Графики функций егэ профиль вся теория

Параметрические уравнения

Уравнение, которое кроме неизвестной величины содержит также другую дополнительную величину, которая может принимать различные значения из некоторой области, называется параметрическим. Эта дополнительная величина в уравнении называется параметр. На самом деле с каждым параметрическим уравнением может быть написано множество уравнений.

Способ решения параметрических уравнений

  1. Находим область определения уравнения.
  2. Выражаем a как функцию от $х$.
  3. В системе координат $хОа$ строим график функции, $а=f(х)$ для тех значений $х$, которые входят в область определения данного уравнения.
  4. Находим точки пересечения прямой, $а=с$, где $с∈(-∞;+∞)$ с графиком функции $а=f(х)$. Если прямая, а=с пересекает график, $а=f(х)$, то определяем абсциссы точек пересечения. Для этого достаточно решить уравнение вида, $а=f(х)$ относительно $х$.
  5. Записываем ответ.

Общий вид уравнения с одним параметром таков:

$F(x, a) = 0$

При различных значениях, а уравнение $F(x, a) = 0$ может иметь различные множества корней, задача состоит в том, чтобы изучить все случаи, выяснить, что будет при любом значении параметра. При решении уравнений с параметром обычно приходится рассматривать много различных вариантов. Своевременное обнаружение хотя бы части невозможных вариантов имеет большое значение, так как освобождает от лишней работы.

Поэтому при решении уравнения $F(x, a) = 0$ целесообразно под ОДЗ понимать область допустимых значений неизвестного и параметра, то есть множество всех пар чисел ($х, а$), при которых определена (имеет смысл) функция двух переменных $F(x, а)$. Отсюда естественная геометрическая иллюстрация ОДЗ в виде некоторой области плоскости $хОа$.

ОДЗ различных выражений (под выражением будем понимать буквенно — числовую запись):

1. Выражение, стоящее в знаменателе, не должно равняться нулю.

${f(x)}/{g(x)}; g(x)≠0$

2. Подкоренное выражение должно быть неотрицательным.

$√{g(x)}; g(x)≥0$.

3. Подкоренное выражение, стоящее в знаменателе, должно быть положительным.

${f(x)}/{√{g(x)}}; g(x) > 0$

4. У логарифма: подлогарифмическое выражение должно быть положительным; основание должно быть положительным; основание не может равняться единице.

$log_{f(x)}g(x) {tableg(x) > 0; f(x) > 0; f(x)≠1;$

Алгебраический способ решения квадратных уравнений с параметром $ax^2+bx+c=0$

Квадратное уравнение $ax^2+bx+c=0, а≠0$ не имеет решений, если $D < 0$;

Квадратное уравнение имеет два различных корня, когда $D > 0$;

Квадратное уравнение имеет один корень, если $D=0$

Тригонометрические тождества

1. $tgα={sinα}/{cosα}$

2. $ctgα={cosα}/{sinα}$

3. $sin^{2}α+cos^{2}α=1$ (Основное тригонометрическое тождество)

Из основного тригонометрического тождества можно выразить формулы для нахождения синуса и косинуса

$sinα=±√{1-cos^{2}α}$

$cosα=±√{1-sin^{2}α$

4. $tgα·ctgα=1$

5. $1+tg^{2}α={1}/{cos^{2}α}$

6. $1+ctg^{2}α={1}/{sin^{2}α}$

Формулы двойного угла

1. $sin2α=2sinα·cosα$

2. $cos2α=cos^{2}α-sin^{2}α=2cos^{2}α-1=1-2sin^{2}α$

3. $tg2α={2tgα}/{1-tg^{2}α}$

Формулы суммы и разности

$cosα+cosβ=2cos{α+β}/{2}·cos{α-β}/{2}$

$cosα-cosβ=2sin{α+β}/{2}·sin{β-α}/{2}$

$sinα+sinβ=2sin{α+β}/{2}·cos{α-β}/{2}$

$sinα-sinβ=2sin{α-β}/{2}·cos{α+β}/{2}$

Формулы произведения

$cosα·cosβ={cos{α-β}+cos{α+β}}/{2}$

$sinα·sinβ={cos{α-β}-cos{α+β}}/{2}$

$sinα·cosβ={sin{α+β}+sin{α-β}}/{2}$

Формулы сложения

$cos(α+β)=cosα·cosβ-sinα·sinβ$

$cos(α-β)=cosα·cosβ+sinα·sinβ$

$sin(α+β)=sinα·cosβ+cosα·sinβ$

$sin(α-β)=sinα·cosβ-cosα·sinβ$

Решение тригонометрического уравнения с параметром рассмотрим на примере.

Пример:

Найдите все значения параметра с, при каждом из которых уравнение $3cos⁡2x-2sin⁡2x=c$ имеет решение.

Решение:

Преобразуем данное уравнение к виду

$√{3^2+(-2)^2}(cos⁡2xcosφ-sin⁡2xsinφ)=c$

Воспользуемся тригонометрической формулой и свернем второй множитель как косинус суммы

$√{13}cos⁡(2x+φ)=c$, где $φ=arccos{3}/{√{13}}$

Уравнение $√{13}cos⁡(2x+φ)=c$ имеет решения тогда и только тогда, когда $-1≤ {c}/{√{13}} ≤ 1$, домножим полученное неравенство на $√{13}$ и получим

$-√{13} ≤ c ≤ √{13}$

Ответ: $-√{13} ≤ c ≤ √{13}$

Неравенства с параметром

Если имеется неравенство вида $F(a,x) ≤ G(a,x)$ то оно будет иметь одно решение, если $F'(a, x)=G'(a, x)$.

Системы уравнений:

Выделяют четыре основных метода решения систем уравнений:

  1. Метод подстановки: из какого-либо уравнения системы выражаем одно неизвестное через другое и подставляем во второе уравнение системы.
  2. Метод алгебраического сложения: путем сложения двух уравнений получить уравнение с одной переменной.
  3. Метод введения новых переменных: ищем в системе некоторые повторяющиеся выражения, которые обозначим новыми переменными, тем самым упрощая вид системы.
  4. Графический метод решения: из каждого уравнения выражается $«у»$, получаются функции, графики которых необходимо построить и посмотреть координаты точек пересечения.

Логарифмические уравнения и системы уравнений

Основное логарифмическое тождество:

$a^{log_{a}b}=b$

Это равенство справедливо при $b> 0, a> 0, a≠1$

Свойства логарифмов:

Все свойства логарифмов мы будем рассматривать для $a> 0, a≠ 1, b> 0, c> 0, m$ – любое действительное число.

1. Для любых действительных чисел $m$ и $n$ справедливы равенства:

$log_{а}b^m=mlog_{a}b$;

$log_{a^m}b={1}/{m}log_{a}b$.

$log_{a^n}b^m={m}/{n}log_{a}b$

2. Логарифм произведения равен сумме логарифмов по тому же основанию от каждого множителя.

$log_a(bc)=log_{a}b+log_{a}c$

3. Логарифм частного равен разности логарифмов от числителя и знаменателя по тему же основанию

$log_a{b}/{c}=log_{a}b-log_{a}c$

4. При умножении двух логарифмов можно поменять местами их основания

$log_{a}b·log_{c}d=log_{c}b·log_{a}d$, если $a, b, c, d >0, a≠1, b≠1$.

5. $c^{log_{a}b}=b^{log_{a}b}$, где $а, b, c > 0, a≠1$

6. Формула перехода к новому основанию

$log_{a}b={log_{c}b}/{log_{c}a}$

7. В частности, если необходимо поменять местами основание и подлогарифмическое выражение

$log_{a}b={1}/{log_{b}a}$

При решении систем, содержащих логарифмические уравнения, часто удается, избавившись от логарифма, заменить одно или оба уравнения системы рациональными уравнениями. После этого надо выразить одну переменную через другую и после постановки получить уравнение с одной переменной. Кроме того, часто встречаются задачи на замену переменной в пределах одного или обоих уравнений системы и системы, требующие отбора решений.

Логарифмические неравенства:

1. Определить ОДЗ неравенства.

2. По свойствам логарифма преобразовать неравенство к простому виду, желательно получить с двух сторон логарифмы по одинаковому основанию.

3. Перейти к подлогарифмическим выражениям, при этом надо помнить, что:

а) если основание больше единицы, то при переходе к подлогарифмическим выражениям знак неравенства остается прежним;

b) если основание меньше единицы, то при переходе к подлогарифмическим выражениям знак неравенства меняется на противоположный;

с) если в основании находится переменная, надо рассмотреть оба варианта.

4. Решить неравенство.

5. Выбрать решения с учетом ОДЗ из п.1

При решении логарифмических неравенств с переменной в основании легче всего воспользоваться тождественными преобразованиями:

$log_{a}f > b ↔ {table (f-a^b)(a-1) > 0; f > 0; a > 0;$

$log_{a}f+log_{a}g > 0 ↔ {table(fg-1)(a-1)> 0; f > 0,g > 0; a > 0;$

$log_{a}f+b > 0 ↔ {table(fa^b-1)(a-1) > 0; f > 0; a > 0;$

Системы, содержащие показательные уравнения

Свойства степеней

1. При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели складываются.

$a^n·a^m=a^{n+m}$

2. При делении степеней с одинаковыми основаниями основание остается прежним, а показатели вычитаются

$a^n:a^m=a^{n-m}$

3. При возведении степени в степень основание остается прежним, а показатели перемножаются

$(a^n)^m=a^{n·m}$

4. При возведении в степень произведения в эту степень возводится каждый множитель

$(a·b)^n=a^n·b^n$

5. При возведении в степень дроби в эту степень возводиться числитель и знаменатель

$({a}/{b})^n={a^n}/{b^n}$

6. При возведении любого основания в нулевой показатель степени результат равен единице

$a^0=1$

Основные методы решения систем, содержащих показательные уравнения, ничем принципиально не отличаются от методов решения других систем: это метод алгебраического сложения, замена переменной в пределах одного уравнения или всей системы, подстановка. Единственная особенность – положительность выражения $a^{f(x)}$, которую полезно учитывать, вводя соответствующее ограничение при замене переменной.

Показательные неравенства, сводящиеся к виду $a^{f(x)} ≥ a^{g(x)}$:

1. Преобразовать показательное уравнение к виду $a^{f(x)} ≥ a^{g(x)}$

2. Перейти показателям степеней, при этом если основание степени меньше единицы, то знак неравенства меняется на противоположный, если основание больше единицы – знак неравенства остается прежним.

3. Решить полученное неравенство.

4. Записать результат.

Показательные неравенства, которые можно разложить на множители или сделать замену переменной.

1. Для данного метода во всем неравенстве по свойству степеней надо преобразовать степени к одному виду $a^{f(x)}$.

2. Сделать замену переменной $a^{f(x)}=t, t>0$.

3. Получаем рациональное неравенство, которое можно решить методом интервалов путем разложения на множители выражения.

4. Делаем обратную замену с учетом того, что $t>0$. Получаем простейшее показательное неравенство $a^{f(x)}=t$, решаем его и результат записываем в ответ.

Уравнения с многочленами

Многочлен может обозначаться записью $Р(х)$ — это означает, что многочлен зависит от «х», если записать $Р(х+1)$ — это означает, что в многочлене вместо «х» надо сделать замену на скобку $(х+1)$

Пример:

Найдите значение выражения: $4(p(2x)−2p(x+3))$, если $p(x)=x−6$

Решение:

В данном условии задан многочлен, зависящий от «х», как $p(x)=x−6$.

Чтобы было понятнее, назовем исходный многочлен основной формулой, тогда, чтобы записать $p(2x)$, в основной формуле заменим «х» на «2х».

$p(2x)=2х-6$

Аналогично $p(x+3)=(х+3)-6=х+3-6=х-3$

Соберем все выражение: $4(p(2x)−2p(x+3))=4((2х-6)-2(х-3))$

Далее осталось раскрыть скобки и привести подобные слагаемые

$4((2х-6)-2(х-3))=4(2х-6-2х+6)=4·0=0$

Ответ: $0$

Системы иррациональных уравнений

Основные методы решения систем, содержащих иррациональные уравнения, ничем принципиально не отличаются от методов решения других систем: это метод алгебраического сложения, замена переменной в пределах одного уравнения или всей системы, подстановка. Единственная особенность – надо расписать ОДЗ каждого уравнения, а в конце решения выбрать решение системы с учетом ОДЗ.

Чтобы решить иррациональное уравнение, необходимо:

1. Преобразовать заданное иррациональное уравнение к виду

$√{f(x)}=g(x)$ или $√{f(x)}=√{g(x)}$

2. Обе части уравнение возвести в квадрат

$√{f(x)}^2={g(x)}^2$ или $√{f(x)}^2=√{g(x)}^2$

3. Решить полученное рациональное уравнение.

4. Сделать проверку корней, так как возведение в четную степень может привести к появлению посторонних корней. (Проверку можно сделать при помощи подстановки найденных корней в исходное уравнение.)

Понятие функции

Функция — это зависимость y от x, где x является независимой переменной или аргументом функции, а y — зависимой переменной или значением функции. Функция — это соответствие между двумя множествами, причем каждому элементу первого множества соответствует один и только один элемент второго множества.

Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие значения функции. Вот, какими способами ее можно задать:

  • Табличный способ — помогает быстро определить конкретные значения без дополнительных измерений или вычислений.

  • Графический способ — наглядно.

  • Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.

  • Словесный способ.

Область определения функции — это множество всех допустимых значений аргумента (переменной x). Геометрически — это проекция графика функции на ось Ох.

Например, для функции вида

область определения выглядит так

  • х ≠ 0, потому что на ноль делить нельзя. Записать можно так: D (y): (-∞; 0) ⋃ (0; +∞).

Область значений функции — множество всех значений, которые функция принимает на области определения. Геометрически — это проекция графика функции на ось Оy.

Например, естественная область значений функции y = x2 — это все числа больше либо равные нулю. Можно записать вот так: Е (у): [0; +∞).

Получай лайфхаки, статьи, видео и чек-листы по обучению на почту

Альтернативный текст для изображения

Реши домашку по математике на 5.

Подробные решения помогут разобраться в самой сложной теме.

Реши домашку по математике на 5.

Понятие графика функции

Графиком функции y = f(x) называется множество точек (x; y), координаты которых связаны соотношением y = f(x). Само равенство y = f(x) называется уравнением данного графика.

График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу.

Проще говоря, график функции показывает множество всех точек, координаты которых можно найти, просто подставив в функцию любые числа вместо x.

Для примера возьмём самую простую функцию, в которой аргумент равен значению функции, то есть y = x.

В этом случае нам не придётся вычислять для каждого аргумента значение функции, так как они равны, поэтому у всех точек нашего графика абсцисса будет равна ординате.

Отметим любые три точки на координатной плоскости, например: L (-2; -2), M (0; 0) и N (1; 1).

Понятие графика функции

Если мы последовательно от наименьшего значения аргумента к большему соединим отмеченные точки, то у нас получится прямая линия. Значит графиком функции y = x является прямая. На графике это выглядит так:

Понятие графика функции рис 2

Надпись на чертеже y = x — это уравнение графика. Ставить надпись с уравнением на чертеже удобно, чтобы не запутаться при решении задач.

Важно отметить, что прямая линия бесконечна в обе стороны. Хоть мы и называем часть прямой графиком функции, на самом деле на чертеже изображена только малая часть графика.

Запоминаем!

Не обязательно делать чертеж на целый тетрадный лист, можно выбрать удобный для вас масштаб, который отразит суть задания.

Исследование функции

Важные точки графика функции y = f(x):

  • стационарные и критические точки;

  • точки экстремума;

  • нули функции;

  • точки разрыва функции.

Стационарные точки — точки, в которых производная функции f(x) равна нулю.

Критические точки — точки, в которых производная функции f(x) равна нулю либо не существует. Стационарные точки являются подмножеством множества критических точек.

Экстремум в математике — максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум — точка экстремума называется точкой минимума, а если максимум — точкой максимума.

Нули функции — это значения аргумента, при которых значение функции равно нулю.

Асимптота — прямая, которая обладает таким свойством, что расстояние от точки графика функции до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат. По способам их отыскания выделяют три вида асимптот: вертикальные, горизонтальные, наклонные.

Функция непрерывна в точке k, если предел функции в данной точке равен значению функции в этой точке:

Если функция f(x) не является непрерывной в точке x = a, то говорят, что f(x) имеет разрыв в этой точке.

Неприрывные функции, разрыв в точке

Если нам нужно построить график незнакомой функции, когда заранее невозможно представить вид графика, полезно применять схему исследования свойств функции. Она поможет составить представление о графике и приступить к построению по точкам.

Схема построения графика функции:

 

  1. Найти область определения функции.

  2. Найти область допустимых значений функции.

  3. Проверить не является ли функция четной или нечетной.

  4. Проверить не является ли функция периодической.

  5. Найти точку пересечения с осью OY (если она есть).

  6. Вычислить производную и найти критические точки, определить промежутки возрастания и убывания.

  7. Промежутки знакопостоянства.

  8. Асимптоты.

  9. На основании проведенного исследования построить график функции.

Построение графика функции

Чтобы понять, как строить графики функций, потренируемся на примерах или воспользуйтесь онлайн тренажером.

Задача 1. Построим график функции Задача 1. Построим график функции

Как решаем:

Упростим формулу функции:

Задача 1. Упростим формулупри х ≠ -1.

График функции — прямая y = x — 1 с выколотой точкой M (-1; -2).

Построение графика функции, задача 1

Задача 2. Построим график функцииЗадача 2. Построим график функции

Как решаем:

Выделим в формуле функции целую часть:

Выделим целую часть

График функции — гипербола, сдвинутая на 3 вправо по x и на 2 вверх по y и растянутая в 10 раз по сравнению с графиком функции Гипербола. График функции

Гипербола

Задача 3. Построить графики функций:

а) y = 3x — 1

б) y = -x + 2

в) y = 2x

г) y = -1

Как решаем:

Воспользуемся методом построения линейных функций «по точкам».

а) y = 3x — 1

Задача 3. Построение функции по точкам 1

Как видим, k = 3 > 0 и угол наклона к оси Ox острый, b = -1 — смещение по оси Oy.

б) y = -x + 2

Задача 3. Построение функции по точкам 2

k = -1 > 0 и b = 2 можно сделать аналогичные выводы, как и в первом пункте.

в) y = 2x

Пример построения графика функции

k = 2 > 0 — угол наклона к оси Ox острый, b = 0 — график проходит через начало координат.

г) y = -1

Задача 3. Построение функции по точкам 4

k = 0 — константная функция, прямая проходит через точку b = -1 и параллельно оси Ox.

Задача 4. По виду графика определить знаки коэффициентов общего вида функции y = ax2 + bx + c.

 

  1. Знаки коэффициентов 1

  2. Знаки коэффициентов 2

  3. Знаки коэффициентов 3

Как решаем:

Вспомним, как параметры a, b и c определяют положение параболы.

  1. Ветви вниз, следовательно, a < 0.

    Точка пересечения с осью Oy — c = 0.

    Координата вершины Координата вершины 1

  2. Ветви вверх, следовательно, a > 0.

    Точка пересечения с осью Oy — c > 0.

    Координата вершины Координата вершины 2, т.к. неизвестное число при делении на положительное дает отрицательный результат, то это число отрицательное, следовательно, b > 0.

  3. Ветви вниз, следовательно, a < 0.

    Точка пересечения с осью Oy — c > 0.

    Координата вершины Координата вершины 3, т.к. неизвестное число при делении на отрицательное дает в результате положительное, то это число отрицательное, следовательно, b < 0.

Задача 5. Построить графики функций:

а) y = x² + 1

б) Задача 5. Построить графики функций 2

в) y = (x — 1)² + 2

г) Задача 5. Построить графики функций 4

д) Задача 5. Построить графики функций 5

Как решаем:

Построить графики можно при помощи элементарных преобразований.

Если построен график функции y = f(x), то при a > 0 следующие графики получаются с помощью сдвига графика f(x).

  • y = f(x) + a — график функции y = f(x) сдвигается на a единиц вверх;

  • y = f(x) − a — график функции y = f(x) сдвигается на a единиц вниз;

  • y = f(x + a) — график функции y = f(x) сдвигается на a единиц влево;

  • y = f(x − a) — график функции у = f(x) сдвигается на a единиц вправо.

Преобразование график по типу y = mf(x): y = f(x) → y = mf(x), где m — положительное число.

  • Если m > 1, то такое преобразование графика называют растяжением вдоль оси y с коэффициентом m.

    Растяжение графика функции вдоль оси y

  • Если m < 1, то такое преобразование графика называют сжатием к оси x с коэффициентом 1/m.

    Сжатие графика функции к оси x

а) Задача 5. Решение 1

Преобразование в одно действие типа f(x) + a.

y = x²

Задача 5.1

Сдвигаем график вверх на 1:

y = x² + 1

Задача 5.2

б)Задача 5.2.1

Преобразование в одно действие типа f(x — a).

Задача 5.2.2

Сдвигаем график вправо на 1:

Задача 5.3

в) y = (x — 1)² + 2

В этом примере два преобразования, выполним их в порядке действий: сначала действия в скобках f(x — a), затем сложение f(x) + a.

y = x²

Задача 5.3.1

Сдвигаем график вправо на 1:

y = (x — 1)²

Задача 5.3.2

Сдвигаем график вверх на 2:

y = (x — 1)² + 2

Задача 5.3.4

г) Задача 5.4

Преобразование в одно действие типа Задача 5.4.1

y = cos(x)

Задача 5.4.2

Растягиваем график в 2 раза от оси ординат вдоль оси абсцисс:

Задача 5.4.3

Задача 5.4.4

д) Задача 5.5

Мы видим три преобразования вида f(ax), f (x + a), -f(x).

Чтобы выполнить преобразования, посмотрим на порядок действий: сначала умножаем, затем складываем, а уже потом меняем знак. Чтобы применить умножение ко всему аргументу модуля в целом, вынесем двойку за скобки в модуле.

Задача 5.5.1
Задача 5.5.2
Задача 5.5.3

Сжимаем график в два раза вдоль оси абсцисс:

Задача 5.5.4
5.5.5

Сдвигаем график влево на 1/2 вдоль оси абсцисс:

5.5.6
5.5.7

Отражаем график симметрично относительно оси абсцисс:

5.5.8
5.5.9

Графики функций.

 Задание 10 ЕГЭ по
математике (профильный уровень)

              
Как формулируется задание 10 ЕГЭ по математике? По графику функции, который
дается в условии, вам нужно определить неизвестные параметры в ее формуле.
Возможно — найти значение функции в некоторой точке или координаты точки
пересечения графиков функций.

            
Чтобы выполнить это задание, надо знать, как выглядят и какими свойствами
обладают графики элементарных функций. Надо уметь читать графики, то есть
получать из них необходимую информацию. Например, определять формулу функции по
ее графику.       

Рекомендации:

Запоминай, как
выглядят графики основных элементарных функций.

Замечай
особенности графиков, чтобы не перепутать параболу с синусоидой : -)

Проверь себя:
какие действия нужно сделать с формулой функции, чтобы сдвинуть ее график по
горизонтали или по вертикали, растянуть, перевернуть?

Разбирая решения
задач, обращай внимание на то, как мы ищем точки пересечения графиков или
неизвестные переменные в формуле функции. Такие элементы оформления встречаются
также в задачах с параметрами.

               Важный
принцип — это логичность. В шутливой манере он говорит: «нормальные герои
всегда идут в обход». Нужно учиться использовать наличный запас знаний,
применяя различные «хитрости» и «правдоподобные
рассуждения» для ответа наиболее простым и понятным способом.

Оглавление:

  • Основные теоретические сведения
    • Координаты и базовые понятия о функциях
    • График линейной функции
    • График квадратичной функции (Парабола)
    • Графики других функций
    • Графики периодических (тригонометрических) функций

Основные теоретические сведения

Координаты и базовые понятия о функциях

К оглавлению…

Длина отрезка на координатной оси находится по формуле:

Формула Длина отрезка на координатной оси

Длина отрезка на координатной плоскости ищется по формуле:

Формула Длина отрезка на координатной плоскости

Для нахождения длины отрезка в трёхмерной системе координат используется следующая формула:

Формула Длина отрезка в трёхмерной системе координат

Координаты середины отрезка (для координатной оси используется только первая формула, для координатной плоскости — первые две формулы, для трехмерной системы координат — все три формулы) вычисляются по формулам:

Формула Координаты середины отрезка

Функция – это соответствие вида f(x) между переменными величинами, в силу которого каждому рассматриваемому значению некоторой переменной величины x (аргумента или независимой переменной) соответствует определенное значение другой переменной величины, y (зависимой переменной, иногда это значение просто называют значением функции). Обратите внимание, что функция подразумевает, что одному значению аргумента х может соответствовать только одно значение зависимой переменной у. При этом одно и то же значение у может быть получено при различных х.

Область определения функции – это все значения независимой переменной (аргумента функции, обычно это х), при которых функция определена, т.е. ее значение существует. Обозначается область определения D(y). По большому счету Вы уже знакомы с этим понятием. Область определения функции по другому называется областью допустимых значений, или ОДЗ, которую Вы давно умеете находить.

Область значений функции – это все возможные значения зависимой переменной данной функции. Обозначается Е(у).

Функция возрастает на промежутке, на котором большему значению аргумента соответствует большее значение функции. Функция убывает на промежутке, на котором большему значению аргумента соответствует меньшее значение функции.

Промежутки знакопостоянства функции – это промежутки независимой переменной, на которых зависимая переменная сохраняет свой положительный или отрицательный знак.

Нули функции – это такие значения аргумента, при которых величина функции равна нулю. В этих точках график функции пересекает ось абсцисс (ось ОХ). Очень часто необходимость найти нули функции означает необходимость просто решить уравнение. Также часто необходимость найти промежутки знакопостоянства означает необходимость просто решить неравенство.

Функцию y = f(x) называют четной, если она определена на симметричном множестве и для любого х из области определения выполняется равенство:

Формула четной функции

Это означает, что для любых противоположных значений аргумента, значения четной функции равны. График чётной функции всегда симметричен относительно оси ординат ОУ.

Функцию y = f(x) называют нечетной, если она определена на симметричном множестве и для любого х из области определения выполняется равенство:

Формула нечетной функции

Это означает, что для любых противоположных значений аргумента, значения нечетной функции также противоположны. График нечётной функции всегда симметричен относительно начала координат.

Сумма корней чётной и нечетной функций (точек пересечения оси абсцисс ОХ) всегда равна нулю, т.к. на каждый положительный корень х приходится отрицательный корень –х.

Важно отметить: некоторая функция не обязательно должна быть четной либо нечетной. Существует множество функций не являющихся ни четными ни нечетными. Такие функции называются функциями общего вида, и для них не выполняется ни одно из равенств или свойств приведенных выше.

График линейной функции

К оглавлению…

Линейной функцией называют функцию, которую можно задать формулой:

Формула линейной функции

График линейной функции представляет из себя прямую и в общем случае выглядит следующим образом (приведен пример для случая когда k > 0, в этом случае функция возрастающая; для случая k < 0 функция будет убывающей, т.е. прямая будет наклонена в другую сторону — слева направо):

График линейной функции

График квадратичной функции (Парабола)

К оглавлению…

График параболы задается квадратичной функцией:

Формула Квадратичная функция

Квадратичная функция, как и любая другая функция, пересекает ось ОХ в точках являющихся её корнями: (x1; 0) и (x2; 0). Если корней нет, значит квадратичная функция ось ОХ не пересекает, если корень один, значит в этой точке (x0; 0) квадратичная функция только касается оси ОХ, но не пересекает её. Квадратичная функция всегда пересекает ось OY в точке с координатами: (0; c). График квадратичной функции (парабола) может выглядеть следующим образом (на рисунке примеры, которые далеко не исчерпывают все возможные виды парабол):

Квадратичная функция или Парабола

При этом:

  • если коэффициент a > 0, в функции y = ax2 + bx + c, то ветви параболы направлены вверх;
  • если же a < 0, то ветви параболы направлены вниз.

Координаты вершины параболы могут быть вычислены по следующим формулам. Икс вершины (p — на рисунках выше) параболы (или точка в которой квадратный трехчлен достигает своего наибольшего или наименьшего значения):

Формула Икс вершины параболы

Игрек вершины (q — на рисунках выше) параболы или максимальное, если ветви параболы направлены вниз (a < 0), либо минимальное, если ветви параболы направлены вверх (a > 0), значение квадратного трехчлена:

Формула Игрек вершины параболы

Графики других функций

К оглавлению…

Степенной функцией называют функцию, заданную формулой:

Формула степенной функции

Приведем несколько примеров графиков степенных функций:

График степенной функции

Обратно пропорциональной зависимостью называют функцию, заданную формулой:

Формула обратно пропорциональной зависимости

В зависимости от знака числа k график обратно пропорциональной зависимости может иметь два принципиальных варианта:

График обратно пропорциональной зависимости

Асимптота — это линия, к которой линия графика функции бесконечно близко приближается, но не пересекает. Асимптотами для графиков обратной пропорциональности приведенных на рисунке выше являются оси координат, к которым график функции бесконечно близко приближается, но не пересекает их.

Показательной функцией с основанием а называют функцию, заданную формулой:

Формула показательной функции

В зависимости от того больше или меньше единицы число a график показательной функции может иметь два принципиальных варианта (приведем также примеры, см. ниже):

График показательной функции

Логарифмической функцией называют функцию, заданную формулой:

Формула логарифмической функции

В зависимости от того больше или меньше единицы число a график логарифмической функции может иметь два принципиальных варианта:

График логарифмической функции

График функции y = |x| выглядит следующим образом:

Формула функции модуля

График функции модуля

Графики периодических (тригонометрических) функций

К оглавлению…

Функция у = f(x) называется периодической, если существует такое, неравное нулю, число Т, что f(x + Т) = f(x), для любого х из области определения функции f(x). Если функция f(x) является периодической с периодом T, то функция:

Формула периодической функции

где: A, k, b – постоянные числа, причем k не равно нулю, также периодическая с периодом T1, который определяется формулой:

Период периодической функции

Большинство примеров периодических функций — это тригонометрические функции. Приведем графики основных тригонометрических функций. На следующем рисунке изображена часть графика функции y = sinx (весь график неограниченно продолжается влево и вправо), график функции y = sinx называют синусоидой:

Формула функции y = sinx

График синусоиды

График функции y = cosx называется косинусоидой. Этот график изображен на следующем рисунке. Так как и график синуса он бесконечно продолжается вдоль оси ОХ влево и вправо:

Формула функции y = cosx

График косинусоиды

График функции y = tgx называют тангенсоидой. Этот график изображен на следующем рисунке. Как и графики других периодических функций, данный график неограниченно далеко повторяется вдоль оси ОХ влево и вправо.

Формула функции y = tgx

График тангенсоиды

Ну и наконец, график функции y = ctgx называется котангенсоидой. Этот график изображен на следующем рисунке. Как и графики других периодических и тригонометрических функций, данный график неограниченно далеко повторяется вдоль оси ОХ влево и вправо.

Формула функции y = ctgx

График котангенсоиды

2013-02-14
2019-08-13

Справочник

Краткий справочный материал по темам

Алгебра

Логарифмы
Модуль, определение, уравнения. Неравенства с модулем
Метод интервалов
Обобщенный метод интервалов
Метод рационализации
Показательные неравенства
Прогрессия арифметическая
Прогрессия геометрическая
Пропорция
Равносильность
Разложение на множители
Системы уравнений. Методы решения
Степень числа. Корень –> Квадратный корень из большого числа
Уравнение окружности
Уравнения квадратные  –> Дискриминант 
Уравнения рациональные
Уравнения иррациональные
Неравенства рациональные
Неравенства иррациональные
Числовые множества
Элементарные функции, их графики. Линейная функция
Элементарные функции, их графики. Квадратичная функция
Элементарные функции, их графики. Обратная пропорциональность
Элементарные функции, их графики. Показательная функция
Элементарные функции, их графики. Логарифмическая функция
Преобразования графиков

Тригонометрия

Обратные тригонометрические функции
Простейшие тригонометрические уравнения
Простейшие тригонометрические неравенства
Тригонометрический круг
Тригонометрические формулы
Формулы приведения
Функции тригонометрические. Синусоида
Функции тригонометрические. Тангенс, котангенс

Анализ

Производная функции I  и II
Таблица производных. Правила дифференцирования
Первообразная. Интеграл
Таблица первообразных

Планиметрия

Биссектрисы треугольника
Вписанные, центральны углы
Высоты треугольника
Касательная, хорда, секущая
Медианы треугольника
Подобные треугольники
Площади основных фигур. Набор формул
Синус, косинус, тангенс в прямоугольном треугольнике
Треугольник (равнобедренный, равносторонний, прямоугольный)
Теорема Менелая
Четырехугольники (трапецияпараллелограмм, прямоугольник, ромб, квадрат)

Стереометрия

Взаимное расположение прямых и плоскостей в пространстве
Конус
Наклонная. Теорема о трех перпендикулярах
Параллельность прямых и плоскостей
Перпендикулярность прямых и плоскостей
Пирамида
Призма
Призма, пирамида. Формулы объема и площади поверхности
Скрещивающиеся прямые
Тела вращения. Формулы объема и площади поверхности
Углы в пространстве
Формула площади ортогональной проекции
Цилиндр

Теория вероятностей

Теория вероятностей часть 1
Теория вероятностей часть 2

Вектора

Вектора часть 1
Вектора. Часть 2

Понравилась статья? Поделить с друзьями:
  • Графики тригонометрических функций егэ профиль теория
  • Грин алые паруса аргумент к итоговому сочинению
  • Графики термодинамики егэ
  • Гридинъ стрелковый клуб экзамен онлайн
  • Графики сдачи экзаменов в ростехнадзоре