Химические свойства аренов егэ

Арены (ароматические углеводороды)это непредельные (ненасыщенные) циклические углеводороды, молекулы которых содержат устойчивые циклические группы атомов (бензольные ядра) с замкнутой системой сопряженных связей.

Общая формула: CnH2n–6 при n ≥ 6.

Строение, номенклатура и изомерия ароматических углеводородов

Способы получения ароматических углеводородов

Химические свойства ароматических углеводородов

Химические свойства аренов

Арены – непредельные углеводороды, молекулы которых содержат три двойных связи и цикл. Но из-за эффекта сопряжения свойства аренов отличаются от свойств других непредельных углеводородов.

Для ароматических углеводородов характерны реакции:

  • присоединения,
  • замещения,
  • окисления (для гомологов бензола).

Из-за наличия сопряженной π-электронной системы молекулы ароматических углеводородов вступают в реакции присоединения очень тяжело, только в жестких условиях — на свету или при сильном нагревании, как правило, по радикальному механизму

Бензольное кольцо представляет из себя скопление π-электронов, которое притягивает электрофилы. Поэтому для ароматических углеводородов характерны реакции электрофильного замещения атома водорода у бензольного кольца.

Ароматическая система бензола устойчива к действию окислителей. Однако гомологи бензола окисляются под действием перманганата калия и других окислителей.

1. Реакции присоединения

Бензол присоединяет хлор на свету и водород при нагревании в присутствии катализатора.

1.1. Гидрирование

Бензол присоединяет водород при нагревании и под давлением в присутствии металлических катализаторов (Ni, Pt и др.). 

При гидрировании бензола образуется циклогексан:

При гидрировании гомологов образуются производные циклоалканы. При нагревании толуола с водородом под давлением и в присутствии катализатора образуется метилциклогексан:

1.2. Хлорирование аренов

Присоединение хлора к бензолу протекает по радикальному механизму при высокой температуре, под действием ультрафиолетового излучения.

При хлорировании бензола на свету образуется 1,2,3,4,5,6-гексахлорциклогексан (гексахлоран).

Гексахлоран – пестицид, использовался для борьбы с вредными насекомыми. В настоящее время использование гексахлорана запрещено.

Гомологи бензола не присоединяют хлор. Если гомолог бензола реагирует с хлором или бромом на свету или при высокой температуре (300°C), то происходит замещение атомов  водорода в боковом алкильном заместителе, а не в ароматическом кольце.

Например, при хлорировании толуола на свету образуется бензилхлорид

Если у гомолога бензола боковая цепь содержит несколько атомов углерода – замещение происходит у атома, ближайшему к бензольному кольцу («альфа-положение»).

Например, этилбензол реагирует с хлором на свету

2. Реакции замещения

Реакции замещения у ароматических углеводородов протекают по ионному механизму (электрофильное замещение). При этом атом водорода замещается на другую группу (галоген, нитро, алкил и др.).

2.1. Галогенирование

Бензол и его гомологи вступают в реакции замещения с галогенами (хлор, бром) в присутствии катализаторов (AlCl3, FeBr3).

При взаимодействии с хлором на катализаторе AlCl3 образуется хлорбензол:

Ароматические углеводороды взаимодействуют с бромом при нагревании и в присутствии катализатора – FeBr3 . Также в качестве катализатора можно использовать металлическое железо.

Бром реагирует с железом с образованием бромида железа (III), который катализирует процесс бромирования бензола:

Гомологи бензола содержат алкильные заместители, которые обладают электронодонорным эффектом: из-за того, что электроотрицательность водорода меньше, чем углерода, электронная плотность связи С-Н смещена к углероду.

На нём возникает избыток электронной плотности, который далее передается на бензольное кольцо.

Поэтому гомологи бензола легче вступают в реакции замещения в бензольном кольце. При этом гомологи бензола вступают в реакции замещения преимущественно в орто— и пара-положения

Например, при взаимодействии толуола с хлором  образуется смесь продуктов, которая преимущественно состоит из орто-хлортолуола и пара-хлортолуола

Мета-хлортолуол образуется в незначительном количестве.

При взаимодействии гомологов бензола с галогенами на свету или при высокой температуре (300оС) происходит замещение водорода не в бензольном кольце, а в боковом углеводородном радикале.

Если у гомолога бензола боковая цепь содержит несколько атомов углерода – замещение происходит у атома, ближайшему к бензольному кольцу («альфа-положение»).

Например, при хлорировании этилбензола:

2.2. Нитрование

 Бензол реагирует с концентрированной азотной кислотой в присутствии концентрированной серной кислоты (нитрующая смесь).

При этом образуется нитробензол:

Серная кислота способствует образованию электрофила NO2+:

Толуол реагирует с концентрированной азотной кислотой в присутствии концентрированной серной кислоты.

В продуктах реакции мы указываем либо о-нитротолуол:

либо п-нитротолуол:

Нитрование толуола может протекать и с замещением трех атомов водорода. При этом образуется 2,4,6-тринитротолуол (тротил, тол):

2.3. Алкилирование ароматических углеводородов

  • Арены взаимодействуют с галогеналканами в присутствии катализаторов (AlCl3, FeBr3 и др.) с образованием гомологов бензола.

Например, бензол реагирует с хлорэтаном с образованием этилбензола

  • Ароматические углеводороды взаимодействуют с алкенами в присутствии хлорида алюминия, бромида железа (III), фосфорной кислоты и др.

Например, бензол реагирует с этиленом с образованием этилбензола

Например, бензол реагирует с пропиленом с образованием изопропилбензола (кумола)

  • Алкилирование спиртами протекает в присутствии концентрированной серной кислоты.

Например, бензол реагирует с этанолом с образованием этилбензола и воды

2.4. Сульфирование ароматических углеводородов

Бензол реагирует при нагревании с концентрированной серной кислотой или раствором SO3 в серной кислоте (олеум) с образованием бензолсульфокислоты:

3. Окисление аренов

Бензол устойчив к действию даже сильных окислителей. Но гомологи бензола окисляются под действием сильных окислителей. Бензол и его гомологи горят.

3.1. Полное окисление – горение

При горении бензола и его гомологов образуются углекислый газ и вода. Реакция горения аренов сопровождается выделением большого количества теплоты.

2C6H6 + 15O2  → 12CO2 + 6H2O + Q

Уравнение сгорания аренов в общем виде:

 CnH2n–6 + (3n – 3)/2 O2 → nCO2 + (n – 3)H2O + Q

При горении ароматических углеводородов в недостатке кислорода может образоваться угарный газ СО или сажа С.

Бензол и его гомологи горят на воздухе коптящим пламенем. Бензол и его гомологи образуют с воздухом и кислородом взрывоопасные смеси.

3.2. Окисление гомологов бензола

Гомологи бензола легко окисляются перманганатом и дихроматом калия в кислой или нейтральной среде при нагревании.

При этом происходит окисление всех связей у атома углерода, соседнего с бензольным кольцом, кроме связи этого атома углерода с бензольным кольцом.

Толуол окисляется перманганатом калия в серной кислоте с образованием бензойной кислоты:

Если окисление толуола идёт в нейтральном растворе при нагревании, то образуется соль бензойной кислоты – бензоат калия:

Таким образом, толуол обесцвечивает подкисленный раствор перманганата калия при нагревании.

При окислении других гомологов бензола всегда остаётся только один атом С в виде карбоксильной группы (одной или нескольких, если заместителей несколько), а все остальные атомы углерода радикала окисляются до углекислого газа или карбоновой кислоты.

Например, при окислении этилбензола перманганатом калия в серной кислоте образуются бензойная кислота и углекислый газ

Например, при окислении этилбензола перманганатом калия в нейтральной кислоте образуются соль бензойной кислоты и карбонат

Более длинные радикалы окисляются до бензойной кислоты и карбоновой кислоты:

При окислении пропилбензола образуются бензойная и уксусная кислоты:

Изопропилбензол окисляется перманганатом калия в кислой среде до бензойной кислоты и углекислого газа:

4. Ориентирующее действие заместителей в бензольном кольце

Если в бензольном кольце имеются заместители, не только алкильные, но и содержащие другие атомы (гидроксил, аминогруппа, нитрогруппа и т.п.), то реакции замещения атомов водорода в ароматической системе протекают строго определенным образом, в соответствии с характером влияния заместителя на ароматическую π-систему.

Заместители подразделяют на две группы в зависимости от их влияния на электронную плотность ароматической системы: электронодонорные (первого рода) и электроноакцепторные (второго рода).

Типы заместителей в бензольном кольце

Заместители первого рода Заместители второго рода
Дальнейшее замещение происходит  преимущественно в орто— и пара-положение Дальнейшее замещение происходит преимущественно в мета-положение
Электронодонорные, повышают электронную плотность в бензольном кольце Электроноакцепторные,  снижают электронную плотность в сопряженной системе.
  • алкильные заместители: СН3 –, С2Н5 и др.;
  • гидроксил, амин: –ОН , –NН2;
  • галогены: –Cl, –Br
  • нитро-группа:– NO2, – SO3Н;
  • карбонил – СНО;
  • карбоксил: – СООН, нитрил: – СN;
  • – CF3 

Например, толуол реагирует с хлором в присутствии катализатора с образованием смеси продуктов, в которой преимущественно содержатся орто-хлортолуол и пара-хлортолуол. Метильный радикал — заместитель первого рода.

В уравнении реакции в качестве продукта записывается либо орто-толуол, либо пара-толуол.

Например, при бромировании нитробензола в присутствии катализатора  преимущественно образуется мета-хлортолуол. Нитро-группа — заместитель второго рода


5. Особенности свойств стирола

Стирол (винилбензол, фенилэтилен) – это производное бензола, которое имеет в своем составе двойную связь в боковом заместителе.

Общая формула гомологического ряда стирола: CnH2n-8.

Молекула стирола содержит заместитель с кратной связью у бензольного кольца, поэтому стирол проявляет все свойства, характерные для алкенов – вступает в реакции присоединения, окисления, полимеризации.

Стирол присоединяет водород, кислород, галогены, галогеноводороды и воду в соответствии с правилом Марковникова.

Например, при гидратации стирола образуется спирт:

Стирол присоединяет бром при обычных условиях, то есть обесцвечивает бромную воду

При полимеризации стирола образуется полистирол:

Как и алкены, стирол окисляется водным раствором перманганата калия при обычных условиях. Обесцвечивание водного раствора перманганата калия — качественная реакция на стирол:

При жестком окислении стирола перманганатом калия в кислой среде (серная кислота) разрывается двойная связь и образуется бензойная кислота и углекислый газ:

При окислении стирола перманганатом калия в нейтральной среде при нагревании также разрывается двойная связь и образуется соль бензойной кислоты и карбонат:

Арены — ароматические углеводороды, содержащие одно или несколько бензольных колец.
Бензольное кольцо составляют 6 атомов углерода, между которыми чередуются двойные и одинарные связи.

Важно заметить, что двойные связи в молекуле бензола не фиксированы, а постоянно перемещаются по кругу.

Арены также называют ароматическими углеводородами. Первый член гомологического ряда — бензол — C6H6.
Общая формула их гомологического ряда — CnH2n-6.

Формула бензола

Долгое время структурная формула бензола оставалась тайной. Предложенная Кекуле формула с тремя двойными связями не могла
объяснить то, что бензол не вступает в реакции присоединения. Как уже было сказано выше, по современным представлениям
двойные связи в молекуле бензола постоянно перемещаются, поэтому более верно рисовать их в виде кольца.

За счет чередования двойных связей в молекуле бензола формируется сопряжение. Все атомы углерода находятся в состоянии sp2
гибридизации. Валентный угол — 120°.

Номенклатура и изомерия аренов

Названия аренов формируются путем добавления названий заместителей к главной цепи — бензольному кольцу: бензол, метилбензол (толуол),
этилбензол, пропилбензол и т.д. Заместители, как обычно, перечисляются в алфавитном порядке. Если в бензольном кольце несколько заместителей,
то выбирают кратчайший путь между ними.

Номенклатура аренов

Для аренов характерна структурная изомерия, связанная с положением заместителей. Например, два заместителя в бензольном
кольце могут располагаться в разных положениях.

Название положения заместителей в бензольном кольце формируется на основе их расположения относительно друг друга. Оно обозначается
приставками орто-, мета- и пара. Ниже вы найдете мнемонические подсказки для их успешного запоминания ;)

Орто-, пара- и мета- положения в бензольном кольце

Получение аренов

Арены получают несколькими способами:

  • Реакция Зелинского (тримеризация ацетилена)
  • Данная реакция протекает при пропускании ацетилена над активированным углем при t = 400°C. В результате образуется ароматический
    углеводород — бензол.

    Реакция Зелинского

    В случае, если к ацетилену добавить пропин, то становится возможным получение толуола. Увеличивая долю пропина, в конечном итоге
    можно добиться образования 1,3,5-триметилбензола.

    Тримеризация пропина

  • Дегидроциклизация алканов
  • В ходе таких реакций, протекающих при повышенной температуре и в присутствии катализатора — Cr2O3, линейная
    структура алкана замыкается в цикл, отщепляется водород.

    Дегидроциклизация гексана

    При дегидроциклизации гептана получается толуол.

    Дегидроциклизация гептана

  • Дегидрирование циклоалканов
  • В результате дегидрирования уже «готовых» циклов — циклоалканов, отщепляются 3 моль водорода, и образуется соответствующий арен,
    с теми же заместителями, которые были у циклоалкана.

    Дегидрирование циклоалканов

  • Синтез Дюма
  • Синтез Дюма заключается в сплавлении солей карбоновых кислот с щелочами. В результате такой реакции возможно образование различных органических веществ, в том числе аренов.

    Синтез Дюма, получение аренов

Химические свойства аренов

Арены — ароматические углеводороды, которые содержат бензольное кольцо с сопряженными двойными связями. Эта особенность
делает реакции присоединения тяжело протекающими (и тем не менее возможными!)

Запомните, что, в отличие от других непредельных соединений, бензол и его гомологи не обесцвечивают бромную воду и
раствор перманганата калия.

  • Гидрирование
  • При повышенной температуре и наличии катализатора, водород способен разорвать двойные связи в бензольном кольце
    и превратить арен в циклоалкан.

    Гидрирование бензола

  • Галогенирование
  • Реакция бензола с хлором на свету приводит к образованию гексахлорциклогексана, если же использовать только катализатор,
    то образуется хлорбензол.

    Хлорирование бензола

    Реакции с толуолом протекают иначе: при УФ-свете хлор направляется в радикал метил и замещает атом водорода в нем, при действии катализатора хлор замещает один атом водорода в бензольном кольце (в орто- или пара-положении).

    Хлорирование толуола

    Почему хлор направляется именно в орто- и пара-положения относительно метильной группы? Здесь самое время
    коснуться темы ориентантов I (орто-, пара-ориентантов) и II порядков (мета-ориентанты).

    К ориентантам первого порядка относятся группы: NH2, OH, OR, CR3, CHR2,
    CH2R, галогены. К ориентантам второго: NO2, CN, SO3H, CCl3,
    CHO, COOH, COOR.

    Ориентанты I и II порядка

    Например, ориентант I порядка, гидроксогруппа OH, обеспечивает протекание хлорирования в орто- и пара-положениях.
    А карбоксильная группа COOH, ориентант II порядка, обуславливает хлорирование в мета-положениях.

    Ориентанты I и II порядка

  • Нитрование
  • Арены вступают в реакции нитрования, протекающие при повышенной температуре и в присутствии серной кислоты,
    обладающей водоотнимающими свойствами.

    Нитрование бензола, толуола и нитробензола

  • Алкилирование
  • Алкилирование аренов осуществляется путем введения алкильного радикала в молекулу бензола. Алкильным радикалом чаще
    всего выступает алкен или галогеналкан. В подобных реакциях используют катализатор AlCl3.

    В случае если для алкилирования используется алкен, то с молекулой бензола соединяется наименее гидрированный атом
    углерода алкена, прилежащий к двойной связи. Один атом водорода переходит из бензольного кольца к радикалу.

    Алкилирование аренов

  • Окисление
  • Арены, как и все органические вещества, сгорают с образованием углекислого газа и воды.

    2C6H6 + 15O2 → 12CO2 + 6H2O

    При неполном окислении гомологи бензола способны окисляться до бензойной кислоты (при подкислении раствора серной
    кислотой). Сам бензол не вступает в реакцию окисления с KMnO4, не обесцвечивает его раствор.

    Окисление аренов

  • Полимеризация
  • В реакцию полимеризации способен вступать стирол (винилбензол), в радикале которого содержится двойная связь.

    Полимеризация стирола

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ.

Это циклические углеводороды с тремя двойными сопряженными связями в цикле.

Бензол С6Н6 – родоначальник ароматических углеводородов. Впервые выделен Фарадеем в 1825г из светильного газа.

hello_html_mb8ab6c9.png

Каждый из шести атомов углерода в его молекуле находится в состоянии sp2-гибридизации и связан с двумя соседними атомами углерода и атомом водорода тремя σ-связями. Валентные углы между каждой парой π-связей равны 1200.

Таким образом, скелет σ-связей представляет собой правильный шестиугольник, в котором все атомы углерода и все σ-связи С–С и С–Н лежат в одной плоскости.

р-Электроны всех атомов углерода образуют единое циклическое π-электронное облако, сосредоточенное над и под плоскостью кольца.

Все связи С–С в бензоле равноценны, их длина равна 0,140 нм, что соответствует промежуточному значению между одинарной и двойной.

hello_html_m1f5ee17f.pnghello_html_32ba075f.png Это означает, что в молекуле бензола между углеродными атомами нет чисто простых и двойных связей (как в формуле, предложенной в 1865 г. немецким химиком Ф.Кекуле), а все они выровнены (делокализованы).

Общая формула гомологического ряда бензола CnH2n-6 (n ≥ 6).

Вещество

Название по номенклатуре

Историческое название

С6Н5-СН3

метилбензол

Толуол

С6Н5-СН2-СН3

этилбензол

СН36Н4-СН3

диметилбензол

ксилол

С6Н5-СН(СН3)2

изопропилбензол

кумол

hello_html_11f3ff65.png Если радикалов два или более, их положение указывается номерами атомов углерода в кольце, с которыми они связаны. Кольцо нумерют так, чтобы номера радикалов были наименьшими.

Для дизамещенных бензолов

R-C6H4-R’

используется также другой способ построения названий:

 орто— (о-) заместители у соседних атомов углерода кольца, 1,2-;
 мета— (м-) заместители через один атом углерода (1,3-);
пара-(п-) заместители на противоположных сторонах кольца(1,4-).

Изомерия у аренов.

Определяется числом заместителей, их расположением в бензольном кольце и возможностью изомерии углеродного скелета в заместителях, содержащих более трёх атомов углерода.

hello_html_11f3ff65.png Для ароматического углеводорода С8Н10 существуют 4 изомера: орто-, мета- и пара-ксилолы и этилбензол.

ПОЛУЧЕНИЕ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ

1. Дегидрирование циклоалканов

hello_html_m92fe0e4.png

2. Дегидроциклизация (дегидрирование и циклизация) алканов в присутствии катализатора

hello_html_m541675a4.png

3.Тримеризация ацетилена над активированным углем (реакция Зелинского):

hello_html_m42d076e4.png

4.Алкилирование бензола галогеналканами в присутствии безводного хлорида алюминия или алкенами:

hello_html_5a516530.png

hello_html_m12ed683e.jpg

ФИЗИЧЕСКИЕ СВОЙСТВА.

Бензол и его ближайшие гомологи – бесцветные жидкости с характерным запахом, с плотностью менее 1 г/мл. Огнеопасны. Нерастворимы в воде, но хорошо растворимы в неполярных растворителях. Бензол и толуол ядовиты (поражают почки, печень, костный мозг, кровь).

Высшие арены – твердые вещества.

ХИМИЧЕСКИЕ СВОЙСТВА.

Из-за наличия делокализованой -системы арены мало характерны реакции присоединения или окисления, которые ведут к нарушению ароматичности. Для них наиболее характерны реакции электрофильного замещения атомов водорода, связанных с циклом — SЕ.

1. РЕАКЦИИ ПРИСОЕДИНЕНИЯ К АРЕНАМ

В реакции присоединения, приводящие к разрушению ароматической структуры бензольного кольца, арены могут вступать с большим трудом.

а. Гидрирование. Присоединение водорода к бензолу и его гомологам происходит при повышенной температуре и давлении в присутствии металлических катализаторов.

hello_html_m200827cf.png

б. Радикальное хлорирование. При радикальном хлорировании бензола получается гексахлорциклогексан — «гексахлоран» (средство борьбы с вредными насекомыми).

hello_html_m172fb48b.png

2. РЕАКЦИИ РАДИКАЛЬНОГО ЗАМЕЩЕНИЯ АТОМОВ ВОДОРОДА В БОКОВОЙ ЦЕПИ:

В случае гомологов бензола при действии хлора на свету или при нагревании происходит реакция радикального замещения в боковой цепи:

hello_html_m740a3709.png

3. Реакции окисления аренов

Бензол не окисляется даже под действием сильных окислителей (KMnO4, K2Cr2O7 и т.п.). Поэтому он часто используется как инертный растворитель при проведении реакций окисления других органических соединений.

В отличие от бензола его гомологи окисляются довольно легко. При действии раствора KMnO4 в кислой среде и нагревании в гомологах бензола окислению подвергаются только боковые цепи, при этом от боковой цепи остаётся карбоксильная группа, а остальное – переходит в углекислый газ:

5С6Н5СН3 +6КМnO4+9H2SO4 5C6H5COOH +6MnSO4+3K2SO4+14H2O

5С6Н5CH2CH3 +12КМnO4+18H2SO45C6H5COOH +5СО2+12MnSO4+6K2SO4+28H2O

Если окисление идёт в нейтральном растворе при нагревании, то образуется соль бензойной кислоты и карбонат калия:

С6Н5СН2СН3+4KMnO4C6H5COOK+K2CO3+4MnO2+KOH+2H2O

4.РЕАКЦИИ ЗАМЕЩЕНИЯ В БЕНЗОЛЬНОМ КОЛЬЦЕ

1. Галогенирование

Замещение атома водорода в бензольном кольце на галоген происходит в присутствии катализаторов AlCl3, AlBr3, FeCl3 и т.п.:

hello_html_5f829898.png

2. Нитрование

Бензол реагирует с нитрующей смесью (смесью концентрированных азотной и серной кислот):

hello_html_m13dcafd4.png

3. Алкилирование

Замещение атома водорода в бензольном кольце на алкильную группу(алкилирование) происходит под действием алкилгалогенидов в присутствии катализаторов AlCl3, FeBr3или алкенов в присутствии фосфорной кислоты:

hello_html_9f644bc.png

hello_html_m38236ff0.png

ЗАМЕЩЕНИЕ В АЛКИЛБЕНЗОЛАХ

Гомологи бензола (алкилбензолы) более активно вступают в реакции замещения по сравнению с бензолом. Например, при нитровании толуола С6Н5-CH3 может происходить замещение не одного, а трех атомов водорода с образованием 2,4,6-тринитротолуола, причём в орто- и пара- положениях:

hello_html_m5c005f9f.png

ОРИЕНТИРУЮЩЕЕ ДЕЙСТВИЕ ЗАМЕСТИТЕЛЕЙ

В БЕНЗОЛЬНОМ КОЛЬЦЕ.

Если в бензольном кольце имеются заместители, не только алкильные, но и содержащие другие атомы (гидроксил, аминогруппа, нитрогруппа и т.п.), то реакции замещения атомов водорода в ароматической системе протекают строго определенным образом, в соответствии с характером влияния заместителя на ароматическую π-систему.

Заместители подразделяют на две группы в зависимости от проявляемого ими эффекта (мезомерного или индуктивного): электронодонорные (первого рода) и электроноакцепторные (второго рода).

ЭЛЕКТРОНОДОНОРНЫЕ ЗАМЕСТИТЕЛИ проявляют повышают электронную плотность в сопряженной системе.

К ним относятся гидроксильная группа —ОН и аминогруппа —NН2. Неподеленная пара электронов в этих группах вступает в общее сопряжение с p -электронной системой бензольного кольца и увеличивает длину сопряженной системы. В результате электронная плотность сосредоточивается в орто- и пара-положениях:

hello_html_m1bbad61f.png

Алкильные группы не могут участвовать в сопряжении, но они проявляют +I-эффект, под действием которого происходит аналогичное перераспределение p -электронной плотности.

Заместители, обладающие +I-эффектом или +М-эффектом, способствуют электрофильному замещению в орто- и пара— положениях бензольного кольца и называются заместителями (ориентантами) первого рода:

hello_html_m56b89476.png

Так, толуол, содержащий заместитель первого рода, нитруется и бромируется в пара- и орто-положения:

hello_html_m22dc11.png

ЭЛЕКТРОНОАКЦЕПТОРНЫЕ ЗАМЕСТИТЕЛИ снижают электронную плотность в сопряженной системе.

К ним относятся нитрогрупла —NO2, сульфогруппа —SO3Н, альдегидная —СНО и карбоксильная —СООН группы. Эти заместители образуют с бензольным кольцом общую сопряженную систему, но общее электронное облако смещается в сторону этих групп. Таким образом, общая электронная плотность в кольце уменьшается, но меньше всего она уменьшается в мета-положениях:

hello_html_m2e6cf582.png

Полностью галогенизированные алкильные радикалы (например, —ССl3) проявляют -I-эффект и также способствуют понижению электронной плотности кольца.

Заместители, обладающие -I-эффектом или -М-эффектом, направляют электрофильное замещение в мета-положения бензольного кольца и называются заместителями (ориентантами) второго рода:

hello_html_m1fd040c1.png

Нитробензол, содержащий заместитель второго рода, нитруется и бромируется в мета-положение:

hello_html_5ff88218.png

СТИРОЛ (винилбензол) С8Н8

hello_html_m2145de7c.jpg

– производное бензола, которое имеет в своём составе двойную связь в боковом заместителе, поэтому он НЕ относится к гомологическому ряду аренов.

Получение стирола:

  1. Дегидрирование этилбензола: С6Н5-СН2-СН3 -(t,кат) C6H5CH=CH2 + H2

  2. Дегидрогалогенирование фенилбромэтана:

C6H5-CH-CH3 +KOH –(спирт) C6H5-CH=CH2 +KBr +H2O

Br

Свойства стирола:

Стирол проявляет свойства, характерные для алкенов – реакции присоединения, окисления, полимеризации.

Реакции присоединения к стиролу: протекают в соответствии с правилом Марковникова.

С6Н5-СН=СН22О С6Н5-СН-СН3

ОН

Мягкое окисление стирола:

6Н5-СН=СН2 +2 KMnO4 + 4Н2О 3 С6Н5-СН-СН2 + 2MnO2 + 2KOH

│ │

OH OH фенилэтиленгликоль

Жесткое окисление стирола:

С6Н5-СН=СН2 + 2KMnO4 + 3Н2SO4 С6Н5OOН + CO2 + 2MnSO4 + K2SO4 + 4H2O

бензойная кислота

6Н5-СН=СН2 + 10KMnO4to 3С6Н5OOК + 3К2CO3 + 10MnO2 + KOH+ 4Н2О

бензоат калия

Полимеризация стирола: в результате получают полистирол.

hello_html_3b3de89f.png

АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ. 

Это циклические углеводороды с тремя двойными сопряженными связями в цикле.

      Бензол С6Н6 – родоначальник ароматических углеводородов. Впервые выделен Фарадеем в 1825г из светильного газа.  

      Каждый из шести атомов углерода в его молекуле находится в состоянии sp2-гибридизации  и связан с двумя соседними атомами углерода и атомом водорода тремя σ-связями. Валентные углы между каждой парой π-связей равны 1200. 

       Таким образом, скелет σ-связей представляет собой правильный шестиугольник, в котором все атомы углерода и все σ-связи С–С и С–Н лежат в одной плоскости.      

    р-Электроны  всех атомов углерода образуют единое циклическое π-электронное облако, сосредоточенное над и под плоскостью кольца.

       Все связи С–С в бензоле равноценны, их длина равна 0,140 нм, что соответствует промежуточному значению между одинарной и двойной.

      Это означает, что в молекуле бензола между углеродными атомами нет чисто простых и двойных связей (как в формуле, предложенной в 1865 г. немецким химиком Ф.Кекуле), а все они выровнены (делокализованы).

  Общая формула гомологического ряда бензола CnH2n-6 (n ≥ 6). 

Вещество

Название по номенклатуре

Историческое название

С6Н5-СН3

метилбензол

Толуол

С6Н5-СН2-СН3

этилбензол

СН36Н4-СН3

диметилбензол

ксилол

С6Н5-СН(СН3)2

изопропилбензол

кумол

       Если радикалов два или более, их положение указывается номерами атомов углерода в кольце, с которыми они связаны. Кольцо нумерют так, чтобы номера радикалов были наименьшими.

    Для дизамещенных бензолов

   R-C6H4-R’ 

   используется также другой способ построения названий:


 
орто— (о-) заместители у соседних атомов углерода кольца, 1,2-;
 
мета— (м-) заместители через один атом углерода (1,3-);
пара-(п-) заместители на противоположных сторонах кольца(1,4-).

Изомерия у аренов.

   Определяется числом заместителей, их расположением в бензольном кольце и возможностью изомерии углеродного скелета в заместителях, содержащих более трёх атомов углерода.

    Для ароматического углеводорода С8Н10  существуют 4 изомера: орто-, мета- и пара-ксилолы и этилбензол.

ПОЛУЧЕНИЕ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ

1. Дегидрирование циклоалканов

(3300 байт)

2. Дегидроциклизация (дегидрирование и циклизация) алканов в присутствии катализатора

(2338 байт)

3.Тримеризация ацетилена над активированным углем (реакция Зелинского):

Тримеризация ацетилена (2939 байт)

4.Алкилирование бензола галогеналканами в присутствии безводного хлорида алюминия или алкенами:

(2 601 байт)

clip_image002

ФИЗИЧЕСКИЕ СВОЙСТВА.  

Бензол и его ближайшие гомологи – бесцветные жидкости с характерным запахом, с плотностью менее 1 г/мл. Огнеопасны. Нерастворимы в воде, но хорошо растворимы в неполярных растворителях. Бензол и толуол ядовиты (поражают почки, печень, костный мозг, кровь).

Высшие арены – твердые вещества.

ХИМИЧЕСКИЕ СВОЙСТВА.  

          Из-за наличия делокализованой -системы арены мало характерны  реакции присоединения или окисления, которые ведут к нарушению ароматичности. Для них наиболее характерны реакции электрофильного замещения атомов водорода, связанных с циклом — SЕ.

1. РЕАКЦИИ ПРИСОЕДИНЕНИЯ К АРЕНАМ 

В реакции присоединения, приводящие к разрушению ароматической структуры бензольного кольца, арены могут вступать с большим трудом.

а. Гидрирование. Присоединение водорода к бензолу и его гомологам происходит при повышенной температуре и давлении в присутствии металлических катализаторов.

Гидрирование аренов

б. Радикальное хлорирование. При радикальном хлорировании бензола получается гексахлорциклогексан —  «гексахлоран» (средство борьбы с вредными насекомыми).

Гексахлоран

2. РЕАКЦИИ РАДИКАЛЬНОГО ЗАМЕЩЕНИЯ АТОМОВ ВОДОРОДА В БОКОВОЙ ЦЕПИ:

В случае гомологов бензола при действии хлора на свету или при нагревании происходит реакция радикального замещения в боковой цепи:

Замещение в боковой цепи

 3. Реакции окисления аренов 

Бензол не окисляется даже под действием сильных окислителей (KMnO4, K2Cr2O7 и т.п.). Поэтому он часто используется как инертный растворитель при проведении реакций окисления других органических соединений.

        В отличие от бензола его гомологи окисляются довольно легко.  При действии раствора KMnO4 в кислой среде и нагревании в гомологах бензола окислению подвергаются только боковые цепи, при этом от боковой цепи остаётся карбоксильная группа, а остальное – переходит в углекислый газ:

6Н5СН3 +6КМnO4+9H2SO4 🡪5C6H5COOH +6MnSO4+3K2SO4+14H2O

6Н5CH2CH3 +12КМnO4+18H2SO4🡪5C6H5COOH +5СО2+12MnSO4+6K2SO4+28H2O

Если окисление идёт в нейтральном растворе при нагревании, то образуется соль бензойной кислоты и карбонат калия:    

С6Н5СН2СН3+4KMnO4🡪C6H5 – COOK+K2CO3+4MnO2+KOH+2H2O

4.РЕАКЦИИ ЗАМЕЩЕНИЯ В БЕНЗОЛЬНОМ КОЛЬЦЕ

1. Галогенирование

Замещение атома водорода в бензольном кольце на галоген происходит в присутствии катализаторов AlCl3, AlBr3, FeCl3 и т.п.:

u731_1

2. Нитрование

Бензол реагирует с нитрующей смесью (смесью концентрированных азотной и серной кислот):

u731_2

3. Алкилирование

Замещение атома водорода в бензольном кольце на алкильную группу(алкилирование) происходит под действием алкилгалогенидов в присутствии катализаторов AlCl3, FeBr3или алкенов в присутствии фосфорной кислоты:

 u731_3

Алкирование бензола алкенами

ЗАМЕЩЕНИЕ В АЛКИЛБЕНЗОЛАХ

          Гомологи бензола (алкилбензолы) более активно вступают в реакции замещения по сравнению с бензолом.  Например, при нитровании толуола С6Н5-CH3 может происходить замещение не одного, а трех атомов водорода с образованием 2,4,6-тринитротолуола, причём в орто- и пара- положениях:

Нитрование толуола

ОРИЕНТИРУЮЩЕЕ ДЕЙСТВИЕ ЗАМЕСТИТЕЛЕЙ

В БЕНЗОЛЬНОМ КОЛЬЦЕ.

       Если в бензольном кольце имеются заместители, не только алкильные, но и содержащие другие атомы (гидроксил, аминогруппа, нитрогруппа и т.п.), то реакции замещения атомов водорода в ароматической системе протекают строго определенным образом, в соответствии с характером влияния заместителя на ароматическую π-систему.

       Заместители подразделяют на две группы в зависимости от проявляемого ими эффекта (мезомерного или индуктивного): электронодонорные (первого рода) и электроноакцепторные (второго рода).

    ЭЛЕКТРОНОДОНОРНЫЕ ЗАМЕСТИТЕЛИ проявляют  повышают электронную плотность в сопряженной системе.

        К ним относятся гидроксильная группа —ОН и аминогруппа —NН2. Неподеленная пара электронов в этих группах вступает в общее сопряжение с p -электронной системой бензольного кольца и увеличивает длину сопряженной системы. В результате электронная плотность сосредоточивается в орто- и пара-положениях: 

      Алкильные группы не могут участвовать в сопряжении, но они проявляют +I-эффект, под действием которого происходит аналогичное перераспределение p -электронной плотности.

          Заместители, обладающие +I-эффектом или +М-эффектом, способствуют электрофильному замещению в орто- и пара— положениях бензольного кольца и называются заместителями (ориентантами) первого рода:

Так, толуол, содержащий заместитель первого рода, нитруется и бромируется в пара- и орто-положения:

ЭЛЕКТРОНОАКЦЕПТОРНЫЕ ЗАМЕСТИТЕЛИ снижают электронную плотность в сопряженной системе.

          К ним относятся нитрогрупла —NO2, сульфогруппа —SO3Н, альдегидная —СНО и карбоксильная —СООН группы. Эти заместители образуют с бензольным кольцом общую сопряженную систему, но общее электронное облако смещается в сторону этих групп. Таким образом, общая электронная плотность в кольце уменьшается, но меньше всего она уменьшается в мета-положениях:

      Полностью галогенизированные алкильные радикалы (например, —ССl3) проявляют -I-эффект и также способствуют понижению электронной плотности кольца.

       Заместители, обладающие -I-эффектом или -М-эффектом, направляют электрофильное замещение в мета-положения бензольного кольца и называются заместителями (ориентантами) второго рода:

      Нитробензол, содержащий заместитель второго рода, нитруется и бромируется в мета-положение:

   

СТИРОЛ (винилбензол) С8Н8

clip_imag002

– производное бензола, которое имеет в своём составе двойную связь в боковом заместителе, поэтому он НЕ относится к гомологическому ряду аренов.      

Получение стирола:

  1. Дегидрирование этилбензола:    С6Н5-СН2-СН3  -(t,кат)🡪 C6H5-CH=CH2 + H2
  2. Дегидрогалогенирование фенилбромэтана:

      C6H5-CH-CH3 +KOH –(спирт) 🡪 C6H5-CH=CH2 +KBr +H2O

              │

              Br

Свойства стирола:  

     Стирол проявляет свойства, характерные для алкенов – реакции присоединения, окисления, полимеризации.

Реакции присоединения к стиролу: протекают в соответствии с правилом Марковникова.

С6Н5-СН=СН2  +Н2О 🡪 С6Н5-СН-СН3

                                          │

                                          ОН

Мягкое окисление стирола:

6Н5-СН=СН2  +2 KMnO4 + 4Н2О 🡪3 С6Н5-СН-СН2  + 2MnO2 + 2KOH

                                                                  │    │

                                                                  OH OH фенилэтиленгликоль

Жесткое окисление стирола:

С6Н5-СН=СН2 + 2KMnO4 + 3Н2SO4 🡪 С6Н5-СOOН  + CO2 + 2MnSO4 + K2SO4 + 4H2O                                                

                                                   бензойная кислота

6Н5-СН=СН2  + 10KMnO4 -to🡪 3С6Н5-СOOК + 3К2CO3 + 10MnO2 + KOH+ 4Н2О                                  

                                              бензоат калия                              

Полимеризация стирола:  в результате получают полистирол. 

  • Курс

Меня зовут Быстрицкая Вера Васильевна.
Я репетитор по Химии

[[pictureof]]

Вам нужны консультации по Химии по Skype?
Если да, подайте заявку. Стоимость договорная.
Чтобы закрыть это окно, нажмите «Нет».

  ФИЗИЧЕСКИЕ СВОЙСТВА ЦИКЛОАЛКАНОВ

При обычных условиях первые два члена ряда (С3 — С4) — газы, (С5 — С11) — жидкости, начиная с С12 — твёрдые вещества. 

Температуры кипения и плавленияциклоалканов выше, чем у соответствующих алканов 

Циклоалканы в воде практически не растворяются. 

При увеличении числа атомов углерода  возрастает молярная масса, следовательно, увеличивается температура плавления.

ХИМИЧЕСКИЕ СВОЙСТВА ЦИКЛОАЛКАНОВ

Циклоалканы проявляют свойства и алканов, и алкенов.

Циклопропан и циклобутан –   имеют напряженные связи, угол отличается от 109°28´, 

цикл разрывается и они легко вступают в реакции присоединения  с  H₂, Cl₂, Br₂,HCl, растворами окислителей, присоединяя по месту разрыва связи.

ПРИСОЕДИНЕНИЕ

1.  Гидрирование.

При каталитическом гидрировании 
трех-, четырех- и даже пятичленные циклы  разрываются с образованием алканов.

Циклопентан и циклогексан с трудом присоединяют водород

2) Галогенирование. 

Циклопропан и циклобутан  разрываются, присоединяя атомы галогена, превращаясь в галогеналкан

3)Гидрогалогенирование. 

Замещенные циклопропаны тоже взаимодействуют с галогеноводородами  и другими соединениями с разрывом цикла.

ЗАМЕЩЕНИЕ

Большие циклы – циклопентан и циклогексан –  гораздо более устойчивы, цикл в них не разрывается.  Они ведут себя как алканы, вступая в реакции замещения :

1) Галогенирование: 

циклопентан и циклогексан реагируют с галогенами на свету, вступая в реакцию замещения.

ДЕГИДРИРОВАНИЕ

Производные циклогексана дегидрируются в производные бензола: 

ГОРЕНИЕ

Как и любые органические вещества, циклоалканы горят с образованием углекислого газа и воды.

Это циклические углеводороды с тремя двойными сопряженными связями в цикле.

 ФИЗИЧЕСКИЕ СВОЙСТВА.  

Бензол и его ближайшие гомологи – бесцветные жидкости с характерным запахом, с плотностью менее 1 г/мл. 

Высшие арены – твердые вещества. Нерастворимы в воде, но хорошо растворимы в неполярных растворителях.

Огнеопасны. 

Бензол и толуол ядовиты (поражают почки, печень, костный мозг, кровь).

ХИМИЧЕСКИЕ СВОЙСТВА.  

Свойственны:

1. Реакции присоединения (мало характерны из-за наличия делокализованой (электронная пара  рассредоточена между несколькими  ядрами атомов). системы аренам реакции присоединения или окисления, которые ведут к нарушению ароматичности.

2. Реакции замещения в бензольном кольце

3. Реакции замещения в боковой цепи

Реакции окисления 

РЕАКЦИИ ПРИСОЕДИНЕНИЯ

1. Гидрирование →  циклопарафины

Условия: повышенная температура, давление, металлические катализаторы (350⁰С, Pt или Ni). 

2. Радикальное хлорирование галогенпроизводное циклоалканов

Из бензола образуется гексахлорциклогексан (гексахлоран — средство борьбы с вредными насекомыми). 

РЕАКЦИИ ЗАМЕЩЕНИЯ В БЕНЗОЛЬНОМ КОЛЬЦЕ 

1. Галогенирование  → галогенпроизводные аренов + HCl.
У бензола замещение одного атома водорода, у толуола при малом количестве галогена замещение присходит в положении орто- и пара-, при избытке галогена в положении 2,4,6-


Условия:  н
агревание, наличие  катализаторов AlCl3, AlBr3, FeCl3 и т.п.:

2. Нитрование  бензола  → нитросоединения аренов + H₂O

Бензол реагирует с нитрующей смесью (смесью концентрированных азотной и серной кислот):

Нитрование       толуола

При нитровании толуола С6Н5-CH3, в зависимости от количества азотной кислоты, могут образовываться разные продукты реакции

3. Сульфирование →   моносульфокислота.

Осуществляется концентрированной серной кислотой (олеум – это раствор серного ангидрида в безводной серной кислоте)  

4. Взаимодействие с галогенопроизводными алканов → гомологи бензола с боковой цепью  (реакция Фриделя— Крафтса) 

5. Взаимодействие с непредельными углеводородами — гомологи бензола с боковой цепью 

ЗАМЕЩЕНИЕ В БОКОВОЙ ЦЕПИ

При действии хлора на свету или при нагревании на гомологи бензола  происходит реакция радикального замещения в боковой цепи: 

Бромирование  метилбензола осуществляется при аналогичных условиях и приводит к образованию соответствующих  бромзамещающих соединений.

РЕАКЦИИ ОКИСЛЕНИЯ АРЕНОВ 

Бензол не окисляется даже под действием сильных окислителей (KMnO4, K2Cr2O7 и т.п.), поэтому  используется как инертный растворитель при  окислении других органических соединений.

1. Горение бензола

Бензол содержит около 92% углерода, при неполном сгорании бензола образуется много копоти (C). При горении бензола образуются углекислый газ и водяные пары.

Бензол не подвергается окислению

2. Окисление оксидом марганца
Метильная боковая цепь в толуоле подвергается окислению даже такими сравнительно мягкими окислителями, как оксид марганца (IV):

3. Окисление перманганатом калия в кислой  среде

Более сильные окислители, например перманганат калия, вызывают дальнейшее окисление:

3) Окисление перманганатом калия в нейтральной  среде  при нагревании — образуется соль бензойной кислоты и карбонаты: 

                                                  СТИРОЛ (винилбензол) С8Н8


производное
бензола, которое имеет в своём составе двойную связь в боковом заместителе,
поэтому он НЕ
относится к гомологическому ряду аренов.

Проявляются все свойства
непредельных углеводородов.      

РЕАКЦИИ ПРИСОЕДИНЕНИЯ 

 протекают в боковой цепи в соответствии с правилом Марковникова, например:

РЕАКЦИИ ОКИСЛЕНИЯ

1. Мягкое окисление стирола: 

в нейтральной среде → многоатомный спирт

2. Жесткое окисление (t°) стирола:

в кислой среде → бензойная кислота

в нейтральной при нагревании → бензоаты

3. Полимеризация полистирола (по боковой цепи): 

полистирол.

Полистирол — полимер широкого применения

Ароматические углеводороды (арены)

Ключевые слова конспекта: Ароматические углеводороды (арены). Бензол. Фенильный радикал. Реакция нитрования. Экстракция.



Бензол и его строение

В начале XIX в. английский физик и химик Майкл Фарадей получил задание исследовать конденсат, который скапливался в стальных баллонах со сжатым газом, предназначавшимся для освещения улиц. Именно из этой жидкости учёному удалось выделить 3 г вещества и определить его формулу: C6H6. Вскоре новое вещество получило тривиальное название, которое используют до сих пор, — бензол.

В бензоле на шесть атомов углерода приходится только шесть атомов водорода. Значит ли это, что бензол относится к непредельным углеводородам? Как показывает эксперимент, бензол не реагирует ни с бромной водой, ни с раствором перманганата калия.

Долгие десятилетия эту загадку химикам решить не удавалось, до тех пор, пока немецкий химик-органик Фридрих Август Кекуле не высказал предположение, что атомы углерода в молекуле бензола образуют замкнутый цикл: 

В формулах Кекуле вы видите чередование простых и двойных связей между атомами углерода в цикле. На самом деле установлено, что все углерод-углеродные связи в молекуле абсолютно одинаковы, т. е. три двойные связи в равной степени принадлежат шести атомам углерода. Возникшая особая ковалентная связь занимает как бы промежуточное положение между одинарными и двойными связями. Поэтому её условно можно назвать полуторной. Чтобы отразить особенности этого типа связей, формулу бензола записывают следующим образом:

Гомологический ряд аренов

Бензол — не единственное в своём роде соединение, он — первый представитель гомологического ряда углеводородов, называемых ароматическими. Подавляющее большинство представителей этого класса обладает ярко выраженным запахом, причём не всегда приятным.

Углеводороды, в молекулах которых содержится бензольное кольцо и которые имеют общую формулу СnН2n-6, называют ароматическими углеводородами или аренами.

Первые представители гомологического ряда аренов имеют следующие молекулярные и структурные формулы:

Арены

(с) Цитата из справочного издания «ХИМИЯ. Справочник в таблицах / М.: Издательство АЙРИС-пресс»

Способы получения и химические свойства бензола

Исторически первым способом получения бензола было его выделение из продуктов коксования каменного угля. Теперь на долю этого способа приходится менее 10 % от общего объёма производства. Основное количество бензола получают в результате переработки нефти и нефтепродуктов.

Подобно всем углеводородам, бензол горит:  2С6Н6 + 15O2  →  12СO2 + 6Н2O

Ранее эта реакция находила практическое применение, когда бензол использовался в качестве добавки к моторному топливу.

Для бензола наиболее характерны реакции замещения. В результате таких реакций атом водорода в бензольном кольце замещается другим атомом или группой атомов. Например, действием брома в присутствии катализатора можно заместить один атом водорода на галоген:

В результате реакции образуется бромбензол, или фенилбромид. Одновалентный радикал —С6Н5 называют фенилом.

При обработке бензола концентрированной азотной кислотой в присутствии серной кислоты (катализатор) атом водорода замещается нитрогруппой —NО2. Протекает реакция нитрования, при этом образуется органическое вещество нитробензол и вода:

Получение нитробензола — первый шаг к промышленному получению анилина и органических красителей анилинового ряда.

Использование молекулярных формул позволяет более наглядно представить, как именно протекают реакции замещения:

Бензол — прекрасный растворитель органических веществ. Он легко растворяет жиры, смолы, воски, каучук. При этом сам бензол практически нерастворим в воде и легче её, поэтому, подобно растительному маслу, образует слой над водой. Это свойство можно использовать для извлечения растворённых веществ из водного раствора в органический растворитель.

Извлечение вещества из раствора с помощью второго растворителя, не смешивающегося с первым, называют экстракцией.

Бензол — один из ценных полупродуктов органического синтеза. Термин «полупродукт» означает, что, будучи многотоннажным продуктом химического производства, бензол используется в качестве сырья для получения других органических соединений. При этом сам бензол очень ядовитое вещество.

Одно перечисление практически полезных веществ и материалов, получаемых из бензола, заняло бы целый параграф. Это синтетические красители, ядохимикаты, синтетические моющие средства, лекарственные препараты, пищевые добавки, пластмассы, взрывчатые вещества и многое другое.

Таблица «Ароматические углеводороды (арены)»

Таблица "Ароматические углеводороды (арены)"


Конспект урока по химии «Ароматические углеводороды (арены)». В учебных целях использованы цитаты из пособия «Химия. 10 класс : учеб, для общеобразоват. организаций : базовый уровень / О. С. Габриелян, И. Г. Остроумов, С. А. Сладков. — М. : Просвещение». Выберите дальнейшее действие:

  • Вернуться к Списку конспектов по химии
  • Найти конспект в Кодификаторе ОГЭ по химии
  • Найти конспект в Кодификаторе ЕГЭ по химии

арены ароматические углеводороды номенклатура свойства


Ароматические углеводороды

– соединения углерода и водорода, в молекуле которых имеется бензольное кольцо. Важнейшими представителями ароматических углеводородов являются бензол и его гомологи – продукты замещения одного или более атомов водорода в молекуле бензола на углеводородные остатки.

Строение молекулы бензола



Первое ароматическое соединение – бензол – было открыто в 1825 г. М. Фарадеем. Была установлена его молекулярная формула – С

6

Н

6.

Если сравнить его состав с составом предельного углеводорода, содержащего такое же количество атомов углерода, — гексаном (С

6

Н

14

), то можно заметить, что бензол содержит на восемь атомов водорода меньше. Как известно, к уменьшению количества атомов водорода в молекуле углеводорода приводит появление кратных связей и циклов. В 1865 г. Ф. Кекуле предложил его структурную формулу как циклогексантриена – 1, 3, 5.

бензол формула




Таким образом, молекула, соответствующая

формуле Кекуле

, содержит двойные связи, следовательно, бензол должен иметь ненасыщенный характер, т. е. легко вступать в реакции присоединения: гидрирования, бромирования, гидратации и т. д.

Однако данные многочисленных экспериментов показали, что бензол вступает в реакции присоединения только в жестких условиях (при высоких температурах и освещении), устойчив к окислению. Наиболее характерными для него являются реакции замещения, следовательно, бензол по характеру ближе к придельным углеводородам.

Пытаясь объяснить эти несоответствия, многие ученые предлагали различные варианты структуры бензол. Окончательно строение молекулы бензола было подтверждено реакцией его образования из ацетилена. В действительности углерод — углеродные связи в бензоле равноценны, и их свойства не похожи на свойства ни одинарных, ни двойных связей.

В настоящее время бензол обозначают или формулой Кекуле, или шестиугольником, в котором изображают окружность.

бензол формулы с6h6

Так в чем же особенность структуры бензола? На основании данных исследователей и расчетов сделан вывод о том, что все шесть углеродных атомов находятся в состоянии

sp



2


-гибридизации и лежат в одной плоскости. Негибридизированные

p

-орбитали атомов углерода, составляющие двойные связи (формула Кекуле), перпендикулярны плоскости кольца и параллельны друг другу.

Они перекрываются между собой, образуя единую π-систему. Таким образом, система чередующихся двойных связей, изображенных в формуле Кекуле, является циклической системой сопряженных, перекрывающихся между собой -связей. Эта система представляет собой две тороидальные (похожие на бублик) области электронной плотности, лежащие по обе стороны бензольного кольца. Так, изображать бензол в виде правильного шестиугольника с окружностью в центре ( π -система) более логично, чем в виде циклогексатриена-1,3,5.

бензол структура строение с6h6

Американский ученый Л. Полинг предложил представлять бензол в виде двух граничных структур, отличающихся распределением электронной плотности и постоянно переходящих друг в друга, т. е. считать его промежуточным соединением, «усреднением» двух структур.

Данные измерения длин связей подтверждают эти предположения. Выяснено, что все С—С связи в бензоле имеют одинаковую длину (0,139 нм). Они несколько короче одинарных С—С связей (0,154 нм) и длиннее двойных (0,132 нм).

Существуют также соединения, молекулы которых содержат несколько циклических структур.

нафталин антрацен


Изомерия и номенклатура



Для гомологов бензола характерна

изомерия положения нескольких заместителей

. Простейший гомолог бензола — толуол (метилбензол) — не имеет таких изомеров; следующий гомолог представлен в виде четырех изомеров:

элитбензол ксилол

Основой названия ароматического углеводорода с небольшими заместителями является слово

бензол

. Атомы в ароматическом кольце нумеруют, начиная от старшего заместителя к младшему:

производные бензола гомологи

По старой номенклатуре положения 2 и 6 называют

ортоположениями

, 4 —

пара-

, а 3 и 5 —

метаположениями.


Физические свойства


Бензол и его простейшие гомологи в обычных условиях весьма токсичные жидкости с характерным неприятным запахом. Они плохо растворяются в воде, но хорошо — в органических растворителях.

Химические свойства бензола






Реакции замещения

.  Ароматические углеводороды вступают в реакции замещения.

1.

Бромирование.

При реакции с бромом в присутствии катализатора, бромида железа (ΙΙΙ), один из атомов водорода в бензольном кольце может замещаться на атом брома:

бромирование толуола

2.

Нитрирование бензола и его гомологов

. При взаимодействии ароматического углеводорода с азотной кислотой в присутствии серной (смесь серной и азотной кислот называют нитрующей смесью)  происходит замещение атома водорода на нитрогруппу —NO

2

:

нитрование толуола

Восстановлением образовавшегося в этой реакции нитробензола получают анилин — вещество, которое применяется для получения анилиновых красителей:

получение анилина

Эта реакция носит имя  русского химика Зинина.




Реакции присоединения.

Ароматические соединения могут вступать и в реакции присоединения к бензольному кольцу. При этом образуются циклогексан или его производные.

1.

Гидрирование

. Каталитическое гидрирование бензола протекает при более высокой температуре, чем гидрирование алкенов:

гидрирование бензола получение циклогексана

2.

Хлорирование.

Реакция идет при освещении ультрафиолетовым светом и является свободнорадикальной:

хлорирование бензола

Гомологи бензола

Состав их молекул отвечает формуле С

n

H

2


n-6

. Ближайшие гомологи бензола:

гомологи бензола

Все следующие за толуолом гомологи бензола имеют изомеры. Изомерия может быть связана как с числом и строением заместителя (1, 2), так и с положением заместителя в бензольном кольце (2, 3, 4). Соединения общей формулы С

8

Н

10

:

изомеры этилбензола

По старой номенклатуре, употребляемой для указания относительного расположения двух одинаковых или разных заместителей в бензольном кольце, используют приставки

орто

—  (сокращенно о-) – заместители расположены у соседних атомов углерода,

мета-

(

м

-) – через один атом углерода и

пара

— (

п

-) – заместители друг против друга.

Первые члены гомологического ряда бензола – жидкости со специфическим запахом. Они легче воды. Являются хорошими  растворителями.

Гомологи бензола вступают в реакции

замещения (

бромирование, нитрирование).  Толуол окисляется перманганатом при нагревании:

раекции толуола

Гомологи  бензола  используются как растворители, для получения красителей, средств для защиты растений, пластмасс, лекарств.

Дополнительно

Арены — номенклатура, получение, химические свойства

бензол свойства (1)

бензол свойства (2)

бензол свойства (3)

бензол свойства (4)

бензол свойства (5)

бензол свойства (6)

бензол свойства (7)

бензол свойства (8)

бензол свойства (9)

бензол свойства (10)

бензол свойства (11)

бензол свойства (12)

бензол свойства (13)

бензол свойства (14)

бензол свойства (15)

бензол свойства (16)

бензол свойства (17)

бензол свойства (18)

бензол свойства (19)

Like this post? Please share to your friends:
  • Химические свойства амфотерных оксидов егэ
  • Химические свойства аммиака егэ
  • Химические свойства аминокислот егэ
  • Химические свойства алюминия егэ
  • Химические свойства алкинов егэ химия