Гидравлика вопросы к экзамену с ответами

  1. Помощь студентам

  2. Онлайн тесты

  3. Гидравлика и пневматика


  4. Тесты с ответами к лекциям по гидравлике и пневматике

Тест по теме «Тесты с ответами к лекциям по гидравлике и пневматике»

  • Обновление

    Обновлено: 22.02.2021

  • Просмотры

    260 918

208 вопросов

Выполним любые типы работ

  • Дипломные работы
  • Курсовые работы
  • Рефераты
  • Контрольные работы
  • Отчет по практике
  • Эссе
Узнай бесплатно стоимость работы

Популярные тесты по Гидравлика и пневматике

icon

Гидравлика и пневматика

Тесты с ответами к лекциям по гидравлике и пневматике

Календарь

22.02.2021

Просмотры

260 919

Количество

208

Мы поможем сдать на отлично и без пересдач

  • Контрольная работа

    от 1 дня
    /

    от 100 руб

  • Курсовая работа

    от 5 дней
    /

    от 1800 руб

  • Дипломная работа

    от 7 дней
    /

    от 7950 руб

  • Реферат

    от 1 дня
    /

    от 700 руб

  • Онлайн-помощь

    от 1 дня
    /

    от 300 руб

Нужна помощь с тестами?

Оставляй заявку — и мы пройдем все тесты за тебя!

  1. Понятие
    жидкости. Реальная и идеальная жидкость.

Жидкость –
тело которое обладает следующими
свойствами: мало изменяет свой объем
при изменении давления или температуры,
обладает текучестью, т.е. способностью
жидкости сколь угодно сильно изменять
свою форму под действием сколь угодно
малых сил, обусловленной тем, что в
покоящемся состоянии жидкость не
способна сопротивляться внутренним
касательным усилиям.

В движущейся
жидкости по поверхностям скольжения
слоев жидкости будет возникать трение.
Свойство жидкости, обусловленное
наличием в ней при ее движении касательных
напряжений, называется вязкостью

Идеальной
жидкостью называют некоторую воображаемую
жидкость, которая характеризуется
абсолютно неизменным объемом и полным
отсутствием вязкости.

  1. Основные
    физические свойства реальной жидкости.
    Особые состояния жидкости.

  1. Плотность

    кг/м3

  2. Объемный
    вес (удельный вес)

    Н/м3

  3. Сжимаемость
    – свойство жидкости изменять свой
    объем под действием давления.
    Характеризуется коэффициентом объемного
    сжатия

    м2

Модуль
объемной упругости

Н/м2=Па

Для
воды К=2000 МПа

  1. Температурное
    расширение

βt
воды: 0.00014-0.00066

βt
ртути: 0.00018

Особые
состояния жидкости

  1. Переход
    воды в твердое или газообразное состояние

А)
образование в воде кристаллов льда при
повышении давления или снижении
температуры;

Б)
образование в воде областей заполненных
воздухом и парами воды (кипение, кавитация)
при уменьшении давления или увеличении
температуры.

  1. присоединение
    к движущейся жидкости газообразных и
    твердых тел

А)
аэрация потока

Б)
захват потоком наносов

  1. Гидростатическое
    давление. Его свойства.

Гидростатическое
давление – напряжения, возникающие в
жидкости под действием сжимающих сил.

Свойства: 1)
На поверхности жидкости всегда направлено
по нормали внутрь рассматриваемого
объема 2) в данной точке во всех направлениях
одинаково.

  1. Основное
    уравнение гидростатики.


— основное уравнение гидростатики

  1. Пьезометрическая
    высота.

Выразим
давление в (.) А через основное уравнение
гидростатики

Для закрытой
трубки

Для открытой


избыточное давление

  1. Абсолютное,
    избыточное давление, вакуум.

Абсолютное
давление – сумма избыточного и
атмосферного давлений

Избыточное
давление — давление в сосуде, закрытом
от атмосферы, без учёта давления
окружающей среды

Вакуумметрическое
давление — разность между атмосферным
и абсолютным давлением, которое ниже
атмосферного

  1. Потенциальная
    энергия жидкости, потенциальный напор.

  2. Сила
    гидростатического давления, действующая
    на плоскую фигуру любой формы.

hc
– глубина расположения центра тяжести
площади S

  1. Сила
    гидростатического давления, действующая
    на цилиндрические поверхности.

Выделим объем
ABCD и рассмотрим его
равновесие в горизонтальном и вертикальном
направлении.

hc-
расстояние от свободной поверхности
до центра тяжести

Sz-
площадь проекции криволинейной
поверхности на вертикальную плоскость

Vтд
— объем тела давления

Gтд
— вес тела давления

Тело давления
– это объем, нижним основанием которого
является сама криволинейная поверхность,
а верхним — проекция криволинейной
поверхности на свободную поверхность
жидкости или ее продолжение.

Если ТД
заполнено жидкостью, оно называется
реальным. В этом случае вертикальная
составляющая направлена вниз. Если нет,
то ТД называется фиктивным, а вертикальная
составляющая направлена вверх.

  1. Закон
    Паскаля.

Давление,
передаваемое на свободную поверхность
жидкости, находящейся в замкнутом
сосуде, передается во все ее точки без
изменения.

  1. Простейшие
    гидравлические машины

Гидравлический
аккумулятор

Гидравлическим
аккумулятором называется гидроемкость,
предназначенная для аккумулирования
энергии рабочей жидкости, находящейся
под давлением, с целью последующего
использования этой энергии в гидроприводе.
В зависимости от носителя потенциальной
энергии гидроаккумуляторы подразделяют
на грузовые, пружинные и пневматические.

Гидроаккумуляторы
поддерживают на заданном уровне давление,
компенсируют утечки, сглаживают пульсацию
давления, создаваемую насосами, выполняют
функцию демпфера, предохраняют систему
от забросов давления вызванных наездом
машин на дорожные препятствия. Так же
используются для достижения большей
скорости холостого хода при совместной
работе с насосами.

E
– энергия

G
– вес поршня с грузом

h
– высота

ω – площадь
сечения стержня

также
шестеренные гидромашины, поворотные
гидродвигатели, пластинчатые гидромашины,
винтовые насосы, радиально-плунжерные
гидромашины, аксиально-плунжерные
гидромашины и другие. Но к простым их
отнести сложно.

  1. Равновесие
    плавающих тел. Закон Архимеда.

Закон Архимеда
– на тело, покруженное в жидкость,
действует выталкивающая сила, равная
весу жидкости, вытесненной этим телом.

На погруженное
в жидкость тело будут действовать
поверхностные силы давления и сила
тяжести, при этом горизонтальные
составляющие уравновешиваются.
Равнодействующая вертикальных сил
будет направлена в сторону большей
действующей силы.

Где W
– объем погруженного тела

Объем жидкости,
вытесненной телом – объемное водоизмещение,
а ее вес – водоизмещение. Центр тяжести
объемного водоизмещения, через который
проходит линия действия силы Архимеда,
называется центром водоизмещения.

С точки зрения
плавучести возможны три случая равновесия
плавающего тела:

А) тело тонет
G>F

Б) тело плавает
под водой G=F

В) тело
всплывает G<F

  1. Основные
    виды движения жидкостей.

В общем случае
для потока жидкости скорость движения
частиц и давление является функцией
координаты и времени. В таком случае
движение называется неустановившимся.

Если скорость
движения жидкости и давление во всех
точках потока остается неизменным, то
такое движение называется установившимся.

  1. Уравнение
    Бернулли.

Считаем что
движение жидкости установившееся. Между
нормальными сечениями 1 и 1’ выделим
элементарный объем. Он перемещается из
положения 1-1’ в положение 2-2’. На него
будут действовать силы тяжести и
гидростатического давления. Применим
к объему закон живых сечений: приращение
живой силы движущейся системы материальных
точек за некоторый промежуток времени
будет равно сумме работ всех сил,
действующих на систему в течение того
же времени:

Масса
элементарного объема:

Тогда
приращение живой силы для выделенного
объема:

Вес элементарного
объема:

Работа по
перемещению жидкости силой тяжести:

Работа сил
гидродинамического давления при
перемещении элементарного объемаиз
положения 1 в положение 2:

Приращение
живой силы равно сумме работ всех сил,
получим

Сократив все
члены уравнения на

у перенеся параметры для первого и
второго сечения в соответствующие
стороны, получим:

z
– удельная энергия положения частиц
жидкости


– удельная энергия гидродинамического
давления


– удельная кинетическая энергия жидкости

  1. Геометрическая
    и энергетическая интерпретация уравнения
    Бернулли.

Если соединить
уровни полных напоров (не учитывая
потери), то получим напорную линию или
линию полного напора, если линию
пьезометричексих напоров, то получим
пьезометрическую линию. Также можно
получить величины пьезометрических и
гидравлических уклонов, если разделить
разницу пьезометрических или соответственно
полных напоров на длину.

Энергетическая
интерпретация заключается в том, что
уравнение Бернулли представляет собой,
закон сохранения энергии для потока
жидкости.

  1. Уравнение
    неразрывности потока жидкости.

Скорость на
грани ABCD – Ux,
на грани A’B’C’D’

Количество
жидкости, проходящее через грань ABCD
за время dt –

Ее масса –

Количество
жидкости, проходящее через грань A’B’C’D’
за время dt –

Ее масса
соответственно –

Общее изменение
массы жидкости из условия сплошности
потока

Разделим обе
части на

Или
Q1=Q2=Q3=const

Тогда

  1. Форма
    напорной и пьезометрической линий при
    установившемся движении.

Они параллельны.

  1. Режимы
    движения жидкости, их особенности.

Ламинарное
и турбулентное.

Ламинарное
– слоистое, без перемешиваний частиц
и без пульсаций скоростей.

Турбулентное
– сопровождается интенсивными
перемешиваниями жидкости, а также
пульсациями скоростей и давлений.

Смена режимов
будет происходить при определенных
значениях критерия Рейнольдса

Скорость
течения, диаметр трубы, кинематический
коэффициент вязкости.

Критическое
число Рейнольдса Reкр=2320.

При Re<
Reкр течение
ламинарное. При Re> Reкр
течение турбулентное. ПриRe=
13800 течение становится чисто турбулентным.

При безнапорном
течении

R
– гидравлический радиус

  1. Потери
    напора. Гидравлические сопротивления.

Потери на
трение

Потери в
каналах и трубах не круглого сечения

Где l
– длина, R – гидравлический
радиус.

Потери на
местных сопротивлениях

Где дзетта
– коэффициент местных потерь.

Гидравлические
потери делятся на потери по длине и
местные.

Местные:
Внезапное сужение трубы, плавное сужение,
внезапное расширение, плавное расширение,
внезапный поворот трубы (колено), плавный
поворот (закругленное колено или отвод).
А также задвижки и диафрагмы.

  1. Основные
    понятия при изучении турбулентного
    потока.

  1. Закон
    распределения скорости по живому
    сечению потока при ламинарном и
    турбулентном режимах.

При ламинарном
режиме

Тогда
касательные напряжения равны

После
интегрирования получим

C
можем получить когда скорость будет
равна 0, т.е. у стенок трубы.

Примем y=r

Приравняем
скорость к нулю. Тогда получим что C=

Подставляя,
получим окончательный закон или формулу
Стокса:

При турбулентном
режиме


— скорость касательных напряжений

  1. Определение
    потерь напора при ламинарном режиме.
    Формула Дарси.

Потери
на трение


— Формула Вейсбаха-Дарси

Потери в
каналах и трубах не круглого сечения

Где l – длина,
R – гидравлический радиус.

Потери на
местных сопротивлениях

Где дзетта
– коэффициент местных потерь.

При ламинарном
режиме λ определяется как

  1. Турбулентный
    режим движения жидкости. Структура
    турбулентного потока.

Предложена
Прандтлем

Турбулентный
поток состоит из турбулентного ядра и
ламинарной пленки. Пленка по краю трубы.

С увеличением
скорости ее толщина уменьшается

  1. Определение
    потерь напора при турбулентном режиме.

При турбулентном
режиме λ определяется очень сложно.
Существует множество эмпирических и
полуэмпирических формул, а также таблиц
для определения коэффициента
гидравлического сопротивления.

  1. Гидравлически
    гладкие и шероховатые трубы.

Потери напора
по длине зависят не только от степени
турбулентности потока, но и от
гидравлического состояния поверхности.

Существует
зависимость между шероховатостью Δ и
толщиной пленки δ

  1. δ>Δ
    В этом случае ламинарная пленка покрывает
    выступы шероховатости и турбулентное
    ядро скользит по слою этой пленки. В
    данном случае потери напора по длине
    не зависят от шероховатости и будут
    определяться вязкостным трением. Такой
    случай рассматривается как гидравлически
    гладкая поверхность

  2. δΔ
    в данном случае имеем переходную область
    гидравлического сопротивления не
    относящуюся ни к гладкой, ни к шероховатой.
    В данном случае потери напора по длине
    зависят от шероховатости вязкостного
    трения

  3. δ<Δ
    В этом случае происходит воздействие
    выступов шероховатости на турбулентное
    ядро потока. В данном случае величина
    потерь зависит от шероховатости пленки.
    Этот случай будет соответствовать
    гидравлически шероховатой поверхности.

  1. Формула
    Вейсбаха-Дарси, коэффициент гидравлического
    трения λ.


— Формула Вейсбаха-Дарси

Потери в
каналах и трубах не круглого сечения

Где l – длина,
R – гидравлический радиус.

Потери на
местных сопротивлениях

Где дзетта
– коэффициент местных потерь.

При ламинарном
режиме λ определяется как

Для турбулентного
течения существуют более сложные
зависимости. Одна из наиболее часто
используемых формул — это формула
Блазиуса:

Эта формула
даёт хорошие результаты при числах
Рейнольдса, изменяющихся в пределах от
критического числа Рейнольдса Reкр до
значений Re = 105. Формула Блазиуса
применяется для гидравлически гладких
труб.

Для гидравлически
шероховатых труб коэффициент потерь
на трение по длине определяется графически
по эмпирическим зависимостям.

  1. Потери
    напора по длине. Формула Шези. Модуль
    расхода и модуль скорости.


— формула Шези. Площадь живого сечения,
коэффициент Шези, гидравлический радиус,
гидравлический уклон.

Отсюда

Где k
– модуль расхода

Коэффициент
Шези связан с коэффициентом гидравлического
трения

  1. Гидравлический
    удар в напорном трубопроводе.

Явление,
возникающее в текущей по трубопроводу
жидкости, при резком изменении скорости
в одном из сечений. Приводит к появлению
волн повышенного и пониженного давления.

  1. Истечение
    жидкости из отверстий и насадков.

  2. Классификация
    трубопроводов.

Трубопроводы,
в которых расчет потерь может производиться
только на трение по длине, называются
длинными. Местными потерями в них
пренебрегают или берут в процентах.

Трубопроводы,
в которых величина местных потерь
составляет >5-10% от общего числа потерь,
называются короткими. В них учитываются
как потери по длине, так и местные
сипротивления.

По расположению
труб на плане трубопроводы могут делиться
на простые и сложные. Сложные, в свою
очередь, делятся на трубопроводы с
последовательным соединением, параллельным
и кольцевые.

  1. Расчет
    трубопроводов.

Потери в
простом трубопроводе будут определяться
по формуле

Где k
– модуль расхода

Коэффициент
Шези связан с коэффициентом гидравлического
трения

Потери в
сложном трубопроводе

  1. С
    последовательным соединением труб
    разного диаметра

Потери на
каждом из участков можно определить по
формуле

  1. С
    параллельным соединением труб разного
    диаметра

Потери напора
в каждом участке выразим n
уравнениями вида

Расходы на
отдельных участках можем также выразить
системой из n уравнений
вида

Отсюда

Зная расход
Q1, пользуясь полученной
ранее системой уравнений, последовательно
определяют остальные расходы.

  1. Водосливы.
    Классификация и основные характеристики
    водосливов.

Водослив –
это част сооружения, перегораживающего
поток, через которое поток переливается.

Классификация
по следующим признакам:

  1. В
    зависимости от геометрической формы
    водосливного отверстия:

А.
Прямоугольные

Б.
Треугольные

В.
Трапецеидальные

Г.
Круглые

Д.
Параболические

Е.
С наклонным гребнем

  1. В
    зависимости от формы и размеров
    поперечного сечения водосливной стенки:

С тонкой стенкой ()

С широким порогом ()

Водослив практического профиля

δ
должна удовлетворять следующим условиям:
1) на расстоянии δ потери
напора должны быть пренебрежимо малы
2) в пределах δ должен быть
хотя бы небольшой участок, который
характеризуется наличием плавно
изменяющегося движения

  1. В
    зависимости от очертания гребня

А.
С прямолинейным

Б.
С непрямолинейным

  1. В
    зависимости от влияния нижнего бьефа
    на истечение

А.
Неподтопленные – Q, H
не зависят от глубины в нижнем бьефе

Б.
Подтопленные – Q или H
зависят от глубины в нижнем бьефе

  1. В
    зависимости от соотношения b
    и B0

А.
Без бокового сжатия – b=B0

Б.
С боковым сжатием – b=B0

  1. Расчет
    водосливов.

  1. Основная
    расчетная формула для прямоугольного
    водослива

ω – живое
сечение струи, переливающейся через
водослив

v
– скорость в этом живом сечении

H0
– полный напор на водосливе

  1. Свободное
    истечение через неподтопленный
    прямоугольный водослив с вертикальной
    стенкой

При

В случае
неподтопленного водослива с боковым
сжатием вместо

вводят
,
где

  1. Основная
    расчетная формула для водосливов
    практического профиля

B
– ширина водосливного фронта


коэффициент подтопления. Для неподтопленной
равен 1, для подтопленных меньше 1


– коэффициент бокового сжатия


— эффективная ширина водосливного фронта


– сжатая ширина отдельных струй

m
– коэффициент расхода водослива

В том случае,
когда для площади живого сечения ВБ
,
можно пренебречь скоростью подхода,
т.е. Н0=H

  1. Гидравлические
    элементы живого сечения открытых русел,
    каналов.

Наиболее
частые поперечные сечения каналов

Симметричное
трапецеидальное, прямоугольное,
треугольное, параболическое.

В – ширина
канала по верху, b – ширина
канала по дну, m – коэффициент
откоса, h – глубина канала

  1. Симметричное
    трапецеидальное сечение

Относительная
ширина канала по дну

  1. Прямоугольное
    поперечное сечение

B=b

m=0

Когда канал
имеет большую ширину

  1. Канал с
    треугольным сечением

b=0

  1. Параболического
    сечения

Уравнение
параболы

p
– параметр параболы

При

При

При

При

Другие
сечения: несимметричное, неправильное,
составное, замкнутое.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Сборник тестовых вопросов по теме — Гидравлика

Правильный вариант ответа отмечен знаком +

1. Что называют гидравликой?

+1) науку, которая изучает равновесие и движение жидкостей;

2) науку, которая изучает движение водных потоков;

3) науку, которая изучает положение жидкостей в пространстве;

4) науку, которая изучает взаимодействие водных потоков.

2. Какое физическое вещество называется жидкостью?

1) которое способно заполнять всё свободное пространство;

2) которое может видоизменять свой объём;

+3) которое видоизменяет форму в результате воздействия сил;

4) способное к текучести.

3. Укажите разновидность жидкой субстанции, не являющейся капельной.

+1) азот;

2) ртуть;

3) бензин;

4) водород.

4. Укажите разновидность жидкой субстанции, не являющейся газообразной.

1) жидкий азот;

2) водород;

+3) ртуть;

4) кислород.

5. Что такое реальная жидкость?

1) которой в действительности не существует;

2) способную к моментальному испарению;

+3) которая находится в реальных условиях;

4) с присутствующим внутренним трением.

6. Что такое идеальная жидкость?

1) пригодная к применению;

+2) без внутреннего трения;

3) способная к сжатию;

4) которая существует исключительно в ряде условий.

7. Какой может быть внешняя сила, воздействующая на жидкую субстанцию?

1) инерциальная, поверхностная;

2) поверхностная, внутренняя;

3) тяготения, давления;

+4) массовая, поверхностная.

8. Что подразумевается под воздействием давления на жидкую субстанцию?

1) неподвижное состояние;

2) процесс течения;

3) видоизменение формы;

+4) силовое воздействие.

9. Укажите определение массы жидкой субстанции, заключённой в единице объёма.

+1) плотность;

2) удельная плотность;

3) вес;

4) удельный вес.

тест 10. Укажите определение веса субстанции, изображённой на фото, в единице объёма.

вопрос теста Укажите определение веса субстанции в единице объёма

1) плотность;

+2) удельный вес;

3) вес;

4) удельная плотность.

11. Что происходит с удельным весом жидкой субстанции, если t° увеличивается?

1) возрастание;

+2) уменьшение;

3) возрастание с последующим уменьшением;

4) никаких изменений.

12. Дайте определение понятию сжимаемости для жидких субстанций.

1) видоизменение формы в результате действия давления;

2) сопротивление воздействию давления, без видоизменения формы;

+3) изменение объёма в результате действия давления;

4) сопротивление воздействию давления с видоизменением формы.

13. Какой коэффициент характеризует сжимаемость жидкой субстанции?

+1) объёмного сжатия;

2) Джоуля;

3) температурный;

4) возрастания.

14. Что не характеризует вязкость жидкой субстанции?

+1) статический коэффициент вязкости;

2) кинематический вязкостный коэффициент;

3) динамический коэффициент вязкости;

4) градус Энглера.

15. Что происходит с вязкостью жидкости, если t° увеличивается?

1) увеличение;

2) никаких изменений;

+3) уменьшение;

4) становится постоянной.

16. Какой из перечисленных процессов не характерен для окисления жидкостей?

1) выпадение осадка в виде смолы;

2) изменение цвета жидкой субстанции;

+3) увеличение вязкости;

4) выпадение осадка в виде шлака.

17. Что не влияет на интенсивность испарения субстанции, изображённой на фото?

вопрос теста Что не влияет на интенсивность испарения субстанции

+1) объём жидкости;

2) давление;

3) воздушный поток;

4) температура.

18. На какие разделы подразделяют гидравлику?

1) гидростатику, гидромеханику;

2) гидромеханику, гидродинамику;

3) гидрологию, гидромеханику;

+4) гидростатику, гидродинамику.

19. О чём говорит второе правило о свойствах гидростатического давления?

+1) об отсутствии изменений, независимо от направления;

2) о постоянстве и перпендикулярному расположению относительно стенок резервуара;

3) об изменении, в зависимости от месторасположения;

4) об отсутствии изменений в горизонтальной плоскости.

тест-20. Какое давление можно определить с помощью основного уравнения гидростатики?

1) которое действует на свободную поверхность;

2) на дне резервуара;

3) которое действует на объект, помещённый в жидкость;

+4) в каждой точке рассматриваемого объёма.

21. Что называют водоизмещением?

+1) вес жидкости, которая была взята в объёме погружённой части судна;

2) наибольший объём жидкости, которую вытесняет плавающее судно;

3) вес жидкости, которая была взята в объёме судна;

4) объём жидкости, которую вытесняет плавающее судно.

22. Название объёма жидкости, протекающей за единицу времени через живое сечение –

+1) расход потока;

2) объёмное течение;

3) быстрота потока;

4) скорость течения.

23. Определение отношения расхода жидкой субстанции к площади живого сечения —

1) средний расход текущего потока;

2) наибольшая быстрота течения;

+3) средняя быстрота потока;

4) наименьший расход течения.

24. Укажите название течения жидкой субстанции со свободной поверхностью.

1) установленное;

2) напорное;

3) произвольное;

+4) безнапорное.

25. Что становится с напором во время движения жидкой субстанции между сечениями?

1) ослабление;

+2) увеличение;

3) изменения отсутствуют;

4) увеличение, если имеются локальные сопротивления.

26. Что называют гидравлическим сопротивлением?

1) сопротивление жидкой субстанции к деформации формы собственного русла;

2) сопротивление, которое препятствует прохождению жидкой субстанции;

3) сопротивление, характеризующееся падением скорости движения жидкой субстанции через трубопровод;

+4) сопротивление трубопровода, сопровождаемое энергетическими потерями жидкой субстанции.

27. Назовите источник энергетических потерь движущейся жидкой субстанции.

1) объём;

2) расход жидкой субстанции;

+3) вязкость;

4) перенаправление жидкой субстанции.

28. Каким может быть гидравлическое сопротивление?

+1) местным, линейным;

2) линейным, квадратичным;

3) местным, нелинейным;

4) нелинейным, линейным.

29. Влияет ли режим движения жидкой субстанции на гидравлическое сопротивление?

1) нет;

2) да;

3) исключительно в ряде условий;

4) если есть локальные гидравлические сопротивления.

тест_30. Чем характерен ламинарный режим движения жидкой субстанции?

1) беспорядочным перемещением частиц жидкой субстанции исключительно рядом со стенками трубопровода;

2) беспорядочным перемещением частиц жидкой субстанции внутри трубопровода;

3) послойным перемещением частиц жидкой субстанции исключительно рядом со стенками трубопровода;

+4) сохранение жидкой субстанцией определённого строя собственных частиц.

31. Чем характерен турбулентный режим движения жидкой субстанции?

1) послойным движением частиц жидкой субстанции;

2) беспорядочным и одновременно послойным движением частиц жидкой субстанции;

+3) бессистемным движением частиц жидкости внутри трубопровода;

4) послойным движением частиц жидкой субстанции исключительно в центральной части трубопровода.

32. Обратим ли режим движения жидкости внутри системы, изображённой на фото?

вопрос теста Обратим ли режим движения жидкости внутри системы

1) нет;

+2) да;

3) да, под воздействием непрерывного давления;

4) нет, если скорость изменяется.

Основные понятия и определения гидромеханики

Гидромеханика – изучает все движения жидкостей и газов.Гидромеханика и ее часть гидравлика прикладная наука, которая изучает закономерности движения жидкостей и применение этих законов к решению изомерных задач.Основные различия между гидромеханикой и гидравликой состоит в постановке задач: 1. в гидромеханике не налагается ограничений на вид движения жидкостей и как правило рассматривается общий случай пространственных трехмерных течений.

2. в гидравлике рассматривается только одномерное течение. Гидравлика основа знаний для любого нефтяника. Жидкость-тело обладающее весьма большой подвижностью частиц.

Идеальная жидкость – считается, что жидкость не обладает вязкостью и не зависит от параметров (плотность, от температуры и давления).

Нормальные напряжения в жидкости определяются как предел отношения силы давления ∆Р к площадке ∆ωр = lim | TI∆ω| ∆ω→0

Нормальные напряжения р называют давлением.

Если величину давления р отсчитывают от нуля, его называют аб­солютным, если от атмосферного — избыточным – величина давления, превышающая атмосферноеили манометри­ческим – величина давления, котрое не достает до атмосферного.

Абсолютное давление равно атмосферному, сложенному с избы­точным, т.е. Pабс=Рат+Ризб

Если гидромеханическое давление в жидкости оказывается мень­ше, атмосферного, то, как принято говорить, в жидкости имеется ва­куум (разрежение).

Величина вакуума определяется разностью между атмосферным и абсолютным давлениями в жидкости

Рвак = Рат – Рабс и изменяется в пределах от нуля до атмосферного давления.

Объем тело давления – объем, заключенный между пьезометрической плоскостью, криволинейной поверхностью и вертикальными образующимися, которые проектируют криволинейную поверхность на пьезометрическую плоскость.

Элементарным объемным расходом струйки(м3/с) называется величина, представляющая собой объем жидкости, протекающий через живое сечение струйки в единицу времени:

dQ=dV/dt=udωdt/dt=udω , где dV – объем жидкости, прошедший за время dt через живое сечение dω.

Средняя скорость v в живом сечении потока ω – такая фиктивная скорость, с которой должны были бы двигаться все частицы жидкости, чтобы при этом объемный расход Q был бы тем же, что при реальном распределении скоростей:

V=∫ωudω/ω.

Если объемный расход жидкости умножить на плотность жидкости, то получим массовый расход Qm

Qm=ρQ [кг/c].

Умножая массовый расход на ускорение силы тяжести, получим весовой расход, измеряется в [H/c]:

G= ρgQ=mg.

Уравнение Бернулли z1+p1/ρg +α1U12/2g= z2+p2/ρg +α2U22/2g +h1-2 .

Местные сопротивления – сопротивления, сосредоточенные на коротких участках трубопровода, которые приводят к потери напора и вызваны местным отрывом вихрей, а также нарушением структуры потока.

Hm=ξU2/2g ; hm=ξU2/2g – уравнение Борда; ξ – коэф. местного сопротивления.

hT – потеря трения, hm – потери местные,

h1-2=hT+hm — потеря напора.

hT=2Lτ/ρgr.

hT=64LU2/Re*d*2g – Формула Дарси-Вейсбаха.

Гидравлическим ударом в напорном трубопроводе – резкое изменение давления жидкости, вызванное резким изменением скорости течения.

Формула Жуковского ∆p=ρuc.

Гипотеза сплошности.

«Рассматривать жидкие тела как совокупность отдельных молекул (в каждой отдельно) практически неподвижно, поэтому при изучении жидкости и газов (и вообще деформации тел) вводятся допущения, что эти тела заполняют пространство непрерывно, т.е. характеризуют определенными значениями параметра (плотность, температура, вязкость и тд.). при таком рассмотрении жидкое тело называют сплошной средой или континиумом.Жидкости. Все вещества в природе имеют молекулярное строение. По характеру молекулярных движений, а также по численным значениям межмолекулярных сил жидкости занимают промежуточное положение между газами и твердыми телами. Свойства жидкостей при высоких температурах и низких давлениях ближе к составам газов, а при низких температурах и высоких давлениях — к свойствам твердых тел. В газах расстояния между молекулами больше, а межмолекулярные силы меньше, чем в жидкостях и твердых телах, поэтому газы отличаются от жидкостей и твердых тел большей сжимаемостью. По сравнению с газами жидкости и твердые тела малосжимаемы.
Молекулы жидкости находятся в непрерывном хаотичном тепловом движении, отличающемся от хаотичного теплового движения газов и твердых тел: в жидкостях это движение осуществляется в виде колебаний (10п колебаний п секунду) относительно мгновенных центров и скачкообразных переходов от одного центра к другому. Тепловое движение молекул твердых тел — колебания относительно стабильных центров. Тепловое движение молекул газа — непрерывные скачкообразные перемены мест.
Диффузия молекул жидкостей и газов обусловливает их общее свойство — текучесть. Поэтому термин «жидкость» применяют для обозначения и собственно жидкости (несжимаемая или весьма мало сжимаемая, капельная жидкость), и газа (сжимаемая жидкость). В гидравлике рассматриваются равновесие и движение капельных жидкостей.
Гипотеза сплошности. Жидкость рассматривается как деформируемая система материальных частиц, непрерывно заполняющих пространство, в котором оно движется.
Жидкая частица представляет собой бесконечно малый объем, в котором находится достаточно много молекул жидкости. Например, если рассмотреть кубик воды со сторонами размером 0,001 см, то в объеме будет находиться 3,3 • 1013 молекул. Частица жидкости полагается достаточно малой по сравнению с размерами области, занятой движущейся жидкостью.
При таком предположении жидкость в целом рассматривается как континуум — сплошная среда, непрерывно заполняющая пространство, т. е. принимается, что в жидкости нет пустот или разрывов, все характеристики жидкости являются непрерывными функциями, имеющими непрерывные частные производные по всем своим параметрам. Сплошная среда представляет собой модель, которая успешно используется при исследовании закономерностей покоя и движения жидкости.
Правомерность применения модели жидкости — сплошная среда подтверждена всей практикой гидравлики.
Гипотеза сплошности нужна для того, чтобы можно было применить дифференциальное исчисление, определенные формулы в математике, которые мы проходим. Если будем рассматривать жидкости как несплошное тело, то нужно применять другую «математику», которая находиться только в стадии развития.

Силы, действующие на выделенный объем сплошной среды (жидкости)

Рассмотрим не­который объем жидкости (содержащийся в сосуде или объем, мыс­ленно выделенный из общей массы жидкости). Приложенные к нему силы можно разделить на массовые и поверхностные.

Массовые силы обусловлены действующим на жидкость силовым полем, они приложены к каждой частице жидкости и пропорцио­нальны их массе, примером таких сил являются силы тяжести, силы инерции переносного движения.

Поверхностные силы обусловлены взаимодействием рассматри­ваемого объема с окружающими его телами; если жидкость налита в сосуд — это силы реакции стенок сосуда; если рассматривается объ­ем, мысленно выделенный из общей массы жидкости — это силы, действующие на него со стороны «отброшенной» жидкости. Во всех случаях эти силы распределены по поверхности выделенного объема и определяются площадью поверхности, на которую они действуют.

Напряжения в сплошной среде. Нормальные и касательные напряжения.

clip_image002Определим напряжение, возникающее в жидкости под действием массовых сил. Возьмем элементарный объем ∆ V, в котором заключе­на масса жидкости ∆m и приложена массовая сила ∆.F.

Отношение этой силы к массе элементарного объема называется средним напряжением массовой силы и обозначается через аср, та­ким образом, аср=│F │ / ∆m

Если объем элементарной частицы и, следовательно, ее масса стремится к нулю, то получим напряжение массовых сил в точке lim F │ / ∆m = d| F | /dm = а. (1.1) при ∆ V → 0 .

Напряжение массовых сил совпадает с ускорением (как следует из второго закона Ньютона), вызываемым этой силой, и имеет его размерность.

Аналогичным образом можно оп­ределить напряжение поверхност­ных сил. Эти силы пропорциональны размеру площадки, на которую они действуют, и непрерывно распреде­лены по ее поверхности; их можно разложить на составляющие: нор­мальную силу сжатия и касательную силу (силу трения).

Поверхностные силы сжатия име­ют место как при равновесии (покое) жидкости, так и при ее движении, а поверхностные силы трения в обычных жидкостях возникают только при их движении.

Пусть на элементарную площадку ∆ω действует поверхностная сила R, направленная под углом а к нормали к площадке (рис. 1.1).

Силу R можно разложить, как указывалось, на нормальную со­ставляющую ∆Р, направленную вдоль нормали к площадке, и на ка­сательную T, лежащую в плоскости касательной к поверхности в точке приложения силы R..

Предел отношения элементарной силы (силы трения) ∆T к пло­щадке∆ω или отношение конечной касательной силы Т к площади w называется касательным напряжением.

т = lim | TI∆ω| или τ = T/ ω (1.2) ∆ω→0

Нормальные напряжения в жидкости определяются как предел отношения силы давления ∆Р к площадке ∆ω: р = lim | TI∆ω| ∆ω→0

Нормальные напряжения р называют давлением.

Сопротивление растяжению внутри капельных жидкостей по мо­лекулярной теории может быть весьма значительным. При опытах с тщательно очищенной и дегазированной водой в ней были получены кратковременные напряжения растяжения до 28*103 кН. Однако жидкости, содержащие взвешенные твердые частицы и мельчайшие пузырьки газов, не выдерживают даже незначительных напряжений растяжения. Поэтому в дальнейшем будем считать, что напряжения растяжения в капельных жидкостях практически невозможны и в ней могут действовать только сжимающие усилия, вызывающие нор­мальное напряжение.

Давление: абсолютное, избыточное, вакуумное

Если величину давления р отсчитывают от нуля, его называют аб­солютным, если от атмосферного — избыточным или манометри­ческим.

Абсолютное давление равно атмосферному, сложенному с избы­точным, т.е.

Pабс=Рат+Ризб (1.3)

Если гидромеханическое давление в жидкости оказывается мень­ше, атмосферного, то, как принято говорить, в жидкости имеется ва­куум (разрежение).

Величина вакуума определяется разностью между атмосферным и абсолютным давлениями в жидкости

Рвак = Рат + Рабс (1.4)

и изменяется в пределах от нуля до атмосферного давления.

Физические свойства жидкостей

Плотность ρ — масса жидкости в единице объема. Для однородной жидкости ρ=m/V

где  m — масса жидкости в объеме V. Единицы измерения ρ в системе СГС — г/см3, в системе СИ — кг/м3.

Удельный вес γ — вес жидкости в единице объема: γ=G/V

где G — вес жидкости. Единицы измерения γ в системе СГС — дин/см3, в системе МКГСС — кгс/м3, а в системе СИ — Н/м3.

Удельный вес и плотность связаны между собой зависимостью γ=ρ·g, где g — ускорение свободного падения.

Плотность и удельный вес. Важнейшим физическим свойством жидкости, определяющим её концентрацию в пространстве, является плотность жидкости. Под плотностью жидкости понимается масса единицы объёма жидкости: clip_image004где: М — масса жидкости, W — объём, занимаемый жидкостью.

В международной системе единиц СИ масса вещества измеряется в кг, объём жидко­го тела в м 3 , тогда размерность плотности жидкости в системе единиц СИ — кг/м 3.

Плотность капельных жидкостей и газов зависит от температуры и давления. Зави­симость величины плотности жидкости и газа при температуре отличной от 20 °С опреде­ляется по формуле Д.И. Менделеева:

clip_image006где: р и р20плотности жидкости (газа) при температурах соответственноT и Tо=20°С,

βi — коэффициент температурного расширения.

(чем больше разность температур, тем меньше плотность).

Исключительными особенностями обладает вода, максимальная плотность которой отмечается при 4 °С.

Под удельным весом жидкости (газа) понимается вес единицы объёма жидкости (газа): clip_image008

Где — G вес жидкости (газа), W объем, занимаемый жидкостью (газом).

Связь между плотностью и удельным весом жидкости такая же как и между массой тела и её весом:

clip_image010 Размерность удельного веса жидкости в системе единиц СИ н/м 3 , удельный вес чис­той воды составляет 9810 н/м3.

Упругость. Капельные жидкости относятся к категории плохо сжимаемых тел. При­чины незначительных изменений объёма жидкости при увеличении давления очевидны, т.к. межмолекулярные расстояния в капельной жидкости малы и при деформации жидко­сти приходится преодолевать значительные силы отталкивания, действующие между мо­лекулами, и даже испытывать влияние сил, действующих внутри атома.

Оценка упругих свойств жидкостей может осуществляться по ряду специальных па­раметров.

clip_image012коэффициент объёмного сжатия жидкости представляет собой относительное изменение объёма жидкости при изменении давления на единицу. По суще­ству это известный закон Гука для модели объёмного сжатия:

, где clip_image014— нач.объём жид-ти, (при начальном давлении),

clip_image016— коэффициент объёмного (упругого) сжатия жидкости.

Считается, что коэффициент объёмного сжатия жидкости зависит с достаточно большой точностью только от свойств самой жидкости и не зависит от внешних условий. Коэффициент объёмного сжатия жидкости имеет размерность обратную размерности дав­ления, т.е. м/н.

адиабатический модуль упругости жидкости К, зависящий от термодинами­ческого состояния жидкости (величина обратная коэффициенту объёмного сжатия жидкости): clip_image018

Вязкость.При движении реальных (вязких) жидкостей в них возникают внутренние напряжения, обусловленные силами внутреннего трения жидкости. Природа этих сил до­вольно сложна; возникающие в жидкости напряжения связаны с процессом переноса им­пульсаclip_image020(вектора массовой скорости движения жидкости). При этом возникающие в жидкости напряжения обусловлены двумя факторами: напряжениями, возникающими при деформации сдвига и напряжениями, возникающими при деформации объёмного сжатия.

Наличие сил вязкостного трения в движущейся жидкости подтверждается простым и наглядным опытом. Если в цилиндрическую ёмкость, заполненную жидкостью опустить вращающийся цилиндр, то вскоре придёт в движение (начнёт вращаться вокруг своей оси в том же направлении, что и вращающийся цилиндр) и сама ёмкость с жидкостью. Этот факт свидетельствует о том, что вращательный момент от вращающегося цилиндра был передан через вязкую жидкость самой ёмкости, заполненной жидкостью.

clip_image022 коэффициент динамической вязкости жидкости.

Величина коэффициента динамической вязкости жидкости при постоянной темпера­туре и постоянном давлении зависит от внутренних (химических) свойств самой жидко­сти. Размерность коэффициента динамической вязкости в системе единиц СИ.Па*с

ко­эффициент динамической вязкости к плотности жидкости: clip_image024В системе единиц СИ коэффициент кинематической вязкости измеряется в м2 /с.

Вязкость жидкости в значительной степени зависит от температуры и давления. При увеличении температуры капельной жидкости коэффициенты её вязкости (как динамиче­ский, так и кинематический) резко снижается в десятки и сотни раз, что обусловлено уве­личением внутренней энергии молекул жидкости по сравнению с энергией межмолеку­лярной связи в жидкости.

Кроме деформации сдвига внутреннее сопротивление в жидкости возникает и при объёмном сжатии жидкости, т.е. сжимаемая жидкость стремится восстановить состояние первоначального равновесия. Этот процесс, в некоторой степени, аналогичен проявлению сил сопротивления при деформации сдвига, хотя сам процесс и отличается по своей сути. По этой причине говорят, что в жидкости проявляется так называемая вторая вязкость £, обусловленная деформацией объёмного сжатия жидкости.

Плотность.

Важнейшим физическим свойством жидкости, определяющим её концентрацию в пространстве, является плотность жидкости. Под плотностью жидкости понимается масса единицы объёма жидкости: clip_image004[1]где: М — масса жидкости, W — объём, занимаемый жидкостью.

В международной системе единиц СИ масса вещества измеряется в кг, объём жидко­го тела в м 3 , тогда размерность плотности жидкости в системе единиц СИ — кг/м 3.

Плотность капельных жидкостей и газов зависит от температуры и давления. Зави­симость величины плотности жидкости и газа при температуре отличной от 20 °С опреде­ляется по формуле Д.И. Менделеева:

clip_image006[1]где: р и р20плотности жидкости (газа) при температурах соответственноT и Tо=20°С,

βi — коэффициент температурного расширения.

(чем больше разность температур, тем меньше плотность).

Исключительными особенностями обладает вода, максимальная плотность которой отмечается при 4 °С.

Под удельным весом жидкости (газа) понимается вес единицы объёма жидкости (газа): clip_image008[1]

Где — G вес жидкости (газа), W объем, занимаемый жидкостью (газом).

Связь между плотностью и удельным весом жидкости такая же как и между массой тела и её весом:

clip_image025 Размерность удельного веса жидкости в системе единиц СИ н/м 3 , удельный вес чис­той воды составляет 9810 н/м3.

Уравнение состояния.

Основное уравнение Эйлера clip_image027, где X,Y,Z – компоненты ускорения

clip_image029Уравнение Эйлера для разных состояний имеет разные формы записи. Поскольку само уравнение получено для общего случая, то рассмотрим несколько случаев:

1) движение неустановившееся.

2) жидкость в покое. Следовательно, Ux = Uy = Uz = 0.

В таком случае уравнение Эйлера превращается в уравнение равномерной жидкости. Это уравнение также дифференциальное и является системой из трех уравнений;

3) жидкость невязкая. Для такой жидкости уравнение движения имеет вид clip_image031

где Fl – проекция плотности распределения сил массы на направление, по которому направлена касательная к линии тока; dU/dt – ускорение частицы

Подставив U = dl/dt в (2) и учтя, что (∂U/∂l)U = 1/2(∂U2/∂l), получим уравнение.

Мы привели три формы уравнения Эйлера для трех частных случаев. Но это не предел. Главное – правильно определить уравнение состояния, которое содержало хотя бы один неизвестный параметр.

Уравнение Эйлера в сочетании с уравнением неразрывности может быть применено для любого случая.

Уравнение состояния в общем виде: clip_image033

Таким образом, для решения многих гидродинамических задач оказывается достаточно уравнения Эйлера, уравнения неразрывности и уравнения состояния.

С помощью пяти уравнений легко находятся пять неизвестных: p, Ux, Uy, Uz, ρ.

Невязкую жидкость можно описать и другим уравнением

ρ=const — несжимаемые жидкости = капельные;

p/ρ=RT — газообразные.

Жидкости несжимаемые, капельные, газообразные.

Жидкость– физическое тело, обладающее свойством текучести, в силу чего жидкость не имеет собственной формы и принимает форму сосуда, в  который её помещают.
      Жидкость делят на два вида: капельные и газообразные. Капельные жидкости характеризуются большим сопротивлением сжатию (почти несжимаемы) и малым сопротивлением растягивающим и касательным усилиям.
      Газы способны к весьма значительному уменьшению своего объёма под действием давления и к неограниченному расширению при отсутствии давления. В отличие от газов (сжимаемые жидкости) капельные жидкости образуют свободную поверхность.
Несмотря на различия, законы движения капельных жидкостей и газов при определённых условиях можно считать одинаковыми, например в случае, когда сжимаемостью газов можно пренебречь. Жидкости, существующие в природе, называются реальными. Для облегчения решения многих задач гидравлики введено абстрактное понятие идеальной жидкости, которая обладает абсолютной подвижностью частиц (отсутствуют силы внутреннего трения – вязкость равна нулю).

Несжимаемая жидкость – жидкость, которая сохраняет только объем, а при этом форма может меняться как угодно(текучесть жидкости)

clip_image035

Коэффициенты сжимаемости.

коэффициент сжимаемости жидкости:

где A – некоторая функция, возрастающая с температурой, p – внешнее давление и pT – давление, связанное с силами Ван-дер-Ваальса (a/V2) при температуре T.

Эта формула показывает, что коэффициент сжимаемости растет с повышением температуры и уменьшается с ростом давления. Среди всех жидкостей наибольшей сжимаемостью обладает жидкий гелий, у которого при давлении в несколько атмосфер коэффициент c равен clip_image037. Коэффициент сжимаемости воды равен clip_image038, а ртути –clip_image039clip_image040.

βp= — 1/V0 * ∆V/∆p ; β – коэф. сжимаемости.

V=V0(1 – βp∆p) – для капельных жидкостей (несжимаемые жидкости);

K=1/βp – модуль объемных жидкостей .

βt=1/V0 * ∆V/∆t .

Давление в покоящейся жидкости

В покоящейся жидкости всегда присутствует сила давления, которая называется гидростатическим давлением. Жидкость оказывает силовое воздействие на дно и стенки сосуда. Частицы жидкости, расположенные в верхних слоях водоема, испытывают меньшие силы сжатия, чем частицы жидкости, находящиеся у дна.

Рассмотрим резервуар с плоскими вертикальными стенками, наполненный жидкостью (рис.2.1, а). На дно резервуара действует сила P равная весу налитой жидкости G = γ V, т.е. P = G.

Если эту силу P разделить на площадь дна Sabcd, то мы получим среднее гидростатическое давление, действующее на дно резервуара. clip_image042

Дифференциальное уравнение гидростатики (Ур-е Эйлера)

Продолжая рассмотрение вопроса о давлении в покоящейся жидкости, мысленно выделим в ней элементарный параллелепипед с ребрами dx, dy, dz, параллельными соответствующим осям прямоугольных координат (рис. 2.2) и обозначим через р давление точке М — центр параллелепипеда.

Пусть в точках «а» и «b» граней параллелепипеда, параллельных координатной плоскости xOz, действуют давления р1 и p2. Поскольку точки а и b отстоят от центра параллелепипеда на величины (- dy/2) и ( + dy/2), а давление в каждой точке жидкости является функцией координат, то величины p1 и р2 с точностью до бесконечно малой более высокого порядка (разложение в ряд Тейлора) могут быть представлены: p1=p – ½*∂p/∂y*dy ; p2= p + ½*∂p/∂y*dy . (2.1)

Аналогично можно получить выражения для давления на гранях, параллельных плоскости хОу,

p – ½*∂p/∂z*dz ; p + ½*∂p/∂z*dz ;

и плоскости yOz p – ½*∂p/∂x*dx ; p + ½*∂p/∂x*dx ;

Параллелепипед находится в покое, следовательно, суммы про­екций всех сил, действующих на него, на любую ось равны нулю. Спроектировав силы на ось, например у, получим P1dx dz-P2dx dz+pdx dy dz Y= 0 .

Подставляя сюда значения р1 и р1 из (2.1), найдем

(p – ½*∂p/∂y*dy) dx dz – (p + ½*∂p/∂y*dy) dx dz + p dx dy dz Y=0.

Далее, после приведения, получим —∂p/∂y*dx dy dz + pdx dy dz Y=0 или после сокращения∂p/∂y – pY=0.

Аналогичные уравнения получаются также для проекций на оси х и у. В результате получаем систему из трех дифференциальных уравнений X – 1/p*∂p/∂x = 0 Y — 1/p*∂p/∂y = 0 Z — 1/p*∂p/∂z = 0. (2.2)

Эта система носит название уравнений гидростатики Эйлера: они определяют закон распределения давления вдоль соответствующей оси координат.

Умножая уравнение (2.2) соответственно: первое — на dx, второе — на dy и третье — на dz и складывая, получим Xdx + Ydy +Zdz —1/p(∂p/∂x* dx + ∂p/∂y* dy + ∂p/∂z* dz) = 0. (2.3)

Давление, напомним, есть функция только координат, поэтому выражение в скобках представляет собой полный дифференциал этой функции и уравнение (2.3) можно представить в виде

dp =ρ (Xdx + Ydy + Zdz). (2.4)

Это уравнение является основным дифференциальным уравнени­ем равновесия жидкости.

Так как левая часть формулы (2.4) является полным диффе­ренциалом, то для однородной жидкости = const) и прямаячасть тоже должна быть полным дифференциалом некоторой функции U(x,y,z), т.е.

Xdx + Ydy + Zdz = dU, Где X= ∂U/∂x , Y=∂U/∂y, Z=∂U/∂z .

Равновесие несжимаемой жидкости в поле силы тяжести.

Это равновесие описывается уравнением, которое называется основным уравнением гидростатики.

Для единицы массы покоящейся жидкости clip_image044

Для любых двух точек одного и того же объема, тоclip_image046

Полученные уравнения описывают распределение давления в жидкости, которая находится в равновесном состоянии. Из них уравнение (2) является основным уравнением гидростатики.

Для водоемов больших объемов или поверхности требуется уточнения: сонаправлен ли радиусу Земли в данной точке; насколько горизонтальна рассматриваемая поверхность.

Из (2) следует p = p0 + ρg(z – z0), (4) где z1 = z; p1 = p; z2 = z0; p2 = p0. p = p0 + ρgh, (5)

где ρgh – весовое давление, которое соответствует единичной высоте и единичной площади.

Давление р называют абсолютным давлением pабс.

Если р > pабс, то p – pатм = p0 + ρgh – pатм – его называют избыточным давлением: pизч = p < p0, (6)

если p < pатм, то говорят о разности в жидкости pвак = pатм – p, (7) называют вакуумметрическим давлением.

Свойства гидростатического давления

Свойство 1.(на рис. а) В любой точке жидкости гидростатическое давление перпендикулярно площадке касательной к выделенному объему и действует внутрь рассматриваемого объема жидкости.

clip_image048Для доказательства этого утверждения вернемся к рис.2.1, а. Выделим на боковой стенке резервуара площадку Sбок (заштриховано). Гидростатическое давление действует на эту площадку в виде распределенной силы, которую можно заменить одной равнодействующей, которую обозначим P. Предположим, что равнодействующая гидростатического давления P, действующая на эту площадку, приложена в точке А и направлена к ней под углом φ (на рис. 2.1 обозначена штриховым отрезком со стрелкой). Тогда сила реакции стенки R на жидкость будет иметь ту же самую величину, но противоположное направление (сплошной отрезок со стрелкой). Указанный вектор R можно разложить на два составляющих вектора: нормальный Rn (перпендикулярный к заштрихованной площадке) и касательный Rτ к стенке.

Сила нормального давления Rn вызывает в жидкости напряжения сжатия. Этим напряжениям жидкость легко противостоит. Сила Rτ действующая на жидкость вдоль стенки, должна была бы вызвать в жидкости касательные напряжения вдоль стенки и частицы должны были бы перемещаться вниз. Но так как жидкость в резервуаре находится в состоянии покоя, то составляющая Rτ отсутствует.

Свойство 2. (на рис. б) Гидростатическое давление неизменно во всех направлениях.

В жидкости, заполняющей какой-то резервуар, выделим элементарный кубик с очень малыми сторонами Δx, Δy, Δz (рис.2.1, б). На каждую из боковых поверхностей будет давить сила гидростатического давления, равная произведению соответствующего давления Px, Py , Pz на элементарные площади. Обозначим вектора давлений, действующие в положительном направлении (согласно указанным координатам) как P’x, P’y, P’z, а вектора давлений, действующие в обратном направлении соответственно x, y, z. Поскольку кубик находится в равновесии, то можно записать равенства

P’xΔyΔz=xΔyΔz P’yΔxΔz = yΔxΔz P’zΔxΔy + γΔx, Δy, Δz = zΔxΔy

где γ — удельный вес жидкости; Δx, Δy, Δz — объем кубика.

Сократив полученные равенства, найдем, что P’x = P»x; P’y = P»y; P’z + γΔz = z

Членом третьего уравнения γΔz, как бесконечно малым по сравнению с P’z и z, можно пренебречь и тогда окончательно P’x = P»x; P’y = P»y; P’z=P»z

Вследствие того, что кубик не деформируется (не вытягивается вдоль одной из осей), надо полагать, что давления по различным осям одинаковы, т.е. P’x = P»x = P’y = P»y = P’z=P»z

Свойство 3. Гидростатическое давление в точке зависит от ее координат в пространстве.

Это положение не требует специального доказательства, так как ясно, что по мере увеличения погружения точки давление в ней будет возрастать, а по мере уменьшения погружения уменьшаться. Третье свойство гидростатического давления может быть записано в виде

P=f(x, y, z)

Основное уравнение гидростатики для капельных жидкостей и газов.

dp = (Xdx + Ydy + Zdz). – уравнение Эйлера

x=0, y=0, z=-g → — gdz=0, — gz=const dp= -gdz

p2 – p1 = — ρg (z2 – z1), p2 = p1 + ρgh — (действ. в поле действия g)

z1 + p1/ρg = z2 + p2/ρg

Закон Паскаля. P2=p1 + ρgh

Для поверх. «Если на поверхности жидкости изменится давление, то она распространяется мгновенно во все точки жидкости».

Основно́й зако́н гидроста́тики (закон Паскаля) формулируется так: «жидкости и газы передают оказываемое на них давление равномерно по всем направлениям».

На основе закона Паскаля гидростатики работают различные гидравлические устройства: тормозные системы, прессы и др.

Закон Паскаля неприменим в случае движущейся жидкости (газа), а также в случае, когда жидкость (газ) находится в гравитационном поле; так, известно, что атмосферное и гидростатическое давление уменьшается с высотой.

Относительный покой жидкости.

Понятие относительного покоя. В предшествующем изложе­нии гидростатики предполагалось, что жидкость находится в по­кое относительно некоторой условно неподвижной системы отсчета (в так называемом абсолютном покое). Неподвижными относительно этой системы предполагаются также сосуды, в ко­торых заключена жидкость. При таком предположении и полу­чено основное уравнение гидростатики.

Перейдем к рассмотрению так называемого относительного по­коя жидкости. Под этим определением подразумевается, что части­цы жидкости, заключенной в некотором сосуде, не имеют перемещений друг относительно друга и вся масса жидкости покоит­ся относительно стенок сосуда, следовательно, относительно жестко связанных с сосудом координатных осей, в то же время сосуд пере­мещается произвольным образом относительно неподвижной систе­мы отсчета.

Из основ механики известно, что законы, описывающие абсолют­ный или относительный покой (а также абсолютное или относитель­ное движение), не различаются между собой, если подвижная система отсчета перемещается относительно неподвижной инерциальным образом, т.е. прямолинейно и равномерно. Рассмотрим два примера относительного покоя жидкости.

Относительный покой однородной жидкости в цилиндриче­ском сосуде, вращающемся вокруг вертикальной оси. Подвижные координатные оси расположим так, что ось Oz направлена верти­кально вверх (рис. 2.17). Сосуд, благодаря трению, вовлекает в дви­жение наполняющую его жидкость и по истечении небольшого промежутка времени, после начала вращения, жидкость также на­чинает приходить во вращение с той же угловой скоростью, что и сам сосуд. Таким образом, в дальнейшем жидкость покоится относи­тельно сосуда, что позволяет применить уравнения гидростатики, но в координатах, жестко связанных с сосудом, т.е. вращающихся в пространстве.

Приложенными к частицам жидкости массовыми силами являют­ся по-прежнему силы тяжести, параллельные оси z; силами инерции Fи в переносном движении в данном случае являются центробежные силы, перпендикулярные к оси z, имеющие ускорение (ω2r), где r = √(x2 + у2) есть расстояние данной частицы жидкости от оси враще­ния. Проекциями ускорения равнодействующей этих сил на оси ко­ординат будут X=│Fи/m│x= ω2x ; Y=│Fи/m│y= ω2y ; Z=│Fи/m│z= ω2z ;

Подставляя эти выражения в (2.8), найдем дифференциальное уравнение поверхностей уровня

ω2(xdx + ydy) – gdz =0. (2.21)

Интегрируя это уравнение, получим ω2/2(x2 + y2) – gz =const или ω2r2/2 — gz = const (2.22)

Из (2.22) следует, что поверхности уровня (в том числе и свобод­ная поверхность) являются параболоидами вращения (см. рис. 1.17) вокруг оси z.

Напомним, что распределению давления в несжимаемой жидко­сти соответствует зависимость (2.4).

clip_image050dp =p(Xdx+Ydy + Zdz),

а в данном случае dp = р [ω2 (xdx + ydy) gdz ],

отсюда (после интегрирова­ния) можно получить

р = р ω2r2/2 — pgz+c. (2.23)

Поместим начало подвиж­ных координат в точку «О» пе­ресечения оси z со свободной поверхностью. Тогда постоян­ная интегрирования опреде­лится из граничного условия р = р0 при r = 0 и Z= 0. Подста­вив эти значения в (2.23), получим const = р0, следовательно р = р0 +р* ω2r2/2 — pgz. (2.24)

Последнее уравнение выражает закон распределения давления в жидкости.

Из уравнения (2.24) видно, что давление в некоторой горизон­тальной плоскости z=const по мере увеличения радиуса увеличива­ется по сравнению с гидростатическим, вычисленным для неподвижного сосуда, на величину p2r2/2 , т.е. тем сильнее, чем больше число оборотов сосуда. Этим пользуются в технике в случа­ях, когда надо увеличить на некоторый период времени давление внутри массы жидкости (увеличение давления, зависящее от значе­ния центробежной силы, лежит также в основе работы центробеж­ных насосов).

Примеры применения основных уравнений гидростатики.

Гидравлика — это наука о законах движения и равновесия жидкостей и способах приложения этих законов к решению конкретных технических задач. С гидравликой связаны отрасли науки и техники, занимающиеся созданием, исследованием и использованием различных гидравлических машин: насосов, турбин, гидропередач и гидропривода. Часто описание теории этих машин, их устройства и принципов работы объединяют в одном учебном предмете «Гидравлика и гидравлические машины».

Слово гидравлика произошло от греческого hydro (вода) и aulos (трубка). В настоящее время это понятие значительно расширилось: гидравлика занимается изучением любой жидкости, движущейся не только в трубах.

Первым научным трудом в области гидравлики принято считать трактат древнегреческого математика и механика Архимеда (ок. 287—212 до н. э.) «О плавающих телах», написанный примерно за 250 лет до н. э. Архимедом открыт закон о равновесии тела, погруженного в жидкость, который затем лег в основу теории плавания кораблей и их остойчивости.

Гидравлические машины предназначены для перемещения жидкостей, преобразования энергии потока жидкости в механическую энергию, а также передачи механической энергии от машины-двигателя к машине-орудию или преобразования различных видов движений и скоростей посредством жидкости. Соответственно гидравлические машины подразделяются на три основных класса: насосы, гидродвигатели и гидропривод. Они различаются по своим энергетическим и конструктивным признакам, но общим для них является то, что в качестве рабочего тела используется жидкость.

Наиболее многочисленный класс гидравлических машин составляют насосы. Всего насчитывается около 130 наименований насосов различных видов. Государственный стандарт определяет насос как машину для создания потока жидкой среды. Этот поток создается в результате силового воздействия вытеснителя на жидкость в рабочей камере насоса. По характеру силового воздействия насосы разделяют на динамические и объемные. К динамическим насосам относятся лопастные, центробежные, осевые, вихревые, струйные, к объемным — поршневые и плунжерные, диафрагменные, крыльчатые, роторные и др.

Гидравлические двигатели, как и насосы, подразделяются на машины динамического и объемного действия. К ним относятся гидравлические турбины, водяные колеса, гидроцилиндры и роторные гидромоторы. Гидродвигатели находят широкое применение в различных областях техники: в гидроэнергетике (гидравлические турбины, которые вырабатывают в стране около 20% электроэнергии) , в нефтедобыче и горном деле (буровые установки, снабженные турбобурами), на транспорте (гидроцилиндры и гидромоторы) и т. д.

Основное уравнение гидростатики : P=P0+ρgh ;

Используется в гидравлическом прессе.

Приборы для измерения давления.

Пьезометры. Для измерения гидростатического давления в жидкости применяются приборы, которые делятся на две группы: жидкостные (пьезометры и пьзометрические трубки, открытый пьезометр представляет собой стеклянную трубку небольшого диаметра, одним концом присоединенную к сосуду, в котором надо измерить давление, а другим концом направлен в атмосферу ) и механические. Давление над поверхностью жидкости определяется высотой этой жидкости – пьезометрическая высота clip_image052 где clip_image054-абсолютное давление clip_image056-атмосферное давление. Поверхность, проходящая через уровень жид-ти в пьезометре – пьезометрическая поверхность. С помощью пьезометра можно измерять как избыточное, так и вакуумметрическое давление. При этом clip_image058 будет либо положительной, при избыточном давлении, либо отрицательной, при вакууме, или равна нулю в открытом сосуде. Пьезометры, служащие для измерения разности давления в двух точках жид-ти или в двух разных сосудах, называются дифференциальными.

Манометры. Т.к. пьезометры измеряют сравнительно небольшие давления (при больших давления трубка пьезометра получается чрезмерно длинной), применяют жидкостные манометры. В них давление измеряется высотою жид-ти не той, которая находится в сосуде, но в жид-ти большей плотности (ртути)-ртутный манометр. Представляет собой стеклянную трубку, изогнутую во внешнюю (открытую в атмосферу) ветвь трубки заливают ртуть. Если в сосуде содержится газ, то давление clip_image060. Если сосуд частично заполнен жид-тью, то давление над уровнем воды clip_image062 где clip_image064-плотность воды.

Вакуумметры. Для измерения давления, которое меньше атмосферного (избыт. давление будет отрицательным – вакуум) применяются вакуумметры. По конструкции те же манометры, только в этом случае уровень ртути в ветви присоединен к сосуду выше, чем в открытой ветви. Определение давления в сосуде, заполненном воздухом clip_image066, а вакуум равняется clip_image068

Для измерения незначительного давления в газе применяют микроманометры, трубка которых наклонена под небольшим угломclip_image070 к горизонту и этот угол можно менятьclip_image072

Для измерения больших давлений применяют механические и пружинные манометры. Мембранные манометры. Для измерения быстроизменяющихся давлений и дистанционной передачи показаний используются электрические способы измерения давления.

Единицы измерения давления.

Единицей измерения давления используется техническая атмосфера, равная давлению в 1 кгс на 1 см². Техническая атмосфера обозначается ат или кгс/см². В качестве единиц измерения давления (разрежения) применяют также метр и миллиметр водяного столба и миллиметр ртутного столба.

Соотношения между этими единицами:

1 кгс/см² = 735,56 мм рт. ст. (при 0 °С);
1 кгс/см² = 10 м вод. ст. (при 4 °С);
1 кгс/см² = 10 000 мм вод. ст. = 10 000 кгс/м².

В науке, а иногда и в технике за единицу давления принимается физическая атмосфера, обозначаемая атм и равная давлению столба ртути высотой 760 мм рт. ст. при 0 °С.

Соотношения между технической и физической атмосферами следующие:

1 кгс/см² = 0,9678 атм;
1 атм = 1,0332 кгс/см² = 10,332 м вод. ст.

В системе СИ эта единица названа паскаль (Па).

Соотношения паскаля со старыми единицами

1 мм вод. ст. = 9,80665 Па ≈ 9,8 Па;
1 мм рт. ст. = 133,322 Па ≈ 133,3 Па;
1 кгс/см² = 98 066,5 Па;
1 атм = 101 325 Па.

Определение величины равнодействующей силы давления на плоские и криволинейные поверхности.

Сила давления жидкости па плоскую поверхность

Из основного закона гидростатики величина давления р определяется глу­биной погружения точки под уровень свободной поверхности h жидкости и величиной плотности жидкости р. clip_image074

Для горизонтальной поверхности величина давления одинакова во всех точках этой поверхно­сти, т.к.:

clip_image076clip_image078— Сила давления жидкости на горизонтальную поверхность (дно сосу­да). «Гидравлический пара­докс» (см. рисунок), здесь величины силы давления на дно всех сосудов одинаковы, независимо от формы стенок сосудов и их физической высоты, т.к. площади доньев у всех сосудов оди­наковы, одинаковы и величины давлений.

clip_image080Сила давления на наклонную поверхность. Примером такой поверхности может служить наклонная стенка сосуда. Для вывода уравнения и вычисления силы давления на стенку выберем систему координат: ось ОХ вдоль пересечения плоскости свободной поверхности жидкости с на­клонной стенкой, а ось OZ вдоль этой стенки перпендикулярно оси ОХ. В качестве координатной плоскости XOZ будет выступать сама наклонная стенка. На плос­кости стенки выделим малую площадкуclip_image082, которую можем считать горизонтальной (мала размером). Величина давления на глубине площадки будет равна: clip_image084 где: h — глубина погружения площадки относительно свободной поверхности жидкости (по вертика­ли). clip_image086 Сила давления dP на площадку: clip_image088

Для определения силы давления на всю смоченную часть наклонной стенки (часть площади стенки сосуда, расположенная ниже уровня свободной поверхности жидкости) необходимо проинтегрировать это урав­нение по всей смоченной части площади стенки S . clip_image090

Интегралclip_image092представляет собой статический момент площади S относительно оси ОХ. Он, как известно, равен произведению этой площади на координату её центра тяжести zc. Тогда окончательно: clip_image094— Сила давления на наклонную плоскую поверхность. Сила давления на плоскую стенку кроме величины и направления характеризуется также и точкой приложения этой силы, которая называется центром дав­ления.

Понятие центра давления.

Центр давления силы атмосферного давления p0S будет находиться в центре тяже­сти площадки, поскольку атмосферное давление передаётся на все точки жидкости одина­ково. Центр давления самой жидкости на площадку можно определить из теоремы о моменте равнодействующей силы. Момент равнодействующей

силы относительно оси ОХ будет равен сумме моментов составляющих сил относительно этой же оси.

clip_image096, откуда clip_image098 где: clip_image100— положение центра избыточного давления на вертикальной оси, clip_image102— момент инерции площадки S относительно оси ОХ.

Центр давления (точка приложения равнодействующей силы избыточного давления) расположен всегда ниже центра тяжести площадки. В случаях, когда внешней действующей силой на свободную поверхность жидкости является сила атмосферного давления, то на стенку сосуда будут одновременно действовать две одинаковые по вели­чине и противоположные по направлению силы обусловленные атмосферным давлением (на внутреннюю и внешнюю стороны стенки). По этой причине реальной действующей несбалансированной силой остаётся сила избыточного давления.

Применение законов гидростатики к нефтепромысловым задачам (расчет давления, простейшие гидравлические машины)

clip_image104Выберем внутри покоящейся жидкости криволинейную поверхность ABCD, которая может быть частью поверхности некоторого тела погруженного в жидкость. Построим проекции этой поверхности на координатные плоскости. В координатной плоскости XOZ проекцией этой поверхности будет плоская поверхность clip_image106, в координатной плоскости YOZ — плоская поверхностьclip_image108 и в плоскости свободной поверхности жидкости (координатная плоскость ХОТ) — плоская поверхность clip_image110. На криволинейной поверхности выделим малую площадку dS, проекции которой на координатные плоскости будут соответственно clip_image112 . Сила давления на криво­линейную поверхность dP будет направ­лена по внутренней нормали к этой по­верхности: clip_image114

Горизонтальные составляющие мо­гут быть определены, как силы давления на проекции малой площадки dS на соответствующие координатные плоскости: clip_image116

Интегрируя эти уравнения, получим (как в случае с давлением на наклонную по­верхность):

clip_image118

Вертикальная составляющая силы давления: clip_image120

Второй интеграл в этом равенстве представляет собой объём образованный рассмат­риваемой криволинейной поверхностью ABCD и её проекцией на свободную поверхность жидкостиclip_image122. Этот объём принято называть телом давленияclip_image124clip_image126

Горизонтальные составляющие силы давления на криволинейную поверхность равны давлениям на вертикальные проекции этой поверхности, а вертикаль­ная составляющая равна весу тела давления, и силе внешнего давления на горизонтальную проекцию криволинейной поверхности.

clip_image128Примерами могут служить простейшие гидравлические машины — гидравлический пресс, построен­ный по принципу сообщающихся сосудов и гидравлический аккумулятор.

Гидравлический пресс состоит из двух цилиндров приводного (1) и рабочего (2) со-

единенных между собой трубо­проводом и представляет систе­му сообщающихся сосудов. В приводном цилиндре перемеща­ется плунжер малого диаметра d, в рабочем цилиндре находит­ся поршень с большим диамет­ром D. Связь между плунжером и

рабочим поршнем осуществляется через рабочую жидкость, заполняющую гидравлическую систему (сообщающиеся сосуды). Усилие F через рычаг передаются рабочей жидкости.

Сила давления на жидкость под плунжером Р] передаёт жидкости давление р, которое, в свою очередь, передаётся во все точки рабочего поршня. clip_image130

Тогда сила давления на поверхность рабочего поршня будет равнаclip_image132

С помощью гидравлического пресса, приложенная к концу рычага сила, увеличивается вclip_image134раз.

Основные задачи и методы гидродинамики.

Гидродинамикой называется раздел гидравлики, изучающий законы движение жидкостей и взаимодействие жидкости с покоящимися или движущимися в ней твердыми телами.

Задачей гидродинамики является отыскание характеристик движения по заданным параметрам. Последними являются силы, вызывающие движение, а искомыми харак-ми являются скорость движения и давление в жидкости. Давление внутри жидкости называется в этом случае гидродинамическим.

Движение жидкости можно изучать 2мя методами: методом Лагранжа (изучение движения выделенных частиц жидкости, перемещающихся в пространстве, т.е. непрерывно изменяющих свои координаты) и методом Эйлера (определение скорости той частицы, которая в данный момент времени здесь находится).

Установившееся и неустановившееся равномерное и плавно изменяющееся движения.

Установившемся (стационарным) называется движение, при котором давление, скорость и др. параметры в данной точке потока жидкости с течением времени не меняются; их значения меняются лишь при переходе к др. точке пространства. Записывается в виде двух зависимостей clip_image136 clip_image138clip_image140

Пример установившегося движения: движение жидкости в трубе, соединяющей два водоема с постоянными уровнями воды или истечение жид-ти из сосуда с постоянным уровнем жидкости в нем, также течение жидкости в трубопроводе, создаваемое работой центробежного насоса при постоянной частоте вращения.

Осн. Задача сводится к отысканию зависимостей: clip_image142= clip_image142[1]clip_image145clip_image147clip_image149clip_image145[1] clip_image152,зная эти проекции можно определить скорость в любой точке пространства, занимаемого потоком жидкости.

Установившееся движение делится на равномерное и неравномерное. Равномерное движение-движение, при котором поперечные сечения потока и х-ки течения одинаковы по всей длине тока. Пример: течение жид-ти в трубе постоянного сечения, рассматриваемой как трубка тока — совокупность линий тока, проходящих через некоторый малый замкнутый контур в жид-ти.

Неравномерное движение – движение, при котором значения скоростей в поперечном сечении струйки (потока) меняются по ее длине. Пример: течение жид-ти в конически расходящихся (диффузор) или сходящихся (конфузор) патрубках.

Неустановившимся (нестационарным) называется движение, при котором скорость и давление меняются также во времени, т.е. являются функ-ями координат и времени: clip_image154 clip_image156clip_image140[1]

Пример: истечение жид-ти из резервуара при переменном уровне жид-ти в нем, движение жид-ти в напорной или всасывающей трубе поршневого насоса.

Линия и трубка тока, элементарная струйка, поток локальные и средние скорости.

Линия тока (применяется при неустановившемся движении) это кривая, в каждой точке которой вектор скорости в данный момент времени направлены по касательной.

Трубка тока — трубчатая поверхность, образуемая линиями тока с бесконечно малым поперечным сечением. Часть потока, заключенная внутри трубки тока называется элементарной струйкой.

clip_image158Так как в потоке скорость отдельных частиц жидкости различна по живому сечению не всегда известен. Понятие средней скорости v в сечении. Средняя скоростьv в сечении потокаclip_image160— такая фиктивная скорость, с которой должны были двигаться все частицы жидкости, чтобы при этом объемный расход Q был бы тем же, что при реальном распределении скоростей. clip_image162

Локальная скорость потока — это скорость в определенной точке потока, измеряющаяся трубкой Пито-Прандтля.

Потоки напорный и безнапорный, гидравлические струи.

Потоки по характеру разделены на три категории:

Безнапорные потоки, частично ограниченные твердыми стенками и имеющие свободную поверхность. Пример: течение жидкости в каналах и реках.

Напорные потоки, ограниченные всесторонне жесткими стенками и имеющие свободную поверхность. Пример: движение жидкости в заполненным ею трубопроводе.

Струи, когда движение жид-ти происходит внутри такой же или др. жид-ти или в газовой среде.

Расход, уравнение неразрывности.

clip_image164

Уравнение неразрывности течений

Труба с переменным живым сечением.

Расход жидкости через трубу в любом ее сечении постоянен, т.е. Q1=Q2= const, откуда ω1υ1 = ω2υ2

Если течение в трубе является сплошным и неразрывным, то уравнение неразрывности примет вид: clip_image166

Элементарный объемный расход струйки – величина, представляющая собой объем жидкости, протекающий через живое сечение струйки в единицу времени clip_image168, где dV – объем жидкости прошедшее за время t через живое сечение clip_image160[1]

Поскольку поток жидкости состоит из совокупности элементарных струек, то расход потока Q равняется сумме расходов элементарных струек clip_image171 — м3

Так как в потоке скорость отдельных частиц жидкости различна по живому сечению не всегда известен. Понятие средней скорости v в сечении. Средняя скоростьv в сечении потокаclip_image160[2]— такая фиктивная скорость, с которой должны были двигаться все частицы жидкости, чтобы при этом объемный расход Q был бы тем же, что при реальном распределении скоростей. clip_image162[1]

Если объемный расход жидкости умножить на плотность жидкости, то получим массовый расход. clip_image174— кг/с

Умножая массовый расход clip_image176 на ускорение силы тяжести g получим весовой расход G, измеряется Н/с clip_image178

Примеры технического приложения уравнения Бернулли (скоростная трубка, расходомер Вентури, расчет мощности насоса)

Определение мощности насоса в установке для подачи жид-ти с одного уровня на более высокий. Жидкость поступает из резервуара А по всасывающей трубке В в насос Н, где энергия от двигателя передается жид-ти, поступающей в нагнетательную линию С. На всасывающем трубопроводе в сечении 1 – 1 (перед насосом) установлен вакууметр, а на нагнетательном трубопроводе в сечении подключен монометр. Удельная энергия жид-ти в сечении 1 – 1 равна clip_image180а в сечении 2 – 2 нагнетательной линии clip_image182Где clip_image184 и clip_image186— абсолютное давление.

Т.к. при протекании через насос жид-ть приобретает дополнительную энергию, то clip_image188clip_image190clip_image192clip_image194

clip_image196В условиях, когда диаметры всасывающей и нагнетательной линии близки между собой по величине или равны, прирост энергии равен clip_image140[2]

Полезная и эффективная мощность насоса clip_image198

Выражение мощности с учетом КПД двигателя clip_image200

Абсолютное давление во всасывающей линии clip_image184[1] через вакууметрическое давление clip_image186[1],а абсолютное давление в нагнет. линии clip_image186[2] через монометр. давление clip_image205, т.е. clip_image207то clip_image209clip_image192[1]clip_image212clip_image140[3]clip_image140[4]clip_image140[5]clip_image140[6]

clip_image214 Расходомер Вентури. Служит для измерения расхода жидкости в трубопроводах и широко применяется в различных обл. техники. Преимущество среди других приборов заключается в простота в конструкции (отсутствие вращающихся и трущихся деталей). Состоит из 2х участков: плавносужающегося (конфузора) и плавнорасширяющегося (диффузора). Плавность очертаний направлена на уменьшение гидравл. потери при проходе жид-ти через суженное сечение. Расходомеры бывают горизонтальными, вертикальными или расположенными наклонною. Формула для расходаclip_image216, где с- постоянная расходомера, clip_image218— показание монометраclip_image140[7]

Трубка Пито. Гидродинамическая трубка Пито служит для измерения местных скоростей в безнапорном потоке жид-ти. Представляет собой изогнутую под прямым углом полую трубку. Одна часть трубки устанавливается своим открытым концом навстречу течению в потоке; концу этой части придается удобообтекаемая форма для того, чтобы были наименьшими возмущения потока жидкости вблизи трубки. Другой конец устанавливается вертикально и выводится в пространство над свободной поверх-ю жид-ти. Уровень жидкости в вертикальной трубке будет выше уровня свободной поверхности, т.к. кинетическая энергия струйки, набегающей на изогнутый конец трубки при торможении переходит в потенциальную энергию положения. Скорость clip_image220 ,где clip_image222— поправочный коэффициент скорости, h- превышение уровня жид-ти в верт. трубке над св. поверхностью.

Трубка Пито-Прандтля. Для замеров местной скорости в напорах потока. Состоит из 2х объединенных концентрически расположенных трубок. Внешняя трубка сообщается с окружающей жидкостью отверстиями, через которые передается только пьезометрический напор clip_image224;внутренняя центральная трубка измеряет суммарный напор (пьезометрический и скоростной) clip_image226

Разность h уровней в обеих трубках соответствует скоростному напору, т.е. clip_image228

Местная скорость u рассчитывается clip_image220[1]. Перемещая трубку Пито-Прандтля по сечению потока, можно найти распределение скоростей в этом сечении.

Общие сведения о гидравлических сопротивлениях

Гидравлические сопротивления движению жид-тей в трубе, канале или русле делятся на сопротивления по длине потока и местные сопротивления. Потери энергии по длине обусловлены силами трения, возникающими при трении между жид-тью и тв. стенками, а также между частицами от взаимного прикосновения. Местные сопротивления возникают при резких нарушениях движения жид-ти в результате изменения формы трубы или русла, в котором движется поток. Полная потеря напора на сопротивления при движении жидкости clip_image230, где clip_image232-напор, затрачиваемый на преодоление сопротивлений по длине;clip_image234— на преодоление местных сопротивлений.

Опыты Рейнольдса. Понятия о режимах течения.

clip_image236

К баку А присоединена стеклянная трубка В, снабженная краном С, с помощью которого можно регулировать расход и скорость течения жидкости в трубке В. Над баком установлен сосуд D, в который заливается подкрашенная жид-ть, краном К можно регулировать приток этой жид-ти через тоонкую трубку Е в устье трубки В. Уровень жид-ти в баке поддерживается постоянным при помощи сливной трубки Н;установившееся движение. Меняя открытие крана С, можно увеличивать или уменьшать расход и скорость течения в трубе В. При малом открытии крана С, когда скорость в трубе В мала, вытекающая из сопла подкрашенная жид-ть образует внутри основной устойчивую четко очерченную окрашенную нить, что указывает на существование струйного движения жид-ти. В прямой трубе постоянного сечения струйки направлены параллельно оси трубы, поперечные перемещения частиц жид-ти отсутствуют и поэтому не происходит перемешивания окрашенной и неокрашенной жид-ти. Такое течение называют ламинарным. По мере возрастания скорости течения в трубке В окрашенная струйка начинает колебаться и принимает волнообразные очертания. Затем на отдельных участках начинают появляться разрывы, струйка теряет отчетливую форму и при дальнейшем возрастании скорости размыва размывается в потоке основной жид-ти, равномерно окрашивая ее. Такое течение называется турбулентным (встречается в природе чаще чем ламинарный).

В опытах Рейнольдса было установлено, что перехода ламинарного движения в турбулентное можно добиться путем изменения значений диаметра трубы или заменой одной жид-ти другой, обладающей др. значениями плотности или вязкости. Условия перехода зависят от 4 параметров: скоростиclip_image238, плотностиclip_image240, диаметра трубы d и динамической вязкости жид-ти clip_image242. Скорость перехода к турбулентному течению может быть различной в различных условиях.

Физический смысл числа Рейнольдса.

Количественный критерий, позволяющий предсказать характер (лам. или турб.) течения.clip_image244. С учетом зависимости между кинематическим и динамическим коэф. вязкости clip_image246. Число является мерой отношения кин.энергии жид-ти к работе сил вязкого трения и от него зависят все безразмерные коэф., входящие в расчетные зависимости. Переход от лам. режима к турб. Совершается при числах Re>2300. При значениях Reкр. Критическое знач. используется не только при круговом, но и любом др. сечении потока; подсчет значения числа производят заменяя диаметр на гидравлический радиус, т.е.d=4Rclip_image248

Виды гидравлических сопротивлений.

Потери удельной энергии в потоке жидкости, безусловно, связаны с вязкостью жид­кости, но сама вязкость — не единственный фактор, определяющий потери напора. Но можно утверждать, что величина потерь напора почти всегда пропорциональны квадрату средней скорости движения жидкости. Эту гипотезу подтверждают результаты большин­ства опытных работ и специально поставленных экспериментов. По этой причине потери напора принято исчислять в долях от скоростного напора (удельной кинетической энергии потока). Тогда: clip_image250

Потери напора принято подразделять на две категории:

потери напора, распределённые вдоль всего канала, по которому перемеща­ется жидкость (трубопровод, канал, русло реки и др.), эти потери пропорцио­нальны длине канала и называются потерями напора по длинеclip_image252 сосредоточенные потери напора: потери напора на локальной длине потока (достаточно малой по сравнению с протяжённостью всего потока). Этот вид потерь во многом зависит от особенностей преобразования параметров пото­ка (скоростей, формы линий тока и др.). Как правило, видов таких потерь до­вольно много и их расположение по длине потока зачастую далеко не зако­номерно. Такие потери напора называют местными потерями или потерями напора на местных гидравлических сопротивлениях. Это вид потерь напора также принято исчислять в долях от скоростного напораclip_image254 Тогда полные потери напора можно представить собой как сумму всех видов потерь напора: clip_image256

Оценка величины местных потерь напора практически всегда базируются на резуль­татах экспериментов, по результатам таких экспериментов определяются величины коэф­фициентов потерь. Для вычисления потерь напора по длине имеются более или менее на­дёжные теоретические предпосылки, позволяющие вычислять потери с помощью при­вычных формул.

Ламинарное равномерное движение жидкости в трубе круглого сечения.

ЛАМИНАРНОЕ ТЕЧЕНИЕ(от лат. lamina — пластинка) — упорядоченный режим течения вязкой жидкости (или газа), характеризующийся отсутствием перемешивания между соседними слоями жидкости. Условия, при к-рых может происходить устойчивое, т. е. не нарушающееся от случайных возмущений, Л. т., зависят от значения безразмерного Рейнольдса числа Re. Для каждого вида течения существует такое число RеКр, наз. нижним критич. числом Рейнольдса, что при любом Re<Reкp Л. т. является устойчивым и практически осуществляется; значение Rекр обычно определяется экспериментально. При Rе>Rекр, принимая особые меры для предотвращения случайных возмущений, можно тоже получить Л. т., но оно не будет устойчивым и, когда возникнут возмущения, перейдёт в неупорядоченное турбулентное течение .Теоретически Л. т. изучаются с помощью Навье — Стокса уравнений движения вязкой жидкости. Точные решения этих ур-ний удаётся получить лишь в немногих частных случаях, и обычно при решении конкретных задач используют те или иные приближённые методы.

Представление об особенностях Л. т. даёт хорошо изученный случай движения в круглой цилиндрич. трубе. Для этого течения RеКрclip_image2572300, где Re=clip_image258 (clip_image259средняя по расходу скорость жидкости, d — диаметр трубы, clip_image260— кинематич. коэф. вязкости, clip_image261— динамич. коэф. вязкости, clip_image262— плотность жидкости). Т. о., практически устойчивое Л. т. может иметь место или при сравнительно медленном течении достаточно вязкой жидкости или в очень тонких (капиллярных) трубках. Напр., для воды (clip_image263=10-6 м2/с при 20° С) устойчивое Л. т. сclip_image264=1 м/с возможно лишь в трубках диаметром не более 2,2 мм.

Распределение напряжений по радиусу.

Касательные напряжения. Рассмотрим правила определения величины касательных

clip_image266

напряжений на примере потока жидкости в круглой цилиндрической трубе. Двумя сечения­ми выделим в потоке жидкости отсек длиной l. На данный отсек жидкости будут действовать силы давления, приложенные к площадям жи­вых сечений потока жидкости слева и справа и сила трения, направленная в сторону обратную движению жидкости. Поскольку движение жидкости установившееся, то все действующие на отсек жидкости силы должны быть уравновешены. clip_image268

где: r0 — касательные напряжения на боковой поверхности отсека жидкости.

Касательные напряжения на периферии отсека жидкости (у стенки трубы) будут равны: clip_image270

Очевидно, это будут максимальная величина касательных напряжений в отсеке жид­кости. Вычислим величину касательных напряжений на расстоянии r от оси трубы. clip_image272

Таким образом, касательные напряжения по сечению трубы изменяются по линей­ному закону; в центре потока (на оси трубы) r=0 касательные напряжения т= 0.

Связь между средней и осевой скоростями.

clip_image274Изучение скоростей отдельных частиц жидкости по длине потока показывает, что на участке вблизи входа в трубопровод частицы движутся неравномерно, а именно: частицы, расположенные вблизи оси потока, движутся ускоренно, частицы, находящиеся ближе к стенке, замедленно. Благодаря этому эпюра скоростей для разных сечений (фиг. 12-1) этого участка трубопровода не будет одинаковой.

По длине этого участка происходит формирование потока. Длина входного участка, на котором заканчивается формирование потока, называется длиной начального участка. За начальным участком движение становится равномерным.

Рассмотрим формирование ламинарного потока в трубопроводе, вход в который сделан плавным (рис.)

Жидкость вступает в трубу с почти одинаковой скоростью по всему сечению и только у стенок скорость жидкости обращается в нуль. По мере удаления от входа толщина затормаживаемого слоя жидкости у стенки увеличивается.

Схема распределения скоростей на начальном участке установившегося ламинарного потока.

Но так как расход жидкости остается одним и тем же, то замедление движения слоев, расположенных ближе к стенкам, вызывает увеличение скорости слоев, расположенных ближе к оси трубы.

Сформировавшемуся, а значит равномерному изотермическому ламинарному потоку жидкости в круглой трубе соответствует параболический закон распределения скоростей. В этом потоке осевая скорость, являющаяся максимальной umax в 2 раза больше средней

umax=2v

Такое распределение скоростей наступает лишь на расстоянии от входа в трубу, равном бесконечности. Но практически уже на конечных расстояниях от входа в трубу распределение скоростей мало отличается от параболического.

Теоретическое определение длины начального участка было произведено французским ученым Буссинеском еще в 1891 г.

Он считал, что формирование потока практически можно считать законченным, если скорость частицы в конце участка на оси uос достигает 0,99 значения максимальной скорости umax ,соответствующей равномерному ламинарному потоку в круглой трубе:

uос=0.99 umax

При этих условиях им была получена для длины начального участка lн формула

lн=0.065dRe

clip_image276Как показывают исследования, при ламинарном течении жидкости в круглой трубе максимальная скорость находится на оси трубы. У стенок трубы скорость равна нулю, т.к. частицы жидкости покрывают внутреннюю поверхность трубопровода тонким неподвижным слоем. От стенок трубы к ее оси скорости нарастают плавно. График распределения скоростей по поперечному сечению потока представляет собой параболоид вращения, а сечение параболоида осевой плоскостью — квадратичную параболу (рис.4.3).

Рис. 4.3. Схема для рассмотрения ламинарного потока

Потери напора на трение по длине потока.

Рассмотрим кольцевой слой жидкости толщины dr на расстоянии r от оси трубы, площадь сечения кольца равна =2πrdr, а расход жидкости через это сечение равен:

clip_image278dQ=udr= u2πrdr
Подставляя сюда выражение скорости clip_image280 и интегрируя, получим:

clip_image282, т.е. clip_image284.

Это есть выражение расхода через осевую скорость в трубе.

С другой стороны clip_image286, где v-средняя скорость в живом сечении потока.

=> clip_image288.Т.о., средняя скорость потока при лам.режиме равна половине осевой.

С учетом этого результата из выражения для потерь напора на трение clip_image290

можно получить выражение для потерь напора по длине l в виде: clip_image292

или, введя вместо радиуса диаметр трубы и выражая абсолютную вязкость η через кинематическую (η=v∙ρ), в виде clip_image294.

Из этой формулы видно, что потери напора при ламинарном движении пропорциональны первой степени средней скорости или расхода жидкости.

Эту формулу можно представить в другом виде, если учесть, что clip_image296.

Делая соответствующую подстановку, получим clip_image298

Или, введя обозначение clip_image300, окончательно получим clip_image302

Это универсальная формула Вейсбаха-Дарси,

где λ — коэффициент гидравлического трения или коэф. гидравлического сопротивления.

Формула Дарси-Вейсбаха используется для определения потерь на трение как для ламинарного, так и для турбулентного течения, однако, если для ламинарного движения коэффициент гидравлического сопротивления λ вычисляется по формуле λ=64/Re, то для турбулентного движения формулы будут иметь другой вид.

Формула Пуазейля.

Течение Пуазейля— ламинарное течение жидкости через тонкие цилиндрические трубки. Описывается законом Пуазейля.

Окончательно потери напора при ламинарном движении жидкости в трубе: clip_image304

Несколько преобразовав формулу для определения потерь напора, получим формулу Пуазейля: clip_image306

Закон установившегося течения в вязкой несжимаемой жидкости в тонкой цилиндрической трубке круглого сечения. Сформулирован впервые Готтфильхом Хагеном в 1839 и вскоре повторно выведен Ж.Л. Пуазейлем в 1840. Согласно закону, секундный объемный расход жидкости пропорционален перепаду давления на единицу длины трубки. Закон Пуазейля применим только при ламинарном течении и при условии, что длина трубки превышает так называемую длину начального участка необходимую для развития ламинарного течения в трубке.

Свойства течения Пуазейля:

-Течение Пуазейля характеризуется параболическим распределением скорости по радиусу трубки.

-В каждом поперечном сечении трубки средняя скорость вдвое меньше максимальной скорости в этом сечении.

Из формулы Пуазейля видно, что потери напора при ламинарном движении пропорциональны первой степени скорости или расхода жидкости.

Формулой Пуазейля пользуются при расчетах показателей транспортировки жидкостей и газов в трубопроводах различного назначения. Ламинарный режим работы нефте- и газопроводов является наиболее выгодным в энергетическом отношении. Так, в частности, коэффициент трения при ламинарном режиме практически не зависит от шероховатости внутренней поверхности трубы (гладкие трубы).

Коэффициент гидравлического сопротивления.

clip_image300[1] безразмерный множитель clip_image309— коээфициент гидравлического сопротивления, или коэффициент гидравлического трения, является частью формулы Дарси-Вейсбаха clip_image311. Формула Дарси-Вейсбаха используется для определения потерь на трение как ламинарного, так и для турбулентного течения. Может быть найден экспериментально. Из уравнения Бернулли следует, что потери напора на трение будут равны clip_image311[1]=clip_image313 откуда видно что для определения clip_image309[1] необходимо измерить разность давлений на участке трубы и расход жидкости.

Возможные способы снижения гидравлических потерь.

Т.к. график скорости по диаметру при  ламинарном  режиме представляет собой параболу, скорость потока будет достигнута только на оси трубы, а, следовательно, толщина пограничного слоя будет равна половине диаметра трубы. Т.к. касательные напряжения (силы трения) в  жидкости при  одинаковых скоростях зависят от расстояния между ними (чем меньше расстояние, тем сила трения больше — вспомнить), то рост толщины пограничного слоя приведет к снижению  потерь. Как следствие -потери при  ламинарном режиме наименьшие.

Турбулентное движение жидкости.

Турбулентность экспериментально открыта английским инженером Рейнольдсом в 1883 году при изучении течения несжимаемой воды в трубах.

ТУРБУЛЕНТНОЕ ТЕЧЕНИЕ — форма течения жидкости или газа, при к-рой вследствие наличия в течении многочисл. вихрей разл. размеров жидкие частицы совершают хаотич. неустановившиеся движения по сложным траекториям в противоположность ламинарным течениям с гладкими квазипараллельными траекториями частиц. Т. т. наблюдаются при определ. условиях (при достаточно больших Рейнольдса числах)в трубах, каналах, пограничных слоях около поверхностей движущихся относительно жидкости или газа твёрдых тел, в следах за такими телами, струях, зонах перемешивания между потоками разной скорости, а также в разнообразных природных условиях.

Т. т. отличаются от ламинарных не только характером движения частиц, но также распределением осреднённой скорости по сечению потока, зависимостью средней или макс. скорости, расхода и коэф. сопротивления от числа Рейнольдса Re, гораздо большей интенсивностью тепло-и массообмена.

Мгновенные параметры потока (скорость, температура, давление, концентрация примесей) при этом хаотично колеблются вокруг средних значений. Зависимость квадрата амплитуды от частоты колебаний (или спектр Фурье) является непрерывной функцией.

Для возникновения турбулентности необходима сплошная среда, которая подчиняется кинетическому уравнению Больцмана или Навье-Стокса или пограничного слоя. Уравнение Навье-Стокса (в него входит и уравнение сохранения массы или уравнение неразрывности) описывает множество турбулентных течений с достаточной для практики точностью.Обычно турбулентность наступает при превышении некоторого критического числа Рейнольдса и/или Релея (в частном случае скорости потока при постоянной плотности и диаметре трубы и/или температуры на внешней границе среды).

Поле скоростей в турбулентном потоке.

Хотя дифференциальные уравнения движения реальной жидкости справедливы также и для истинных скоростей турбулентного движения, однако сложность явлений, происходящих в нем, не позволяет для исследования этого потока воспользоваться этими уравнениями. Вместо действительного турбулентного потока в гидравлике исследуется его упрощенная модель — осредненный турбулентный поток. При построении этой модели исходят из гипотезы о том, что поле скоростей в пространстве, занимаемым турбулентным потоком, можно разбить на два поля: на поле местных осредненных скоростей u и на поле пульсационных скоростей u’.

В этом потоке проекции истинных скоростей ux, uy и uz можно выразить через проекции осредненных скоростей clip_image315 , и clip_image317 и пульсационных clip_image319 а именно

clip_image320clip_image322

Такая модель потока позволяет установить важные соотношения между осредненными характеристиками турбулентного потока (осредненными скоростями, давлениями), что и является важнейшей задачей гидравлики.

Осредненный сформировавшийся установившийся поток, так же как и ламинарный поток в трубопроводе, формируется постепенно. Длина начального участка 6удет зависеть от условий входа и от числа Re, соответствующего потоку. Однако роль начального участка в гидравлических расчетах турбулентных потоков незначительна. Большое количество экспериментальных исследований показывает, что практически формирование поля осредненных скоростей заканчивается на длине трубопровода, равной clip_image324.

Экспериментальные исследования при турбулентном течении.

При наблюдении за движением жидкости в трубах и каналах, можно заметить, что в одном случае жидкость сохраняет определенный строй своих частиц, а в других — перемещаются бессистемно. Однако исчерпывающие опыты по этому вопросу были проведены Рейнольдсом в 1883 г. На рис. 4.1 изображена установка, аналогичная той, на которой Рейнольдс производил свои опыты.

clip_image326

Рис. 4.1. Схема установки Рейнольдса

Установка состоит из резервуара А с водой, от которого отходит стеклянная труба В с краном С на конце, и сосуда D с водным раствором краски, которая может по трубке вводиться тонкой струйкой внутрь стеклянной трубы В.

Первый случай движения жидкости. Если немного приоткрыть кран С и дать возможность воде протекать в трубе с небольшой скоростью, а затем с помощью крана Е впустить краску в поток воды, то увидим, что введенная в трубу краска не будет перемешиваться с потоком воды. Струйка краски будет отчетливо видимой вдоль всей стеклянной трубы, что указывает на слоистый характер течения жидкости и на отсутствие перемешивания. Если при этом, если к трубе подсоединить пьезометр или трубку Пито, то они покажут неизменность давления и скорости по времени. Такой режим движения называется ламинарный.

Второй случай движения жидкости. При постепенном увеличении скорости течения воды в трубе путем открытия крана С картина течения вначале не меняется, но затем при определенной скорости течения наступает быстрое ее изменение. Струйка краски по выходе из трубки начинает колебаться, затем размывается и перемешивается с потоком воды, причем становятся заметными вихреобразования и вращательное движение жидкости. Пьезометр и трубка Пито при этом покажут непрерывные пульсации давления и скорости в потоке воды. Такое течение называется турбулентным (рис.4.1, вверху). Если уменьшить скорость потока, то восстановится ламинарное течение.

Коэффициент гидравлического сопротивления при турбулентном течении. Графики Никурадзе и Мурина.

Основной расчетной формулой для потерь напора при турбулентном течении жидкости в круглых трубах является эмпирическая формула, называемая формулой Вейсбаха-Дарси и имеющая следующий вид: clip_image328

Различие заключается лишь в значениях коэффициента гидравлического трения λ. Этот коэффициент зависит от числа Рейнольдса Re и от безразмерного геометрического фактора — относительной шероховатости Δ/d (или Δ/r0, где r0 — радиус трубы).

clip_image330

Первые систематические опыты для выявления влияния различ­ных параметров на величину λ были проведены Никурадзе под руко­водством Прандтля в 20-х годах XX века в Германии.

Эти опыты проводились в латунных трубах, глад­ких, что достигалось шлифовкой и с искусственной однородной ше­роховатостью, которая создавалась наклеиванием зерен песка определенного размера на внутреннюю поверхность труб. В трубах с полученной таким образом определенной шероховатостью при раз­ных расходах измерялась потеря напора и вычислялся коэффициент λ, значения которого наносились на график в функции числа Рейнольдса. Результаты опытов Никурадзе представлены графически на рис. 4.11 На этом графике по горизонтальной оси отложены величи­ны lgRe, а по вертикальной оси — lg(l00 λ). Кривые построены по данным опытов с трубами относительной шероховатости от ε=∆/d= 0,001 (самая нижняя кривая) до ε=0,033 (самая верхняя кривая).

Анализируя представленный график, можно сделать следу­ющие выводы:

Существуют четыре различные области.

Область ламинарного режима (I). В области ламинарного режи­ма (т.е. при Re < 2300, чему соответствует lg Re < 3,36) опытные точ­ки, независимо от шероховатости стенок, уложились на одну прямую линию I. Следовательно, здесь λ зависит только от числа Рейнольдса и не зависит от шероховатости, т.е. λ=f (Re).

Остальные участки кривых (II, III, IV) относятся к турбулентно­му движению.

В области перехода от ламинарного движения к турбулентному Re = 2000-4000 (3,3< lgRe< 3,6) наблюдается большой разброс опытных точек и кривая между I и II па рис. 4.11 проведена условно.

Область гидравлически гладких труб (II). В этой области опыт­ные точки для труб с различной шероховатостью располагаются в не­котором диапазоне чисел Re на одной прямой II, отрываясь от нее в сторону возрастания коэффициента λ тем раньше, чем больше шероховатость стенок. Таким образом, при некоторых условиях шерохо­ватость не оказывает влияния на потери напора также и при турбулентном движении, т.е. и здесь λ =f(Re). Область смешанного трения (III). Здесь каждая кривая относится к определенному значению относительной шероховатости и величина также меняется с изменением числа Рейнольдса, т.е. коэф­фициент гидравлического сопротивления зависит как от числа Re, так и от ε(λ =f(Re,ε))

Область «вполне шероховатых труб» (IV), При увеличении числа Re кривые области IIIпереходят в линии, параллельные оси lg Re, т,е. коэффициентλв этой области не зависит от числа Re и оп­ределяется только относительной шероховатостью. Полуэмпиричекая теория турбулентности позволяет предложить выражение для коэффициента λ, исходя из распределения скорости в живых сечени­ях потока.

Можно вывести следующие полуэмпирические формулы Прандтля-Никурадзе из логарифмического закона распределения скоростей

Для гладких труб — clip_image332

Для вполне шероховатых труб clip_image334

Предложенная полуэмпирическая теория не отражает особенностей сопротивления в области смешанного трения.

clip_image336

Опыты Никурадзе проводились в трубах с одной искусственной шероховатостью. Трубы же, применяемые на практике, имеют шероховатость неоднородную и неравномерную. Поэтому долгое время оставалось неясным, насколько правильны будут выводы, полученные Никурадзе на трубах с искусственной шероховатостью, в применении к обычным промышленным трубам с естественной шероховатостью и каковы численные значения ше­роховатости для подобных труб, Выяснению этих вопросов был по­священ ряд проведенных экспе­риментальных исследований (работы Кольбрука, И.А.Исаева, ГА.Мурина, ФА Шевелева).

Наибольший интерес представляют опыты ГА.Мурина по исследованию гидравлических сопротивлений в обычных промышленных стальных трубах, законченные в 1948 г. Результаты этих опытов представлены на графике, изображенномрис. 4,12, показывающем изменение коэффициента λ в зависимости от числа Рейнольдса для стальных труб.

Подтвердив основные закономерности, установленные Никурад­зе, эти опыты показали, что для труб с естественной шероховатостью коэффициент λ в пере­ходной области имеет всегда большие значения, чем в случае вполне шероховатых труб (а не меньше, как у Никурадзе), Поэтому кривые на диаграмме Мурина не имеют впадины, характерной для кривых Никурадзе.

Результаты обобщения большого числа опытов показали, что λявляется функцией двух безразмерных параметров числа Рейнольдса­, отражающего влияние вязкости и скорости движения жидкости и относительной шероховатости ε=∆/d, характеризующего влияние поверхности стенок, т.е.

λ=f(Re, ∆/d)

Основные расчетные формулы.

Таблица для определения коэффициента гидравлического трения

clip_image337

Местные сопротивления

Местными сопротивлениями называются, в отличие от сопротивлений по длине, сосредоточенные на коротких участках трубопровода потери напора, вызванные местным отрывом вихрей, а также нарушением структуры потока. Эти процессы в значительной степени зависят от формы местных сопротивлений. Условно местные сопротивления можно разделить на несколько видов, представленных на рис. 4.13

D1v2

clip_image339

Внезапное расширение Внезапное сужение

clip_image341

Диффузор Конфузор

clip_image343clip_image345

Диафрагма Закругление трубопровода

К местным сопротивлениям, в частности, относятся участки трубопроводов, имеющих переходы с одного диаметра на другой, колена, раструбы, тройники, крестовины, всякого рода запорные устройства и приспособления (краны, задвижки, вентили, клапаны), а также фильтры, сетки, специальные устройства входа и выхода к насосам (диффузоры, конфузоры).

Учет местных сопротивлений играет решающую роль при расчете гидравлически коротких трубопроводах, где величина потерь энергии на местных сопротивлениях сравнима с потерями по длине. Практически любое местное сопротивление приводит к

резкому изменению характера течения, сопровождаемого изменением местных скоростей как по величине, так и по направлению.

Нa практике для определения потерь энергии на местных сопротивлениях применяется формула Вейсбаха, выражающая потери в долях скоростного напора

clip_image347, где неизвестный коэффициент пропорциональности ζ называется коэффициентом местного сопротивления.

В качестве скорости v принимается скорость на участке трубопровода, либо до него. От этого будет зависеть численное значение коэффициента ζ, поэтому необходимо специально оговаривать, по отношению к какой скорости вычислен коэффициент местного сопротивления. В общем случае коэффициент ζ зависит от геометрической формы местного сопротивления и числа Re.

Коэффициент ζ принимается постоянным для данного вида местного сопротивления. Однако экспериментальные исследования показали, что это условие соблюдается только при больших числах Рейнольдса (Re > 104), При небольших величинах Re значения коэффициента ζ существенно зависит от числа Рейнольдса, Справочные значения ζ относятся к случаю, когда местное сопротивление работает в условиях автомодельности по числу Re, т.е. не зависит от его числового значения. Значения ζ, приводимые в справочниках, следует считать ориентировочными. Для уточнения данных о конкретном местном сопротивлении необходимо провести экспериментальное исследование в требуемом диапазоне чисел Re. Однако, есть случаи, когда величина потерь энергии на местном сопротивлении может быть определена теоретически, например, при внезапном расширении потока.

Иногда местные сопротивления выражают через эквивалентную длину прямого участка трубопровода . Эквивалентной длиной называют такую длину прямого участка трубопровода данного диаметра, потери напора в котором при пропуске данного расхода равны рассматриваемым местным потерям.

clip_image349, получаем clip_image351,или clip_image353.

Эта формула позволяет весьма просто оценивать роль потерь удельной энергии в местном сопротивлении по сравнению с потерями по длине в общем балансе потерь.

Определение и виды местных сопротивлений.

Простейшие местные сопротивления при турбулентном режиме течения в трубе.

1. Внезапное расширение потока. Потеря напора (энергии) при внезапном расширении русла расходуется на вихреобразование, связанное с отрывом потока от стенок, т.е. на поддержание вращательного непрерывного движения жидких масс с постоянным их обновлением.

clip_image355

Рис. 4.9. Внезапное расширение трубы

При внезапном расширении русла (трубы) (рис.4.9) поток срывается с угла и расширяется не внезапно, как русло, а постепенно, причем в кольцевом пространстве между потоком и стенкой трубы образуются вихри, которые и являются причиной потерь энергии. Рассмотрим два сечения потока: 1-1 — в плоскости расширения трубы и 2-2 — в том месте, где поток, расширившись, заполнил все сечение широкой трубы. Так как поток между рассматриваемыми сечениями расширяется, то скорость его уменьшается, а давление возрастает. Поэтому второй пьезометр показывает высоту на ΔH большую, чем первый; но если бы потерь напора в данном месте не было, то второй пьезометр показал бы высоту большую еще на hрасш. Эта высота и есть местная потеря напора на расширение, которая определяется по формуле: clip_image357где S1, S2 — площадь поперечных сечений 1-1 и 2-2. υ-скорость на известном участке трубопровода. Это выражение является следствием теоремы Борда.

Теорема Борда: потеря напора при внезапном расширении потока равна скоростному напору, определенному по разности скоростей clip_image359

Выражение ( 1 — S1/S2 )2 обозначается греческой буквой ζ (дзета) и называется коэффициентом местного сопротивления, таким образом clip_image361

2. Постепенное расширение русла. Постепенно расширяющаяся труба называется диффузором (рис.4.10). Течение скорости в диффузоре сопровождается ее уменьшением и увеличением давления, а следовательно, преобразованием кинетической энергии жидкости в энергию давления. В диффузоре, так же как и при внезапном расширении русла, происходит отрыв основного потока от стенки и вихреобразования. Интенсивность этих явлений возрастает с увеличением угла расширения диффузора α.

clip_image363

Рис. 4.10. Постепенное расширение трубы

Кроме того, в диффузоре имеются и обычные потери на терние, подобные тем, которые возникают в трубах постоянного сечения. Полную потерю напора в диффузоре рассматривают как сумму двух слагаемых:

clip_image364

где hтр и hрасш — потери напора на трение и расширение (вихреобразование).

clip_image365

где n = S2/S1 = ( r2/r1 ) 2 — степень расширения диффузора. Потеря напора на расширение hрасш имеет ту же самую природу, что и при внезапном расширении русла

clip_image366

где k — коэффициент смягчения, при α= 5…20°, k = sinα.

Учитывая это полную потерю напора можно переписать в виде:

clip_image367

откуда коэффициент сопротивления диффузора можно выразить формулой

clip_image368

clip_image369

Рис. 4.11. Зависимость ζдиф от угла

Функция ζ = f(α)имеет минимум при некотором наивыгоднейшем оптимальном значении угла α, оптимальное значение которого определится следующим выражением:

clip_image370

При подстановке в эту формулу λТ =0,015…0,025 и n = 2…4 получим αопт = 6 (рис.4.11).

3. Внезапное сужение русла. В этом случае потеря напора обусловлена трением потока при входе в более узкую трубу и потерями на вихреобразование, которые образуются в кольцевом пространстве вокруг суженой части потока (рис.4.12).

clip_image371

Рис. 4.12. Внезапное сужение трубы

4.13. Конфузор

Полная потеря напора определится по формуле ;

clip_image372

где коэффициент сопротивления сужения определяется по полуэмпирической формуле И.Е. Идельчика:

clip_image373

в которой n = S1/S2 — степень сужения.

При выходе трубы из резервуара больших размеров, когда можно считать, что S2/S1 = 0, а также при отсутствии закругления входного угла, коэффициент сопротивления   ζсуж = 0,5.

4. Постепенное сужение русла. Данное местное сопротивление представляет собой коническую сходящуюся трубу, которая называется конфузором (рис.4.13). Течение жидкости в конфузоре сопровождается увеличением скорости и падением давления. В конфузоре имеются лишь потери на трение

clip_image374

где коэффициент сопротивления конфузора определяется по формуле

clip_image375

в которой n = S1/S2 — степень сужения.

Небольшое вихреобразование и отрыв потока от стенки с одновременным сжатием потока возникает лишь на выходе из конфузора в месте соединения конической трубы с цилиндрической. Закруглением входного угла можно значительно уменьшить потерю напора при входе в трубу. Конфузор с плавно сопряженными цилиндрическими и коническими частями называется соплом (рис.4.14).

clip_image377

Рис. 4.14. Сопло

5. Внезапный поворот трубы (колено). Данный вид местного сопротивления (рис.4.15) вызывает значительные потери энергии, т.к. в нем происходят отрыв потока и вихреобразования, причем потери тем больше, чем больше угол δ. Потерю напора рассчитывают по формуле

clip_image378

где ζкол — коэффициент сопротивления колена круглого сечения, который определяется по графику в зависимости от угла колена δ (рис.4.16).

clip_image380

Рис. 4.15.

Рис. 4.16. Зависимости ζкол от угла δ

Рис. 4.17. Отвод

6. Постепенный поворот трубы (закругленное колено или отвод). Плавность поворота значительно уменьшает интенсивность вихреобразования, а следовательно, и сопротивление отвода по сравнению с коленом. Это уменьшение тем больше, чем больше относительный радиус кривизны отвода R / d рис.4.17). Коэффициент сопротивления отвода ζотв зависит от отношения R / d, угла δ, а также формы поперечного сечения трубы.

Для отводов круглого сечения с углом δ= 90 и R/d clip_image3811 при турбулентном течении можно воспользоваться эмпирической формулой:

clip_image382

Для углов δ clip_image38370° коэффициент сопротивления

clip_image384

а при δ clip_image381[1]100°

clip_image385

Потеря напора в колене определится как

clip_image386

Все выше изложенное относится к турбулентному движению жидкости. При ламинарном движении местные сопротивления играют малую роль при определении общего сопротивления трубопровода. Кроме этого закон сопротивления при ламинарном режиме является более сложным и исследован в меньшей степени.

Формула Вейсбаха.

Нa практике для определения потерь энергии на местных сопротивлениях применяется формула Вейсбаха, выражающая потери в долях скоростного напора

clip_image347[1], где неизвестный коэффициент пропорциональности ζ называется коэффициентом местного сопротивления.

В качестве скорости v принимается скорость на участке трубопровода, либо до него. От этого будет зависеть численное значение коэффициента ζ, поэтому необходимо специально оговаривать, по отношению к какой скорости вычислен коэффициент местного сопротивления. В общем случае коэффициент ζ зависит от геометрической формы местного сопротивления и числа Re. (см. вопрос 45)

Теорема Борда.

Теорема Борда:потеря напора при внезапном расширении потока равна скоростному напору, определенному по разности скоростей

clip_image387

Используется при внезапном расширении потока (см.вопрос 46)

Экспериментальное определение коэффициентов местных сопротивлений.

Рис.Схема экспериментальной установки для определения коэффициента местных сопротивлений

clip_image389

Наиболее точным способом исследования коэффициентов мест­ного сопротивления является исследование их на модельном трубопроводе, в точности копирующем тот, на котором это местное сопротивление будет уста­новлено.

В этом случае сначала определяются потери удель­ной энергии модельного тру­бопровода без местного со­противления, а затем потери удельной энергии в том же трубопроводе, но с местным сопротивлением, Потери энергии, вызванные местным сопротивлением, находят как разность потерь энергии в обоих случаях.

Весьма часто местные со­противления исследуются без уточнения их месторас­положения в будущем.

В этом случае лучшим способом является также ме­тод модельного трубопрово­да, однако модель представ­ляет прямой трубопровод достаточной длины, в цен­тре которого смонтировано исследуемое местное сопро­тивление. Так же как и в предыдущем случае потери удельной энергии определя­ют как разность потерь удельной энергии в трубо­проводе с местным сопро­тивлением и только в тру­бопроводе (без местного со­противления). Для того что­бы избавиться от предвари­тельного определения сопро­тивления самого трубопро­вода, исследование может быть осуществлено методом двух дифференциальных манометров (или четырех пьезометров), как показано на рис., Здесь I — труба; II—испытываемое местное сопротивление; III и IV —два дифференциальных ртутных манометра; V — мерный бак; VI — термометр. Манометры должны быть присоединены в таких сечениях трубопровода, где распределение скоростей по живым сечениям потока можно считать одинаковым (a1=a2=a3=a4) Для того чтобы на одной и той же установке можно было производить исследование различных местных сопротивле­ний, длины отдельных участков опытного трубопровода следует брать побольше. Размеры, показанные на рис., обеспечи­вают достаточную точность исследования.

При соблюдении поставленных выше условий дифференциаль­ный манометр III позволяет определить значение clip_image391

равное сумме потерь удельной энергии по длине на участке 1—4 и в местном сопротивлении clip_image393

Дифференциальный манометр IV позволяет определить значениеclip_image395

равное сумме потерь удельной энергии по длине па участке, вдвое меньшем предыдущего, и в том же местном сопротив­лении:clip_image397

Таким образом, для определения hм имеются два уравне­ния, откуда находим:clip_image399

Зная на основании предыдущего, что clip_image401можно найти и коэффициент сопротивления ζм по формуле:clip_image403

ζм-коэффициент местного сопротивления, зависящий от числа Re, формы местного сопротивления, шероховатости его поверхностей и т.д.

объемный вес жидкости γ = ρ g,

P1 и P2 — давления соответственно в сечениях 1 и 2.

Эквивалентная длина

Иногда местные сопротивления выражают через эквивалентную длину прямого участка трубопровода . Эквивалентной длиной называют такую длину прямого участка трубопровода данного диаметра, потери напора в котором при пропуске данного расхода равны рассматриваемым местным потерям.

clip_image349[1], получаем clip_image404,или clip_image405.

Эта формула позволяет весьма просто оценивать роль потерь удельной энергии в местном сопротивлении по сравнению с потерями по длине в общем балансе потерь.

Взаимное влияние местных сопротивлений

Местные потери напора часто суммируют в соответствии с принципом наложения потерь, согласно которому полная потеря напора представляет собой арифметическую сумму потерь, вызываемых отдельными сопротивлениями. Принцип наложенния потерь дает надежные результаты лишь в случае, если расстояние между отдельными местными сопротивлениями достаточно велико для того, чтобы искажение эпюры скоростей, вызванное одним из них, не сказывалось на сопротивлении, лежащем ниже по сечению. Для этого необходимо, чтобы местные сопротивления отстояли друг от друга не ближе, чем

lвл/d=(12/√λ)-50

где lвл — длина влияния местного сопротивления;

λ — коэффициент гидравлического трения трубы, на которой расположено местное сопротивление.

Эта формула действительна для турбулентного движения.

При больших числах Рейнольдса в первом приближении

lвл/d≥ (30-40)d

При малых числах Рейнольдса (большие значения λ.) взаимное влияние местных сопротивлений проявляется слабее, длина влияния местного сопротивления имеет меньшую величину и приближенно может быть оценена по формуле

lвл/d =1.25√Re.

Гидравлический расчет трубопроводов.

Гидравлический расчеты трубопроводов, независимо от их вида, имеют целью установление зависимостей между количеством протекающей в них жидкости (расходом), распределением давления по длине трубопровода и геометрическими характеристиками (формой и размерами труб на отдельных участках трубопроводной сети). Исходными при этих расчетах является уравнение Бернулли и уравнения сохранения расхода: первое является динамическим, а второе – кинематическим.

В соответствии с уравнением Бернулли разность полных напоров clip_image407в начальном, и clip_image188[1]в конечном сечениях трубопровода, или некоторого его участка, равняется напору, который затрачивается на преодоление гидравлических сопротивлений clip_image410 Причем clip_image412, где clip_image232[1]— потери напора по длине, clip_image415— местные потери напора на гидравлические сопротивления.

Потери напора по длине трубопровода определяются для круглых труб из формулы Дарси-Вейсбаха. clip_image417, а для некруглых – из выражения — clip_image419

Местные потери напора определяются clip_image421, значения коэф. clip_image423 приведены в специальной литературе.

Типы трубопроводов.

clip_image425Короткие (условно) – называются трубопроводы небольшой длинны, если местные потери совместимы с потерями на длине, или превышают потери по длине. Это – всасывающие трубы центробежных насосов, сифоны, сливные патрубки.

Длинные – называются трубопроводы, имеющие значительную протяженность, в которых наоборот, потери напора по длине являются основными, а местными потерями пренебрегают, или же оценивают их приближенно.

Учитывая гидравлическую схему работы длинных трубопроводов, их можно разделить также на простые и сложные.

Простые – трубопроводы одинакового по длине диаметра, состоящие из одной лишь линии или нитки.

Сложные — трубопроводы, в случае, если они имеют одно или несколько ответвлений, параллельные ветви и переменный по длине диаметр т.д

— параллельные соединения (рис. а) — (лупинг) когда к основной магистрали подключены параллельно её еще одна или несколько труб.

— разветвленные (рис. б) или тупиковые трубопроводы, в которых жидкость из магистрали не отнимается в боковые ответвления и обратно в магистраль не поступает.

— кольцевые (рис. в)– трубопроводы, представляющие собой замкнутую магистраль, питающую расположенные вдоль нее расходные пункты.

Три задачи расчёта простых трубопроводов и методы их решения.

Задача первая.

Требуется определить напор в начале трубопровода, чтобы обеспечить заданный расход жидкости Q по трубопроводу с известными параметрами. Уравнение Бернулли, записанное для сечений на поверхности жидкости в резервуаре 1-1 и на выходе из трубы 2-2 (рис. 6.2, а) имеет вид:

clip_image427

Пренебрегая величиной clip_image429 в виду ее малости по сравнению с другими членами уравнения и обозначая разность высот clip_image431, получим уравнение Бернулли в виде:

clip_image433 где clip_image435— скорость движения жидкости в трубопроводе; clip_image437— абсолютные значения

clip_image439

Начальный искомый напор равен сумме clip_image441

По заданному расходу, характеристикам жидкости (р, η) и тру­бопровода (I, d, ∆) находят значения v и числа Re, а также значение относительной шероховатости ∆/d , определяют режим течения, об­ласть течения и выбирают соответствующую формулу для вычисле­ния коэффициента гидравлического сопротивления.

Аналогично решается задача, когда происходит перетекание жидкости из одного резервуара в другой (рис. 6.2, б). Для опреде­ления необходимого напора составляется уравнение Бернулли для сечений 1—1 и 2—2 на поверхностях жидкости в резервуарах. Получаем

clip_image443Необходимый напор в начале трубопровода равен clip_image441[1]

Во многих случаях источником энергии для перекачки жидкости является насос. Для определения необходимого напора, создаваемо­го насосом в начале нагнетательной линии (рис. 6.2, в), составляется уравнение Бернулли для сечений 1—1 в начале этой линии и для се­чения 2—2 на свободной поверхности жидкости в резервуаре. При­нимая плоскость сравнения, проходящую через центр первого сечения, получаем clip_image445

Из этого выражения может быть найдено давление clip_image184[2], которое должен создавать насос. По найденному давлению и требуемому рас­ходу можно выбрать соответствующий насос для перекачки жидко­сти. Следует отметить, что в большинстве случаев скоростным напором можно пренебречь ввиду его малости по сравнению с други­ми членами уравнения Бернулли.

Задача вторая.

Определение расхода жидкости заданных при ос­тальных параметрах перекачки жидкости по трубопроводу. Рассмот­рим схему подачи жидкости (см. рис. 6.2, а) в трубопровод из напорной емкости. Необходимо определить расход жидкости, что равносильно нахождению скорости движения жидкости в трубопро­воде, которая входит в уравнение Бернулли.

Составим уравнение Бернулли для сечений 1 — 1 и 2—2, пренеб­регая скоростными напорами:

clip_image448

В этой формуле левая часть может быть определена по известным данным задачи. Значение скорости, а значит и расход можно было бы найти, если есть возможность найти члены, входящие в скобки выра­жения (6.3). В общем случае при режимах течения, отличающихся от квадратичного, коэффициенты гидравлического сопротивления λ и местного сопротивления ζ зависят от числа Re, а значит и от ν, а вид этой зависимости заранее неизвестен. Возможны два способа реше­ния такого типа задач: аналитический и графоаналитический.

Аналитически задача может быть решена в тех случаях, когда до начала расчета можно предсказать режим течения, а значит и вид за­висимости λ от Re. Так, если предположить, что режим течения будет ламинарным, то коэффициент гидравлического сопротивления оп­ределится по формуле λ = 64/Re, а значения ζ находят по справочни­ку. После подготовки значений этих коэффициентов в уравнение (6.3) находят скорость v, а затем расход. Аналогично решается зада­ча, если предполагаемый режим является квадратичным. В каждом из этих случаев требуется проверка предполагаемого режима тече­ния, т.е. необходимо, чтобы при ламинарном течении Re 500 d/∆

Если предположение не подтвердилось, то задачу решают мето­дом последовательных приближений, задавая в первом приближе­нии значение расхода clip_image450, находят величину потерь clip_image452 и сравнива­ют с потерями напора для заданного трубопровода, равными

clip_image454

Если полученное значение clip_image452[1] оказалось больше чем clip_image457, то расход уменьшают, а если меньше то следующее зна­чение clip_image450[1], увеличивают, последовательно приближая получаемое значение clip_image452[2] к вычисленному clip_image457[1].

Графоаналитический метод требует построения характеристики трубопровода Q-h (зависимости потерь напора от расхода) с помощью, которой определяют расход clip_image461

clip_image463clip_image465Для построения характеристики трубопровода сдаются рядом про­извольных значений расхода жидкости clip_image467 и по ним опре­деляются потери напора clip_image469 в трубопроводе, как было изложено в первой задаче. Затем по выбранным расходам и соответствующим им поте­рям напора строим график зависимости Q-clip_image471 для данного трубопровода (рис. 6.3). Для найденных потерь clip_image457[2] по графику определяем соответствую­щий им расход жидкости clip_image461[1]. При реше­нии задачи методом последовательных приближений или графоаналитиче­ским требуется большое число вычис­лений, что наиболее рационально проводить с использованием ЭВМ.

Задача третья.

Определение мини­мально необходимого диаметра трубо­провода для обеспечения заданного рас­хода Q при известном напоре в трубоп­роводе clip_image457[3]. Эта задача может быть решена, как и в предыдущем случае ана­литически, методом последовательных приближений или графоаналитически.

clip_image477

В последних двух случаях задаются рядом значений диаметров clip_image473 и, зная Q, вычисляют потери напора clip_image475. В методе последовательных приближений срав­нивают получаемые значения потерь напора с заданными по условию задачи,

добиваясь их близкого совпадения.

В графоаналитическом методе строится зависимость потерь напора от диаметра (рис. 6.4), а затем отложив по оси ординат предварительно вычисленные потери напора clip_image454[1]на оси абсцисс нахо­дят минимально необходимый диаметр clip_image479. Если диаметр, определен­ный с этого графика, отсутствует в сортаменте, то берется ближайший большой диаметр.

Рассмотрим случай последовательного соединения труб. Если трубопровод состоит из нескольких последовательно соединенных участков труб различного диаметра и различной длины (рис. 6.5), то задачи решаются изложенными способами. При этом полные потери напора на всем протяжении трубопровода определяются как сумма потерь на трение на отдельных участках и местных сопротивлений:

clip_image481, а расход жидкости на каждом из участков одинаков clip_image483

Равенство (6.4) выражает собой принцип наложения потерь (принцип суперпозиции).

Принцип наложения может быть использован лишь в том случае, если расстояние между имеющимися местными сопротивлениями достаточно больше. Как показали опыты, если clip_image485, где L – расстояние между местными сопротивлениями, d – диаметр трубопровода, то взаимное влияние местных сопротивлений мало и в этом случае можно воспользоваться соотношением: clip_image481[1]

Если требуется найти расход в последовательно соединенном трубопроводе при задаваемых значениях clip_image487напора, то в качестве расчетного служит по-прежнему соотношение: clip_image481[2].

Если при этом заранее не известны коэффициенты λ и ζ, зависящие от расхода, то — так же как в случае простого трубопровода — эту задачу надо решать ме­тодом последовательных приближений или графоа­налитическим способом. С этой целью при нескольких значениях расхода, задавае­мых произвольно, строим гидравлическую характери­стику для каждого участка, и совмещаем графики на одном чертеже (строим совме­стную характеристику), как это показано на схеме (рис. 6.6) для тру­бопровода, состоящего из двух участков I и II; при этом для получе­ния точек совместной характеристики для каждого значения расхода Q суммируются соответствующие ему значения потерь напора h на каждом из участков. Таким образом, расстояние от оси абсцисс до са­мой верхней кривой равняется сумме потерь на всей длине трубопрово­да и поскольку располагаемая величина напора clip_image457[4] известна — из графика можно определить соответствующий этому напору расход clip_image461[2].

Особенности расчета трубопроводов, работающих под вакуумом. Понятие кавитации.

clip_image489

Для обеспечения устойчивой работы таких трубопроводов необходимо выполнять требования на ограничение величины вакуума в них. Известно что для каждой ж-ти существует давление (при данной температуре), при котором ж-ть находится в состоянии динамического равновесия со своим паром. Это давление называется давлением насыщенного пара или упругостью паров clip_image491. Если давление в жидкости окажется меньше этого давления, то внутри нее начинается процесс парообразования, т.е. выделение растворенного в жидкости газа. Поэтому понижение давления в каком-либо месте трубопровода до давления clip_image491[1] приводит к образованию газовых полостей, что делает невозможным нормальную работу трубопровода. Этот процесс также называется кавитацией. В связи с этим основным принципом расчета трубопроводов, работающих под вакуумом, является требование, чтобы минимальное давление в них было выше упругости паров перекачиваемой ж-ти, т.е. clip_image493, где clip_image495— наименьшее абсолютное давление на расчетном участке трубопровода.

Сифон – самотечный трубопровод, часть которого расположена выше свободной поверхности в напорной емкости, из которой происходит подача жидкости в нижнюю емкость.

На рис. 6,16 представлено решение задачи по определению расхода в сифоне. Пропускная способность сифона делается равным давлению насыщенных паров то начинается испарение, подача жид-ти сначала уменьшается, а затем прекращается из-за разрыва потока. Для обеспечения нормальной работы сифона нужно, чтобы минимальное давление в нем, не было ниже давления насыщенных парод жидкости. Уравнение Бернулли для уч-ка между сечениями 1-1 и 2-2

clip_image497

Принимая для свободной пов-ти емкости А давление clip_image499, скорость clip_image501=0, потери энергии по длине clip_image503, где l – длина участка между сечениями 1-1 и 2-2 , следовательно, clip_image505

Гидравлический расчет сложных трубопроводов.

Сложный трубопровод состоит из разветвленных участков различного диаметра и длины с различным расходами жидкости. Места трубопровода, где соединяются несколько ветвей, называют узлами. Как и при расчете простых трубопроводов может ставиться задача определения необходимого напора для обеспечения заданного расхода, либо определение расхода при заданных размерах и известных напорах. Потери напора в трубах вычисляют по формуле:clip_image507

В зависимости от характера поставленной задачи и типа сложного трубопровода определяется конкретный вид системы расчетных уравнений.

clip_image509

Расчет трубопровода из труб с переменным сечением.

Схема трубопровода состоит из нескольких труб разного диаметра(сечения).

Потери на таком трубопроводе вычисляются следующим образом:

clip_image511

clip_image513

Решение системы уравнений для трубопровода с заданными размерами удобно получить, используя графический метод. Для этого строят гидравлические характеристики всех труб, входящих в рассматриваемую схему. Характеристики представляют собой зависимость потерь напора от расхода, выраженную уравнением 6.6. Характеристики труб с разными диаметрами суммируются. Для этого необходимо на графике Q-h сложить абсциссы (расходы) каждой из кривых при одинаковых ординатах (напорах). В результате такого суммирования получим характеристику участка, которую можно рассматривать как одну им эквивалентную с одним диаметром.Для определения задач на расход и напор, нужно на этом графике отложить известную величину и по лучим неизвестную ранее, путем перенесения кривой с известным числом.

Расчет лупинга

clip_image515

Схема сложного трубопровода, называемая параллельным соединением труб, представлена на рис. 6.7. Магистральный трубопровод разветвляется в т.С на несколько параллельных линий труб различных длин и диаметров, сходящихся затем в точке магистрали. Обозначим расход в магистрали Q1, а в параллельных линиях через Q2,Q3,Q4. Очевидно, чтоclip_image517

Составляя уравнение Бернулли для каждой из параллельных ветвей на участке CD, получим, что потери в каждой из линии равны разности напоров в точках C и D, а следовательно, потери напора равны между собой. В силу этого, в соответствии с зависимостью потерь

clip_image519, получаем clip_image521

clip_image522Решение системы уравнений для трубопровода с заданными размерами удобно получить, используя графический метод. Для этого строят гидравлические характеристики всех труб, входящих в рассматриваемую схему. Характеристики представляют собой зависимость потерь напора от расхода, выраженную уравнением 6.6. Характеристики параллельно соединенных труб суммируются согласно уравнения 6.7 и6.8. Для этого необходимо на графике Q-h сложить абсциссы (расходы) каждой из кривых при одинаковых ординатах (напорах). В результате такого суммирования получим характеристику разветвленного участка, которую можно рассматривать как заменяющую параллельно соединенные трубы одной им эквивалентной.

Для определения задач на расход и напор, нужно на этом графике отложить известную величину и по лучим неизвестную ранее, путем перенесения кривой с известным числом.

Истечение жидкости из отверстий и насадков. Основные определения

Условия истечения:

— отверстия бывают большие и малые

— истечение может быть в атмосферу или пространство заполненной жидкостью.

— происходит с постоянным или переменным расходом.

— истечение через отверстие в тонкой стенки и истечение через насадки, т.е. короткие патрубки разной формы.

— отверстиями в тонких стенках называются отверстия, края которых имеют острую кромку, а толщина стенки не влияет на форму струи и условия истечения.

— отверстие будем называть малым, если его размеры не велики по сравнению с высотой, на котором в боковой поверхности находится свободная поверхность жидкости.

Установившееся истечение жидкости из малого отверстия в тонкой стенке.

Истечение в атмосферу через отверстие с острой кромкой (или в тонкой стенке) в горизонтальном дне сосуда. Отверстия в тонких стенках называются отверстия, края которых имеют острую кромку, и толщина стенки не влияет на форму струи и условия истечения. Стенку можно полагать тонкой, если её толщинаclip_image524 не превосходит 0,2 диаметра отверстияclip_image526. Если же clip_image528, то для получения такой же гидравлической картины следует заострить кромку отверстия. Истечение через такие отверстия отличается от других случаев высокой устойчивостью.

Малое отверстие – отверстие, если его размеры невелики по сравнению с высотой, на которой над отверстием (в боковой стенке) находится свободная поверхность жидкости. Все точки отверстия погружены на одну и ту же глубину под уровнем жидкости, при этом площадь отверстия много меньше площади свободной поверхности.

Рассмотрим установившееся истечение жидкости из резервуара через такое малое отверстие в дне при постоянной H глубине погружения. Сечение резервуара как у свободной поверхности, так и близ отверстий будем полагать достаточно большим для того, чтобы скорость в нем была весьма малой и соответствующий скоростной напор clip_image530 можно считать равным нулю.

Коэффициент сжатия clip_image532. где wс и wо — площади поперечного сечения струи и отверстия соответственно; dс и dо — диаметры струи и отверстия соответственно.

Размер и форма отверстия влияют на величину коэф сжатия, вследствие чего эпсилон определяют для данный отверстий и напора опытным путем.

Для круглого отверстия в тонкой стенке при небольших числах Рейнольдса коэффициент сжатия довольно устойчив, изменяясь в пределах 0,61-0,64

Средняя скорость в сжатом сечении clip_image534— где фи – коэффициент скорости clip_image536(альфа – коэф. Кориолиса , равен единице, а эпсилон коэф. Сопротивления отверстия), он учитывает потери напора при прохождении жидкости через отверстие.

Напор жидкости — clip_image538

Теоретический расход через отверстие — clip_image540

Действительный расход — clip_image542

clip_image544

Коэффициенты сжатия, скорости и расхода.

Три коэффициента истечения:

коэффициент сжатия:

clip_image546

коэффициент скорости:

Имеет наименьшее значение в случае расходящегося насадка — clip_image548и наибольшее clip_image550 при истечении в случае насадка, выполненного по форме вытекающей струи (коноидального)

clip_image552

коэффициент расхода:

Наименьший, в случае расходящегося насадка до — clip_image554, и наибольший, в случае коноидального до clip_image556

clip_image558

Насадки их виды и области применения

clip_image560

Насадок – присоединенный в отверстию в тонкой стенке короткий патрубок. Насадки делятся на три основные группы:

  1. Цилиндрические – внешние 1 и внутренние 2

При истечении жидкости из цилиндрического насадка сечение выходящей струи и сечение отверстия одинаковы, а это значит, что ко­эффициент сжатия струиclip_image562= 1.

  1. Конические – сходящиеся 3 и расходящиеся 4

В конических сходящихся насадках вакуум не образуется, т.к. скорость сжатых сечений меньше чем скорость на выходе.

Применяют в инженерной практике для получения больших выходных скоростей, увеличения силы и дальности полета струи жидкости: в пожарных брандспойтах, в форсунках для подачи топлива, гидромониторах для размыва грунта, фонтанных соплах, соплах активных гидравлических турбин, водоструйных насосах – для увеличения кинетической энергии струи.

Свойство конических, расходящихся насадков – переходить без больших потерь большую скорость в узком сечении в малую в широком обусловливает их применение в качестве преобразователей скоростной энергии в потенциальную – в давление в диффузорах, каналах направляющего аппарата центробежных насососв, во всасывающих трубах турбин, для замедления подачи смазочных масел.

  1. Коиноидальные — с закругленными по форме сжатия струи стенками 5

Выполняется по форме сжимающей струи и благодаря этому обеспечивает безотрывность течения внутри насадка и параллельность струй в выходном сечении. Несмотря на то, что коноидальные насадки дают наибольшие выходные скорости и расходы, их сравнительно редко применяют, главным образом из-за сложности изготовления.

Коноидальный насадок выполняется по форме сжатой струи и поэтому обеспечивает безотрывность течения внутри насадки.

Потери в отверстиях и насадках.

Потери в отверстиях

Потери напора связаны с диссипацией механической энергии за счет сил внутреннего вязкого трения во всем объеме жидкости в резервуаре и местными сопротивлениями в отверстии. Пренебрегая (вследствие их малости) потерями в резервуаре, учтем лишь потери от местного сопротивления на входе в отверстие, представляя их в виде: clip_image564, где clip_image566— скорость в сжатом сечении.

Потери в насадках:

clip_image568Составим уравнение Д. Бернулли для сечений 1-1 и 2-2

clip_image570, где clip_image572– потери напора.

Для истечения из открытого резервуара в атмосферу аналогично истечению через отверстие уравнение Д. Бернулли приводится к виду

clip_image574.

Потери напора в насадке складываются из потерь па входе и на расширение сжатой струи внутри насадка. (Незначительными потерями в резервуаре и потерями по длине насадка ввиду их малости можно пренебречь.) Итак, clip_image576

По уравнению неразрывности можем записать: clip_image578,

Откуда clip_image580.

clip_image582, clip_image584.

Неустановившееся движение жидкости в трубах. Уравнение Бернулли для неустановившегося движения.

Неустановившееся движение жидкости называется неустановившемся, если ее параметры течения (т.е. скорость, давление, плотность и др.) изменяются по времени. Примерами неустановившейся движения могут служить неустановившееся движение в напорных трубопроводах при открытии или закрытии регулирующей аппаратуры, включении и отключении насосов, наполнение и опорожнение резервуаров, гидравлический удар в трубах.

clip_image586, где clip_image588— инерционный напор

Обратим внимание, что в уравнении давления clip_image590, скорость clip_image592 являются функциями времени, т.е. clip_image594Потери на трении clip_image232[2] для неустановившегося движения вычисляют по тем же формулам, что и для установившегося движения, предполагая, что для мгновенного значения скорости это допустимо. Из уравнения следует, что разность давлений clip_image597 при неустановившемся движении может как возрастать, так и убывать, определяясь знаком инерционного напора. Так при торможении жидкости clip_image599удельная энергия потока увеличивается, а при разгоне clip_image601уменьшается. При установившемся движении жидкости, вследствие потерь на трение, удельная энергия потока уменьшается.

Гидравлический удар в трубах.

clip_image603

Гидравлический удар в напорном трубопроводе называют резкое изменение давления в жидкости, вызванное (также резким) изменением скорости ее течения (например, при быстром перекрытии трубопровода запорным устройством). Этот процесс является очень быстротечным и характеризуется чередованием повышений и понижений давлений. Теоретическое и экспериментальное исследование гидравлического удара было произведено впервые Н.Е. Жуковским, который в 1899 г. Решил эту задачу с учетом упругих свойств жидкости и материала стенок трубопровода. гидравлический удар — процесс колебательный, т.е. волновой. Рассмотрим простой трубопровод, начинающийся у бассейна А и имеющий на некотором расстоянии от входа задвижку В. Если задвижка открыта и движение жидкости в трубе установившееся, то пьезометрическая линия на участке до задвижки будет, с учетом потери напора на входе, представляться отрезком прямой а-а, при полностью закрытой задвижке – это горизонтальная линия в-в.

Пусть в некоторый момент времени ранее открытую задвижку быстро закрывают. Отток жидкости через сечение у задвижки прекращается и в такой же короткий срок останавливается слой жидкости, непосредственно прилегающий к задвижке. Масса прилегающего к задвижке слоя жидкости возрастает за счет ее уплотнения и за счет расширения сечения трубы. Граница между потоком с установившимся течением и уплотненной областью перемещается в сторону входа в трубу со скоростью, называемой скоростью фронта ударной волны; в сечениях пробегаемых фронтом происходит резкое изменение скорости течения и соответственно резко меняется давление. Когда прямая волна достигает входа в трубу, начинается, в следствие превышения напора в трубе над напором в бассейне, истечение жидкости из трубы в бассейн. Возникает обратная или отраженная волна, которая распространяется в направлении к задвижке с такой же практически скоростью, с какой до этого перемещалась прямая. В трубе происходит в этом периоде времени течение в направлении к входу в трубу на участке до фронта отраженной волны и к задвижке на участке от фронта до задвижки.

Формула Жуковского – повышения давления при гидравлическом ударе. clip_image605

Скорость распространения фронта волны — clip_image607

D – дополнительное от повышения давления напряжение в материале трубопровода;

clip_image524[1]— толщина стенки трубопровода;

clip_image610— модуль упругости материала трубопровода;

К – модуль упругости жидкости.

Время, в течение которого ударная волна, возникшая у задвижки, достигнет напорного резервуара, отразится от него и вернется к задвижке — clip_image612— фаза удара, время двойного пробега волной повышения давления на расстояние L.

Способы борьбы с гидравлическим ударом.

Гидравлический удар представляет собой периодический затухающий колебательный процесс, т.е. процесс, сопровождаемый повышением и понижением давления в трубопроводе. Гидравлический удар, как правило, является нежелательным явлением, т.к. может привести к разрушению трубопроводной системы. Поэтому на насосных станциях, где возможно образование гидравлического удара, при отключении насосного агрегата в связи с аварией электросети используют специальные устройства для гашения волны повышения давления – воздушные колпаки, клапаны для сброса давления. Простейший способ борьбы является медленное закрытие запорных устройств. Этому требованию отвечают вентили, задвижки со специальным приводом.

Пример явления гидравлического удара в нефтегазовом деле.

Гидравлический удар может быть использован как полезное явление. Так, например, явление гидравлического удара лежит в основе метода вибрационного воздействия на призабойную скважину с целью ее очистки, а так же используется в особом способе подъема жидкости, называемом гидравлическим тараном.

    Основные понятия и определения гидромеханики

    Гипотеза сплошности.

    Силы, действующие на выделенный объем сплошной среды (жидкости)

    Напряжения в сплошной среде. Нормальные и касательные напряжения.

    Давление: абсолютное, избыточное, вакуумное

    Физические свойства жидкостей

    Плотность.

    Уравнение состояния.

    Жидкости несжимаемые, капельные, газообразные.

    Коэффициенты сжимаемости.

    Давление в покоящейся жидкости

    Дифференциальное уравнение гидростатики (Ур-е Эйлера)

    Равновесие несжимаемой жидкости в поле силы тяжести.

    Свойства гидростатического давления

    Основное уравнение гидростатики для капельных жидкостей и газов.

    Относительный покой жидкости.

    Примеры применения основных уравнений гидростатики.

    Единицы измерения давления.

    Определение величины равнодействующей силы давления на плоские и криволинейные поверхности.

    Понятие центра давления.

    Применение законов гидростатики к нефтепромысловым задачам (расчет давления, простейшие гидравлические машины)

    Основные задачи и методы гидродинамики.

    Линия и трубка тока, элементарная струйка, поток локальные и средние скорости.

    Уравнение неразрывности течений

    Примеры технического приложения уравнения Бернулли

    Опыты Рейнольдса. Понятия о режимах течения.

    Виды гидравлических сопротивлений.

    Распределение напряжений по радиусу.

    Связь между средней и осевой скоростями.

    Потери напора на трение по длине потока.

    Формула Пуазейля.

    Коэффициент гидравлического сопротивления.

    Возможные способы снижения гидравлических потерь.

    Турбулентное движение жидкости.

    Поле скоростей в турбулентном потоке.

    Экспериментальные исследования при турбулентном течении.

    Коэффициент гидравлического сопротивления при турбулентном течении. Графики Никурадзе и Мурина.

    Местные сопротивления

    Определение и виды местных сопротивлений.

    Формула Вейсбаха.

    Экспериментальное определение коэффициентов местных сопротивлений.

    Эквивалентная длина

    Взаимное влияние местных сопротивлений

    Гидравлический расчет трубопроводов.

    Типы трубопроводов.

    Три задачи расчёта простых трубопроводов и методы их решения.

    Особенности расчета трубопроводов, работающих под вакуумом. Понятие кавитации.

    Гидравлический расчет сложных трубопроводов.

    Расчет трубопровода из труб с переменным сечением.

    Расчет лупинга

    Истечение жидкости из отверстий и насадков. Основные определения

    Установившееся истечение жидкости из малого отверстия в тонкой стенке.

    Коэффициенты сжатия, скорости и расхода.

    Насадки их виды и области применения

    Потери в отверстиях и насадках.

    Неустановившееся движение жидкости в трубах. Уравнение Бернулли для неустановившегося движения.

    Гидравлический удар в трубах.

Для студентов МГТУ им. Н.Э.Баумана по предмету Механика жидкости и газа (МЖГ или Гидравлика)ПОЛНЫЕ ОТВЕТЫ НА ЭКЗАМЕНАЦИОННЫЕ ВОПРОСЫ ПО МЖГ (48 вопросов)ПОЛНЫЕ ОТВЕТЫ НА ЭКЗАМЕНАЦИОННЫЕ ВОПРОСЫ ПО МЖГ (48 вопросов)

2023-01-042023-01-04СтудИзба

-17%

Описание

Файлы условия, демо

Вопросы.jpg

Характеристики ответов (шпаргалок)

Качество

Фото рукописных листов

Список файлов

  • 21-22.jpg 3,58 Mb

  • 23.jpg 3,4 Mb

  • 24-26.jpg 3,64 Mb

  • 27-28.jpg 3,41 Mb

  • 28(прод).jpg 3,59 Mb

  • 29-30.jpg 3,37 Mb

  • 31-32.jpg 3,48 Mb

  • 33-34.jpg 3,19 Mb

  • 35-36.jpg 3,38 Mb

  • 37-38.jpg 3,07 Mb

  • 39.jpg 3,48 Mb

  • 40-41.jpg 3,4 Mb

  • 42-43.jpg 3,67 Mb

  • 44.jpg 3,28 Mb

  • 45-46.jpg 3,59 Mb

  • 46(прод)-47.jpg 3,36 Mb

  • 48.jpg 3,38 Mb

  • Вопросы.jpg 153,37 Kb

  • Дополнения.jpg 2,91 Mb

  • 1.jpg 3,18 Mb

  • 2.jpg 3,32 Mb

  • 3.jpg 3,29 Mb

  • 4-5.jpg 3,41 Mb

  • 6-7.jpg 3,4 Mb

  • 8.jpg 3,78 Mb

  • 9-10.jpg 3,16 Mb

  • 11.jpg 3,69 Mb

  • 12-13.jpg 3,23 Mb

  • 14-15.jpg 3,47 Mb

  • 16.jpg 3,06 Mb

Картинка-подпись

Если работа Вам была полезна, Пожалуйста, потратьте несколько секунд, чтобы оставить нам 5 ЗВЁЗД и положительный отзывы. Мы Вам глубоко признателены!

Комментарии

Сопутствующие материалы

Свежие статьи

Популярно сейчас

Ответы на популярные вопросы

То есть уже всё готово?

Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.

А я могу что-то выложить?

Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.

А если в купленном файле ошибка?

Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!

Отзывы студентов

Добавляйте материалы
и зарабатывайте!

Продажи идут автоматически

653

Средний доход
с одного платного файла

Обучение Подробнее

ОБЛАСТНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

«КОЖЕВНИКОВСКИЙ ТЕХНИКУМ АГРОБИЗНЕСА»

Материалы для проведения промежуточной аттестации в форме

экзамена по ОПД.05 Основы гидравлики и теплотехники

по специальности 35.02.07 «Механизация сельского хозяйства».

Кожевниково 2018 г.

Согласовано:

Председатель ПЦК

_________ Хаткевич А.А.

«____» ________ 20__г.

Утверждаю:

Зам. директора по УМР

________ Шараева Н.В.

«____» ________20__г.

ВАРИАНТ № 2

Раздел I Основы гидравлики

Тема 1 Общие сведения о жидкостях

Выберите правильные ответы, обозначив их соответствующими буквами.

1. Что такое жидкость?

а) физическое вещество, способное заполнять пустоты;
б) физическое вещество, способное изменять форму под действием сил;
в) физическое вещество, способное изменять свой объем; 
г) физическое вещество, способное течь.

(Эталон ответа: б)

2 балла.

2. Идеальной жидкостью называется

а) жидкость, в которой отсутствует внутреннее трение;
б) жидкость, подходящая для применения;
в) жидкость, способная сжиматься;
г) жидкость, существующая только в определенных условиях.

(Эталон ответа: а)

2 балла.

3. В каких единицах измеряется давление в системе измерения СИ?

а) в паскалях; 
б) в джоулях;
в) в барах;
г) в стоксах.

(Эталон ответа: а)

2 балла.

4. Если давление отсчитывают от относительного нуля, то его называют:

а) абсолютным;
б) атмосферным;
в) избыточным;
г) давление вакуума.

(Эталон ответа: в)

2 балла.

5. Массу жидкости заключенную в единице объема называют

а) весом;
б) удельным весом;
в) удельной плотностью;
г) плотностью.

(Эталон ответа: а)

2 балла.

6. Вес жидкости в единице объема называют

а) плотностью;
б) удельным весом;
в) удельной плотностью;
г) весом.

(Эталон ответа: б)

2 балла.

7. Вязкость жидкости это

а) способность сопротивляться скольжению или сдвигу слоев жидкости;
б) способность преодолевать внутреннее трение жидкости;
в) способность преодолевать силу трения жидкости между твердыми стенками;
г) способность перетекать по поверхности за минимальное время.

(Эталон ответа: а)

2 балла.

8. Текучестью жидкости называется

а) величина прямо пропорциональная динамическому коэффициенту вязкости;
б) величина обратная динамическому коэффициенту вязкости;
в) величина обратно пропорциональная кинематическому коэффициенту вязкости;
г) величина пропорциональная градусам Энглера.

(Эталон ответа: б)

2 балла.

Дополните выражение.

9. Манометр обычно показывает__________________ давление.

(Эталон ответа: избыточное); 4 балла.

10. Гидромеханика это:______________________________________________

( Эталон ответа : наука о равновесии и движении жидкостей.)

6 баллов.

Тема 2 Основы гидростатики

Выберите правильные ответы, обозначив их соответствующими буквами.

11. Как называются разделы, на которые делится гидравлика?

а) гидростатика и гидромеханика;
б) гидромеханика и гидродинамика;
в) гидростатика и гидродинамика;
г) гидрология и гидромеханика.

(Эталон ответа: в)

2 балла.

12. Первое свойство гидростатического давления гласит

а) в любой точке жидкости гидростатическое давление перпендикулярно площадке касательной к выделенному объему и действует от рассматриваемого объема;
б) в любой точке жидкости гидростатическое давление перпендикулярно площадке касательной к выделенному объему и действует внутрь рассматриваемого объема;
в) в каждой точке жидкости гидростатическое давление действует параллельно площадке касательной к выделенному объему и направлено произвольно;
г) гидростатическое давление неизменно во всех направлениях и всегда перпендикулярно в точке его приложения к выделенному объему.

(Эталон ответа: а)

2 балла.

13. Третье свойство гидростатического давления гласит

а) гидростатическое давление в любой точке не зависит от ее координат в пространстве;
б) гидростатическое давление в точке зависит от ее координат в пространстве;
в) гидростатическое давление зависит от плотности жидкости;
г) гидростатическое давление всегда превышает давление, действующее на свободную поверхность жидкости.

(Эталон ответа: б)

2 балла.

14. Основное уравнение гидростатики позволяет

а) определять давление, действующее на свободную поверхность;
б) определять давление на дне резервуара;
в) определять давление в любой точке рассматриваемого объема;
г) определять давление, действующее на погруженное в жидкость тело.

(Эталон ответа: в)

2 балла.

Тема 3. Основные законы движения жидкостей

15. Площадь поперечного сечения потока, перпендикулярная направлению движения называется

а) открытым сечением;
б) живым сечением;
в) полным сечением;
г) площадь расхода.

(Эталон ответа: б)

2 балла.

16. Объем жидкости, протекающий за единицу времени через живое сечение называется

а) расход потока;
б) объемный поток;
в) скорость потока;
г) скорость расхода.

(Эталон ответа: а)

2 балла.

Дополните выражение.

17. Отношение живого сечения к смоченному периметру называется______________

(Эталон ответа: гидравлический радиус потока)

4 балла.

Тема 4. Движение жидкостей и газов по трубам

18. Гидравлическое сопротивление это

а) сопротивление жидкости к изменению формы своего русла;
б) сопротивление, препятствующее свободному проходу жидкости;
в) сопротивление трубопровода, которое сопровождается потерями энергии жидкости;
г) сопротивление, при котором падает скорость движения жидкости по трубопроводу.

(Эталон ответа: в)

2 балла.

Дополните выражение.

19. Ламинарный режим движения жидкости это________________________________

(Эталон ответа: Движение жидкости, которому соответствует устойчивый струйчатый характер.)

6 баллов.

Раздел II. Основы теплотехники

Выберите правильные ответы, обозначив их соответствующими буквами.

20. Что означает идеальный газ?

1. отсутствуют силы взаимодействия между молекулами

2. силы отталкивания равны нулю

3. газ у которого присутствуют силы взаимодействия между молекулами, объем равен нулю

(Эталон ответа: 1)

2 балла.

21. Что означает теплоемкость газов?

1. температура газа

2. количество теплоты, которое необходимо при нагревании единицы количества газа ( 1кu, 1м3 ,1 к моль ) для изменения температуры на 1к в термодинамическом процессе

3. удельная теплоемкость

(Эталон ответа: 2)

2 балла.

22. Водяной пар:

1. рабочее тело

2. сухой пар

3. теплоноситель

(Эталон ответа: 1)

2 балла.

23. Конвективный теплообмен:

1. перенос теплоты

2. теплопроводность

3. процесс переноса теплоты за счет движения жидкой или газообразной среды

(Эталон ответа: 3)

2 балла.

24. Что означает энтальпия газа?

1. сушка и охлаждение с/х продукции

2. внутренняя энергия

3. параметр состояния рабочего тела (газа), — теплосодержание

4. удельный объем газа.

(Эталон ответа: 3)

2 балла.

25. Основные элементы котельной установки:

1. котел, топочное устройство (топка), питательные и тягодутьевые устройства.

2. водяной экономайзер и воздухоподогреватель,

3. устройства для подачи топлива и удаления золы, для очистки дымовых газов и питательной воды.

(Эталон ответа: 1)

2 балла.

26. Объёмные насосы — :

1. насосы возвратно-поступательного действия(поршневые, диафрагменные) роторные;

2. лопастные насосы (радиальные, центровые, осевые)и насосы трения (вихревые, дисковые);

3. лопастные насосы (радиальные, центровые, осевые), вихревые, поршневые.

(Эталон ответа: 1)

2 балла.

27. Динамические насосы — :

1. лопастные насосы (радиальные, центровые, осевые)и насосы трения (вихревые, дисковые);

2. насосы возвратно-поступательного действия(поршневые, диафрагменные) роторные;

3. лопастные насосы (радиальные, центровые, осевые), вихревые, поршневые.

(Эталон ответа: 3)

2 балла.

Эталон ответов к тесту

Вариант № 1

п/п

Ответ

Количество

баллов

1

б

2 балла

2

а

2 балла

3

а

2 балла

4

в

2 балла

5

а

2 балла

6

б

2 балла

7

а

2 балла

8

б

2 балла

9

избыточное

4 балла

10

наука о равновесии и движении жидкостей

6 баллов

11

в

2 балла

12

а

2 балла

13

б

2 балла

14

в

2 балла

15

б

2 балла

16

а

2 балла

17

гидравлический радиус потока

4 балла

18

в

2 балла

19

Движение жидкости, которому соответствует устойчивый струйчатый характер.)

6 баллов

20

1

2 балла

21

2

2 балла

22

1

2 балла

23

3

2 балла

24

3

2 балла

25

1

2 балла

26

1

2 балла

27

3

2 балла

итого

76 баллов

Система оценивания:

Общее число существенных операций в тесте – 76 (семьдесят шесть) баллов.

68-76 баллов (90-100 %) – отметка «5»

60-68 (80-90 %) – отметка «4»

53-60 баллов (70-80 %) – отметка «3»

Менее 53 баллов (менее 70 %) – отметка «2»

Основы гидравлики и теплотехники

ФИО студента _____________________

Группа ___________________________

Вариант___________________

Общее количество вопросов — 27

Правильных ответов _____

Неправильных ответов _____

Без ответов _____

Оценка ______________________

Понравилась статья? Поделить с друзьями:
  • Гигиенические требования к расписанию уроков проведению контрольных работ перемен экзаменов
  • Гигиенические требования к построению расписания проведению контрольных работ экзаменов
  • Гигиена экзамен студфайл
  • Гигиена экзамен медицинская шпоры ответы
  • Гигиена экзамен мгму