот тип гибридизации наблюдается, например в молекуле BCl3.

Модель этой молекулы изображена на рисунке:

Модель молекулы BCl3

Примеры соединений, в которых наблюдается sp2—гибридизация: SO3, BCl3, BF3, AlCl3, CO32-, NO3. Кроме того, sp2—гибридизация характерна для всех этиленовых углеводородов (алкенов) (общая формула CnH2n), карбоновых кислот и ароматических углеводородов (аренов) и других органических соединений: C2H4 (этилен), C4H8, C6H12, C6H6 (бензол), C8H10, C9H12, CH3COOH, C6H5OH (фенол), СH2O (формальдегид), C5H9NO4 (глутаминовая кислота) и др. Атомы углерода, находящиеся во втором валентном состоянии (sp2—гибридизация) связаны друг с другом двойными химическими связями. При sp2—гибридизации атом углерода образует три σ—связи и одну π—связь с соседними атомами углерода представлена на рисунке:

sp — Гибридизация (линейная)

Одна s— и одна р—орбиталь смешиваются, образуя две равноценные sp—орбитали, расположенные под углом 180°, т.е. на одной оси.

Гибридные sp—орбитали участвуют в образовании двух s—связей. Две р—орбитали не гибридизованы и расположены во взаимно перпендикулярных плоскостях.

p—Орбитали образуют в соединениях две p—связи.

Для простоты изображения пространственного строения sp—атома обычно рисуют р—орбитали в форме электронных облаков, а гибридные орбитали изображают прямыми линиями.

Углерод в sp—гибридном состоянии присутствует:

  • в соединениях с тройной связью $H{color{red}C} equiv {color{red}C}H, R{color{red}C} equiv {color{red}C} R, R{color{red}C}equiv {color{red}N} $

в соединениях типа R2C=C=CR2

Понравилась статья? Поделить с друзьями:
  • Гибридизация задания егэ химия
  • Гибрид анкеты с сочинением
  • Гибель экспедиции скотта сочинение егэ
  • Гибель не страшна герою пока безумствует мечта сочинение
  • Гибель катерины это слабость или ее сила сочинение