Химические свойства стирола егэ

Арены (ароматические углеводороды)это непредельные (ненасыщенные) циклические углеводороды, молекулы которых содержат устойчивые циклические группы атомов (бензольные ядра) с замкнутой системой сопряженных связей.

Общая формула: CnH2n–6 при n ≥ 6.

Строение, номенклатура и изомерия ароматических углеводородов

Способы получения ароматических углеводородов

Химические свойства ароматических углеводородов

Химические свойства аренов

Арены – непредельные углеводороды, молекулы которых содержат три двойных связи и цикл. Но из-за эффекта сопряжения свойства аренов отличаются от свойств других непредельных углеводородов.

Для ароматических углеводородов характерны реакции:

  • присоединения,
  • замещения,
  • окисления (для гомологов бензола).

Из-за наличия сопряженной π-электронной системы молекулы ароматических углеводородов вступают в реакции присоединения очень тяжело, только в жестких условиях — на свету или при сильном нагревании, как правило, по радикальному механизму

Бензольное кольцо представляет из себя скопление π-электронов, которое притягивает электрофилы. Поэтому для ароматических углеводородов характерны реакции электрофильного замещения атома водорода у бензольного кольца.

Ароматическая система бензола устойчива к действию окислителей. Однако гомологи бензола окисляются под действием перманганата калия и других окислителей.

1. Реакции присоединения

Бензол присоединяет хлор на свету и водород при нагревании в присутствии катализатора.

1.1. Гидрирование

Бензол присоединяет водород при нагревании и под давлением в присутствии металлических катализаторов (Ni, Pt и др.). 

При гидрировании бензола образуется циклогексан:

При гидрировании гомологов образуются производные циклоалканы. При нагревании толуола с водородом под давлением и в присутствии катализатора образуется метилциклогексан:

1.2. Хлорирование аренов

Присоединение хлора к бензолу протекает по радикальному механизму при высокой температуре, под действием ультрафиолетового излучения.

При хлорировании бензола на свету образуется 1,2,3,4,5,6-гексахлорциклогексан (гексахлоран).

Гексахлоран – пестицид, использовался для борьбы с вредными насекомыми. В настоящее время использование гексахлорана запрещено.

Гомологи бензола не присоединяют хлор. Если гомолог бензола реагирует с хлором или бромом на свету или при высокой температуре (300°C), то происходит замещение атомов  водорода в боковом алкильном заместителе, а не в ароматическом кольце.

Например, при хлорировании толуола на свету образуется бензилхлорид

Если у гомолога бензола боковая цепь содержит несколько атомов углерода – замещение происходит у атома, ближайшему к бензольному кольцу («альфа-положение»).

Например, этилбензол реагирует с хлором на свету

2. Реакции замещения

Реакции замещения у ароматических углеводородов протекают по ионному механизму (электрофильное замещение). При этом атом водорода замещается на другую группу (галоген, нитро, алкил и др.).

2.1. Галогенирование

Бензол и его гомологи вступают в реакции замещения с галогенами (хлор, бром) в присутствии катализаторов (AlCl3, FeBr3).

При взаимодействии с хлором на катализаторе AlCl3 образуется хлорбензол:

Ароматические углеводороды взаимодействуют с бромом при нагревании и в присутствии катализатора – FeBr3 . Также в качестве катализатора можно использовать металлическое железо.

Бром реагирует с железом с образованием бромида железа (III), который катализирует процесс бромирования бензола:

Гомологи бензола содержат алкильные заместители, которые обладают электронодонорным эффектом: из-за того, что электроотрицательность водорода меньше, чем углерода, электронная плотность связи С-Н смещена к углероду.

На нём возникает избыток электронной плотности, который далее передается на бензольное кольцо.

Поэтому гомологи бензола легче вступают в реакции замещения в бензольном кольце. При этом гомологи бензола вступают в реакции замещения преимущественно в орто— и пара-положения

Например, при взаимодействии толуола с хлором  образуется смесь продуктов, которая преимущественно состоит из орто-хлортолуола и пара-хлортолуола

Мета-хлортолуол образуется в незначительном количестве.

При взаимодействии гомологов бензола с галогенами на свету или при высокой температуре (300оС) происходит замещение водорода не в бензольном кольце, а в боковом углеводородном радикале.

Если у гомолога бензола боковая цепь содержит несколько атомов углерода – замещение происходит у атома, ближайшему к бензольному кольцу («альфа-положение»).

Например, при хлорировании этилбензола:

2.2. Нитрование

 Бензол реагирует с концентрированной азотной кислотой в присутствии концентрированной серной кислоты (нитрующая смесь).

При этом образуется нитробензол:

Серная кислота способствует образованию электрофила NO2+:

Толуол реагирует с концентрированной азотной кислотой в присутствии концентрированной серной кислоты.

В продуктах реакции мы указываем либо о-нитротолуол:

либо п-нитротолуол:

Нитрование толуола может протекать и с замещением трех атомов водорода. При этом образуется 2,4,6-тринитротолуол (тротил, тол):

2.3. Алкилирование ароматических углеводородов

  • Арены взаимодействуют с галогеналканами в присутствии катализаторов (AlCl3, FeBr3 и др.) с образованием гомологов бензола.

Например, бензол реагирует с хлорэтаном с образованием этилбензола

  • Ароматические углеводороды взаимодействуют с алкенами в присутствии хлорида алюминия, бромида железа (III), фосфорной кислоты и др.

Например, бензол реагирует с этиленом с образованием этилбензола

Например, бензол реагирует с пропиленом с образованием изопропилбензола (кумола)

  • Алкилирование спиртами протекает в присутствии концентрированной серной кислоты.

Например, бензол реагирует с этанолом с образованием этилбензола и воды

2.4. Сульфирование ароматических углеводородов

Бензол реагирует при нагревании с концентрированной серной кислотой или раствором SO3 в серной кислоте (олеум) с образованием бензолсульфокислоты:

3. Окисление аренов

Бензол устойчив к действию даже сильных окислителей. Но гомологи бензола окисляются под действием сильных окислителей. Бензол и его гомологи горят.

3.1. Полное окисление – горение

При горении бензола и его гомологов образуются углекислый газ и вода. Реакция горения аренов сопровождается выделением большого количества теплоты.

2C6H6 + 15O2  → 12CO2 + 6H2O + Q

Уравнение сгорания аренов в общем виде:

 CnH2n–6 + (3n – 3)/2 O2 → nCO2 + (n – 3)H2O + Q

При горении ароматических углеводородов в недостатке кислорода может образоваться угарный газ СО или сажа С.

Бензол и его гомологи горят на воздухе коптящим пламенем. Бензол и его гомологи образуют с воздухом и кислородом взрывоопасные смеси.

3.2. Окисление гомологов бензола

Гомологи бензола легко окисляются перманганатом и дихроматом калия в кислой или нейтральной среде при нагревании.

При этом происходит окисление всех связей у атома углерода, соседнего с бензольным кольцом, кроме связи этого атома углерода с бензольным кольцом.

Толуол окисляется перманганатом калия в серной кислоте с образованием бензойной кислоты:

Если окисление толуола идёт в нейтральном растворе при нагревании, то образуется соль бензойной кислоты – бензоат калия:

Таким образом, толуол обесцвечивает подкисленный раствор перманганата калия при нагревании.

При окислении других гомологов бензола всегда остаётся только один атом С в виде карбоксильной группы (одной или нескольких, если заместителей несколько), а все остальные атомы углерода радикала окисляются до углекислого газа или карбоновой кислоты.

Например, при окислении этилбензола перманганатом калия в серной кислоте образуются бензойная кислота и углекислый газ

Например, при окислении этилбензола перманганатом калия в нейтральной кислоте образуются соль бензойной кислоты и карбонат

Более длинные радикалы окисляются до бензойной кислоты и карбоновой кислоты:

При окислении пропилбензола образуются бензойная и уксусная кислоты:

Изопропилбензол окисляется перманганатом калия в кислой среде до бензойной кислоты и углекислого газа:

4. Ориентирующее действие заместителей в бензольном кольце

Если в бензольном кольце имеются заместители, не только алкильные, но и содержащие другие атомы (гидроксил, аминогруппа, нитрогруппа и т.п.), то реакции замещения атомов водорода в ароматической системе протекают строго определенным образом, в соответствии с характером влияния заместителя на ароматическую π-систему.

Заместители подразделяют на две группы в зависимости от их влияния на электронную плотность ароматической системы: электронодонорные (первого рода) и электроноакцепторные (второго рода).

Типы заместителей в бензольном кольце

Заместители первого рода Заместители второго рода
Дальнейшее замещение происходит  преимущественно в орто— и пара-положение Дальнейшее замещение происходит преимущественно в мета-положение
Электронодонорные, повышают электронную плотность в бензольном кольце Электроноакцепторные,  снижают электронную плотность в сопряженной системе.
  • алкильные заместители: СН3 –, С2Н5 и др.;
  • гидроксил, амин: –ОН , –NН2;
  • галогены: –Cl, –Br
  • нитро-группа:– NO2, – SO3Н;
  • карбонил – СНО;
  • карбоксил: – СООН, нитрил: – СN;
  • – CF3 

Например, толуол реагирует с хлором в присутствии катализатора с образованием смеси продуктов, в которой преимущественно содержатся орто-хлортолуол и пара-хлортолуол. Метильный радикал — заместитель первого рода.

В уравнении реакции в качестве продукта записывается либо орто-толуол, либо пара-толуол.

Например, при бромировании нитробензола в присутствии катализатора  преимущественно образуется мета-хлортолуол. Нитро-группа — заместитель второго рода


5. Особенности свойств стирола

Стирол (винилбензол, фенилэтилен) – это производное бензола, которое имеет в своем составе двойную связь в боковом заместителе.

Общая формула гомологического ряда стирола: CnH2n-8.

Молекула стирола содержит заместитель с кратной связью у бензольного кольца, поэтому стирол проявляет все свойства, характерные для алкенов – вступает в реакции присоединения, окисления, полимеризации.

Стирол присоединяет водород, кислород, галогены, галогеноводороды и воду в соответствии с правилом Марковникова.

Например, при гидратации стирола образуется спирт:

Стирол присоединяет бром при обычных условиях, то есть обесцвечивает бромную воду

При полимеризации стирола образуется полистирол:

Как и алкены, стирол окисляется водным раствором перманганата калия при обычных условиях. Обесцвечивание водного раствора перманганата калия — качественная реакция на стирол:

При жестком окислении стирола перманганатом калия в кислой среде (серная кислота) разрывается двойная связь и образуется бензойная кислота и углекислый газ:

При окислении стирола перманганатом калия в нейтральной среде при нагревании также разрывается двойная связь и образуется соль бензойной кислоты и карбонат:

1

H

1,008

1s1

2,2

Бесцветный газ

пл=-259°C

кип=-253°C

2

He

4,0026

1s2

Бесцветный газ

кип=-269°C

3

Li

6,941

2s1

0,99

Мягкий серебристо-белый металл

пл=180°C

кип=1317°C

4

Be

9,0122

2s2

1,57

Светло-серый металл

пл=1278°C

кип=2970°C

5

B

10,811

2s2 2p1

2,04

Темно-коричневое аморфное вещество

пл=2300°C

кип=2550°C

6

C

12,011

2s2 2p2

2,55

Прозрачный (алмаз) / черный (графит) минерал

пл=3550°C

кип=4830°C

7

N

14,007

2s2 2p3

3,04

Бесцветный газ

пл=-210°C

кип=-196°C

8

O

15,999

2s2 2p4

3,44

Бесцветный газ

пл=-218°C

кип=-183°C

9

F

18,998

2s2 2p5

4,0

Бледно-желтый газ

пл=-220°C

кип=-188°C

10

Ne

20,180

2s2 2p6

Бесцветный газ

пл=-249°C

кип=-246°C

11

Na

22,990

3s1

0,93

Мягкий серебристо-белый металл

пл=98°C

кип=892°C

12

Mg

24,305

3s2

1,31

Серебристо-белый металл

пл=649°C

кип=1107°C

13

Al

26,982

3s2 3p1

1,61

Серебристо-белый металл

пл=660°C

кип=2467°C

14

Si

28,086

3s2 3p2

1,9

Коричневый порошок / минерал

пл=1410°C

кип=2355°C

15

P

30,974

3s2 3p3

2,2

Белый минерал / красный порошок

пл=44°C

кип=280°C

16

S

32,065

3s2 3p4

2,58

Светло-желтый порошок

пл=113°C

кип=445°C

17

Cl

35,453

3s2 3p5

3,16

Желтовато-зеленый газ

пл=-101°C

кип=-35°C

18

Ar

39,948

3s2 3p6

Бесцветный газ

пл=-189°C

кип=-186°C

19

K

39,098

4s1

0,82

Мягкий серебристо-белый металл

пл=64°C

кип=774°C

20

Ca

40,078

4s2

1,0

Серебристо-белый металл

пл=839°C

кип=1487°C

21

Sc

44,956

3d1 4s2

1,36

Серебристый металл с желтым отливом

пл=1539°C

кип=2832°C

22

Ti

47,867

3d2 4s2

1,54

Серебристо-белый металл

пл=1660°C

кип=3260°C

23

V

50,942

3d3 4s2

1,63

Серебристо-белый металл

пл=1890°C

кип=3380°C

24

Cr

51,996

3d5 4s1

1,66

Голубовато-белый металл

пл=1857°C

кип=2482°C

25

Mn

54,938

3d5 4s2

1,55

Хрупкий серебристо-белый металл

пл=1244°C

кип=2097°C

26

Fe

55,845

3d6 4s2

1,83

Серебристо-белый металл

пл=1535°C

кип=2750°C

27

Co

58,933

3d7 4s2

1,88

Серебристо-белый металл

пл=1495°C

кип=2870°C

28

Ni

58,693

3d8 4s2

1,91

Серебристо-белый металл

пл=1453°C

кип=2732°C

29

Cu

63,546

3d10 4s1

1,9

Золотисто-розовый металл

пл=1084°C

кип=2595°C

30

Zn

65,409

3d10 4s2

1,65

Голубовато-белый металл

пл=420°C

кип=907°C

31

Ga

69,723

4s2 4p1

1,81

Белый металл с голубоватым оттенком

пл=30°C

кип=2403°C

32

Ge

72,64

4s2 4p2

2,0

Светло-серый полуметалл

пл=937°C

кип=2830°C

33

As

74,922

4s2 4p3

2,18

Зеленоватый полуметалл

субл=613°C

(сублимация)

34

Se

78,96

4s2 4p4

2,55

Хрупкий черный минерал

пл=217°C

кип=685°C

35

Br

79,904

4s2 4p5

2,96

Красно-бурая едкая жидкость

пл=-7°C

кип=59°C

36

Kr

83,798

4s2 4p6

3,0

Бесцветный газ

пл=-157°C

кип=-152°C

37

Rb

85,468

5s1

0,82

Серебристо-белый металл

пл=39°C

кип=688°C

38

Sr

87,62

5s2

0,95

Серебристо-белый металл

пл=769°C

кип=1384°C

39

Y

88,906

4d1 5s2

1,22

Серебристо-белый металл

пл=1523°C

кип=3337°C

40

Zr

91,224

4d2 5s2

1,33

Серебристо-белый металл

пл=1852°C

кип=4377°C

41

Nb

92,906

4d4 5s1

1,6

Блестящий серебристый металл

пл=2468°C

кип=4927°C

42

Mo

95,94

4d5 5s1

2,16

Блестящий серебристый металл

пл=2617°C

кип=5560°C

43

Tc

98,906

4d6 5s1

1,9

Синтетический радиоактивный металл

пл=2172°C

кип=5030°C

44

Ru

101,07

4d7 5s1

2,2

Серебристо-белый металл

пл=2310°C

кип=3900°C

45

Rh

102,91

4d8 5s1

2,28

Серебристо-белый металл

пл=1966°C

кип=3727°C

46

Pd

106,42

4d10

2,2

Мягкий серебристо-белый металл

пл=1552°C

кип=3140°C

47

Ag

107,87

4d10 5s1

1,93

Серебристо-белый металл

пл=962°C

кип=2212°C

48

Cd

112,41

4d10 5s2

1,69

Серебристо-серый металл

пл=321°C

кип=765°C

49

In

114,82

5s2 5p1

1,78

Мягкий серебристо-белый металл

пл=156°C

кип=2080°C

50

Sn

118,71

5s2 5p2

1,96

Мягкий серебристо-белый металл

пл=232°C

кип=2270°C

51

Sb

121,76

5s2 5p3

2,05

Серебристо-белый полуметалл

пл=631°C

кип=1750°C

52

Te

127,60

5s2 5p4

2,1

Серебристый блестящий полуметалл

пл=450°C

кип=990°C

53

I

126,90

5s2 5p5

2,66

Черно-серые кристаллы

пл=114°C

кип=184°C

54

Xe

131,29

5s2 5p6

2,6

Бесцветный газ

пл=-112°C

кип=-107°C

55

Cs

132,91

6s1

0,79

Мягкий серебристо-желтый металл

пл=28°C

кип=690°C

56

Ba

137,33

6s2

0,89

Серебристо-белый металл

пл=725°C

кип=1640°C

57

La

138,91

5d1 6s2

1,1

Серебристый металл

пл=920°C

кип=3454°C

58

Ce

140,12

f-элемент

Серебристый металл

пл=798°C

кип=3257°C

59

Pr

140,91

f-элемент

Серебристый металл

пл=931°C

кип=3212°C

60

Nd

144,24

f-элемент

Серебристый металл

пл=1010°C

кип=3127°C

61

Pm

146,92

f-элемент

Светло-серый радиоактивный металл

пл=1080°C

кип=2730°C

62

Sm

150,36

f-элемент

Серебристый металл

пл=1072°C

кип=1778°C

63

Eu

151,96

f-элемент

Серебристый металл

пл=822°C

кип=1597°C

64

Gd

157,25

f-элемент

Серебристый металл

пл=1311°C

кип=3233°C

65

Tb

158,93

f-элемент

Серебристый металл

пл=1360°C

кип=3041°C

66

Dy

162,50

f-элемент

Серебристый металл

пл=1409°C

кип=2335°C

67

Ho

164,93

f-элемент

Серебристый металл

пл=1470°C

кип=2720°C

68

Er

167,26

f-элемент

Серебристый металл

пл=1522°C

кип=2510°C

69

Tm

168,93

f-элемент

Серебристый металл

пл=1545°C

кип=1727°C

70

Yb

173,04

f-элемент

Серебристый металл

пл=824°C

кип=1193°C

71

Lu

174,96

f-элемент

Серебристый металл

пл=1656°C

кип=3315°C

72

Hf

178,49

5d2 6s2

Серебристый металл

пл=2150°C

кип=5400°C

73

Ta

180,95

5d3 6s2

Серый металл

пл=2996°C

кип=5425°C

74

W

183,84

5d4 6s2

2,36

Серый металл

пл=3407°C

кип=5927°C

75

Re

186,21

5d5 6s2

Серебристо-белый металл

пл=3180°C

кип=5873°C

76

Os

190,23

5d6 6s2

Серебристый металл с голубоватым оттенком

пл=3045°C

кип=5027°C

77

Ir

192,22

5d7 6s2

Серебристый металл

пл=2410°C

кип=4130°C

78

Pt

195,08

5d9 6s1

2,28

Мягкий серебристо-белый металл

пл=1772°C

кип=3827°C

79

Au

196,97

5d10 6s1

2,54

Мягкий блестящий желтый металл

пл=1064°C

кип=2940°C

80

Hg

200,59

5d10 6s2

2,0

Жидкий серебристо-белый металл

пл=-39°C

кип=357°C

81

Tl

204,38

6s2 6p1

Серебристый металл

пл=304°C

кип=1457°C

82

Pb

207,2

6s2 6p2

2,33

Серый металл с синеватым оттенком

пл=328°C

кип=1740°C

83

Bi

208,98

6s2 6p3

Блестящий серебристый металл

пл=271°C

кип=1560°C

84

Po

208,98

6s2 6p4

Мягкий серебристо-белый металл

пл=254°C

кип=962°C

85

At

209,98

6s2 6p5

2,2

Нестабильный элемент, отсутствует в природе

пл=302°C

кип=337°C

86

Rn

222,02

6s2 6p6

2,2

Радиоактивный газ

пл=-71°C

кип=-62°C

87

Fr

223,02

7s1

0,7

Нестабильный элемент, отсутствует в природе

пл=27°C

кип=677°C

88

Ra

226,03

7s2

0,9

Серебристо-белый радиоактивный металл

пл=700°C

кип=1140°C

89

Ac

227,03

6d1 7s2

1,1

Серебристо-белый радиоактивный металл

пл=1047°C

кип=3197°C

90

Th

232,04

f-элемент

Серый мягкий металл

91

Pa

231,04

f-элемент

Серебристо-белый радиоактивный металл

92

U

238,03

f-элемент

1,38

Серебристо-белый металл

пл=1132°C

кип=3818°C

93

Np

237,05

f-элемент

Серебристо-белый радиоактивный металл

94

Pu

244,06

f-элемент

Серебристо-белый радиоактивный металл

95

Am

243,06

f-элемент

Серебристо-белый радиоактивный металл

96

Cm

247,07

f-элемент

Серебристо-белый радиоактивный металл

97

Bk

247,07

f-элемент

Серебристо-белый радиоактивный металл

98

Cf

251,08

f-элемент

Нестабильный элемент, отсутствует в природе

99

Es

252,08

f-элемент

Нестабильный элемент, отсутствует в природе

100

Fm

257,10

f-элемент

Нестабильный элемент, отсутствует в природе

101

Md

258,10

f-элемент

Нестабильный элемент, отсутствует в природе

102

No

259,10

f-элемент

Нестабильный элемент, отсутствует в природе

103

Lr

266

f-элемент

Нестабильный элемент, отсутствует в природе

104

Rf

267

6d2 7s2

Нестабильный элемент, отсутствует в природе

105

Db

268

6d3 7s2

Нестабильный элемент, отсутствует в природе

106

Sg

269

6d4 7s2

Нестабильный элемент, отсутствует в природе

107

Bh

270

6d5 7s2

Нестабильный элемент, отсутствует в природе

108

Hs

277

6d6 7s2

Нестабильный элемент, отсутствует в природе

109

Mt

278

6d7 7s2

Нестабильный элемент, отсутствует в природе

110

Ds

281

6d9 7s1

Нестабильный элемент, отсутствует в природе

Металлы

Неметаллы

Щелочные

Щелоч-зем

Благородные

Галогены

Халькогены

Полуметаллы

s-элементы

p-элементы

d-элементы

f-элементы

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ.

Это циклические углеводороды с тремя двойными сопряженными связями в цикле.

Бензол С6Н6 – родоначальник ароматических углеводородов. Впервые выделен Фарадеем в 1825г из светильного газа.

hello_html_mb8ab6c9.png

Каждый из шести атомов углерода в его молекуле находится в состоянии sp2-гибридизации и связан с двумя соседними атомами углерода и атомом водорода тремя σ-связями. Валентные углы между каждой парой π-связей равны 1200.

Таким образом, скелет σ-связей представляет собой правильный шестиугольник, в котором все атомы углерода и все σ-связи С–С и С–Н лежат в одной плоскости.

р-Электроны всех атомов углерода образуют единое циклическое π-электронное облако, сосредоточенное над и под плоскостью кольца.

Все связи С–С в бензоле равноценны, их длина равна 0,140 нм, что соответствует промежуточному значению между одинарной и двойной.

hello_html_m1f5ee17f.pnghello_html_32ba075f.png Это означает, что в молекуле бензола между углеродными атомами нет чисто простых и двойных связей (как в формуле, предложенной в 1865 г. немецким химиком Ф.Кекуле), а все они выровнены (делокализованы).

Общая формула гомологического ряда бензола CnH2n-6 (n ≥ 6).

Вещество

Название по номенклатуре

Историческое название

С6Н5-СН3

метилбензол

Толуол

С6Н5-СН2-СН3

этилбензол

СН36Н4-СН3

диметилбензол

ксилол

С6Н5-СН(СН3)2

изопропилбензол

кумол

hello_html_11f3ff65.png Если радикалов два или более, их положение указывается номерами атомов углерода в кольце, с которыми они связаны. Кольцо нумерют так, чтобы номера радикалов были наименьшими.

Для дизамещенных бензолов

R-C6H4-R’

используется также другой способ построения названий:

 орто— (о-) заместители у соседних атомов углерода кольца, 1,2-;
 мета— (м-) заместители через один атом углерода (1,3-);
пара-(п-) заместители на противоположных сторонах кольца(1,4-).

Изомерия у аренов.

Определяется числом заместителей, их расположением в бензольном кольце и возможностью изомерии углеродного скелета в заместителях, содержащих более трёх атомов углерода.

hello_html_11f3ff65.png Для ароматического углеводорода С8Н10 существуют 4 изомера: орто-, мета- и пара-ксилолы и этилбензол.

ПОЛУЧЕНИЕ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ

1. Дегидрирование циклоалканов

hello_html_m92fe0e4.png

2. Дегидроциклизация (дегидрирование и циклизация) алканов в присутствии катализатора

hello_html_m541675a4.png

3.Тримеризация ацетилена над активированным углем (реакция Зелинского):

hello_html_m42d076e4.png

4.Алкилирование бензола галогеналканами в присутствии безводного хлорида алюминия или алкенами:

hello_html_5a516530.png

hello_html_m12ed683e.jpg

ФИЗИЧЕСКИЕ СВОЙСТВА.

Бензол и его ближайшие гомологи – бесцветные жидкости с характерным запахом, с плотностью менее 1 г/мл. Огнеопасны. Нерастворимы в воде, но хорошо растворимы в неполярных растворителях. Бензол и толуол ядовиты (поражают почки, печень, костный мозг, кровь).

Высшие арены – твердые вещества.

ХИМИЧЕСКИЕ СВОЙСТВА.

Из-за наличия делокализованой -системы арены мало характерны реакции присоединения или окисления, которые ведут к нарушению ароматичности. Для них наиболее характерны реакции электрофильного замещения атомов водорода, связанных с циклом — SЕ.

1. РЕАКЦИИ ПРИСОЕДИНЕНИЯ К АРЕНАМ

В реакции присоединения, приводящие к разрушению ароматической структуры бензольного кольца, арены могут вступать с большим трудом.

а. Гидрирование. Присоединение водорода к бензолу и его гомологам происходит при повышенной температуре и давлении в присутствии металлических катализаторов.

hello_html_m200827cf.png

б. Радикальное хлорирование. При радикальном хлорировании бензола получается гексахлорциклогексан — «гексахлоран» (средство борьбы с вредными насекомыми).

hello_html_m172fb48b.png

2. РЕАКЦИИ РАДИКАЛЬНОГО ЗАМЕЩЕНИЯ АТОМОВ ВОДОРОДА В БОКОВОЙ ЦЕПИ:

В случае гомологов бензола при действии хлора на свету или при нагревании происходит реакция радикального замещения в боковой цепи:

hello_html_m740a3709.png

3. Реакции окисления аренов

Бензол не окисляется даже под действием сильных окислителей (KMnO4, K2Cr2O7 и т.п.). Поэтому он часто используется как инертный растворитель при проведении реакций окисления других органических соединений.

В отличие от бензола его гомологи окисляются довольно легко. При действии раствора KMnO4 в кислой среде и нагревании в гомологах бензола окислению подвергаются только боковые цепи, при этом от боковой цепи остаётся карбоксильная группа, а остальное – переходит в углекислый газ:

5С6Н5СН3 +6КМnO4+9H2SO4 5C6H5COOH +6MnSO4+3K2SO4+14H2O

5С6Н5CH2CH3 +12КМnO4+18H2SO45C6H5COOH +5СО2+12MnSO4+6K2SO4+28H2O

Если окисление идёт в нейтральном растворе при нагревании, то образуется соль бензойной кислоты и карбонат калия:

С6Н5СН2СН3+4KMnO4C6H5COOK+K2CO3+4MnO2+KOH+2H2O

4.РЕАКЦИИ ЗАМЕЩЕНИЯ В БЕНЗОЛЬНОМ КОЛЬЦЕ

1. Галогенирование

Замещение атома водорода в бензольном кольце на галоген происходит в присутствии катализаторов AlCl3, AlBr3, FeCl3 и т.п.:

hello_html_5f829898.png

2. Нитрование

Бензол реагирует с нитрующей смесью (смесью концентрированных азотной и серной кислот):

hello_html_m13dcafd4.png

3. Алкилирование

Замещение атома водорода в бензольном кольце на алкильную группу(алкилирование) происходит под действием алкилгалогенидов в присутствии катализаторов AlCl3, FeBr3или алкенов в присутствии фосфорной кислоты:

hello_html_9f644bc.png

hello_html_m38236ff0.png

ЗАМЕЩЕНИЕ В АЛКИЛБЕНЗОЛАХ

Гомологи бензола (алкилбензолы) более активно вступают в реакции замещения по сравнению с бензолом. Например, при нитровании толуола С6Н5-CH3 может происходить замещение не одного, а трех атомов водорода с образованием 2,4,6-тринитротолуола, причём в орто- и пара- положениях:

hello_html_m5c005f9f.png

ОРИЕНТИРУЮЩЕЕ ДЕЙСТВИЕ ЗАМЕСТИТЕЛЕЙ

В БЕНЗОЛЬНОМ КОЛЬЦЕ.

Если в бензольном кольце имеются заместители, не только алкильные, но и содержащие другие атомы (гидроксил, аминогруппа, нитрогруппа и т.п.), то реакции замещения атомов водорода в ароматической системе протекают строго определенным образом, в соответствии с характером влияния заместителя на ароматическую π-систему.

Заместители подразделяют на две группы в зависимости от проявляемого ими эффекта (мезомерного или индуктивного): электронодонорные (первого рода) и электроноакцепторные (второго рода).

ЭЛЕКТРОНОДОНОРНЫЕ ЗАМЕСТИТЕЛИ проявляют повышают электронную плотность в сопряженной системе.

К ним относятся гидроксильная группа —ОН и аминогруппа —NН2. Неподеленная пара электронов в этих группах вступает в общее сопряжение с p -электронной системой бензольного кольца и увеличивает длину сопряженной системы. В результате электронная плотность сосредоточивается в орто- и пара-положениях:

hello_html_m1bbad61f.png

Алкильные группы не могут участвовать в сопряжении, но они проявляют +I-эффект, под действием которого происходит аналогичное перераспределение p -электронной плотности.

Заместители, обладающие +I-эффектом или +М-эффектом, способствуют электрофильному замещению в орто- и пара— положениях бензольного кольца и называются заместителями (ориентантами) первого рода:

hello_html_m56b89476.png

Так, толуол, содержащий заместитель первого рода, нитруется и бромируется в пара- и орто-положения:

hello_html_m22dc11.png

ЭЛЕКТРОНОАКЦЕПТОРНЫЕ ЗАМЕСТИТЕЛИ снижают электронную плотность в сопряженной системе.

К ним относятся нитрогрупла —NO2, сульфогруппа —SO3Н, альдегидная —СНО и карбоксильная —СООН группы. Эти заместители образуют с бензольным кольцом общую сопряженную систему, но общее электронное облако смещается в сторону этих групп. Таким образом, общая электронная плотность в кольце уменьшается, но меньше всего она уменьшается в мета-положениях:

hello_html_m2e6cf582.png

Полностью галогенизированные алкильные радикалы (например, —ССl3) проявляют -I-эффект и также способствуют понижению электронной плотности кольца.

Заместители, обладающие -I-эффектом или -М-эффектом, направляют электрофильное замещение в мета-положения бензольного кольца и называются заместителями (ориентантами) второго рода:

hello_html_m1fd040c1.png

Нитробензол, содержащий заместитель второго рода, нитруется и бромируется в мета-положение:

hello_html_5ff88218.png

СТИРОЛ (винилбензол) С8Н8

hello_html_m2145de7c.jpg

– производное бензола, которое имеет в своём составе двойную связь в боковом заместителе, поэтому он НЕ относится к гомологическому ряду аренов.

Получение стирола:

  1. Дегидрирование этилбензола: С6Н5-СН2-СН3 -(t,кат) C6H5CH=CH2 + H2

  2. Дегидрогалогенирование фенилбромэтана:

C6H5-CH-CH3 +KOH –(спирт) C6H5-CH=CH2 +KBr +H2O

Br

Свойства стирола:

Стирол проявляет свойства, характерные для алкенов – реакции присоединения, окисления, полимеризации.

Реакции присоединения к стиролу: протекают в соответствии с правилом Марковникова.

С6Н5-СН=СН22О С6Н5-СН-СН3

ОН

Мягкое окисление стирола:

6Н5-СН=СН2 +2 KMnO4 + 4Н2О 3 С6Н5-СН-СН2 + 2MnO2 + 2KOH

│ │

OH OH фенилэтиленгликоль

Жесткое окисление стирола:

С6Н5-СН=СН2 + 2KMnO4 + 3Н2SO4 С6Н5OOН + CO2 + 2MnSO4 + K2SO4 + 4H2O

бензойная кислота

6Н5-СН=СН2 + 10KMnO4to 3С6Н5OOК + 3К2CO3 + 10MnO2 + KOH+ 4Н2О

бензоат калия

Полимеризация стирола: в результате получают полистирол.

hello_html_3b3de89f.png

Химические свойства стирола

Чтобы получить доступ к бесплатным материалам, пожалуйста зарегистрируйтесь.

Извините, у Вас нет прав просматривать контент!

Регистрация
Войти

Обложка видео

  • Курс

Меня зовут Быстрицкая Вера Васильевна.
Я репетитор по Химии

[[pictureof]]

Вам нужны консультации по Химии по Skype?
Если да, подайте заявку. Стоимость договорная.
Чтобы закрыть это окно, нажмите «Нет».

  ФИЗИЧЕСКИЕ СВОЙСТВА ЦИКЛОАЛКАНОВ

При обычных условиях первые два члена ряда (С3 — С4) — газы, (С5 — С11) — жидкости, начиная с С12 — твёрдые вещества. 

Температуры кипения и плавленияциклоалканов выше, чем у соответствующих алканов 

Циклоалканы в воде практически не растворяются. 

При увеличении числа атомов углерода  возрастает молярная масса, следовательно, увеличивается температура плавления.

ХИМИЧЕСКИЕ СВОЙСТВА ЦИКЛОАЛКАНОВ

Циклоалканы проявляют свойства и алканов, и алкенов.

Циклопропан и циклобутан –   имеют напряженные связи, угол отличается от 109°28´, 

цикл разрывается и они легко вступают в реакции присоединения  с  H₂, Cl₂, Br₂,HCl, растворами окислителей, присоединяя по месту разрыва связи.

ПРИСОЕДИНЕНИЕ

1.  Гидрирование.

При каталитическом гидрировании 
трех-, четырех- и даже пятичленные циклы  разрываются с образованием алканов.

Циклопентан и циклогексан с трудом присоединяют водород

2) Галогенирование. 

Циклопропан и циклобутан  разрываются, присоединяя атомы галогена, превращаясь в галогеналкан

3)Гидрогалогенирование. 

Замещенные циклопропаны тоже взаимодействуют с галогеноводородами  и другими соединениями с разрывом цикла.

ЗАМЕЩЕНИЕ

Большие циклы – циклопентан и циклогексан –  гораздо более устойчивы, цикл в них не разрывается.  Они ведут себя как алканы, вступая в реакции замещения :

1) Галогенирование: 

циклопентан и циклогексан реагируют с галогенами на свету, вступая в реакцию замещения.

ДЕГИДРИРОВАНИЕ

Производные циклогексана дегидрируются в производные бензола: 

ГОРЕНИЕ

Как и любые органические вещества, циклоалканы горят с образованием углекислого газа и воды.

Это циклические углеводороды с тремя двойными сопряженными связями в цикле.

 ФИЗИЧЕСКИЕ СВОЙСТВА.  

Бензол и его ближайшие гомологи – бесцветные жидкости с характерным запахом, с плотностью менее 1 г/мл. 

Высшие арены – твердые вещества. Нерастворимы в воде, но хорошо растворимы в неполярных растворителях.

Огнеопасны. 

Бензол и толуол ядовиты (поражают почки, печень, костный мозг, кровь).

ХИМИЧЕСКИЕ СВОЙСТВА.  

Свойственны:

1. Реакции присоединения (мало характерны из-за наличия делокализованой (электронная пара  рассредоточена между несколькими  ядрами атомов). системы аренам реакции присоединения или окисления, которые ведут к нарушению ароматичности.

2. Реакции замещения в бензольном кольце

3. Реакции замещения в боковой цепи

Реакции окисления 

РЕАКЦИИ ПРИСОЕДИНЕНИЯ

1. Гидрирование →  циклопарафины

Условия: повышенная температура, давление, металлические катализаторы (350⁰С, Pt или Ni). 

2. Радикальное хлорирование галогенпроизводное циклоалканов

Из бензола образуется гексахлорциклогексан (гексахлоран — средство борьбы с вредными насекомыми). 

РЕАКЦИИ ЗАМЕЩЕНИЯ В БЕНЗОЛЬНОМ КОЛЬЦЕ 

1. Галогенирование  → галогенпроизводные аренов + HCl.
У бензола замещение одного атома водорода, у толуола при малом количестве галогена замещение присходит в положении орто- и пара-, при избытке галогена в положении 2,4,6-


Условия:  н
агревание, наличие  катализаторов AlCl3, AlBr3, FeCl3 и т.п.:

2. Нитрование  бензола  → нитросоединения аренов + H₂O

Бензол реагирует с нитрующей смесью (смесью концентрированных азотной и серной кислот):

Нитрование       толуола

При нитровании толуола С6Н5-CH3, в зависимости от количества азотной кислоты, могут образовываться разные продукты реакции

3. Сульфирование →   моносульфокислота.

Осуществляется концентрированной серной кислотой (олеум – это раствор серного ангидрида в безводной серной кислоте)  

4. Взаимодействие с галогенопроизводными алканов → гомологи бензола с боковой цепью  (реакция Фриделя— Крафтса) 

5. Взаимодействие с непредельными углеводородами — гомологи бензола с боковой цепью 

ЗАМЕЩЕНИЕ В БОКОВОЙ ЦЕПИ

При действии хлора на свету или при нагревании на гомологи бензола  происходит реакция радикального замещения в боковой цепи: 

Бромирование  метилбензола осуществляется при аналогичных условиях и приводит к образованию соответствующих  бромзамещающих соединений.

РЕАКЦИИ ОКИСЛЕНИЯ АРЕНОВ 

Бензол не окисляется даже под действием сильных окислителей (KMnO4, K2Cr2O7 и т.п.), поэтому  используется как инертный растворитель при  окислении других органических соединений.

1. Горение бензола

Бензол содержит около 92% углерода, при неполном сгорании бензола образуется много копоти (C). При горении бензола образуются углекислый газ и водяные пары.

Бензол не подвергается окислению

2. Окисление оксидом марганца
Метильная боковая цепь в толуоле подвергается окислению даже такими сравнительно мягкими окислителями, как оксид марганца (IV):

3. Окисление перманганатом калия в кислой  среде

Более сильные окислители, например перманганат калия, вызывают дальнейшее окисление:

3) Окисление перманганатом калия в нейтральной  среде  при нагревании — образуется соль бензойной кислоты и карбонаты: 

                                                  СТИРОЛ (винилбензол) С8Н8


производное
бензола, которое имеет в своём составе двойную связь в боковом заместителе,
поэтому он НЕ
относится к гомологическому ряду аренов.

Проявляются все свойства
непредельных углеводородов.      

РЕАКЦИИ ПРИСОЕДИНЕНИЯ 

 протекают в боковой цепи в соответствии с правилом Марковникова, например:

РЕАКЦИИ ОКИСЛЕНИЯ

1. Мягкое окисление стирола: 

в нейтральной среде → многоатомный спирт

2. Жесткое окисление (t°) стирола:

в кислой среде → бензойная кислота

в нейтральной при нагревании → бензоаты

3. Полимеризация полистирола (по боковой цепи): 

полистирол.

Полистирол — полимер широкого применения

Стирол — бесцветная жидкость с резким запахом.
Формула стирола С₆H₅-СH=CH₂ и его химические свойства во многом отличаются от свойств бензола и толуола!

В отличии от бензола и толуола стирол вступает в реакции присоединения с различными реагентами.

1️⃣ Галогенирование
Стирол обесцвечивает бромную воду:
С₆H₅-СH=CH₂ + Br₂ → С₆H₅-СH(Br)-CH₂(Br)

2️⃣ Гидрирование
Условие: t°C, p, Pt или Ni
С₆H₅-СH=CH₂ + Br₂ → С₆H₅-СH₂-CH₃ (t°C, p, Pt)

3️⃣ Гидрогалогенирование
С₆H₅-СH=CH₂ + HСl → С₆H₅-СH(Сl)-CH₃
Присоединение протекает в соответствии с правилом Марковникова 🥕

4️⃣ Окисление раствором KMnO₄ в мягких условиях
Условие: нейтральная среда, 0-20°C
3С₆H₅-СH=CH₂ + 2KMnO₄ + 4H₂O → 3С₆H₅-СH(OH)-CH₂(OH) + 2MnO₂ + 2KOH (0-20°C)

Жёсткое окисление протекает аналогично окислению этилбензола.

5️⃣ Полимеризация
n стирол → полистирол

Полистирол широко применяют в промышленности для создания плёнок.
В промышленности синтетического каучука стирол применяют для совместной полимеризации (сополимеризации) его с изопреном и бутадиеном (бутадиен-стирольный каучук) 😏

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter. Мы обязательно поправим!

Что такое стирол? состав, свойства, применение

Стирол — это жидкий углеводород, известный своей невероятной способностью подвергаться полимеризации — процессу, в котором отдельные молекулы реагируют друг с другом с образованием больших трехмерных сетей или полимерных цепей.

Стирол в основном используется для производства термопластичного полимера под названием полистирол, а также ряда других пластмасс и синтетических каучуков. Этот легкий и недорогой материал обеспечивает высококачественный внешний вид, который можно разрезать на любую форму.

Профиль стирола

Химическая формула: C6H5CH=CH2
Молекулярный вес: 104,15 г/моль
Температура плавления: -30 °C
Температура кипения: 145 °C
Плотность: 0,909 г/см3
Растворимость в воде: 300 мг/л при 25 °C.

Стирол является членом углеводородной винильной группы (CH2=CH-), молекулы которой состоят из двойной связи между двумя атомами углерода.

Под действием инициаторов и катализаторов эта двойная связь может расщепляться на две одинарные связи, связывающие атом углерода другой молекулы стирола. Так образуется полистирол, в котором тысячи соединений стирола прикреплены вдоль углеродной основы.

Физические и химические свойства

Стирол представляет собой бесцветную маслянистую жидкость, которая легко испаряется. Старый образец может выглядеть слегка желтоватым. Хотя он имеет сладковатый запах, другие химические вещества могут придать ему резкий, неприятный привкус.

Хотя стирол плохо растворяется в воде, он хорошо растворяется в этаноле, эфире и ацетоне и слабо растворяется в четыреххлористом углероде. Также он образует однородную смесь с бензолом.

Стирол менее плотен, чем вода, но его пары тяжелее воздуха и раздражают глаза. Если он полимеризуется в закрытом контейнере, контейнер может разорваться на части.

Вязкость: 0,696 сП при 25 °C
Полимеризация: Постепенно при комнатной температуре и легко при температуре выше 65 °C.

Полимеризация также может происходить из-за присутствия пероксидов, окислителей или солнечного света. Чтобы предотвратить это, стирол обычно смешивают с ингибиторами. Однако это не препятствует стиролу разъедать медь и медные сплавы.

Как производится стирол?

Натуральный стирол содержится (в очень небольших количествах) в некоторых продуктах и ​​растениях, таких как кофейные зерна, арахис, корица и бальзамические деревья. Он также содержится в каменноугольной смоле.

Однако большое количество стирола синтетически создается из этилбензола. Фактически, более 99% этилбензола, производимого во всем мире, предназначено для производства стирола. Этилбензол — легковоспламеняющаяся бесцветная жидкость, образующаяся в результате реакций Фриделя – Крафтса между этиленом и бензолом в присутствии цеолитов.

В настоящее время для производства стирола из этилбензола используются два процесса:

1. Дегидрирование этилбензола.

Около 75% стирола получают путем удаления водорода из этилбензола (C 6 H 5 CH 2 CH). Этот процесс включает нагревание этилбензола до 600 °C в присутствии катализатора, которым обычно является оксид железа (III).

Реакция поглощает значительное количество тепла (из внешней среды) и является обратимой. При этом выделяется 88-94% стирола, который затем очищается путем дистилляции.

Поскольку во время процесса стирол может подвергаться термической полимеризации, в систему постоянно добавляют ингибитор.

2. Обработка этилбензола кислородом

Реакция между этилбензолом и кислородом дает гидропероксид этилбензола. Затем этот продукт обрабатывают пропиленом для получения оксида пропилена и 1-фенилэтанола. Наконец, дегидратация 1-фенилэтанола дает стирол.

Более дешевая альтернатива

Стирол также можно получить, используя недорогое сырье: метанол (простейший спирт) и толуол (ароматический углеводород).

Реакция между этими соединениями при 425 °C и в присутствии цеолитного катализатора дает смесь стирола и этилбензола 9:1. Выход стирола более 60%.

Из коричной кислоты

В лабораториях его получают путем удаления карбоксильной группы из коричной кислоты — белого кристаллического соединения. Впервые стирол был получен именно таким способом.

Обычное использование

Ежегодно миллиарды килограммов стирола производятся промышленным способом для изготовления таких продуктов, как пищевые контейнеры, одноразовые стаканчики, пластик, резина, трубы, стекловолокно, автомобильные компоненты и различные химикаты.

Хотя стирол в основном используется для производства полистирольных пластиков и смол, он также служит промежуточным звеном в синтезе соединений, используемых для ионообменных смол.

В частности, стирол используется для производства:

Твердый полистирол, из которого делают жесткую тару для предприятий общественного питания, кухонную технику, игрушки, медицинские и оптические инструменты.

Полимерные композиты, армированные волокном, которые используются для производства коррозионно-стойких труб и резервуаров, спортивных товаров, компонентов ветряных турбин, военных и коммерческих самолетов и автомобильных запчастей.

Пенополистирол и пленки, которые используются для изготовления контейнеров для предприятий общественного питания, легкой защитной упаковки, а также для ламинирования и печати.

Самыми популярными материалами на основе стирола являются:

  • АБС (акрилонитрил-бутадиен-стирол) Пластик: используется для изготовления небольших предметов домашнего обихода, игрушек и подкладок для холодильников.
  • SBL (стирол-бутадиен-латекс): используется в качестве покрытия для бумажной продукции, такой как журналы и каталоги, для достижения высокого глянца и хорошей пригодности для печати.
  • SAN (Стиролакрилонитрил) Пластик: используется в сантехнике, оптических волокнах и контейнерах для пищевых продуктов.
  • SBR (бутадиен-стирольный каучук): каучук общего назначения, используемый в шинах, конвейерных лентах и ​​прокладках.

Токсичность

Стирол представляет опасность при хранении при температуре выше 32 °C. При разложении (при нагревании) он выделяет едкий дым и раздражающие испарения.

Пары стирола сильно раздражают горло, нос, глаза и легкие. У работников, подвергающихся воздействию высоких уровней паров стирола, могут развиться дегенеративные заболевания нервной системы.

Длительное воздействие может привести к усталости, потере слуха, ухудшению цветового зрения, снижению концентрации, замедлению реакции и психическим проблемам. У некоторых работников наблюдались астма, аллергические кожные реакции, изменения иммунной функции и даже свертываемость крови.

Размер рынка

В 2019 году мировой рынок стирола оценивался в 48 миллиардов долларов. Прогнозируется, что к 2026 году эта цифра достигнет 70 миллиардов долларов при среднегодовом темпе роста (CAGR) в 4,6% с 2020 по 2026 год.

Постоянно растущий спрос на электронику и автомобильные компоненты — это лишь некоторые из основных факторов, способствующих росту рынка. Например, автомобильная промышленность является основным конечным потребителем SBR (бутадиен-стирольный каучук в основном используется для производства шин).

Однако растущие проблемы со здоровьем и окружающей средой при использовании стирола будут тормозить рост рынка. За последнее десятилетие были зарегистрированы различные промышленные аварии. Недавно, в мае 2020 года, в результате утечки газообразного стирола погибли тринадцать рабочих на заводе LG Chem в Висакхапатнаме, Индия.

Несмотря на вредные последствия, стирол будет пользоваться значительным спросом благодаря применению полистирола. Азиатские страны будут продолжать доминировать на рынке в течение прогнозного периода.

В частности, ожидается, что в Китае в ближайшие годы будет наблюдаться устойчивый рост из-за растущего спроса на упакованные товары в продовольственном сегменте.

Часто задаваемые вопросы

Как люди подвергаются воздействию стирола?

Стирол может попасть в организм человека при дыхании (в виде пара) или при прямом контакте с кожей. Население в целом может подвергаться воздействию при употреблении питьевой воды, употребления пищи, курения сигарет, вдыхания воздуха в помещении или использования потребительских товаров, содержащих стирол.

При попадании в окружающую среду стирол попадает в воздух с поверхности воды и влажной почвы. Небольшие количества стирола были обнаружены как в организмах, дышащих воздухом (морские птицы, хищники, люди), так и в организмах, дышащих водой (хищные рыбы).

Насколько опасен стирол?

Оксид стирола может быть канцерогенным как для человека, так и для животных. У животных он вызывает рак печени. Безопасного уровня воздействия этого газа не существует, поэтому любой контакт с ним должен быть сведен к минимально возможному уровню.

Как быстро стирол попадает в организм?

Во многих контролируемых исследованиях было установлено, что стирол задерживается в легких до 70% от вдыхаемой дозы. В окружающем воздухе он может абсорбироваться через кожу на уровне 4% от дозы, поглощенной в дыхательных путях. Более того, жидкий стирол может проникать через кожу со скоростью 1 мкг/м2 в минуту.

Как защитить себя от газообразного стирола?

Работники могут использовать средства защиты и следовать аварийным процедурам, чтобы обезопасить себя. Это включает обеспечение достаточной вентиляции и устранение всех источников воспламенения на предприятии.

Не допускайте скопления паров в небольших помещениях и предотвращайте любые утечки или проливы. Также необходимо избегать выброса продукта в окружающую среду.

Конспект лекций по курсу «Мономеры» для бакалавров, обучающихся по специальности (стр. 3 )

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5

На практике используют 3 вида ПВХ:

— винилпласты – жесткие материалы на основе ПВХ, содержащие стабилизирующие добавки и смазывающие вещества, которые выпускаются в виде листов, труб и пленок;

-пластикаты – мягкие материалы на основе стабилизированного и пластифицированного ПВХ, количество пластификатора в которых может достигать 50%. Введение пластификатора увеличивает эластичность и морозостойкость ПВХ (-50 0С). Пластикаты выпускаются в виде гранул, пленок, шлангов.

— пластизоли – это дисперсии эмульсионного ПВХ в жидких пластификаторах – в качестве которых используют диалкилфталаты, сложные эфиры адипиновой, себациновой, фосфорной кислот. Количество пластификаторов составляет от 30 до 80%. Пластизоли используют для получения искусственной кожи, клинки.

ПТФЭ – политетрафторэтилен (тефлон); ПВДФ – поливинилиденфторид.

1.3.1. Получение стирола

Получение стирола сводится к осуществлению следующих реакций:

Алкилирование бензола этиленом большей частью проводится при атм. давлении, без механического перемешивания, при 90 0С в присутствии безводного хлористого алюминия как катализатора. Расход AlCl3 2,5г на 100г этилбензола.

Другой способ алкилирования бензола состоит в проведении реакции с этиленом в присутствии фосфорной кислоты, нанесенный на кизельгур. Температура реакции не должна превышать 275 0С, т. к. катализатор быстро покрывается коксом. Давление реакции при 63 атм. Соотношение бензол : этилен — 4:1.

Вторую реакцию осуществляют с использованием различных катализаторов при разных условиях.

1. Один из катализаторов дегидрирования состоит в основном из окиси цинка (76-86%) с добавками окиси алюминия (2,3-8%), окиси кальция (4,7-5,1%), окиси магния (0-5%), сульфата калия (2-3%) и хромата калия (2-3%). Пары этилбензола с водяным паром (1/0,8-1/2) подвергают дегидрированию в колонне при Т=6000С.

2. Другим катализатором дегидрирования являются катализаторы N 1707 и N 105, применяемые для дегидрирования бутанов в бутадиены. Дегидрирование также проводится в присутствии водяного пара, который предотвращает коксообразование и одновременно служит для подачи необходимого для реакции тепла. Дегидрирование проводят при Т=625 0С, время пребывания на катализаторе 0,5 сек, выход при однократном проходе 37%.

3. Третий способ по реакции:

Стирол – жидкость бесцветная, Ткип=145 0С, Тпл=-30,6 0С и d=0,9021 г/см3.

1.3.2. Химические свойства стирола

Наличие активной олефиновой связи в боковой цепи стирола – главное направление атак на эту цепь

Стирол легче, чем олефины, присоединяет спирты:

Однако при нитровании стирола наряду с главным продуктом этой реакции – ω-нитростиролом образуются оба продукта в ядро о- и п — стиролы;

что свидетельствует об электроннооднородном характере виниловой группы.

1. Реакция Дильса-Альдера

Стирол может функционировать в реакции Дильса-Альдера и как диенофил, и как диен. При этом как диеновый компонент он проявляет себя только в реакциях с активным диенофилами (см. выше). При взаимодействии стирола с малеиновым ангидридом на 1-ой стадии образуется промежуточный аддукт циклоприсоединения, который на заключительной стадии претерпевает 2-ое циклоприсоединение по Дильсу-Альдеру и «еновую» реакцию.

1.3.3. Полимеризация стирола и его сополимеры

Атактический ПС получают радикальной полимеризацией стирола в присутствии пероксидных или азосоединений в качестве инициаторов. В промышленности полимеризацию осуществляют в массе, в эмульсии (в воде), реже в суспензии. ММ= тыс. наибольшую ММ и лучший комплекс прочностных характеристик имеет эмульсионный ПС. Марки ПС, полученного полимеризацией в массе, имеют обозначение ПСМ, суспензионные – ПСС, эмульсионные – ПСЭ. Выпускается стабилизированным в виде гранул или порошка.

1. Ударопрочный полистирол (УПС) – продукт привитой сополимеризации стирола с бутадиеновым или бутадиенстирольным каучуком. Процесс сополимеризации с каучуком проводят в растворе стирола в присутствии пероксидных инициаторов. Молекулярная масса равна 70-100 тыс. При этом одновременно проходят гомополимеризация стирола и привитая сополимеризация стирола с каучуком. Доля сополимера около 15%. Марочный ассортимент определяется способом получения и назначением УПС. При полимеризации в массе буквенное обозначение марки – УПМ, при суспензионной – УПС.

УПС можно считать композиционным, содержащим матрицу жесткого полистирола (ММ=70-100 тыс.) с частицами каучука размером 1-5 мкм, окруженными тонким слоем привитого сополимера.

2. Бутадиен-стирольные каучуки – статистические сополимеры бутадиена и стирола (СКС) или α-метилстирола (СКМС) с содержанием последних 21-25%. На 50% и более бутадиен присоединяется в трансконфигурации, остальное в конфигурации 1,4-цис и 1,2. Получают СКС в основном методом эмульсионной сополимеризации при 50 или 5 0С. Каучуки с содержанием стирола 21-25% обозначаются как CRC-30 или СКМС-30. Выпускаются каучуки с 8-10% стирола (CRC-10) с повышенной морозостойкостью или с 40-50% стирола (CRC-50) с повышенной жесткостью. ММ (СКС)=150-400тыс. Применяются как каучуки общего назначения.

Акрилонитрил – прозрачная жидкость с удушливым запахом, кипящая при Т=77,3 0С. Он быстро полимеризуется, но может быть стабилизирован добавлением олеата меди, диоксидифенила и других ингибиторов.

1.4.1. Получение акрилонитрила

1. Промышленное производство.

Сырьем для производства акрилонитрила является жидкая окись этилена и синильная кислота, процесс проводят в водной среде в присутствии диэтиламина и NаОН как катализатор. Реакция протекает в 2 стадии:

Дегитратацию образующегося нитрила оксипропановой кислоты проводят каталитически в жидкой фазе при 200-280 0С или в газовой фазе над активной окисью алюминия. Выход акрилонитрила после отделения от воды и перегонки на 2-ой стадии 75-78%. Выход этиленциангидрина на 1-ой стадии достигает 90%.

2. Присоединение синильной кислоты к ацетилену (метод Курца)

Процесс получения акрилонитрила по этому методу протекает гладко. Работу ведут в присутствии раствора хлористой меди (I) – Сu2Cl2 и хлорида аммония, слабо подкисленного соляной кислотой, соотношение Сu2Cl2:NH4Cl=1:0,8; рН=3,5. При температуре реакции 75 0С промышленный выход достигает 85%.

3. Окисление 1-аминопропена-2 (аллиламина). Катализатор карбид кремния, на который нанесен 1% серебра.

Процесс примечателен тем, что в этом случае отпадает необходимость использования синильной кислоты.

4. Действие цианидов щелочных металлов на этиленхлоргидрин.

1.4.2. Химические свойства акрилонитрила

Акрилонитрил – соединение, обладающее высокой реакционной способностью, которое присоединяется ко всем соединениям, имеющим подвижный атом водорода. Иначе говоря способность цианогруппы активировать кратную углерод-углеродную связь делает акрилонитрил активным соединением по отношению к нуклеофильным атакам. Именно благодаря этому акрилонитрил легко присоединяет в щелочной среде самые разнообразные нуклеофилы – спирты, тиолы, аминосоединения и т. д. Эти реакции называются реакциями цианоэтилирования.

2. Акрилонитрил легко вступает в реакцию Дильса-Альдера в качестве диенофила:

3. Восстановление акрилонитрила. При восстановлении акрилонитрила на свинцовом катоде в присутствии в качестве восстановителя LiAlH4 образуется аллиламины:

4. Гидролиз акрилонитрила:

1.4.3. Полимеризация акрилонитрила и его сополимеры

1. Полиакрилонитрил получают радикальной полимеризацией акрилонитрила в присутствии пероксидных или азоинициаторов в атмосфере азота. Полимеризацию проводят в водной эмульсии и редко в массе. Выпускают в виде белого порошка или лаков. Молекулярная масса равна 35-100тыс. Полиакрилонитрил (ПАН) – жесткоцепной неплавкий полимер с плотностью равной г/м3. При Т=220-230 0С ПАН разлагается с выделением большого количества газообразных продуктов (в основном аммиак), при Т=270 0С выделяется НСN. Используется в основном для изготовления волокон из раствора.

Значительно чаще акрилонитрил используется для сополимеризации с бутадиеном и бутадиенстирольным каучуком для получения эластомеров.

1. Бутадиен-нитрильные каучуки – статистические сополимеры бутадиена с акрилонитрилом. Бутадиен присоединяется преимущественно в положении 1,4-транс, содержание 1,2-структуры не превышает 10%.

Получают эмульсионной полимеризацией. Марочный ассортимент синтетического каучука нитрильного (СКН) определяется содержанием акрилонитрилов, которое в разных сортах составляет 17-20, 27-30, 36-40, иногда до 50%, а соответствующие марки каучука СКН-18, СКН-26. СКН-40, СКН-50. ММ=200-300тыс. применяются как каучуки спецназначения.

2. АБС-пластики – продукт привитой сополимеризации стирола с акрилонитрилом и бутадиеновым или бутадиенстирольным каучуком. Процесс сополимеризации мономеров с каучуком проводят в эмульсии в присутствии пероксидных инициаторов. Одновременно протекает сополимеризация стирола с акрилонитрилом. В конечном продукте содержится 65% стирола, 20% акрилонитрила и 15% каучука.

Глава 2. Мономеры для поликонденсации

Поликонденсация, наряду с полимеризацией является одним из методов синтеза полимеров и представляет собой ступенчатый процесс. Как и в цепных процессах образования макромолекулы, строение и реакционная способность мономеров играет решающую роль для реакций поликонденсации. При этом основными в поликонденсационных процессах являются понятия реакционного центра, функциональной группы и функциональности.

Реакционным центром называют активную часть молекулы (обычно один атом), непосредственно участвующую в химическом взаимодействии.

Функциональной группой называют часть молекулы мономера, определяющую его принадлежность к тому или иному классу соединений и имеющую характерную реакционную способность. Функциональная группа определяет поведение мономера в химических реакциях. Так, в функциональных группах – NH2 и ОН реакционными центрами являются атомы водорода. В принципе в зависимости от условий и в разных реакциях одна и та же функциональная группа может иметь различные реакционные центры. Так, при нейтрализации реакционным центром в группе – СООН является атом водорода, а при реакции со спиртом – атом кислорода группы – ОН.

Важной характеристикой мономеров является их функциональное число реакционных центров (или функциональной группы) в одной молекуле. От значения функциональности зависит возможность образования линейных, разветвленных или трехмерных макромолекул. При поликонденсации бифункциональных мономеров образуются линейные цепи, если же один или оба исходных мономера не может отражать его истинной функциональности в конкретных условиях процесса, различают возможную, практическую и относительную функциональности мономера. Возможная функциональность Фв – это общее число активных групп в молекуле мономера, для данного соединения эта величина постоянная, определяемая его химическим строением. Практическая функциональность Фпр – число функциональных групп, способных вступать в реакции в данных условиях (Т, концентрация, наличие катализатора). Эта величина может менятся в зависимости от условий процесса и от строения мономера. Отношение Фв/Фпр называют онтосительной функциональностью Фотн.

Формирование функциональной группы может происходить и в процессе синтеза аолимера методом поликонденсации, как в случае образования фенолформальдегидных полимеров из фенола и формальдегида, которые с точки зрения функциональности непригодны для синтеза полимеров как малофункциональными соединениями.

2.1. Классификация мономеров. Сомономеры.

Гомо — и гетерополиконденсация

Применяемые для синтеза методом поликонденсации мономеры разделяют на 2 группы: мономеры для гомополиконденсации и мономеры для гетерополиконденсации.

Основные группы поликонденсационных мономеров

Acetyl

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

H + Li + K + Na + NH4 + Ba 2+ Ca 2+ Mg 2+ Sr 2+ Al 3+ Cr 3+ Fe 2+ Fe 3+ Ni 2+ Co 2+ Mn 2+ Zn 2+ Ag + Hg 2+ Pb 2+ Sn 2+ Cu 2+
OH — Р Р Р Р Р М Н М Н Н Н Н Н Н Н Н Н Н Н
F — Р М Р Р Р М Н Н М М Н Н Н Р Р Р Р Р Н Р Р
Cl — Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Н Р М Р Р
Br — Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Н М М Р Р
I — Р Р Р Р Р Р Р Р Р Р ? Р ? Р Р Р Р Н Н Н М ?
S 2- М Р Р Р Р Н Н Н Н Н Н Н Н Н Н Н
HS — Р Р Р Р Р Р Р Р Р ? ? ? ? ? Н ? ? ? ? ? ? ?
SO3 2- Р Р Р Р Р Н Н М Н ? Н ? Н Н ? М М Н ? ?
HSO3 Р ? Р Р Р Р Р Р Р ? ? ? ? ? ? ? ? ? ? ? ? ?
SO4 2- Р Р Р Р Р Н М Р Н Р Р Р Р Р Р Р Р М Н Р Р
HSO4 Р Р Р Р Р Р Р Р ? ? ? ? ? ? ? ? ? ? Н ? ?
NO3 Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р
NO2 Р Р Р Р Р Р Р Р Р ? ? ? ? Р М ? ? М ? ? ? ?
PO4 3- Р Н Р Р Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н
CO3 2- Р Р Р Р Р Н Н Н Н ? ? Н ? Н Н Н Н Н ? Н ? Н
CH3COO — Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р
SiO3 2- Н Н Р Р ? Н Н Н Н ? ? Н ? ? ? Н Н ? ? Н ? ?
Растворимые (>1%) Нерастворимые (

Спасибо! Ваша заявка отправлена, преподаватель свяжется с вами в ближайшее время.

Вы можете также связаться с преподавателем напрямую:

8(906)72 3-11-5 2

Скопируйте эту ссылку, чтобы разместить результат запроса » » на другом сайте.

Изображение вещества/реакции можно сохранить или скопировать, кликнув по нему правой кнопкой мыши.

Если вы считаете, что результат запроса » » содержит ошибку, нажмите на кнопку «Отправить».

Этим вы поможете сделать сайт лучше.

К сожалению, регистрация на сайте пока недоступна.

На сайте есть сноски двух типов:

Подсказки — помогают вспомнить определения терминов или поясняют информацию, которая может быть сложна для начинающего.

Дополнительная информация — такие сноски содержат примечания или уточнения, выходящие за рамки базовой школьной химии, нужны для углубленного изучения.

Здесь вы можете выбрать параметры отображения органических соединений.

источники:

http://pandia.ru/text/79/145/74457-3.php

http://acetyl.ru/o/ff1a21b2b.php

Like this post? Please share to your friends:
  • Химия досрочный егэ 2018
  • Химические свойства спиртов таблица егэ
  • Химия добротин 2022 егэ читать
  • Химические свойства спиртов егэ химия
  • Химия демонстрационный вариант егэ 2021 11 класс