Хемосинтез биология егэ теория

Типы питания

По типу питания живые организмы делятся на автотрофы, гетеротрофы и миксотрофы. Автотрофы (греч. αὐτός — сам + τροφ — пища)
— организмы, которые самостоятельно способны синтезировать органические вещества из неорганических. Гетеротрофы (греч. ἕτερος
— иной + τροφή — пища) — организмы, использующие для питания готовые органические вещества.

Наконец, миксотрофы (греч. μῖξις — смешение + τροφή — пища) — организмы, которые могут использовать как гетеротрофный, так и
автотрофный способ питания. К примеру, эвглена зеленая на свету начинает фотосинтезировать, а в темноте питается гетеротрофно.

Типы питания живых организмов

Фотосинтез

Фотосинтез (греч. φῶς — свет и σύνθεσις — синтез) — сложный химический процесс преобразования энергии квантов света в
энергию химических связей. В результате фотосинтеза происходит синтез органических веществ из неорганических.

Фотосинтез

Этот процесс уникален и происходит только в растительных клетках, а также у некоторых бактерий. Фотосинтез осуществляется при участии хлорофилла (греч. χλωρός — зелёный и φύλλον — лист) — зеленого пигмента, окрашивающего органы растений в
зеленый цвет. Существуют и другие вспомогательные пигменты, которые вместе с хлорофиллом выполняют светособирающую
или светозащитную функции.

Ниже вы увидите сравнение строения хлорофилла и гемоглобина. Обратите внимание, что в центре молекулы хлорофилла находится
ион Mg.

Строение хлорофилла и гемоглобина

В высшей степени гениально значение процесса фотосинтеза подчеркнул русский ученый К.А. Тимирязев: «Все органические вещества,
как бы они ни были разнообразны, где бы они ни встречались, в растении ли, в животном или человеке, прошли через лист, произошли
от веществ, выработанных листом. Вне листа или, вернее, вне хлорофиллового зерна в природе не существует лаборатории, где бы выделялось
органическое вещество. Во всех других органах и организмах оно превращается, преобразуется, только здесь оно образуется вновь
из вещества неорганического»

Более подробно мы обсудим значение фотосинтеза в завершение этой статьи. Фотосинтез состоит из двух фаз: светозависимой (световой)
и светонезависимой (темновой). Я рекомендую использовать названия светозависимая и светонезависимая, так как они способствуют
более глубокому (и правильному!) пониманию фотосинтеза.

Светозависимая фаза (световая)

Эта фаза происходит только на свету на мембранах тилакоидов в хлоропластах. В ней принимают участие различные ферменты,
белки-переносчики, молекулы АТФ-синтетазы и зеленый пигмент хлорофилл.

Строение хлоропласта

Хлорофилл выполняет две функции: поглощения и передачи энергии. При воздействии кванта света хлорофилл теряет электрон,
переходя в возбужденное состояние. С помощью переносчиков электроны скапливаются с наружной поверхности мембраны тилакоидов,
тем временем внутри тилакоида происходит фотолиз воды (разложение под действием света):

H2O —> H+ + OH

Гидроксид-ионы отдают лишний электрон, превращаясь в реакционно способные радикалы OH, которые собираются вместе и образуют молекулу воды и свободный кислород (это побочный продукт, который в дальнейшем удаляется в ходе газообмена).

4OH —> 2H2O + O2

Образовавшиеся при фотолизе воды протоны (H+) скапливаются с внутренней стороны мембраны тилакоидов, а
электроны — с внешней. В результате по обе стороны мембраны накапливаются противоположные заряды.

При достижении критической разницы, часть протонов проталкивается на внешнюю сторону мембраны через канал АТФ-синтетазы.
В результате этого выделяется энергия, которая может быть использована для фосфорилирования молекул АДФ:

Световая фаза фотосинтеза - светозависимая фаза

Протоны, попав на поверхность мембраны тилакоидов, соединяются с электронами и образуют атомарный водород, который
используется для восстановления молекулы-переносчика НАДФ (никотинамиддинуклеотидфосфат). Благодаря этому окисленная
форма — НАДФ+ превращается в восстановленную — НАДФ∗H2.

Предлагаю создать квинтэссенцию из полученных нами знаний. Итак, в результате светозависимой фазы фотосинтеза образуются:

  • Свободный кислород O2 — в результате фотолиза воды
  • АТФ — универсальный источник энергии
  • НАДФ∗H2 — форма запасания атомов водорода

Кислород удаляется из клетки как побочный продукт фотосинтеза, он совершенно не нужен растению. АТФ и НАДФ∗H2
в дальнейшем оказываются более полезны: они транспортируются в строму хлоропласта и принимают участие в светонезависимой
фазе фотосинтеза.

Светонезависимая (темновая) фаза

Светонезависимая фаза происходит в строме (матриксе) хлоропласта постоянно: и днем, и ночью — вне зависимости от
освещения.

При участии АТФ и НАДФ∗H2 происходит восстановление CO2 до глюкозы C6H12O6.
В светонезависимой фазе происходит цикл Кальвина, в ходе которого и образуется глюкоза. Для образования одной молекулы глюкозы
требуется 6 молекул CO2, 12 НАДФ∗H2 и 18 АТФ.

Темновая фаза фотосинтеза - светонезависимая фаза

Таким образом, в результате темновой (светонезависимой) фазы фотосинтеза образуется глюкоза, которая в дальнейшем может быть преобразована
в крахмал, служащий для запасания питательных веществ у растений.

Значение фотосинтеза

Значение фотосинтеза невозможно переоценить. Уверенно утверждаю: именно благодаря этому процессу жизнь на Земле приобрела такие
чудесные и изумительные формы, какие мы видим вокруг себя: удивительные растения, прекрасные цветы и самые разнообразные животные.

В разделе эволюции мы уже обсуждали, что изначально в составе атмосферы Земли не было кислорода: миллиарды лет назад его начали вырабатывать
первые фотосинтезирующие бактерии — сине-зеленые водоросли (цианобактерии). Постепенно кислород накапливался, и со временем на Земле
стало возможно аэробное (кислородное) дыхание. Возник озоновый слой, защищающий все живое на нашей планете от губительного ультрафиолета.

Озоновый слой

Говоря о роли фотосинтеза, выделим следующие функции, объединяющиеся в так называемую космическую роль растений. Итак, растения за счет фотосинтеза:

  • Синтезируют органические вещества, являющиеся пищей для всего живого на планете
  • Преобразуют энергию света в энергию химических связей, создают органическую массу
  • Растения поддерживают определенный процент содержания O2 в атмосфере, очищают ее от избытка CO2
  • Способствуют образованию защитного озонового экрана, поглощающего губительное для жизни ультрафиолетовое излучение

Дождевые леса Амазонии

Хемосинтез (греч. chemeia – химия + synthesis — синтез)

Хемосинтез — автотрофный тип питания, который характерен для некоторых микроорганизмов, способных создавать органические
вещества из неорганических. Это осуществляется за счет энергии, получаемой при окислении других неорганических соединений
(железо- , азото-, серосодержащих веществ).

Хемосинтез был открыт русским микробиологом С.Н. Виноградским в 1888 году. Большинство хемосинтезирующих бактерий относится
к аэробам, для жизни им необходим кислород.

Хемосинтез у нитрифицирующих бактерий

При окислении неорганических веществ выделяется энергия, которую организмы запасают в виде энергии химических связей.
Так нитрифицирующие бактерии последовательно окисляют аммиак до нитрита, а затем — нитрата. Нитраты могут быть усвоены
растениями и служат удобрением.

Помимо нитрифицирующих бактерий, встречаются:

  • Серобактерии — окисляют H2S —> S 0 —> (S+4O3)2- —> (S+6O4)2-
  • Железобактерии — окисляют Fe+2 —>Fe+3
  • Водородные бактерии — окисляют H2 —> H+12O
  • Карбоксидобактерии — окисляют CO до CO2
Значение хемосинтеза

Хемосинтезирующие бактерии являются неотъемлемым звеном круговорота в природе таких элементов как: азот, сера, железо.

Нитрифицирующие бактерии обеспечивают переработку (нейтрализацию) ядовитого вещества — аммиака. Они также обогащают
почву нитратами, которые очень важны для нормального роста и развития растений.

Усвоение нитратов происходит за счет клубеньковых бактерий на корнях бобовых
растений, однако важно помнить, что клубеньковые (азотфиксирующие) бактерии, в отличие от нитрифицирующих бактерий, питаются гетеротрофно.

Клубеньковые бактерии

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

«Фотосинтез и хемосинтез»

Раздел ЕГЭ: 2.5. Обмен веществ и превращения энергии — свойства живых организмов. Энергетический обмен и пластический обмен, их взаимосвязь. Стадии энергетического обмена. Брожение и дыхание. Фотосинтез, его значение, космическая роль. Фазы фотосинтеза. Световые и темновые реакции фотосинтеза, их взаимосвязь. Хемосинтез. Роль хемосинтезирующих бактерий на Земле.



Фотосинтез

 Фотосинтез — это процесс преобразования энергии света в энергию химических связей органических соединений с участием хлорофилла. В фотосинтезе различают световые и темновые реакции.

Световая фаза фотосинтеза протекает на мембранах тилакоидов, несущих несколько типов белковых комплексов, основными из которых являются фотосистемы I и II, а также АТФ-синтаза. В состав фотосистем входят пигментные комплексы, в которых, кроме хлорофилла, присутствуют и каротиноиды.

Кроме пигментных комплексов, фотосистемы включают и ряд белков-акцепторов электронов, которые последовательно передают друг другу электроны от молекул хлорифилла. Последовательность этих белков называется электронтранспортной цепью хлоропластов. С фотосистемой II также ассоциирован кислородвыделяющий белковый комплекс.

В световой фазе кванты света, или фотоны, попадающие на молекулы хлорофилла, расположенные на мембранах тилакоидов, переводят их в возбужденное состояние, характеризующееся более высокой энергией электронов. При этом возбужденные электроны от хлорофилла фотосистемы I передаются через цепь посредников на переносчик водорода НАДФ, присоединяющий при этом протоны водорода, всегда имеющиеся в водном растворе:

Электроны от хлорофилла фотосистемы II также передаются по электронтранспортной цепи, однако они заполняют «электронные дырки» хлорофилла фотосистемы I. Недостаток электронов в хлорофилле фотосистемы II заполняется за счет отнимания у молекул воды, которое происходит с участием уже упоминавшегося выше кислород-выделяющего комплекса. В результате разложения молекул воды, которое называется фотолизом, образуются протоны водорода и выделяется молекулярный кислород, являющийся побочным продуктом фотосинтеза:

Протоны водорода, накопившиеся в полости тилакоида в результате фотолиза воды и нагнетания при переносе электронов по электронтранспортной цепи, вытекают из тилакоида через канал в мембранном белке — АТФ-синтазе, при этом из АДФ синтезируется АТФ. Данный процесс называется фотофосфорилированием. Образовавшаяся в световых реакциях АТФ впоследствии будет использована в темновых реакциях.

Суммарное уравнение реакций световой фазы фотосинтеза можно записать следующим образом:

В ходе темновых реакций фотосинтеза происходит связывание молекул СО2 в виде углеводов, на которое расходуются молекулы АТФ и НАДФН + Н+, синтезированные в световых реакциях:

Процесс связывания углекислого газа является сложной цепью превращений, названий циклом Кальвина в честь его первооткрывателя. Темновые реакции протекают в строме хлоропластов. Для их протекания необходим постоянный приток углекислого газа извне.

фотосинтез

Таким образом, в процессе фотосинтеза энергия солнечного света преобразуется в энергию химических связей сложных органических соединений не без участия хлорофилла. Суммарное уравнение фотосинтеза можно записать следующим образом:

Реакции световой и темновой фаз фотосинтеза взаимосвязаны, так как увеличение скорости лишь одной группы реакций влияет на интенсивность всего процесса фотосинтеза только до определенного момента, пока вторая группа реакций не выступит в роли лимитирующего фактора, и возникает потребность в ускорении реакций второй группы для того, чтобы первые происходили без ограничений.

В результате фотосинтеза образуется примерно 150 млрд тонн органического вещества и приблизительно 200 млрд тонн кислорода ежегодно. Этот процесс обеспечивает круговорот углерода в биосфере, не давая накапливаться углекислому газу и препятствуя тем самым возникновению парникового эффекта и перегреву Земли. Образующиеся в результате фотосинтеза органические вещества не расходуются другими организмами полностью, значительная их часть в течение миллионов лет образовала залежи полезных ископаемых (каменного и бурого угля, нефти). Из кислорода под действием электрических разрядов образуется озон, который формирует озоновый экран, защищающий все живое на Земле от губительного действия ультрафиолетовых лучей.

Наш соотечественник, выдающийся физиолог растений К. А. Тимирязев (1843—1920) назвал роль фотосинтеза «космической», поскольку он связывает Землю с Солнцем (космосом), обеспечивая приток энергии на планету.

Хемосинтез

 Хемосинтез — это процесс синтеза органических соединений за счет химической энергии неорганических соединений. Этот процесс был открыт выдающимся русским ученым С. Н. Виноградским в 1887 году.

К группе хемосинтетиков (хемотрофов) относятся в основном бактерии: нитрифицирующие, серобактерии, железобактерии и др. Они используют энергию окисления соединений азота, серы, ионов железа соответственно. При этом донором электронов выступает не вода, а другие неорганические вещества.

Так, нитрифицирующие бактерии окисляют образованный из атмосферного азота азотфиксирующими бактериями аммиак до нитритов и нитратов:

2NH3 + 3O2 → 2HNO2 + 2H2O + 663 кДж,

2HNO2 + O2 → 2HNO3 + 192 кДж.

 Серобактерии окисляют сероводород до серы, а в некоторых случаях — и до серной кислоты:

 2H2S + O2 → 2H2O + 2S + 272 кДж,

2S + 3O2 + 2H2O → 2H2SO4 + 483 кДж.

 Железобактерии окисляют соли железа:

4FeCO3 + O2 + 6H2O → 4Fe(OH)3 + 4CO2↑ + 324 кДж.

Водородные бактерии способны окислять молекулярный водород:

2H2 + O2 → 2H2O + 235 кДж.

Источником углерода для синтеза органических соединений у всех автотрофных бактерий выступает углекислый газ.

Хемосинтезирующие бактерии наиболее значительную роль играют в биогеохимических циклах химических элементов в биосфере, так как в процессе их жизнедеятельности образовались залежи многих полезных ископаемых. Кроме того, они являются источниками органического вещества на планете, то есть продуцентами, а также делают доступным целый ряд неорганических веществ и для растений, и для других организмов.


Это конспект для 10-11 классов по теме «Фотосинтез и хемосинтез».
Читайте также другие конспекты, относящиеся к разделу ЕГЭ 2.5:

  • Обмен веществ и превращения энергии — свойства живых организмов. Энергетический обмен и пластический обмен, их взаимосвязь.
  • Стадии энергетического обмена. Брожение и дыхание.

Все живые существа нуждаются в пище и питательных веществах. Питаясь, они используют энергию, запасенную, прежде всего, в органических соединениях – белках, жирах, углеводах. Гетеротрофные организмы используют пищу растительного и животного происхождения, уже содержащую органические соединения. Растения же создают органические вещества в процессе фотосинтеза.

Исследования в области фотосинтеза начались в 1630 г. экспериментами голландца ван Гельмонта. Он доказал, что растения получают органические вещества не из почвы, а создают их самостоятельно.

Джозеф Пристли в 1771 г. доказал «исправление» воздуха растениями. Помещенные под стеклянный колпак они поглощали углекислый газ, выделяемый тлеющей лучиной.

В настоящее время установлено, что фотосинтез – это процесс образования органических соединений из СО2 и воды с использованием энергии света и проходящий в хлоропластах зеленых растений и зеленых пигментах некоторых фотосинтезирующих бактерий.

фотосинтез

Хлоропласты и складки цитоплазматической мембраны прокариот содержат зеленый пигмент – хлорофилл, молекула которого способна возбуждаться под действием солнечного света, отдавать свои электроны и перемещать их на более высокие энергетические уровни. Этот процесс можно сравнить с подброшенным вверх мячом. Поднимаясь, мяч запасается потенциальной энергией; падая, он теряет ее. Электроны не падают обратно, а подхватываются переносчиками электронов (НАДФ+ – никотина-миддифосфат). При этом энергия, накопленная ими ранее, частично расходуется на образование АТФ. Продолжая сравнение с подброшенным мячом, можно сказать, что мяч, падая, нагревает окружающее пространство, а часть энергии падающих электронов запасается в виде АТФ. Процесс фотосинтеза подразделяется на реакции, вызываемые светом, и реакции, связанные с фиксацией углерода: световую и темновую фазы.

Световая фаза – это этап, на котором поглощенная хлорофиллом энергия света преобразуется в электрохимическую энергию в цепи переноса электронов. Осуществляется на свету, в мембранах гран при участии белков – переносчиков и АТФ-синтетазы.

Реакции, вызываемые светом, происходят на фотосинтетических мембранах гран хлоропластов:
1) возбуждение электронов хлорофилла квантами света и их переход на более высокий энергетический уровень;
2) восстановление акцепторов электронов – НАДФ+ до НАДФ • Н
2Н+ + 4е- + НАДФ+ → НАДФ • Н;
3) фотолиз воды: 2Н2О → 4Н+ + 4е- + О2.

Данный процесс происходит внутри тилакоидов – складок внутренней мембраны хлоропластов, из которых формируются граны – стопки мембран.

Результаты световых реакций:
— фотолиз воды с образованием свободного кислорода, синтез АТФ,
— восстановление НАДФ+ до НАДФ • Н.

Темновая фаза – процесс преобразования СО2 в глюкозу в строме (пространстве между гранами) хлоропластов с использованием энергии АТФ и НАДФ • Н.

Результат темновых реакций: превращение углекислого газа в глюкозу, а затем в крахмал. Помимо молекул глюкозы в строме происходит образование, аминокислот, нуклеотидов, спиртов.

Суммарное уравнение фотосинтеза

6CO2 + 6H2OC6H12O6 + 6O2

Значение фотосинтеза:
образуется свободный кислород, который необходим для дыхания организмов и образования защитного озонового экрана (предохраняющего организмы от вредного воздействия ультрафиолетового излучения); производство исходных органических веществ — пищи для всех живых существ; снижение концентрации диоксида углерода в атмосфере.

Хемосинтез – образование органических соединений из неорганических за счет энергии окислительно — восстановительных реакций соединений водорода, азота, железа, серы.

Роль хемосинтеза: бактерии – хемосинтетики разрушают горные породы, очищают сточные воды, участвуют в образовании полезных ископаемых.

фотосинтез

2.5.3. Фотосинтез и хемосинтез

Все живые существа нуждаются в пище и питательных веществах. Питаясь, они используют энергию, запасенную, прежде всего, в органических соединениях – белках, жирах, углеводах. Гетеротрофные организмы, как уже говорилось, используют пищу растительного и животного происхождения, уже содержащую органические соединения. Растения же создают органические вещества в процессе фотосинтеза. Исследования в области фотосинтеза начались в 1630 г. экспериментами голландца ван Гельмонта. Он доказал, что растения получают органические вещества не из почвы, а создают их самостоятельно. Джозеф Пристли в 1771 г. доказал «исправление» воздуха растениями. Помещенные под стеклянный колпак они поглощали углекислый газ, выделяемый тлеющей лучиной. Исследования продолжались, и в настоящее время установлено, что фотосинтез – это процесс образования органических соединений из диоксида углерода (СО2) и воды с использованием энергии света и проходящий в хлоропластах зеленых растений и зеленых пигментах некоторых фотосинтезирующих бактерий.

Хлоропласты и складки цитоплазматической мембраны прокариот содержат зеленый пигмент – хлорофилл. Молекула хлорофилла способна возбуждаться под действием солнечного света и отдавать свои электроны и перемещать их на более высокие энергетические уровни. Этот процесс можно сравнить с подброшенным вверх мячом. Поднимаясь, мяч запасается потенциальной энергией; падая, он теряет ее. Электроны не падают обратно, а подхватываются переносчиками электронов (НАДФ+никотинамиддифосфат). При этом энергия, накопленная ими ранее, частично расходуется на образование АТФ. Продолжая сравнение с подброшенным мячом, можно сказать, что мяч, падая, нагревает окружающее пространство, а часть энергии падающих электронов запасается в виде АТФ. Процесс фотосинтеза подразделяется на реакции, вызываемые светом, и реакции, связанные с фиксацией углерода. Их называют световой и темновой фазами.

«Световая фаза» – это этап, на котором энергия света, поглощенная хлорофиллом, преобразуется в электрохимическую энергию в цепи переноса электронов. Осуществляется на свету, в мембранах гран при участии белков – переносчиков и АТФ-синтетазы.

Реакции, вызываемые светом, происходят на фотосинтетических мембранах гран хлоропластов:

1) возбуждение электронов хлорофилла квантами света и их переход на более высокий энергетический уровень;

2) восстановление акцепторов электронов – НАДФ+ до НАДФ • Н

+ + 4е + НАДФ+ ? НАДФ • Н;

3) фотолиз воды, происходящий при участии квантов света: 2Н2О ? 4Н+ + 4е + О2.

Данный процесс происходит внутри тилакоидов – складках внутренней мембраны хлоропластов. Из тилакоидов формируются граны – стопки мембран.

Так как в экзаменационных работах спрашивают не о механизмах фотосинтеза, а о результатах этого процесса, то мы и перейдем к ним.

Результатами световых реакций являются: фотолиз воды с образованием свободного кислорода, синтез АТФ, восстановление НАДФ+ до НАДФ • Н. Таким образом свет нужен только для синтеза АТФ и НАДФ-Н.

«Темновая фаза» – процесс преобразования СО2 в глюкозу в строме (пространстве между гранами) хлоропластов с использованием энергии АТФ и НАДФ • Н.

Результатом темновых реакций являются превращения углекислого газа в глюкозу, а затем в крахмал. Помимо молекул глюкозы в строме происходит образование, аминокислот, нуклеотидов, спиртов.

Суммарное уравнение фотосинтеза —

Значение фотосинтеза. В процессе фотосинтеза образуется свободный кислород, который необходим для дыхания организмов:

кислородом образован защитный озоновый экран, предохраняющий организмы от вредного воздействия ультрафиолетового излучения;

фотосинтез обеспечивает производство исходных органических веществ, а следовательно, пищу для всех живых существ;

фотосинтез способствует снижению концентрации диоксида углерода в атмосфере.

Хемосинтез – образование органических соединений из неорганических за счет энергии окислительно-восстановительных реакций соединений азота, железа, серы. Существует несколько видов хемосинтетических реакций:

1) окисление аммиака до азотистой и азотной кислоты нитрифицирующими бактериями:

NH3 ? HNQ2 ? HNO3 + Q;

2)превращение двухвалентного железа в трехвалентное железобактериями:

Fe2+ ? Fe3+ + Q;

3)окисление сероводорода до серы или серной кислоты серобактериями

H2S + O2 = 2H2O + 2S + Q,

H2S + O2 = 2H2SO4 + Q.

Выделяемая энергия используется для синтеза органических веществ.

Роль хемосинтеза. Бактерии – хемосинтетики, разрушают горные породы, очищают сточные воды, участвуют в образовании полезных ископаемых.

ПРИМЕРЫ ЗАДАНИЙ

Часть А

А1. Фотосинтез – это процесс, происходящий в зеленых растениях. Он связан с:

1) расщеплением органических веществ до неорганических

2) созданием органических веществ из неорганических

3) химическим превращения глюкозы в крахмал

4) образованием целлюлозы

А2. Исходным материалом для фотосинтеза служат

1) белки и углеводы 3) кислород и АТФ

2) углекислый газ и вода 4) глюкоза и кислород

А3. Световая фаза фотосинтеза происходит

1) в гранах хлоропластов 3) в строме хлоропластов

2) в лейкопластах 4) в митохондриях

А4. Энергия возбужденных электронов в световой стадии используется для:

1) синтеза АТФ 3) синтеза белков

2) синтеза глюкозы 4) расщепления углеводов

А5. В результате фотосинтеза в хлоропластах образуются:

1) углекислый газ и кислород

2) глюкоза, АТФ и кислород

3) белки, жиры, углеводы

4) углекислый газ, АТФ и вода

А6. К хемотрофным организмам относятся

1) возбудители туберкулеза

2) молочнокислые бактерии

3) серобактерии

4) вирусы

Часть В

В1. Выберите процессы, происходящие в световой фазе фотосинтеза

1) фотолиз воды

2) образование глюкозы

3) синтез АТФ и НАДФ • Н

4) использование СО2

5) образование свободного кислорода

6) использование энергии АТФ

В2. Выберите вещества, участвующие в процессе фотосинтеза

целлюлоза 4) углекислый газ

гликоген 5) вода

хлорофилл 6) нуклеиновые кислоты

Часть С

С1. Какие условия необходимы для начала процесса фотосинтеза?

С2. Как строение листа обеспечивает его фотосинтезирующие функции?

Данный текст является ознакомительным фрагментом.

Читайте также

ФОТОСИНТЕЗ

ФОТОСИНТЕЗ
Несколько лет французские химики Пельтье (1788–1842) и Каванту (1795–1877) работали вместе. Это плодотворное сотрудничество привело к открытию стрихнина и бруцина. Самую большую славу принесло им открытие хинина — верного средства против малярии. В 1817 году ученые

Что такое фотосинтез и какое значение он имеет для жизни на Земле?

Что такое фотосинтез и какое значение он имеет для жизни на Земле?
Фотосинтезом называют образование высшими растениями, водорослями, фотосинтезирующими бактериями сложных органических веществ, необходимых для жизнедеятельности как самих растений, так и всех других

2.5. Метаболизм: энергетический и пластический обмен, их взаимосвязь. Ферменты, их химическая природа, роль в метаболизме. Стадии энергетического обмена. Брожение и дыхание. Фотосинтез, его значение, космическая роль. Фазы фотосинтеза. Световые и темновые реакции фотосинтеза, их взаимосвязь. Хемосин

2.5. Метаболизм: энергетический и пластический обмен, их взаимосвязь. Ферменты, их химическая природа, роль в метаболизме. Стадии энергетического обмена. Брожение и дыхание. Фотосинтез, его значение, космическая роль. Фазы фотосинтеза. Световые и темновые реакции

Фотосинтез и хемосинтез

Фотосинтез

Все живые существа нуждаются в пище и питательных веществах. Питаясь, они используют энергию, запасенную, прежде всего, в органических соединениях – белках, жирах, углеводах. Гетеротрофные организмы, как уже говорилось, используют пищу растительного и животного происхождения, уже содержащую органические соединения. Растения же создают органические вещества в процессе фотосинтеза.

Исследования в области фотосинтеза начались в 1630 г. экспериментами голландца ван Гельмонта. Он доказал, что растения получают органические вещества не из почвы, а создают их самостоятельно. Джозеф Пристли в 1771 г. доказал «исправление» воздуха растениями. Помещенные под стеклянный колпак они поглощали углекислый газ, выделяемый тлеющей лучиной. Исследования продолжались, и в настоящее время установлено, что фотосинтез – это процесс образования органических соединений из диоксида углерода (СО2) и воды с использованием энергии света и проходящий в хлоропластах зеленых растений и зеленых пигментах некоторых фотосинтезирующих бактерий.

Хлоропласты и складки цитоплазматической мембраны прокариот содержат зеленый пигмент – хлорофилл. Молекула хлорофилла способна возбуждаться под действием солнечного света и отдавать свои электроны и перемещать их на более высокие энергетические уровни. Этот процесс можно сравнить с подброшенным вверх мячом. Поднимаясь, мяч запасается потенциальной энергией; падая, он теряет ее. Электроны не падают обратно, а подхватываются переносчиками электронов (НАДФ+ – никотинамиддифосфат). При этом энергия, накопленная ими ранее, частично расходуется на образование АТФ. Продолжая сравнение с подброшенным мячом, можно сказать, что мяч, падая, нагревает окружающее пространство, а часть энергии падающих электронов запасается в виде АТФ. Процесс фотосинтеза подразделяется на реакции, вызываемые светом, и реакции, связанные с фиксацией углерода. Их называют световой и темновой фазами.

  • Световая фаза – это этап, на котором энергия света, поглощенная хлорофиллом, преобразуется в электрохимическую энергию в цепи переноса электронов. Осуществляется на свету, в мембранах гран при участии белков – переносчиков и АТФ-синтетазы.

Реакции, вызываемые светом, происходят на фотосинтетических мембранах гран хлоропластов:

1) возбуждение электронов хлорофилла квантами света и их переход на более высокий энергетический уровень;

2) восстановление акцепторов электронов – НАДФ+ до НАДФ • Н

+ + 4е + НАДФ+ → НАДФ • Н;

3) фотолиз воды, происходящий при участии квантов света: 2Н2О → 4Н+ + 4е + О2.

Данный процесс происходит внутри тилакоидов – складках внутренней мембраны хлоропластов. Из тилакоидов формируются граны – стопки мембран.

Результатами световых реакций являются: фотолиз воды с образованием свободного кислорода, синтез АТФ, восстановление НАДФ+ до НАДФ • Н. Таким образом, свет нужен только для синтеза АТФ и НАДФ-Н.

  • Темновая фаза – процесс преобразования СО2 в глюкозу в строме (пространстве между гранами) хлоропластов с использованием энергии АТФ и НАДФ • Н.

Результатом темновых реакций являются превращения углекислого газа в глюкозу, а затем в крахмал. Помимо молекул глюкозы в строме происходит образование, аминокислот, нуклеотидов, спиртов.

Суммарное уравнение фотосинтеза

В процессе фотосинтеза образуется свободный кислород, который необходим для дыхания организмов:

  • кислородом образован защитный озоновый экран, предохраняющий организмы от вредного воздействия ультрафиолетового излучения;

  • фотосинтез обеспечивает производство исходных органических веществ, а следовательно, пищу для всех живых существ;

  • фотосинтез способствует снижению концентрации диоксида углерода в атмосфере.

Хемосинтез

Хемосинтез – образование органических соединений из неорганических за счет энергии окислительно-восстановительных реакций соединений азота, железа, серы. Существует несколько видов хемосинтетических реакций:

1) окисление аммиака до азотистой и азотной кислоты нитрифицирующими бактериями:

NH3 → HNQ2 → HNO3 + Q;

2)превращение двухвалентного железа в трехвалентное железобактериями:

Fe2+ → Fe3+ + Q;

3)окисление сероводорода до серы или серной кислоты серобактериями

H2S + O2 = 2H2O + 2S + Q,

H2S + O2 = 2H2SO4 + Q.

Выделяемая энергия используется для синтеза органических веществ.

Бактерии – хемосинтетики, разрушают горные породы, очищают сточные воды, участвуют в образовании полезных ископаемых.

Понравилась статья? Поделить с друзьями:
  • Хем4ю егэ 2022 химия
  • Харис якупов тукай картинасына сочинение
  • Хеллехи каникул сочинение
  • Харис якупов сонгы кар картинасы буенча сочинение
  • Хелле сочинение на чувашском языке