Иррациональные уравнения 10 класс решу егэ

Skip to content

ЕГЭ Профиль №13. Иррациональные уравнения

ЕГЭ Профиль №13. Иррациональные уравненияadmin2018-08-29T20:30:33+03:00

Используйте LaTeX для набора формулы

Урок 20. Иррациональные уравнения и неравенства

Иррациональные уравнения и неравенства

Посмотрите на данные уравнения: $x^{2}=9$ и $sqrt{x}=9$. В чем отличие этих уравнений? Как вы думаете, какое условие накладывается на x в каждом из них?

Цели и задачи

Цель:

  • получить знания о иррациональных уравнениях и неравенствах.

Задачи:

  • рассмотреть определения иррациональных уравнений и неравенств;
  • познакомиться с основными видами иррациональных уравнений;
  • разобрать основные правила решения иррациональных уравнений и неравенств.

Узнаем, научимся, сможем

На уроке

мы узнаем:

  • что такое иррациональные уравнения и неравенства;

мы научимся:

  • решать иррациональные уравнения и неравенства;

мы сможем:

  • давать объяснения при решении иррациональных уравнений и неравенств.

Иррациональные уравнения

Укажите, для каких значений переменных равенство верно:

$sqrt{xy}=sqrt{x}sqrt{y}$

Применить определение арифметического квадратного корня, свойства степеней.

х ≥ 0, у ≥ 0

х ≤ 0

х ≤ 0, у ≤ 0

х ≥ 0


  • 1

  • 2

  • 3

  • 4

Самостоятельная работа по теме «Иррациональные уравнения»

1 вариант

  1. Найдите корень уравнения  .

  2. Найдите корень уравнения  .

  3. Найдите корень уравнения  .

  4. Найдите корень уравнения   Если уравнение имеет более одного корня, укажите меньший из них.

  5. Найдите корень уравнения  . Если уравнение имеет более одного корня, в ответе запишите меньший из корней.

  6. Найдите корень уравнения .

  7. Найдите корень уравнения  .

  8. Найдите корень уравнения  .

  9. Найдите корень уравнения  .

Самостоятельная работа по теме «Иррациональные уравнения»

2 вариант

  1. Найдите корень уравнения  .

  2. Найдите корень уравнения  .

  3. Найдите корень уравнения  .

  4. Найдите корень уравнения   Если уравнение имеет более одного корня, укажите меньший из них.

  5. Найдите корень уравнения  . Если уравнение имеет более одного корня, в ответе запишите больший из корней.

  6. Найдите корень уравнения  .

  7. Найдите корень уравнения  .

  8. Найдите корень уравнения  .

  9. Найдите корень уравнения  .

Самостоятельная работа по теме «Иррациональные уравнения»

3 вариант

  1. Найдите корень уравнения  .

  2. Найдите корень уравнения  .

  3. Найдите корень уравнения  .

  4. Найдите корень уравнения   Если уравнение имеет более одного корня, укажите меньший из них.

  5. Найдите корень уравнения  . Если уравнение имеет более одного корня, в ответе запишите меньший из корней.

  6. Найдите корень уравнения  .

  7. Найдите корень уравнения  .

  8. Найдите корень уравнения  .

  9. Найдите корень уравнения  .

Самостоятельная работа по теме «Иррациональные уравнения»

4 вариант

  1. Найдите корень уравнения  .

  2. Найдите корень уравнения  .

  3. Найдите корень уравнения  .

  4. Найдите корень уравнения   Если уравнение имеет более одного корня, укажите меньший из них.

  5. Найдите корень уравнения  . Если уравнение имеет более одного корня, в ответе запишите больший из корней.

  6. Найдите корень уравнения  .

  7. Найдите корень уравнения  .

  8. Найдите корень уравнения  .

  9. Найдите корень уравнения  .

Самостоятельная работа по теме «Иррациональные уравнения»

5 вариант

  1. Найдите корень уравнения  .

  2. Найдите корень уравнения 

  3. Найдите корень уравнения  .

  4. Найдите корень уравнения   Если уравнение имеет более одного корня, укажите меньший из них.

  5. Найдите корень уравнения  . Если уравнение имеет более одного корня, в ответе запишите меньший из корней.

  6. Найдите корень уравнения 

  7. Найдите корень уравнения  .

  8. Найдите корень уравнения 

  9. Найдите корень уравнения  .

Самостоятельная работа по теме «Иррациональные уравнения»

5 вариант

  1. Найдите корень уравнения  .

  2. Найдите корень уравнения 

  3. Найдите корень уравнения  .

  4. Найдите корень уравнения   Если уравнение имеет более одного корня, укажите меньший из них.

  5. Найдите корень уравнения  . Если уравнение имеет более одного корня, в ответе запишите меньший из корней.

  6. Найдите корень уравнения 

  7. Найдите корень уравнения  .

  8. Найдите корень уравнения 

  9. Найдите корень уравнения  .

Ответы «Иррациональные уравнения»

1 вариант

2 вариант

3 вариант

4 вариант

5 вариант

1

2

3

6

2

6

2

602

21

137

9

87

3

35

58

151

122

16

4

-8

-8

-9

-9

-9

5

2

3

5

4

5

6

-14

-183

-8

9

-20

7

0

-887

-201

-80

-580

8

73

120

62

-29

26

9

2

4

17

4

33

Наверх

иррациональные уравнения егэ 2022 математика профиль

Задание №1 ЕГЭ 2022 профильный уровень иррациональные уравнения 10 задач решу ЕГЭ с ответами и решением для подготовки, решаем и готовимся к ЕГЭ.

Скачать файл заданий с ответами

Иррациональные уравнения задания реши ЕГЭ 2022 профиль:

1)Найдите корень уравнения корень из 66-5х=9.

Ответ: -3

2)Найдите корень уравнения 5/3х-7 = 1/2.

Ответ: 9

3)Найдите корень уравнения 4х+40/17=4.

Ответ: 58

4)Найдите корень уравнения 27+6х=х. Если уравнение имеет более одного корня, укажите меньший из них.

Ответ: 9

5)Найдите корень уравнения х+2=-х. Если уравнение имеет более одного корня, укажите больший из них.

Ответ: -1

6)Найдите корень уравнения 34+2x=6.

Ответ: 1

7)Найдите корень уравнения x-10=1.

Ответ: 11

8)Решите уравнение 3/20-5х=0,2

Ответ: -11

9)Решите уравнение 5/3-2x=1/9

Ответ: -201

10)Найдите корень уравнения 6+5x=x. Если уравнение имеет более одного корня, в ответе запишите меньший из корней.

Ответ: 6

Другие тренировочные варианты ЕГЭ 2022 по математике 11 класс

ПОДЕЛИТЬСЯ МАТЕРИАЛОМ


  •                    Орлова Светлана Григорьевна, учитель математики

  Методы решения иррациональных уравнений.

Цели:

  • Образовательная –познакомить учащихся с нестандартными методами решения иррациональных уравнений; систематизировать знания учащихся о методах решения иррациональных уравнений, способствовать формированию умений классифицировать иррациональные уравнения по методам решений, научить применять эти методы, выбирать рациональный путь решения.
  • Развивающая –способствовать развитию математического кругозора, логического мышления.
  • Воспитательная – содействовать воспитанию интереса к иррациональным уравнениям, воспитывать чувство коллективизма, самоконтроля, ответственности.

Задачи урока:

  1. Повторить определение и основные методы решения иррациональных уравнений;
  2. Продемонстрировать нестандартные методы решения иррациональных уравнений; формировать  умение выбирать рациональные пути решения;
  3. Освоение всеми учащимися алгоритмов решения иррациональных уравнений, закрепление теоретических знаний при решении конкретных примеров;
  4. Развитие у учащихся логического мышления в процессе поиска рациональных методов и алгоритмов решения;
  5. Развитие культуры научных и учебных взаимоотношений между учениками и между учениками и учителем; воспитание навыков совместного решения задач.
  • Тип урока: комбинированный

Методы обучения:

  • Информационно- иллюстративный;
  • репродуктивный;
  • проблемный диалог;
  • частично-поисковый;
  • системные обобщения.

Формы организации учебной деятельности: 

  • Фронтальная,
  • групповая,
  • самопроверка,
  • взаимопроверка,
  • коллективные способы обучения.

Оборудование урока: компьютер, проектор, карточки с заданием, лист учета знаний.

Продолжительность занятия:   2 урока по 45 минут.

                                          План урока:

  1. Организационный момент. Постановка цели, мотивация.
  2. Актуализация опорных знаний, проверка домашней работы.
  3. Изучение нового материала.
  4. Закрепление изученного материала на данном уроке и ранее пройденного, связанного с новым.
  5. Подведение итогов и результатов урока. Рефлексия.
  6. Задание на дом.

                                          Конспект урока.

  1. Организационный момент. Постановка цели, мотивация.
  2. Актуализация опорных знаний проводится в форме беседы по лекционному материалу по данной теме с использованием компьютерной презентации. Проверка домашнего задания.
  • Определение иррационального уравнения.

Уравнение, содержащее переменные под знаком корня или дробной степени, называется иррациональным.

                 Назовите иррациональные уравнения:

           

  • Что значит решить иррациональное уравнение?

Это значит  найти все такие значения переменной, при которых уравнение превращается в верное равенство, либо доказать, что таких значений не существует.

  • Основные методы решения иррациональных уравнений. 
  1. Уединение радикала. Возведение в степень. 

a) При решении иррационального уравнения с радикалом четной степени возможны два пути:

  1. использование равносильных преобразований 

для уравнения вида

                         

для уравнения вида

             

  1. после возведения в степень выполнение проверки, так как возможно появление посторонних корней

b)  При решении иррационального уравнения с радикалом нечетной степени возведение в нечетную степень правой и левой части уравнения всегда приводит к равносильному уравнению и потеря корней или их приобретения происходить не может.

Пример 1:   

                     

Ответ: x=1

Пример 2:    

                   

Ответ: x=1

Пример 3:    

                     Проверка:   x=2           x=5         

          — посторонний корень                                                                                      

 Ответ: x=2

Если радикалов несколько, то уравнение возводить в степень приходится возводить неоднократно.

Пример 4:  

                   

Проверка показывает, что оба корня подходят.

Ответ:  

  1. Метод введения вспомогательного неизвестного или “метод замены

Пример 5:    

                       

Сделаем замену      причём   тогда

                          не удовлетворяет условию

Возвращаемся к замене:

                            Проверка показывает, что оба корня подходят.  

Ответ:1;2

Иногда удобно ввести не одну, а несколько переменных.

Пример 6:     .

Заметим, что знаки  х под радикалом различные. Введем обозначение

                                              ,      .

      Тогда,        

 Выполним почленное сложение обеих частей уравнения    .

Имеем систему уравнений                  

Т.к. а + в = 4,  то  

                                   

          Значит:                       9 – x = 8 ,   х = 1.  

Ответ : х = 1

  1. Метод разложения на множители или расщепления.
  • Произведение равно нулю тогда и только тогда, когда хотя бы один из входящих в него сомножителей равен нулю, а остальные при этом имеют смысл.

Пример 7:        

                         

Ответ: -4;3  

  1.    Изучение нового материала.     

Нестандартные методы решения иррациональных уравнений.    

  1.  Умножение на сопряжённое выражение.
  2. Переход к модулю.
  3. Использование свойств функции:
  • Область определения функции (ОДЗ)
  • Область значения функции
  • Свойство ограниченности функции (метод оценок)
  • Свойство монотонности
  • Использование суперпозиций функций                                                                  
  • Умножение на сопряжённое выражение.

Воспользуемся формулой  

Пример 8:          

Умножим обе части уравнения  на  сопряжённое выражение:

               

Проверка показывает, что  число является корнем.

Ответ:  

  • Переход к модулю.

Для этого метода воспользуемся тождеством:  

Пример 9:  

                   

Рассмотрим случаи:

                                  тогда

     

                          2=6( ложно)

Ответ:   -3;3

  • Использование свойств функции:
  • Область определения функции (ОДЗ)

Иногда нахождение области определения  функций, входящих в уравнение, существенно облегчает его решение.

Пример 10:    

                       ОДЗ:            ОДЗ: x=0  и  x=1

Проверка показывает, что только    x=1 является корнем.

Ответ:  

Пример 11:    

                    , тогда

              Тогда     невозможно.

Ответ: корней нет.

  • Область  значений функции

Пример 12:  

     Данное уравнение не имеет решений, так как его левая часть- функция  может принимать только неотрицательные значения.

Ответ: корней нет

Пример 13:    

  Учитывая то, что левая часть уравнения – функция     может принимать только неотрицательные значения, решим неравенство: 

  неравенство решений не имеет, тогда и исходное уравнение тоже.

Ответ: корней нет

  • Свойство ограниченности функции (метод оценок)

Пример 14:    

            Заметим, что , т.е. , а

                     

                         Проверка показывает, что это значение является и корнем второго уравнения.

Ответ:  

  • Свойство монотонности

Пример 15:    .

                    Рассмотрим функции  и  .

 монотонно возрастает, а   — убывает, следовательно, уравнение имеет не более одного корня.

Значение корня легко найти подбором:

Ответ:  

Пример 16:    

          Функция   возрастает на своей области определения, как сумма двух возрастающих функций, следовательно, уравнение  имеет не более одного корня. Так как , то  — единственный корень .

Ответ:  

  • Использование суперпозиций функций                                                                  

Пример 17:    

              Запишем уравнение в виде  

       Рассмотрим функцию  — монотонно возрастающую, тогда уравнение имеет  вид  . Оно равносильно уравнению

Сделаем замену

     не удовлетворяет условию  

                                       

Ответ:

  1. Закрепление изученного материала на данном уроке и ранее пройденного, связанного с новым.

Решение уравнений в группах по 6 человек.

Ребята получают карточку с заданием. Решение уравнений обсуждают вместе, записывают его.

     После выполнения группами заданий проводится взаимопроверка. Группы меняются заданиями с решениями по кругу:

                        1                             6                             5

                         2                             3                            4

Учащиеся групп обсуждают решение, исправляют ошибки и выставляют оценки.

Потом работы с выставленными оценками возвращаются в группы для обсуждения вклада каждого в решение проблемы.

Выставляются каждому оценки с занесением в оценочную таблицу. Учитель контролирует и вносит, если нужно,  свои коррективы.

  1. Подведение итогов и результатов урока. Рефлексия.
  2. Задание на дом:

Решить уравнения:

  1. *  

Используемая литература.

  1. Чулков П.В. Материалы курса «Уравнения и неравенства в школьном курсе математики»: Лекции 1-8. – М.: Педагогический университет «Первое сентября», 2006.
  2. Дьячков А.К., Иконникова Н.И., Казак В.М., Морозова Е.В. Единый государственный экзамен. Математика. – Челябинск: Взгляд, 2006 –Ч.1,2
  3. Шарыгин И. Ф. Факультативный курс по математике: Решение задач. – М.: Просвещение, 1989
  4. Черкасов О.Ю., Якушев А.Г. Математика: интенсивный курс подготовки к экзамену. – М.: Айрис-пресс, 2004.
  5. Ершова А.П., Голобородько В.В. Самостоятельные и контрольные работы по алгебре и началам анализа для 10-11 классов. – М.: Илекса, 2006.

Задания для работы в группах:

Вариант 1(1,3,5 группы).

Решите уравнения,

используя подсказку:

  1. Возведи обе части в квадрат:

  1. Выполни замену:

  1. Найди ОДЗ:

  1. Умножай на сопряжённое выражение:

  1. Переходи к модулю:

  1. Используй свойства функций:

  1. Реши любым способом:

Вариант 2( 2,4,6 группы)

Решите уравнения,

используя подсказку:

  1. Возведи обе части в квадрат:

  1. Выполни замену:

  1. Найди ОДЗ:

  1. Умножай на сопряжённое выражение:

  1. Переходи к модулю:

  1. Используй свойства функций:

  1. Реши любым способом:

            

Проверочная работа по теме: «Методы

Вариант 1

Решите уравнения,

используя подсказку:

  1. Возведи обе части в квадрат:

   

  1. Выполни замену:

   

  1. Найди ОДЗ:

     

  1. Разложи на множители:

  1. Умножай на сопряжённое выражение:

  1. Переходи к модулю:

  1. Используй свойства функций:

  1. Реши любым способом:

     

решения иррациональных уравнений»

Вариант 2

Решите уравнения,

используя подсказку:

  1. Возведи обе части в квадрат:

     

  1. Выполни замену:

   

  1. Найди ОДЗ:

     

  1. Разложи на множители:

  1. Умножай на сопряжённое выражение:

     

  1. Переходи к модулю:

  1. Используй свойства функций:

  1. Реши любым способом:

     

17
Окт 2013

Категория: Иррациональные выражения, уравнения и неравенства

Иррациональные уравнения

2013-10-17
2016-09-14

Простейшие иррациональные уравнения мы рассматривали здесь.

шг

С простейшими иррациональными уравнениями мы сталкиваемся в части В ЕГЭ по математике.

Сегодня же работаем с иррациональными уравнениями, с которыми вы можете столкнуться в части С ЕГЭ по математике.

Предлагаю решать уравнения способом равносильных переходов.

Это не единственный способ. Можно, например, переходить к уравнениям-следствиям, после чего полученные корни подвергать проверке. Но это не всегда удобно…

Задание 1.

Решить уравнение: sqrt{x^2-5x+1}=sqrt{x-4};

Решение:+ показать

Задание 2.

Решить уравнение: sqrt{3-x}sqrt{2-x}=sqrt2.

Решение: + показать

Задание 3.

Решить уравнение: sqrt{2x^2+8x+7}-2=x.

Решение: + показать

Задание 4.

Решить уравнение: (x+2)sqrt{x^2-x-20}=6x+12.

Решение: + показать

Задание 5.

Решить уравнение: 3sqrt{x+3}-sqrt{x-2}=7.

Решение: + показать

Задание 6.

Решить уравнение: sqrt{x+1}-sqrt{2x-5}-sqrt{x-2}=0.

Решение: + показать

 Задание 7. 

Решить уравнение: sqrt{x^2-2x-8}-sqrt{x^2-16}=sqrt{3x^2-13x+4}.

Решение: + показать

Задание 8.

Решить уравнение: sqrt{17+x}+sqrt{17-x}=frac{x}{4}.

Решение: + показать

Задание 9.

Решить уравнение: sqrt{frac{20+x}{x}}+sqrt{frac{20-x}{x}}=sqrt6.

Решение: + показать

Задание 10.

Решить уравнение: x^2+sqrt{x^2+2x+8}=12-2x.

Решение: + показать

Продолжение смотрите здесь.

Задания для самостоятельной работы

Решить уравнения:

1. sqrt{x^2-4x+5}=sqrt{x-1};

Ответ: + показать

2. sqrt{x+1}sqrt{x+2}=4;

Ответ: + показать

3. sqrt{3x^2-3x+21}=x-5;

Ответ: + показать

4. (x-1)sqrt{x^2-x-6}=6x-6;

Ответ: + показать

5. sqrt{2x-3}+sqrt{4x+1}=4;

Ответ: + показать

6. sqrt{x+3}-sqrt{2x-1}-sqrt{3x-2}=0;

Ответ: + показать

7. sqrt{4x^2+9x+5}-sqrt{2x^2+x-1}=sqrt{x^2-1};

Ответ: + показать

8. (sqrt{x+1}+1)(sqrt{x+10}-4)=x;

Ответ: + показать

9. frac{sqrt{21+x}+sqrt{21-x}}{sqrt{21+x}-sqrt{21-x}}=frac{21}{x};

Ответ: + показать

10. x^2-2sqrt{x^2-24}=39;

Ответ: + показать

Автор: egeMax |

комментариев 10

Понравилась статья? Поделить с друзьями:
  • Иррациональные неравенства егэ теория
  • Иррациональные неравенства в егэ профильный уровень
  • Иррациональные выражения егэ профиль
  • Иррациональное познание егэ
  • Исключительный человек в русской литературе сочинение