График производной решу егэ

Каталог заданий.
Применение производной к исследованию функций


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

На рисунке изображен график производной функции f левая круглая скобка x правая круглая скобка , определенной на интервале  левая круглая скобка минус 6; 6 правая круглая скобка . Найдите промежутки возрастания функции f левая круглая скобка x правая круглая скобка . В ответе укажите сумму целых точек, входящих в эти промежутки.


2

На рисунке изображен график функции y = f(x), определенной на интервале (−6; 8). Определите количество целых точек, в которых производная функции положительна.


3

На рисунке изображен график функции y  =  f(x), определенной на интервале (−2; 12). Найдите сумму точек экстремума функции f(x).

Источник: ЕГЭ по математике 29.06.2021. Резервная волна. Центр. Вариант 402


4

Источник: ЕГЭ по математике 07.06.2021. Основная волна. Подмосковье


5

На рисунке изображен график производной функции f(x), определенной на интервале (−8; 4). В какой точке отрезка [−7; −3] f(x) принимает наименьшее значение?

Источник: ЕГЭ по математике 07.06.2021. Основная волна. Санкт-Петербург

Пройти тестирование по этим заданиям

Каталог заданий.
Применение производной к исследованию функций


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Задания Д2 № 27487

На рисунке изображен график функции y = f(x), определенной на интервале (−6; 8). Определите количество целых точек, в которых производная функции положительна.

Аналоги к заданию № 27487: 7089 6399 6867 6869 6877 6879 6883 6885 6887 6889 … Все

Решение

·

·

Сообщить об ошибке · Помощь


2

Задания Д2 № 27488

На рисунке изображен график функции y=f левая круглая скобка x правая круглая скобка , определенной на интервале (−5; 5). Определите количество целых точек, в которых производная функции f левая круглая скобка x правая круглая скобка  отрицательна.

Аналоги к заданию № 27488: 7069 7081 6423 6871 6873 6875 6881 6897 6899 6903 … Все

Решение

·

·

Сообщить об ошибке · Помощь


3

Задания Д2 № 27489

На рисунке изображен график функции y = f(x), определенной на интервале (−5; 5). Найдите количество точек, в которых касательная к графику функции параллельна прямой y  =  6 или совпадает с ней.

Аналоги к заданию № 27489: 7321 7325 509084 509113 6401 6421 7091 7093 7095 7097 … Все

Решение

·

·

Сообщить об ошибке · Помощь


4

Задания Д2 № 27490

На рисунке изображен график функции y  =  f(x), определенной на интервале (−2; 12). Найдите сумму точек экстремума функции f(x).

Аналоги к заданию № 27490: 7545 7549 7327 7329 7331 7333 7335 7337 7339 7341 … Все

Решение

·

·

Сообщить об ошибке · Помощь


5

Задания Д2 № 27491

На рисунке изображен график производной функции f левая круглая скобка x правая круглая скобка , определенной на интервале  левая круглая скобка минус 8; 3 правая круглая скобка . В какой точке отрезка  левая квадратная скобка минус 3;2 правая квадратная скобка функция f левая круглая скобка x правая круглая скобка принимает наибольшее значение?

Аналоги к заданию № 27491: 27493 6413 6415 7551 7553 7555 7563 7565 7567 7569 … Все

Решение

·

·

Сообщить об ошибке · Помощь

Пройти тестирование по этим заданиям

Поиск

Всего: 161    1–20 | 21–40 | 41–60 | 61–80 | 81–100 …

Добавить в вариант

Источник: Пробный ЕГЭ по математике, Санкт-Петербург, 04.03.2018. Вариант 2.


На рисунке изображён график функции y  =  f(x), определённой на интервале  левая круглая скобка минус 3;10 правая круглая скобка . Найдите количество точек, в которых производная функции f(x) равна 0.


На рисунке изображён график функции y  =  f(x), определённой на интервале  левая круглая скобка минус 4;9 правая круглая скобка . Найдите количество точек, в которых производная функции f(x) равна 0.


На рисунке изображён график функции y  =  f(x), определённой на интервале (−3; 8). Найдите количество точек, в которых производная функции f(x) равна 0.


На рисунке изображён график функции y  =  f(x), определённой на интервале (−3; 11). Найдите количество точек, в которых производная функции f(x) равна 0.


На рисунке изображён график функции y  =  f(x), определённой на интервале (−2; 12). Найдите количество точек, в которых производная функции f(x) равна 0.


На рисунке изображён график функции y  =  f(x), определённой на интервале (−11; 2). Найдите количество точек, в которых производная функции f(x) равна 0.


На рисунке изображён график y  =  f‘(x)  — производной функции f(x). Найдите абсциссу точки, в которой касательная к графику функции y  =  f(x) параллельна прямой y  =  6 − 2x или совпадает с ней.


На рисунке изображен график производной функции f(x), определенной на интервале (−9; 2). Найдите количество точек, в которых касательная к графику функции f(x) параллельна прямой y = −x − 12 или совпадает с ней.


На рисунке изображен график производной функции f(x), определенной на интервале (−9; 3). Найдите количество точек, в которых касательная к графику функции f(x) параллельна прямой y  =  2x − 19 или совпадает с ней.




Источник: ЕГЭ по математике 10.04.2019. Досрочная волна, резервная волна



На рисунке изображен график функции y=f левая круглая скобка x правая круглая скобка . Прямая, проходящая через начало координат, касается графика этой функции в точке с абсциссой 10. Найдите f' левая круглая скобка 10 правая круглая скобка .


На рисунке изображён график производной y  =  f’(x) функции y  =  f(x), определённой на интервале (−4; 8). В какой точке отрезка [−3; 1] функция y  =  f(x) принимает наименьшее значение?

Раздел: Математический анализ


На рисунке изображен график производной функции f(x). Найдите абсциссу точки, в которой касательная к графику y  =  f(x) параллельна прямой y  =  6x или совпадает с ней.




Всего: 161    1–20 | 21–40 | 41–60 | 61–80 | 81–100 …


Графики функций


В задании №13 ЕГЭ по математике базового уровня придется продемонстрировать умения и знания одного из понятий поведения функции: производных в точке или скоростей возрастания или убывания. Теория к этому заданию будет добавлена чуть позже, но это не помешает нам подробно разобрать несколько типовых вариантов.


Разбор типовых вариантов заданий №14 ЕГЭ по математике базового уровня


Вариант 14МБ1

[su_note note_color=”#defae6″]

На графике изображена зависимость температуры от времени в процессе разогрева двигателя легкового автомобиля. На горизонтальной оси отмечено время в минутах, прошедшее с момента запуска двигателя; на вертикальной оси – температура двигателя в градусах Цельсия.

Пользуясь графиком, поставьте в соответствие каждому интервалу времени характеристику процесса разогрева двигателя на этом интервале.

ИНТЕРВАЛЫ ВРЕМЕНИ:

А) 0 – 1 мин.

Б) 1 – 3 мин.

В) 3 – 6 мин.

Г) 8 – 10 мин.

ХАРАКТЕРИСТИКИ:

  1. самый медленный рост температуры
  2. температура падала
  3. температура находилась в пределах от 40°С до 80°С
  4. температура не превышала 30°С.

В таблице под каждой буквой укажите соответствующий номер.

[/su_note]

Алгоритм выполнения:
  1. Выбрать интервал времени, на котором температура падала.
  2. Приложить линейку к 30°С и определить интервал времени, на котором температура была ниже 30°С.
  3. С помощью карандаша и линейки найдем на каком интервале времени температура находилась в пределах от 40°С до 80°С.
  4. Методом исключения выберем недостающий вариант ответа.
Решение:

Выберем интервал времени, на котором температура падала. Этот участок видно не вооруженным глазом, он начинается в 8 мин от момента запуска двигателя.

Г – 2

Приложим линейку к 30°С и определить интервал времени, на котором температура была ниже 30°С.

Ниже линейки окажется участок, соответствующий интервалу времени 0 – 1 мин.

А – 4

С помощью карандаша и линейки найдем на каком интервале времени температура находилась в пределах от 40°С до 80°С.

Опустим из точек, соответствующих 40°С и 80°С перпендикуляры на график, а из полученных точек опустим перпендикуляры на ось времени.

Видим, что этому температурному интервалу соответствует интервал времени 3 – 6,5 мин. То есть из приведенных в условии 3 – 6 мин.

В – 3

Методом исключения выберем недостающий вариант ответа.

Б – 1

Ответ:

А – 4

Б – 1

В – 3

Г – 2


Вариант 14МБ2

[su_note note_color=”#defae6″]

Установите соответствие между графиками функций и графиками их производных.

[/su_note]

Алгоритм выполнения для каждой из функций:
  1. Определить промежутки возрастания и убывания функций.
  2. Определить точки максимума и точки минимума функций.
  3. Сделать выводы, поставить в соответствие предложенные графики.
Решение:

Проанализируем график функции А. Если Функция возрастает, то производная положительна и наоборот. Производная функции равна нулю в точках экстремума.

Точка экстремума – это точка, в которой достигается максимальное или минимальное значение функции.

Сначала функция А возрастает, т.е. производная положительна. Этому соответствуют графики производных 2 и 3. В точке максимума функции x=-2, то есть в данной точке производная должна быть равна нулю. Этому условию соответствует график под номером 3.

А – 3

Проанализируем график функции Б.

Сначала функция Б убывает, т.е. производная отрицательна. Этому соответствуют графики производных 1 и 4. Точка максимума функции x=-2, то есть в данной точке производная должна быть равна нулю. Этому условию соответствует график под номером 4.

Б – 4

Проанализируем график функции В.

Сначала функция В возрастает, т.е. производная положительна. Этому соответствуют графики производных 2 и 3. Точка максимума функции x = 1, то есть в данной точке производная должна быть равна нулю. Этому условию соответствует график под номером 2.

В – 2

Методом исключения можем определить, что графику функции Г соответствует график производной под номером 1.

Г – 1

А – 3

Б – 4

В – 2

Г – 1

Ответ: 3421.


Вариант 14МБ3

[su_note note_color=”#defae6″]

Установите соответствие между графиками функций и графиками их производных.

[/su_note]

Алгоритм выполнения для каждой из функций:
  1. Определить промежутки возрастания и убывания функций.
  2. Определить точки максимума и точки минимума функций.
  3. Сделать выводы, поставить в соответствие предложенные графики.
Решение:

Проанализируем график функции А.

Если функция возрастает, то производная положительна и наоборот. Производная функции равна нулю в точках экстремума.

Точка экстремума – это точка, в которой достигается максимальное или минимальное значение функции.

Сначала функция А возрастает, т.е. производная положительна. Этому соответствуют графики производных 3 и 4. В точке максимума функции x=0, то есть в данной точке производная должна быть равна нулю. Этому условию соответствует график под номером 4.

А – 4

Проанализируем график функции Б.

Сначала функция Б убывает, т.е. производная отрицательна. Этому соответствуют графики производных 1 и 2. Точка минимума функции x=-1, то есть в данной точке производная должна быть равна нулю. Этому условию соответствует график под номером 2.

Б – 2

Проанализируем график функции В.

Сначала функция В убывает, т.е. производная отрицательна. Этому соответствуют графики производных 1 и 2. Точка минимума функции x = 0, то есть в данной точке производная должна быть равна нулю. Этому условию соответствует график под номером 1.

В – 1

Методом исключения можем определить, что графику функции Г соответствует график производной под номером 3.

Г – 3

А – 4

Б – 2

В – 1

Г – 3

Ответ: 4213.


Вариант 14МБ4

[su_note note_color=”#defae6″]

На рисунке изображен график функции и касательные, проведённые к нему в точках с абсциссами А, В, С и D. В правом столбце указаны значения производной в точках А, В, С и D. Пользуясь графиком, поставьте в соответствие каждой точке значение производной функции в ней.

ЕГЭ по математике задание №14

ТОЧКИ
А
В
С
D

ЗНАЧЕНИЯ ПРОИЗВОДНОЙ
1) –4
2) 3
3) 2/3
4) -1/2

[/su_note]

Вспомним, что означает производная, а именно ее значение в точке – значение функции производной в точке равно тангенсу угла наклона (коэффициенту) касательной.

В ответах у нас есть два положительных, и два отрицательных варианта. Как мы помним, если коэффициент прямой (графика y = kx+ b) положительный – то прямая возрастает, если же он отрицательный – то прямая убывает.

Возрастающих прямых у нас две – в точке A и D. Теперь вспомним, что же означает значение коэффициента k?

Коэффициент k показывает, насколько быстро возрастает или убывает функция (на самом деле коэффициент k сам является производной функции y = kx+ b).

Поэтому k = 2/3 соответствует более пологой прямой – D, а  k = 3 – A.

Аналогично и в случае с отрицательными значениями: точке B соответствует более крутая прямая с k = – 4, а точке С – -1/2.


Вариант 14МБ5

[su_note note_color=”#defae6″]

На рисунке точками показаны объемы месячных продаж обогревателей в магазине бытовой техники. По горизонтали указываются месяцы, по вертикали – количество проданных обогревателей. Для наглядности точки соединены линией.

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.44434Рисунки к Базе №141_1.jpg

Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов времени характеристику продаж обогревателей.

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.45073Рисунки к Базе №141_2.jpg

[/su_note]

Алгоритм выполнения

Анализируем части графика, соответствующие разным временам года. Формулируем ситуации, отображенные на графике. Находим для них наиболее подходящие варианты ответов.

Решение:

Зимой кол-во продаж превысило 120 шт./мес., причем оно все время увеличивалось. Эта ситуация соответствует варианту ответа №3. Т.е. получаем: А–3.

Весной продажи постепенно упали со 120 обогревателей за месяц до 50. Наиболее приближенным к этой формулировке является вариант №2. Имеем: Б–2.

Летом кол-во продаж не менялась и была минимальной. 2-я часть этой формулировки не отражена в ответах, а для первой подходит только №4. Отсюда имеем: В–4.

Осенью продажи росли, однако их кол-во ни в одном из месяцев не превысило 100 штук. Эта ситуация описана в варианте №1. Получаем: Г–1.


Вариант 14МБ6

[su_note note_color=”#defae6″]

На графике изображена зависимость скорости движения рейсового автобуса от времени. На вертикальной оси отмечена скорость автобуса в км/ч, на горизонтальной – время в минутах, прошедшее с начала движения автобуса.

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.46178Рисунки к Базе №142_1.jpg

Пользуясь графиком, поставьте в соответствие каждому интервалу времени характеристику движения автобуса на этом интервале.

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.46762Рисунки к Базе №142_2.jpg

[/su_note]

Алгоритм выполнения
  1. Определяем цену деления на горизонтальной и на вертикальной шкале.
  2. Анализируем по очереди предложенные утверждения 1–4 из правой колонки («Характеристики»). Сопоставляем их с временными интервалами из левой колонки таблицы, находим пары «буква–число» для ответа.
Решение:

Цена деления горизонтальной шкалы составляет 1 с, вертикальной – 20 км/ч.

Далее анализируем характеристики, данные в правой колонке таблицы.

  1. Когда автобус делает остановку, его скорость равна 0. Нулевую скорость в течение 2 минут подряд автобус имел только с 9-й по 11-ю минуту. Это время попадает в интервал 8–12 мин. Значит, имеем пару для ответа: Б–1.
  2. Скорость 20 км/ч и больше автобус имел в течение нескольких временных промежутков. Причем вариант А здесь не подходит, т.к., к примеру, на 7-й минуте скорость составляла 60 км/ч, вариант Б – потому что он уже применен, вариант Г – потому что в начале и конце промежутка автобус имел нулевую скорость. В данном случае подходит вариант В (12–16 мин); на этом промежутке автобус начинает движение со скоростью 40 км/ч, далее ускоряется до 100 км/м и потом постепенно снижает скорость до 20 км/ч. Итак, имеем: В–2.
  3. Здесь установлено ограничение для скорости. При этом варианты Б и В мы не рассматриваем. Оставшиеся же интервалы А и Г подходят оба. Поэтому правильно будет рассмотреть сначала 4-й вариант, а потом снова вернуться в 3-му.
  4. Из двух оставшихся интервалов для характеристики №4 подходит только 4–8 мин, поскольку на этом промежутке остановка была (на 6-й минуте). На промежутке 18–22 мин остановок не было. Получаем: А–4. Отсюда следует, что для характеристики №3 нужно взять интервал Г, т.е. получается пара Г–3.

Вариант 14МБ7

[su_note note_color=”#defae6″]

На рисунке точками показан прирост населения Китая в период с 2004 по 2013 год. По горизонтали указывается год, по вертикали – прирост населения в процентах (увеличение численности населения относительно прошлого года). Для наглядности точки соединены линией.

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.47723Рисунки к Базе №143_1.jpg

Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов времени характеристику прироста населения Китая в этот период.

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.48321Рисунки к Базе №143_2.jpg

[/su_note]

Алгоритм выполнения
  1. Определяем цену деления вертикальной шкалы рисунка. Находится она как разница пары соседних значений шкалы, деленная на 2 (т.к. между двумя соседними значениями имеется 2 деления).
  2. Анализируем последовательно приведенные в условии характеристики 1–4 (левая табличная колонка). Сопоставляем каждую из них с конкретным периодом времени (правая табличная колонка).
Решение:

Цена деления вертикальной шкалы составляет 0,01%.

  1. Падение прироста непрерывно продолжалось с 2004 по 2010 год. В 2010–2011 годах прирост был стабильно минимальным, и начиная с 2012 года оно начал увеличиваться. Т.е. остановка прироста произошла в 2010 году. Этот год находится в периоде 2009–2011 гг. Соответственно, имеем: В–1.
  2. Наибольшим падением прироста следует считать самую «круто» падающую линию графика на рисунке. Она приходится на период 2006–2007 гг. и составляет 0,04%, за год (0,59–0,56=0,04% в 2006 г. и 0,56–0,52=0,04% в 2007 г.). Отсюда получаем: А–2.
  3. Указанный в характеристике №3 прирост начался с 2007 года, продолжился в 2008 г. и завершился в 2009 году. Это соответствует периоду времени Б, т.е. имеем: Б–3.
  4. Прирост населения начал увеличиваться после 2011 г., т.е. в 2012–2013 гг. Поэтому получаем: Г–4.

Вариант 14МБ8

[su_note note_color=”#defae6″]

На рисунке изображены график функции и касательные, проведенные к нему в точках с абсциссами А,В,С и D.

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.49416Рисунки к Базе №144_1.jpg

В правом столбце указаны значения производной функции в точках А, В, С и D. Пользуясь графиком, поставьте в соответствие каждой точке значение производной функции в ней.

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.561Рисунки к Базе №144_2.jpg

[/su_note]

Алгоритм выполнения
  1. Рассматриваем пару касательных, имеющих острый угол с положит.направлением оси абсцисс. Сравниваем их, находим соответствие среди пары соответствующих значений производных.
  2. Рассматриваем пару касательных, образующих с положит.направлением оси абсцисс тупой угол. Сравниваем их по модулю, определяем соответствие их значениям производных среди двух оставшихся в правой колонке.
Решение:

Острый угол с положит.направлением оси абсцисс образуют производные в т.В и т.С. Эти производные имеют положит.значения. Поэтому выбирать тут следует между значениями №№1 и 3. Применяя правило о том, что если угол меньше 450, то производная меньше 1, а если больше, то больше 1, делаем вывод: в т.В производная по модулю больше 1, в т.С – меньше 1. Это означает, что можно составить пары для ответа: В–3 и С–1.

Производные в т.А и т.D образуют с положит.направлением оси абсцисс тупой угол. И тут применяем то же правило, немного перефразировав его: чем больше касательная в точке «прижата» к линии оси абсцисс (к отрицат. ее направлению), тем больше она по модулю. Тогда получаем: производная в т.А по модулю меньше, чем производная в т.D. Отсюда имеем пары для ответа: А–2 и D–4.


Вариант 14МБ9

[su_note note_color=”#defae6″]

На рисунке точками показана среднесуточная температура воздуха в Москве в январе 2011 года. По горизонтали указываются числа месяца, по вертикали – температура в градусах Цельсия. Для наглядности точки соединены линией.

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.1907Рисунки к Базе №145_1.jpg

Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов времени характеристику изменения температуры.

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.2478Рисунки к Базе №145_2.jpg

[/su_note]

Алгоритм выполнения

Анализируем последовательно характеристики 1–4 (правая колонка), используя график на рисунке. Ставим каждой из них в соответствие конкретный временной период (левая колонка).

Решение:
  1. Рост температуры наблюдался только в конце периода 22–28 января. Здесь 27 и 28 числа она повышалась соответственно на 1 и на 2 градуса. В конце периода 1–7 января температура была стабильной (–10 градусов), в конце 8–14 и 15–21 января понижалась (с –1 до –2 и с –11 до –12 градусов соответственно). Поэтому получаем: Г–1.
  2. Поскольку каждый временной период охватывает 7 дней, то анализировать нужно температуру, начиная с 4-го дня каждого периода. Неизменной в течение 3–4 дней температура была только с 4 по 7 января. Поэтому получаем ответ: А–2.
  3. Месячный минимум температуры наблюдался 17 января. Это число входит в период 15–21 января. Отсюда имеем пару: В–3.
  4. Температурный максимум пришелся 10 января и составил +1 градус. Эта дата попадает в период 8–14 января. Значит, имеем: Б–4.

Вариант 14МБ10

[su_note note_color=”#defae6″]

На рисунке изображен график функции y=f(x) и отмечены точки А, В, С и D на оси Ох..

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.3245Рисунки к Базе №146_1.jpg

Пользуясь графиком, поставьте в соответствие каждой точке характеристики функции и ее производной

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.5218Рисунки к Базе №146_2.jpg

[/su_note]

Алгоритм выполнения
  1. Значение функции в точке положительно, если эта точка расположена выше оси Ох.
  2. Производная в точке больше нуля, если касательная к этой точке образует острый угол с положительным направлением оси Ох.
Решение:

Точка А. Она находится ниже оси Ох, значит значение функции в ней отрицательно. Если провести в ней касательную, то угол между нею и положит.направлением Ох составит около 900, т.е. образует острый угол. Значит, в данном случае подходит характеристика №3. Т.е. имеем: А–3.

Точка Б. Она находится над осью Ох, т.е. точка имеет положит.значение функции. Касательная в этой точке будет довольно близко «прилегать» к оси абсцисс, образуя тупой угол (немногим меньше 1800) с положительным ее направлением. Соответственно, производная в этой точке отрицательна. Т.о., здесь подходит характеристика 1. Получаем ответ: В–1.

Точка С. Точка расположена ниже оси Ох, касательная в ней образует большой тупой угол с положит.направлением оси абсцисс. Т.е. в т.С значение и функции, и производной отрицательно, что соответствует характеристике №2. Ответ: С–2.

Точка D. Точка находится выше оси Ох, а касательная в ней образует с положит.направлением оси острый угол. Это говорит о том, что как значение функции, так и значение производной здесь больше нуля. Ответ: D–4.


Вариант 14МБ11

[su_note note_color=”#defae6″]

На рисунке точками показаны объемы месячных продаж холодильников в магазине бытовой техники. По горизонтали указываются месяцы, по вертикали – количество проданных холодильников. Для наглядности точки соединены линией.

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.6278Рисунки к Базе №147_1.jpg

Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов времени характеристику продаж холодильников.

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.6821Рисунки к Базе №147_2.jpg

[/su_note]

Алгоритм выполнения
  1. При необходимости найти кол-во холодильников за тот или иной период нужно определять их сумму за три месяца.
  2. Анализировать следует характеристики 1–4 (правая колонка), находя для каждой из них соответствие в виде временного периода (левая колонка).
Решение:

Анализируем характеристики:

  1. Меньше всего холодильников продано в начале и в конце года. Поэтому рассмотрим периоды январь–март и октябрь–декабрь. В январе–марте было продано примерно 250+250+300=800 холодильников, в октябре–декабре – примерно 350+200+100=650. Значит, здесь подходит все-таки последний период. Ответ: Г–1.
  2. Длительный рост продаж наблюдался с апреля по июль. Это время охватывает полностью период апрель–июнь и захватывает начало следующего. Поэтому получаем: Б–2.
  3. Тут тоже требуется найти сумму проданных единиц за целые периоды. Для 1-го и последнего периода она уже найдена (см.п.1). Считаем для 2-го и 3-го, получаем: 300+400+600=1300 – в апреле–июне, примерно 650+600+550=1800 – в июле–сентябре. К требуемым 800 холодильникам максимально приближен объем продаж в январе–марте. Поэтому имеем: А–3.
  4. Одинаковое падение объема продаж означает, что разница между кол-вом проданных холодильников должна быть одинаковой. Падение продаж наблюдалось, начиная с конца июля. В августе падение составило 650–600=50 штук, в сентябре – 600–550=50 штук. Далее, в октябре, разница составила уже 550–350=200 холодильников, в ноябре 350–200=150, в декабре 200–100=100. Т.о., подходит в данном случаем период июль–сентябрь. Ответ: В–4.

Вариант 14МБ12

[su_note note_color=”#defae6″]

На рисунке точками показан годовой объем добычи угля в России открытым способом в период с 2001 по 2010 год. По горизонтали указывается год, по вертикали – объем добычи угля в миллионах тонн. Для наглядности точки соединены линиями.

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.7951Рисунки к Базе №148_1.jpg

Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов характеристику добычи угля в этот период.

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.8524Рисунки к Базе №148_2.jpg

[/su_note]

Алгоритм выполнения
  1. Точки, которые не приходятся на точные значения шкалы вертикальной оси, определяем приблизительно.
  2. Анализируем по очереди приведенные (в правом столбце) характеристики, используя данный график. Определяем соответствие каждой из них конкретного временного периода.

Решение:

Анализируем характеристики:
  1. Объем добычи меньше 190 млн т приходился на период с 2001 года по 2005 год. Затем спад добычи зафиксирован в 2009 году, но один год не составляет периода. 2001–2005 годы полностью попадают в период А (2002–2004 гг.). Поэтому получаем ответ: А–1.
  2. Такая формулировка «объем… сначала уменьшался, а затем начал расти» соответствует 2 периодам – 2002–2003 гг. и 2009–2010 гг. Но т.к. первый из этих периодов уже взят в качестве ответа, то правильно здесь использовать пару Г–2.
  3. Ситуация, описанная в 3-й характеристике, наиболее точно отображена в периоде 2006–2008 гг. Именно в это время добыча сначала понемногу увеличивалась (примерно с 190 млн т до 210), а потом резко возросла до 250 млн т. Т.е. подходящий ответ здесь: 2006–2008 гг. и, соответственно, имеем: В–3.
  4. Медленный рост следует искать в период, когда линия графика имеет наиболее пологий вид. Это: 2004–2006 год, что соответствует периоду Б, т.е. получаем: Б–4.

Вариант 14МБ13

[su_note note_color=”#defae6″]

На графике изображена зависимость температуры от времени в процессе разогрева двигателя легкового автомобиля. На горизонтальной оси отмечено время в минутах, прошедшее с момента запуска двигателя, на вертикальной оси – температура двигателя в градусах Цельсия.

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.9308Рисунки к Базе №149_1.jpg

Пользуясь графиком, поставьте в соответствие каждому интервалу времени характеристику температуры.

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.10469Рисунки к Базе №149_2.jpg

[/su_note]

Алгоритм выполнения

Анализируем сначала очередную характеристику, а затем сопоставляем ее с конкретным временным интервалом.

Решение:
  1. Выше 600 температура была с 4-й по 7-ю минуту. Поэтому здесь нужно взять интервал 4–6 мин. Получаем: В–1.
  2. Температура падала только после 7-й минуты. Соответственно, тут подходит интервал 7–9 мин. Ответ: Г–2.
  3. Самый быстрый рост температуры происходил там, где график имеет наиболее «крутой» вертикальный подъем. Это имеет место только в 1-ю минуту нагревания. Т.е. подходящим интервалом является 0–1 мин. Ответ: А–3.
  4. В пределах 40–50 0С температура имела место, начиная со 2-й по 3-ю минуту. Значит, нужно выбрать интервал 2–3мин. Ответ: Б–4.

Вариант 14МБ14

[su_note note_color=”#defae6″]

На графике изображена зависимость частоты пульса гимнаста от времени в течение и после его выступления в вольных упражнениях. На горизонтальной оси отмечено время (в минутах), прошедшее с начала выступления гимнаста, на вертикальной оси – частота пульса (в ударах в минуту).

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.11094Рисунки к Базе №1410_1.jpg

Пользуясь графиком, поставьте в соответствие каждому интервалу времени характеристику пульса гимнаста на этом интервале.

C:UsersDDD3~1AppDataLocalTempRar$DRa7912.11625Рисунки к Базе №1410_2.jpg

[/su_note]

Алгоритм выполнения
  1. Для анализа характеристики нужно использовать только 1-ю половину графика.
  2. Для точек графика, которые не попадают в «узлы» сетки рисунка (т.е. для которых невозможно определить точные значения), нужно определять значения приблизительно.
  3. Величина роста пульса связана с пологостью (или, напротив, крутизной) линии графика. Это означает, что чем большее изменение значения функции происходит за тот или иной (но обязательно одинаковый) промежуток времени, тем больше величина роста.
Решение:

Анализируем предложенные характеристики:

  1. Если частота пульса сначала падала, а затем росла, то на графике это должно выразиться в «прогибе» линии графика вниз. Такая кривизна наблюдается только в течение 3–4 минуты. Значит, получаем ответ: Г–1.
  2. Самый большой «подъем» линии на 1-й половине графика имеет место с 1-й по 2-ю минуту. Отсюда получаем: Б–2.
  3. Частота пульса падала, начиная со 2-й минуты. В течение 3–4 минут тоже наблюдалось падение, однако оно потом перешло в рост. Поэтому правильным здесь следует считать интервал В. Т.о., ответ: В–3.
  4. Единственный интервал, на котором частота не превысила 100 ударов, – 0–1 мин. Отсюда имеем ответ: А–4.

Даниил Романович | Просмотров: 21.2k

Производной функции $y = f(x)$ в данной точке $х_0$ называют предел отношения приращения функции к соответствующему приращению его аргумента при условии, что последнее стремится к нулю:

$f'(x_0)={lim}↙{△x→0}{△f(x_0)}/{△x}$

Дифференцированием называют операцию нахождения производной.

Таблица производных некоторых элементарных функций

Функция Производная
$c$ $0$
$x$ $1$
$x^n$ $nx^{n-1}$
${1}/{x}$ $-{1}/{x^2}$
$√x$ ${1}/{2√x}$
$e^x$ $e^x$
$lnx$ ${1}/{x}$
$sinx$ $cosx$
$cosx$ $-sinx$
$tgx$ ${1}/{cos^2x}$
$ctgx$ $-{1}/{sin^2x}$

Основные правила дифференцирования

1. Производная суммы (разности) равна сумме (разности) производных

$(f(x) ± g(x))’= f'(x)±g'(x)$

Найти производную функции $f(x)=3x^5-cosx+{1}/{x}$

Производная суммы (разности) равна сумме (разности) производных.

$f'(x) = (3x^5 )’-(cos x)’ + ({1}/{x})’ = 15x^4 + sinx — {1}/{x^2}$

2. Производная произведения

$(f(x) · g(x))’= f'(x) · g(x)+ f(x) · g(x)’$

Найти производную $f(x)=4x·cosx$

$f'(x)=(4x)’·cosx+4x·(cosx)’=4·cosx-4x·sinx$

3. Производная частного

$({f(x)}/{g(x)})’={f'(x)·g(x)-f(x)·g(x)’}/{g^2(x)}$

Найти производную $f(x)={5x^5}/{e^x}$

$f'(x)={(5x^5)’·e^x-5x^5·(e^x)’}/{(e^x)^2}={25x^4·e^x-5x^5·e^x}/{(e^x)^2}$

4. Производная сложной функции равна произведению производной внешней функции на производную внутренней функции

$f(g(x))’=f'(g(x))·g'(x)$

$f(x)= cos(5x)$

$f'(x)=cos'(5x)·(5x)’=-sin(5x)·5= -5sin(5x)$

Физический смысл производной

Если материальная точка движется прямолинейно и ее координата изменяется в зависимости от времени по закону $x(t)$, то мгновенная скорость данной точки равна производной функции.

$v(t) = x'(t)$

Точка движется по координатной прямой согласно закону $x(t)= 1,5t^2-3t + 7$, где $x(t)$ — координата в момент времени $t$. В какой момент времени скорость точки будет равна $12$?

Решение:

1. Скорость – это производная от $x(t)$, поэтому найдем производную заданной функции

$v(t) = x'(t) = 1,5·2t -3 = 3t -3$

2. Чтобы найти, в какой момент времени $t$ скорость была равна $12$, составим и решим уравнение:

$3t-3 = 12$

$3t = 15$

$t = 5$

Ответ: $5$

Геометрический смысл производной

Напомним, что уравнение прямой, не параллельной осям координат, можно записать в виде $y = kx + b$, где $k$ – угловой коэффициент прямой. Коэффициент $k$ равен тангенсу угла наклона между прямой и положительным направлением оси $Ох$.

$k = tgα$

Производная функции $f(x)$ в точке $х_0$ равна угловому коэффициенту $k$ касательной к графику в данной точке:

$f'(x_0) = k$

Следовательно, можем составить общее равенство:

$f'(x_0) = k = tgα$

На рисунке касательная к функции $f(x)$ возрастает, следовательно, коэффициент $k > 0$. Так как $k > 0$, то $f'(x_0) = tgα > 0$. Угол $α$ между касательной и положительным направлением $Ох$ острый.

На рисунке касательная к функции $f(x)$ убывает, следовательно, коэффициент $k < 0$, следовательно, $f'(x_0) = tgα < 0$. Угол $α$ между касательной и положительным направлением оси $Ох$ тупой.

На рисунке касательная к функции $f(x)$ параллельна оси $Ох$, следовательно, коэффициент $k = 0$, следовательно, $f'(x_0) = tg α = 0$. Точка $x_0$, в которой $f ‘(x_0) = 0$, называется экстремумом.

На рисунке изображён график функции $y=f(x)$ и касательная к этому графику, проведённая в точке с абсциссой $x_0$. Найдите значение производной функции $f(x)$ в точке $x_0$.

Решение:

Касательная к графику возрастает, следовательно, $f'(x_0) = tg α > 0$

Для того, чтобы найти $f'(x_0)$, найдем тангенс угла наклона между касательной и положительным направлением оси $Ох$. Для этого достроим касательную до треугольника $АВС$.

Найдем тангенс угла $ВАС$. (Тангенсом острого угла в прямоугольном треугольнике называется отношение противолежащего катета к прилежащему катету.)

$tg BAC = {BC}/{AC} = {3}/{12}= {1}/{4}=0,25$

$f'(x_0) = tg ВАС = 0,25$

Ответ: $0,25$

Производная так же применяется для нахождения промежутков возрастания и убывания функции:

Если $f'(x) > 0$ на промежутке, то функция $f(x)$ возрастает на этом промежутке.

Если $f'(x) < 0$ на промежутке, то функция $f(x)$ убывает на этом промежутке.

На рисунке изображен график функции $y = f(x)$. Найдите среди точек $х_1,х_2,х_3…х_7$ те точки, в которых производная функции отрицательна.

В ответ запишите количество данных точек.

Решение:

Отрицательным значениям производной соответствуют интервалы, на которых функция $f (x)$ убывает. Поэтому, выделим на рисунке интервалы, на которых функция убывает.

В выделенных интервалах находятся точки $х_2, х_4$. В ответ напишем их количество $2$.

Ответ: $2$

Необходимая теория:

Производная функции

Таблица производных

Первообразная функции

Задание 7 Профильного ЕГЭ по математике — это задачи на геометрический и физический смысл производной. Это задачи о том, как производная связана с поведением функции. И еще (правда, очень редко) в этих задачах встречаются вопросы о первообразной.

Геометрический смысл производной 

Вспомним, что производная — это скорость изменения функции.

Производная функции fleft ( x right ) в точке x_0 равна угловому коэффициенту касательной, проведенной к графику функции в этой точке. Производная также равна тангенсу угла наклона касательной.

boldsymbol{f

1. На рисунке изображён график функции y = f(x) и касательная к нему в точке с абсциссой x_0 . Найдите значение производной функции f(x) в точке x_0 .

Производная функции f(x) в точке x_0 равна тангенсу угла наклона касательной, проведенной в точке x_0.

Достроив до прямоугольного треугольника АВС, получим:

f

Ответ: 0,25.

2. На рисунке изображён график функции y = f(x) и касательная к нему в точке с абсциссой x_0.
Найдите значение производной функции y = f(x) в точке x_0.

Начнём с определения знака производной. Мы видим, что в точке x_0 функция убывает, следовательно, её производная отрицательна. Касательная в точке x_0 образует тупой угол alpha с положительным направлением оси X. Поэтому из прямоугольного треугольника мы найдём тангенс угла varphi , смежного с углом alpha.

Мы помним, что тангенс угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему: tg varphi = 0, 25. Поскольку alpha + varphi = 180^{circ}, имеем:

tg alpha = tg(180^{circ} -varphi ) = - tg varphi = -0, 25.

Ответ: −0, 25.

Касательная к графику функции

3. Прямая y = - 4x - 11 является касательной к графику функции y = x^3 + 7x^2 + 7x - 6.

Найдите абсциссу точки касания.

Запишем условие касания функции y=fleft(xright) и прямой y=kx+b в точке x_0 .

При x= x_0 значения выражений fleft(xright) и kx+b равны.

При этом производная функции fleft(xright) равна угловому коэффициенту касательной, то есть k.

left{ begin{array}{c}fleft(xright)=kx+b \f^{

left{ begin{array}{c}x^3+{7x}^2+7x-6=-4x-11 \{3x}^2+14x+7=-4 end{array}right..

Из второго уравнения находим x = -1 или x=-frac{11}{3}. Первому уравнению удовлетворяет только x = -1.

Физический смысл производной

Мы помним, что производная — это скорость изменения функции.

Мгновенная скорость — это производная от координаты по времени. Но это не единственное применение производной в физике. Например, cила тока — это производная заряда по времени, то есть скорость изменения заряда. Угловая скорость — производная от угла поворота по времени.

Множество процессов в природе, экономике и технике описывается дифференциальными уравнениями — то есть уравнениями, содержащими не только сами функции, но и их производные.

4. Материальная точка движется прямолинейно по закону x(t) = t^2 - 3t - 29, где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения. Найдите ее скорость (в м/с) в момент времени t = 3 с.

Мгновенная скорость движущегося тела является производной от его координаты по времени. Это физический смысл производной. В условии дан закон изменения координаты материальной точки, то есть расстояния от точки отсчета: xleft(tright)=t^2-3t-29.

Найдем скорость материальной точки как производную от координаты по времени:

vleft(tright)=x В момент времени t=3 получим:

vleft(3right)=2cdot 3-3=3.

Ответ: 3.

Применение производной к исследованию функций

Каждый год в вариантах ЕГЭ встречаются задачи, в которых старшеклассники делают одни и те же ошибки.

Например, на рисунке изображен график функции — а спрашивают о производной. Кто их перепутал, тот задачу не решил.

Или наоборот. Нарисован график производной — а спрашивают о поведении функции.

И значит, надо просто внимательно читать условие. И знать, как же связана производная с поведением функции.

Если f, то функция f (x) возрастает.

Если f, то функция f (x) убывает.

В точке максимума производная равна нулю и меняет знак с «плюса» на «минус».

В точке минимума производная тоже равна нулю и меняет знак с «минуса» на «плюс».

f(x) возрастает точка максимума убывает точка минимума возрастает
f + 0 - 0 +

5. На рисунке изображен график функции y=f(x), определенной на интервале (-3; 9). Найдите количество точек, в которых производная функции f(x) равна 0.

Производная функции f { в точках максимума и минимума функции f(x). Таких точек на графике 5.

Ответ: 5.

6. На рисунке изображён график y = f — производной функции f(x), определённой на интервале (-6; 5). В какой точке отрезка [-1; 3] функция f(x) принимает наибольшее значение?

Не спешим. Зададим себе два вопроса: что изображено на рисунке и о чем спрашивается в этой задаче?

Изображен график производной, а спрашивают о поведении функции. График функции не нарисован. Но мы знаем, как производная связана с поведением функции.

На отрезке [-1;3] производная функции f(x) положительна.

Значит, функция f(x) возрастает на этом отрезке. Большим значениям х соответствует большее значение f(x). Наибольшее значение функции достигается в правом конце отрезка, то есть в точке 3.

Ответ: 3.

7. На рисунке изображён график функции y= f(x), определённой на интервале (-3; 8). Найдите количество точек, в которых касательная к графику функции параллельна прямой y = 1.

Прямая y=1 параллельна оси абсцисс. Найдем на графике функции y = f(x) точки, в которых касательная параллельна оси абсцисс, то есть горизонтальна. Таких точек на графике 7. Это точки максимума и минимума.

Ответ: 7.

8. На рисунке изображен график производной функции f(x), определенной на интервале (-7; 14). Найдите количество точек максимума функции f(x) на отрезке [-6; 9].

Очень внимательно читаем условие задачи. Изображен график производной, а спрашивают о точках максимума функции. В точке максимума производная равна нулю и меняет знак с «плюса» на «минус». На отрезке [-6; 9] такая точка всего одна! Это x=7.

Ответ: 1.

9. На рисунке изображен график производной функции f(x), определенной на интервале (-6; 5). Найдите точку экстремума функции f(x) на отрезке [-5; 4].

Точками экстремума называют точки максимума и минимума функции. Если производная функции в некоторой точке равна нулю и при переходе через эту точку меняет знак, то это точка экстремума. На отрезке [- 5; 4] график производной (а именно он изображен на рисунке) пересекает ось абсцисс в точке x = -2. В этой точке производная меняет знак с минуса на плюс.

Значит, x= -2 является точкой экстремума.

Первообразная и формула Ньютона-Лейбница

Функция F(x), для которой f(x) является производной, называется первообразной функции y = f(x). Функции вида y = F(x) + C образуют множество первообразных функции y = f(x).

10. На рисунке изображён график y = F(x) — одной из первообразных некоторой функции f(x), определённой на интервале (-6; 6). Пользуясь рисунком, определите количество решений уравнения f(x)=0 на отрезке [-4; 4] .

Функция F(x), для которой f(x) является производной, называется первообразной функции y = f(x).

Это значит, что на графике нужно найти такие точки, принадлежащие отрезку [-4; 4] , в которых производная функции F(x) равна нулю. Это точки максимума и минимума функции F(x). На отрезке [-4; 4] таких точек 4.

Ответ: 4.

Больше задач на тему «Первообразная. Площадь под графиком функции» — в этой статье

Первообразная функции. Формула Ньютона-Лейбница.

Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Задание №7. Производная. Поведение функции. Первообразная u0026#8212; профильный ЕГЭ по Математике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
09.03.2023

Skip to content

ЕГЭ Профиль №7. Применение производной к исследованию функций

ЕГЭ Профиль №7. Применение производной к исследованию функцийadmin2023-03-05T10:25:19+03:00

Скачать файл в формате pdf.

ЕГЭ Профиль №7. Применение производной к исследованию функций

Задача 1. На рисунке изображен график функции  (y = fleft( x right)), определенной на интервале  (left( { — 8;6} right)). Определите количество целых точек, в которых производная функции (fleft( x right)) положительна.

Ответ

ОТВЕТ: 5.

Решение

Производная функции положительна в тех интервалах, на которых функция возрастает, то есть на интервалах (left( { — 7; — 6} right),,,,left( { — 2,5;, — 1} right))  и  (left( {0;,4,5} right).) Концы интервалов не включаем, так как они являются точками экстремума, а в них производная равна нулю. Интервалы возрастания выделены синим цветом (см. рисунок), а целые точки, входящие в эти интервалы -2, 1, 2, 3 и 4 выделены красным цветом и их количество равно 5.

Ответ: 5.

Задача 2. На рисунке изображен график функции (y = fleft( x right)), определенной на интервале(left( { — 1;10} right)). Определите количество целых точек, в которых производная функции отрицательна.

Ответ

ОТВЕТ: 6.

Решение

Производная функции отрицательна в тех интервалах, на которых функция убывает, то есть на интервалах (left( {0;3,5} right))  и  (left( {6;,10} right).) Концы интервалов 0,  3,5  и  6 не включаем, так как они являются точками экстремума, а в них производная равна нулю. Интервалы убывания выделены синим цветом (см. рисунок), а целые точки, входящие в эти интервалы  1, 2, 3, 7, 8 и 9 выделены красным цветом и их количество равно 6.

Ответ: 6.

Задача 3. На рисунке изображен график функции (y = fleft( x right)), определенной на интервале   (left( { — 7;5} right)). Найдите сумму точек экстремума функции (fleft( x right)).

Ответ

ОТВЕТ: 0.

Решение

Точки максимума и минимума объединяются общим термином – точки экстремума. Выделим на графике точки экстремума красным цветом.

Они имеют следующие координаты по оси абсцисс:  -5,  -1,  0,  1,  2  и  3,  а их сумма равна  ( — 5 — 1 + 0 + 1 + 2 + 3 = 0).

Ответ: 0.

Задача 4. На рисунке изображен график (y = f’left( x right)) — производной функции (fleft( x right)), определенной на интервале (left( { — 1;10} right)). В какой точке отрезка   (left[ {5;;9} right]) (fleft( x right)) принимает наибольшее значение?

Ответ

ОТВЕТ: 9.

Решение

На отрезке (left[ {5;,9} right]) график производной расположен выше оси Оx (см. рисунок), следовательно, производная принимает положительные значения, поэтому функция на этом отрезке возрастает и принимает наибольшее значение в правом конце отрезка, то есть в точке 9.

Ответ: 9.

Задача 5. На рисунке изображен график (y = f’left( x right)) — производной функции (fleft( x right)), определенной на интервале  (left( { — 5;7} right)). В какой точке отрезка (left[ {2;;6} right]) (fleft( x right)) принимает наименьшее значение?

Ответ

ОТВЕТ: 6.

Решение

На отрезке (left[ {2;,6} right]) график производной расположен ниже оси Оx (см. рисунок), следовательно, производная принимает неположительные значения, поэтому функция на этом отрезке убывает и принимает наименьшее значение в правом конце отрезка, то есть в точке 6.

Ответ: 6.

Задача 6. На рисунке изображен график (y = f’left( x right)) — производной функции (fleft( x right)), определенной на интервале (left( { — 5;19} right)). Найдите количество точек максимума функции (fleft( x right)), принадлежащих отрезку    (left[ { — 3;;15} right]).

Ответ

ОТВЕТ: 1.

Решение

Значение производной (f’left( x right)) в точках максимума и минимума функции (fleft( x right)) равно нулю. При этом в точках максимума производная меняет знак с «+» на «-», а в точках минимума с «-» на «+». Следовательно, для нахождения количества точек максимума необходимо найти количество нулевых значений производной при переходе через которые знак производной меняется с «+» на «-». В данном случае на отрезке (left[ { — 3;,15} right]) производная равна нулю в точках (x = 2,,,x = 4,,,x = 12) (выделены красным цветом см. рисунок). На промежутках (left[ { — 3;,2} right]) и (left[ {4;,12} right]) график производной расположен ниже оси Ox, следовательно, производная принимает неположительные значения, а на промежутках (left[ {2;,4} right]) и (left[ {12;,15} right]) график производной расположен выше оси Ox, следовательно, производная принимает неотрицательные значения. Таким образом, производная меняет знак с «+» на «-» только при переходе через точку (x = 4), поэтому функция имеет 1 точку максимума.

Ответ: 1.

Задача 7. На рисунке изображен график (y = f’left( x right)) — производной функции (fleft( x right)), определенной на интервале (left( { — 10;7} right)). Найдите количество точек минимума функции (fleft( x right)), принадлежащих отрезку (left[ { — 6;;2} right]).

Ответ

ОТВЕТ: 1.

Решение

Значение производной (f’left( x right)) в точках максимума и минимума функции (fleft( x right)) равно нулю. При этом в точках максимума производная меняет знак с «+» на «-», а в точках минимума с «-» на «+». Следовательно, для нахождения количества точек минимума необходимо найти количество нулевых значений производной при переходе через которые знак производной меняется с «-» на «+». В данном случае на отрезке (left[ { — 6;,2} right]) производная равна нулю в точках (x =  — 5,,,x =  — 3,,,x =  — 1) (выделены красным цветом см. рисунок). На промежутках (left[ { — 5;, — 3} right]) и (left[ { — 1;,2} right]) график производной расположен ниже оси Ox, следовательно, производная принимает неположительные значения, а на промежутках (left[ { — 6;, — 5} right]) и (left[ { — 3;, — 1} right]) график производной расположен выше оси Ox, следовательно, производная принимает неотрицательные значения. Таким образом, производная меняет знак с «-» на «+» только при переходе через точку (x =  — 3), поэтому функция имеет 1 точку минимума.

Ответ: 1.

Задача 8. На рисунке изображен график (y = f’left( x right)) — производной функции (fleft( x right)), определенной на интервале  (left( { — 11;11} right)). Найдите количество точек экстремума функции (fleft( x right)), принадлежащих отрезку   (left[ { — 8;;10} right]).

Ответ

ОТВЕТ: 3.

Решение

Значение производной (f’left( x right)) в точках экстремума (в точках максимума и минимума) функции (fleft( x right)) равно нулю. При этом в точках максимума производная меняет знак с «+» на «-», а в точках минимума с «-» на «+». Следовательно, для нахождения количества точек экстремума необходимо найти количество нулевых значений производной при переходе через которые знак производной меняется. В данном случае на отрезке (left[ { — 8;,10} right]) производная равна нулю в точках (x =  — 7,,,x =  — 1,,,x = 4) (выделены красным цветом см. рисунок). На промежутках (left[ { — 8;, — 7} right]) и (left[ { — 1;,4} right]) график производной расположен ниже оси Ox, следовательно, производная принимает неположительные значения, а на промежутках (left[ { — 7;, — 1} right]) и (left[ {4;,10} right]) график производной расположен выше оси Ox, следовательно, производная принимает неотрицательные значения. Таким образом, производная меняет знак при переходе через точки (x =  — 7,,,x =  — 1,,,x = 4), поэтому функция имеет 3 точки экстремума.

Ответ: 3.

Задача 9. На рисунке изображен график (y = f’left( x right)) — производной функции (fleft( x right)), определенной на интервале (left( { — 6;10} right)). Найдите промежутки возрастания функции (fleft( x right)). В ответе укажите сумму целых точек, входящих в эти промежутки.

Ответ

ОТВЕТ: 3.

Решение

На промежутках возрастания функции (fleft( x right)) её производная (f’left( x right)) должна принимать неотрицательные значения. В данном случае производная принимает неотрицательные значения на промежутках  (left( { — 6;, — 3,5} right],,,,left[ { — 0,5;,2,5} right]) и  (left[ {9;,10} right))  (выделены красным цветом см. рисунок), которые и являются промежутками возрастания функции (fleft( x right)). Целые точки, входящие в эти промежутки по оси абсцисс: ( — 5,,,, — 4,,,,0,,,,1,,,,2,,,,9)  (выделены синим цветом) и  их сумма равна  ( — 5 — 4 + 0 + 1 + 2 + 9 = 3.)

Ответ: 3.

Задача 10. На рисунке изображен график (y = f’left( x right)) — производной функции (fleft( x right)), определенной на интервале (left( { — 9;2} right)). Найдите промежутки убывания функции (fleft( x right)). В ответе укажите сумму целых точек, входящих в эти промежутки.

Ответ

ОТВЕТ: — 22.

Решение

На промежутках убывания функции (fleft( x right)) её производная (f’left( x right)) должна принимать неположительные значения. В данном случае производная принимает неположительные значения на промежутках (,left[ { — 7,5;, — 3,5} right]) и (left[ { — 1,5;,2} right)) (выделены красным цветом см. рисунок), которые и являются промежутками убывания функции (fleft( x right)). Целые точки, входящие в эти промежутки по оси абсцисс: ( — 7,,,, — 6,,,, — 5,,,, — 4,,,, — 1,,,,0,,,,1) (выделены синим цветом) и их сумма равна ( — 7 — 6 — 5 — 4 — 1 + 0 + 1 =  — 22.)   

Ответ: –22.

Задача 11. На рисунке изображен график (y = f’left( x right)) — производной функции (fleft( x right)), определенной на интервале (left( { — 9;9} right)). Найдите промежутки возрастания функции (fleft( x right)). В ответе укажите длину наибольшего из них.

Ответ

ОТВЕТ: 4.

Решение

На промежутках возрастания функции (fleft( x right)) её производная (f’left( x right)) должна принимать неотрицательные значения. В данном случае производная принимает неотрицательные значения на промежутках  (left[ { — 8;, — 6} right],,,,left[ {2;,6} right])  и  (left[ {8;,9} right))  (выделены красным цветом см. рисунок), которые являются промежутками возрастания функции (fleft( x right)). Длина первого промежутка равна  ( — 6 — left( { — 8} right) = 2,)  длина второго  (6 — 2 = 4,)  а длина третьего  (9 — 8 = 1.) Следовательно, длина наибольшего из них равна 4.

Ответ: 4.

Задача 12. На рисунке изображен график (y = f’left( x right)) — производной функции (fleft( x right)), определенной на интервале (left( { — 14;3} right)). Найдите промежутки убывания функции (fleft( x right)). В ответе укажите длину наибольшего из них.

Ответ

ОТВЕТ: 3.

Решение

На промежутках убывания функции (fleft( x right)) её производная (f’left( x right)) должна принимать неположительные значения. В данном случае производная принимает неположительные значения на промежутках  (left( { — 14;, — 13} right])  и  (left[ { — 1;,2} right])  (выделены красным цветом см. рисунок), которые являются промежутками убывания функции (fleft( x right)). Длина первого промежутка равна  ( — 13 — left( { — 14} right) = 1,) а длина второго  (2 — left( { — 1} right) = 3.)  Следовательно, длина наибольшего из них равна 3.

Ответ: 3.

Задача 13. На рисунке изображен график (y = f’left( x right)) — производной функции (fleft( x right)), определенной на интервале  (left( { — 7;5} right)). Найдите точку экстремума функции (fleft( x right)), принадлежащую отрезку (left[ { — 6;,4} right]).

Ответ

ОТВЕТ: — 3.

Решение

Значение производной (f’left( x right)) в точках экстремума (в точках максимума и минимума) функции (fleft( x right)) равно нулю. При этом в точках максимума производная меняет знак с «+» на «-», а в точках минимума с «-» на «+». Следовательно, для нахождения точки экстремума необходимо найти точку в которой производная равна нулю и при переходе через которую производная меняет знак. В данном случае на отрезке (left[ { — 6;,4} right]) производная равна нулю в точке (x =  — 3) (выделена красным цветом см. рисунок), при переходе через которую производная меняет знак с «+» на «-». Следовательно, точка (x =  — 3) является точкой экстремума.

Ответ: –3.

Задача 14. На рисунке изображен график функции (y = fleft( x right)), определенной на интервале (left( { — 1;10} right)). Найдите количество точек, в которых производная функции (fleft( x right)) равна 0.

Ответ

ОТВЕТ: 4.

Решение

Производная функции (fleft( x right)) равна нулю в точках экстремума (точки максимума и минимума). Выделим их на графике красным цветом (см. рисунок).

Всего таких точек 4.

Ответ: 4.

Задача 15. На рисунке изображён график функции (y = fleft( x right)) и восемь точек на оси абсцисс:  ({x_1},,{x_2},;{x_3},,…,{x_8}). В скольких из этих точек производная функции (fleft( x right)) положительна?

Ответ

ОТВЕТ: 5.

Решение

Производная функции положительна в тех интервалах, на которых функция возрастает. В данном случае из 8 заданных точек функция возрастает в точках ({x_1},,,,{x_2},,,,{x_5},,,,{x_6},,,,{x_7},) то есть в 5 точках.

Ответ: 5.

Задача 16. На рисунке изображён график функции (y = fleft( x right)) и двенадцать точек на оси абсцисс: ({x_1},,{x_2},;{x_3},,…,{x_{12}}.) В скольких из этих точек производная функции (fleft( x right)) отрицательна?

Ответ

ОТВЕТ: 7.

Решение

Производная функции отрицательна в тех интервалах, на которых функция убывает. В данном случае из 12 заданных точек функция убывает в точках ({x_4},,,,{x_5},,,,{x_6},,,,{x_7},,,,{x_8},,,,{x_{11}},,,,{x_{12}},) то есть в 7 точках.

Ответ: 7.

Задача 17. На рисунке изображён график (y = f’left( x right)) производной функции (fleft( x right)) и восемь точек на оси абсцисс:  ({x_1},,{x_2},;{x_3},,…,{x_8}). В скольких из этих точек функция (fleft( x right)) возрастает?

Ответ

ОТВЕТ: 3.

Решение

На промежутках возрастания функции (fleft( x right)) её производная (f’left( x right)) должна принимать неотрицательные значения. В данном случае из 8 заданных точек производная неотрицательная в точках ({x_4},,,,{x_5},,,,{x_6},) то есть в 3 точках.

Ответ: 3.

Задача 18. На рисунке изображён график (y = f’left( x right)) производной функции (fleft( x right)) и восемь точек на оси абсцисс:  ({x_1},,{x_2},;{x_3},,…,{x_8}). В скольких из этих точек функция (fleft( x right)) убывает?

Ответ

ОТВЕТ: 5.

Решение

На промежутках убывания функции (fleft( x right)) её производная (f’left( x right)) должна принимать неположительные значения. В данном случае из 8 заданных точек производная неположительная в точках ({x_1},,,,{x_2},,,,{x_3},,,,{x_4},,,,{x_8},) то есть в 5 точках.

Ответ: 5.

Задача 19. На рисунке изображен график функции (y = fleft( x right)) и отмечены точки   ( — 2,; — 1,;1,;2). В какой из этих точек значение производной наибольшее? В ответе укажите эту точку.

Ответ

ОТВЕТ: — 2.

Решение

Значение производной в точке касания равно угловому коэффициенту касательной, который в свою очередь равен тангенсу угла наклона данной касательной к оси абсцисс. Производная отрицательна в точках –1, 1 (так как в них функция убывает) и положительна в точках –2, 2 (так как в них функция возрастает). Следовательно, значение производной будет наибольшим либо в точке –2, либо в точке 2. В точке  –2  касательная образует угол наклона равный  ({rm{alpha }}), а в точке  2  угол ({rm{beta }}) (см. рисунок). Так как  ({rm{alpha }} > {rm{beta }})  и  ({rm{alpha }},,{rm{beta }} in left( {{0^ circ };,{{90}^ circ }} right)),  то  ({rm{tg}},{rm{alpha }} > {rm{tg}},{rm{beta }}), поэтому значение производной из 4 заданных точек в точке –2 будет наибольшим.

Ответ: –2.

Задача 20. На рисунке изображен график функции (y = fleft( x right)) и отмечены точки ( — 2,; — 1,;1,;4). В какой из этих точек значение производной наименьшее? В ответе укажите эту точку.

Ответ

ОТВЕТ: 4.

Решение

Значение производной в точке касания равно угловому коэффициенту касательной, который в свою очередь равен тангенсу угла наклона данной касательной к оси абсцисс. Производная отрицательна в точках –1, 4 (так как в них функция убывает) и положительна в точках –2, 1 (так как в них функция возрастает). Следовательно, значение производной будет наименьшим либо в точке –1, либо в точке 4. В точке  4  касательная образует угол наклона равный  ({rm{alpha }}), а в точке  –1  угол ({rm{beta }}) (см. рисунок). Так как  ({rm{alpha }}, < ,{rm{beta }})  и  ({rm{alpha }},,{rm{beta }} in left( {{{90}^ circ };,{{180}^ circ }} right)),  то  ({rm{tg}},{rm{alpha }}, < ,{rm{tg}},{rm{beta }}), поэтому значение производной из 4 заданных точек в точке 4 будет наименьшим.

Ответ: 4.

Задача 21. Функция (y = fleft( x right)) определена и непрерывна на отрезке (left[ { — 5;,5} right]). На рисунке изображён график её производной. Найдите точку x0, в которой функция принимает наименьшее значение, если   (fleft( { — 5} right) geqslant fleft( 5 right)).

Ответ

ОТВЕТ: 3.

Решение

На промежутках (left[ { — 5;, — 3} right]) и (left[ {3;,5} right]) производная принимает неотрицательные значения, следовательно, они являются промежутками возрастания функции (fleft( x right)), а на промежутке (left[ { — 3;3} right]) производная принимает неположительные значения, следовательно, он является промежутком убывания функции (fleft( x right)) (см. рисунок).

Поэтому функция будет принимать наименьшее значения либо в точке –5, либо в точке 3. Так как по условию  (fleft( { — 5} right) ge fleft( 5 right)),  а  (fleft( 5 right) > fleft( 3 right)),  то (fleft( 3 right) < fleft( { — 5} right).)  Поэтому наименьшее значение функции (fleft( x right)) на отрезке (left[ { — 5;,5} right]) будет в точке 3.

Ответ: 3.

Задача 22. Функция (y = fleft( x right)) определена на промежутке (left( { — 6;,4} right)). На рисунке изображен график ее производной. Найдите абсциссу точки, в которой функция (y = fleft( x right)) принимает наибольшее значение.

Ответ

ОТВЕТ: — 2.

Решение

На промежутке (left( { — 6;, — 2} right]) график производной расположен выше оси Оx, то есть значения производной неотрицательны, поэтому на этом промежутке функция (fleft( x right)) возрастает, а на промежутке (left[ { — 2;,4} right)) ниже оси Оx, то есть значения производной неположительны, поэтому на этом промежутке функция (fleft( x right)) убывает (см. рисунок).

Следовательно, точка (x =  — 2) является точкой максимума и в ней на интервале (left( { — 6;,4} right)) функция будет принимать наибольшее значение.

Ответ: –2.

Понравилась статья? Поделить с друзьями:
  • График проведения экзаменов по электробезопасности
  • График проведения экзаменов огэ 2022
  • График проведения экзаменов егэ
  • График проведения экзаменов в ростехнадзоре
  • График проведения экзаменов в 9 классе в 2022 году