Иррациональные уравнения егэ профильная математика

Skip to content

ЕГЭ Профиль №13. Иррациональные уравнения

ЕГЭ Профиль №13. Иррациональные уравненияadmin2018-08-29T20:30:33+03:00

Используйте LaTeX для набора формулы

17
Окт 2013

Категория: Иррациональные выражения, уравнения и неравенства

Иррациональные уравнения

2013-10-17
2016-09-14

Простейшие иррациональные уравнения мы рассматривали здесь.

шг

С простейшими иррациональными уравнениями мы сталкиваемся в части В ЕГЭ по математике.

Сегодня же работаем с иррациональными уравнениями, с которыми вы можете столкнуться в части С ЕГЭ по математике.

Предлагаю решать уравнения способом равносильных переходов.

Это не единственный способ. Можно, например, переходить к уравнениям-следствиям, после чего полученные корни подвергать проверке. Но это не всегда удобно…

Задание 1.

Решить уравнение: sqrt{x^2-5x+1}=sqrt{x-4};

Решение:+ показать

Задание 2.

Решить уравнение: sqrt{3-x}sqrt{2-x}=sqrt2.

Решение: + показать

Задание 3.

Решить уравнение: sqrt{2x^2+8x+7}-2=x.

Решение: + показать

Задание 4.

Решить уравнение: (x+2)sqrt{x^2-x-20}=6x+12.

Решение: + показать

Задание 5.

Решить уравнение: 3sqrt{x+3}-sqrt{x-2}=7.

Решение: + показать

Задание 6.

Решить уравнение: sqrt{x+1}-sqrt{2x-5}-sqrt{x-2}=0.

Решение: + показать

 Задание 7. 

Решить уравнение: sqrt{x^2-2x-8}-sqrt{x^2-16}=sqrt{3x^2-13x+4}.

Решение: + показать

Задание 8.

Решить уравнение: sqrt{17+x}+sqrt{17-x}=frac{x}{4}.

Решение: + показать

Задание 9.

Решить уравнение: sqrt{frac{20+x}{x}}+sqrt{frac{20-x}{x}}=sqrt6.

Решение: + показать

Задание 10.

Решить уравнение: x^2+sqrt{x^2+2x+8}=12-2x.

Решение: + показать

Продолжение смотрите здесь.

Задания для самостоятельной работы

Решить уравнения:

1. sqrt{x^2-4x+5}=sqrt{x-1};

Ответ: + показать

2. sqrt{x+1}sqrt{x+2}=4;

Ответ: + показать

3. sqrt{3x^2-3x+21}=x-5;

Ответ: + показать

4. (x-1)sqrt{x^2-x-6}=6x-6;

Ответ: + показать

5. sqrt{2x-3}+sqrt{4x+1}=4;

Ответ: + показать

6. sqrt{x+3}-sqrt{2x-1}-sqrt{3x-2}=0;

Ответ: + показать

7. sqrt{4x^2+9x+5}-sqrt{2x^2+x-1}=sqrt{x^2-1};

Ответ: + показать

8. (sqrt{x+1}+1)(sqrt{x+10}-4)=x;

Ответ: + показать

9. frac{sqrt{21+x}+sqrt{21-x}}{sqrt{21+x}-sqrt{21-x}}=frac{21}{x};

Ответ: + показать

10. x^2-2sqrt{x^2-24}=39;

Ответ: + показать

Автор: egeMax |

комментариев 10

Задание 765

Найдите корень уравнения:$$sqrt{3x-8}=5$$ 

Ответ: 11

Скрыть

ОДЗ: $$3x-8 geq 0 Leftrightarrow $$$$x geq frac{8}{3}$$
$$sqrt{3x-8}=5 Leftrightarrow$$$$(sqrt{3x-8})^{2}=5^{2} Leftrightarrow$$$$3x-8=25Leftrightarrow$$$$3x=33Leftrightarrow$$$$x=11$$

Задание 899

Решите уравнение $$ sqrt{-x^{2}}=x-x^{2} $$ .Если корней несколько, то в ответе укажите больший корень.

Ответ: 0

Скрыть

$$ sqrt{-x^2}=x-x^2 $$ $$ -x^2=x^2-2x^3+x^4 $$ $$ 2x^2-2x^3+x^4=0 $$ $$ x^2left(2-2x+x^2right)=0 $$ $$ x=0 $$ или $$ 2-2x+x^2 = 0 $$ у него решений нет

Задание 5232

Найдите корень уравнения $$sqrt[3]{2x+5}=-3$$

Ответ: -16

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$sqrt[3]{2x+5}=-3$$. Возведем обе части в куб $$2x+5=-27 Leftrightarrow$$$$2x=-27-5|:2 Leftrightarrow$$$$x=-16$$

Задание 6269

Решите уравнение $$sqrt{-2x}*sqrt{-2x+15}=4$$ . Если уравнение имеет больше одного корня, то в ответе запишите произведение корней.

Ответ: -0,5

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

Область определения: D(f) $$left{begin{matrix}-2xgeq 0\-2x+15geq 0end{matrix}right.Leftrightarrow$$ $$left{begin{matrix}xleq 0\xleq 7,5end{matrix}right.Leftrightarrow$$ $$xleq 0$$ $$sqrt{4x^{2}-30}=4Leftrightarrow$$ $$4x^{2}-30x=16Leftrightarrow$$ $$2x^{2}-15x-8=0$$ $$D=225+64=289=17^{2}$$ $$x_{1}=frac{25-17}{4}=-0,5$$ $$x_{2}=frac{15+17}{4}=8notin D(f)$$

Задание 6364

Найдите корень уравнения: $$sqrt{4x^{2}-4x+2}=sqrt{1+x-2x^{2}}$$ . Если уравнение имеет более одного корня, укажите больший из них.

Ответ: 0,5

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

Область определения D:

$$left{begin{matrix}4x^{2}-4x+2geq 0\1+x-2x^{2}geq 0end{matrix}right.$$

Возведем обе части в квадрат :

$$4x^{2}-4x+1=0Leftrightarrow$$$$6x^{2}-5x+1=0$$

$$D=25-24=1$$

$$x_{1}=frac{5+1}{12}=0,5$$

$$x_{2}=frac{5-1}{12}=frac{1}{3}$$

Оба корня попадают в D, наибольший равен 0,5

Задание 6867

Найдите корень уравнения $$2sqrt{x+1}=2-x$$ . Если корней несколько, то в ответе укажите больший из них.

Ответ: 0

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$2sqrt{x+1}=2-x$$$$Leftrightarrow$$ $$left{begin{matrix}(2sqrt{x+1})^{2} =(2-x)^{2}\2-xgeq 0end{matrix}right.$$$$Leftrightarrow$$ $$left{begin{matrix}4(x+1)=4-4x+x^{2}\xleq 2end{matrix}right.$$$$Leftrightarrow$$$$left{begin{matrix}x^{2} -8x=0\xleq 2end{matrix}right.$$$$Leftrightarrow$$ $$left{begin{matrix}left[begin{matrix}x=0\x=8end{matrix}right.\xleq 2end{matrix}right.$$$$Rightarrow$$$$x=0$$

Задание 7010

Решите уравнение $$sqrt{-2-x}*sqrt{3-2x}=3$$ . Если уравнение имеет более одного корня, в ответе укажите больший из них.

Ответ: -3

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$sqrt{-2-x}*sqrt{3-2x}=3Leftrightarrow$$ $$left{begin{matrix}-2-xgeq 0\3-2xgeq 0\(-2-x)(3-2x)=9end{matrix}right.Leftrightarrow$$ $$left{begin{matrix}xleq -2\xleq 1,5\2x^{2}+x-6-9=0end{matrix}right.Leftrightarrow$$ $$left{begin{matrix}xleq -2\2x^{2}+x-15=0end{matrix}right.Leftrightarrow$$ $$left{begin{matrix}xleq -2\left[begin{matrix}x=2,5\x=-3end{matrix}right.end{matrix}right.Leftrightarrow$$ $$x=-3$$

Задание 7626

Решите уравнение $$sqrt{-x^{2}}=x-x^{2}$$. Если корней несколько, то в ответе укажите больший корень.

Ответ: 0

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 8297

Решите уравнение $$sqrt{frac{3x+2}{5}}=x$$ . Если уравнение имеет более одного корня, в ответе укажите меньший из них.

Ответ: 1

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 8672

Решите уравнение $$frac{sqrt{x^{2}-9}-4}{sqrt{-7x}}=0$$. Если уравнение имеет несколько решений, в ответе укажите больший из них.

Ответ: -5

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 9499

Решите уравнение $$sqrt{14-7x}cdot(3-x)=0$$. Если корней несколько, в ответе укажите больший из них.

Ответ: 2

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 10205

Решите уравнение: $$sqrt{(3-6x)^2}+sqrt{(6+6^{x})(36-6^{x})}=6^{x}-3$$

Ответ: 2

Скрыть

Задание 10627

Решить уравнение: $$sqrt[3]{2x-1}+sqrt[3]{x-1}=1$$

Ответ: 1

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть
$$sqrt[3]{2x-1}+sqrt[3]{x-1}=1$$. Пусть $$fleft(xright)=sqrt[3]{2x-1};gleft(xright)=1-sqrt[3]{x-1}to fleft(xright)=g(x) $$при $$x=1$$.

Задание 10683

Решите уравнение $$left(x+4right)left(x+1right)-3sqrt{x^2+5x+2}=6$$. Если уравнение имеет несколько корней, то в ответ запишите наибольший из них.

Ответ: 2

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$left(x+4right)left(x+1right)-3sqrt{x^2+5x+2}=6$$.

Пусть $$sqrt{x^2+5x+2}=y$$, тогда $$left(x+4right)left(x+1right)=x^2+5x+4=y^2+2$$.

Получим: $$y^2+2-3y=6leftrightarrow y^2-3y-4=0leftrightarrow$$$$ left[ begin{array}{c} y_1=-1 \ y_2=4 end{array} right.$$;

$$yge 0to y=4: sqrt{x^2+5x+2}=4leftrightarrow$$$$ x^2+5x-14=0to$$$$ left[ begin{array}{c} x_1=-7 \ x_2=2 end{array} right.$$. Ответ: 2.

Задание 11077

Решить уравнение $$3sqrt{2x-3}-sqrt{48x-272}=5$$

Ответ: 6

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$3sqrt{2x-3}-sqrt{48x-272}=5$$

$$3sqrt{2x-3}-4sqrt{3x-17}=5$$

$$3sqrt{2x-3}=5+4sqrt{3x-17}$$

$$9left(2x-3right)=25+left(48x-272right)+8sqrt{3x-17}$$

$$-30x+220=40sqrt{3x-17}$$ $$22-3x=4sqrt{3x-17}$$

$$484-132x+9x^2-16left(3x-17right)=0$$

$$x^2-20+84=0to left[ begin{array}{c} x_1=14 \ x_2=6 end{array} right.$$

Подставим в первоначальное: 14 — посторонний корень.

Самостоятельная работа по теме «Иррациональные уравнения»

1 вариант

  1. Найдите корень уравнения  .

  2. Найдите корень уравнения  .

  3. Найдите корень уравнения  .

  4. Найдите корень уравнения   Если уравнение имеет более одного корня, укажите меньший из них.

  5. Найдите корень уравнения  . Если уравнение имеет более одного корня, в ответе запишите меньший из корней.

  6. Найдите корень уравнения .

  7. Найдите корень уравнения  .

  8. Найдите корень уравнения  .

  9. Найдите корень уравнения  .

Самостоятельная работа по теме «Иррациональные уравнения»

2 вариант

  1. Найдите корень уравнения  .

  2. Найдите корень уравнения  .

  3. Найдите корень уравнения  .

  4. Найдите корень уравнения   Если уравнение имеет более одного корня, укажите меньший из них.

  5. Найдите корень уравнения  . Если уравнение имеет более одного корня, в ответе запишите больший из корней.

  6. Найдите корень уравнения  .

  7. Найдите корень уравнения  .

  8. Найдите корень уравнения  .

  9. Найдите корень уравнения  .

Самостоятельная работа по теме «Иррациональные уравнения»

3 вариант

  1. Найдите корень уравнения  .

  2. Найдите корень уравнения  .

  3. Найдите корень уравнения  .

  4. Найдите корень уравнения   Если уравнение имеет более одного корня, укажите меньший из них.

  5. Найдите корень уравнения  . Если уравнение имеет более одного корня, в ответе запишите меньший из корней.

  6. Найдите корень уравнения  .

  7. Найдите корень уравнения  .

  8. Найдите корень уравнения  .

  9. Найдите корень уравнения  .

Самостоятельная работа по теме «Иррациональные уравнения»

4 вариант

  1. Найдите корень уравнения  .

  2. Найдите корень уравнения  .

  3. Найдите корень уравнения  .

  4. Найдите корень уравнения   Если уравнение имеет более одного корня, укажите меньший из них.

  5. Найдите корень уравнения  . Если уравнение имеет более одного корня, в ответе запишите больший из корней.

  6. Найдите корень уравнения  .

  7. Найдите корень уравнения  .

  8. Найдите корень уравнения  .

  9. Найдите корень уравнения  .

Самостоятельная работа по теме «Иррациональные уравнения»

5 вариант

  1. Найдите корень уравнения  .

  2. Найдите корень уравнения 

  3. Найдите корень уравнения  .

  4. Найдите корень уравнения   Если уравнение имеет более одного корня, укажите меньший из них.

  5. Найдите корень уравнения  . Если уравнение имеет более одного корня, в ответе запишите меньший из корней.

  6. Найдите корень уравнения 

  7. Найдите корень уравнения  .

  8. Найдите корень уравнения 

  9. Найдите корень уравнения  .

Самостоятельная работа по теме «Иррациональные уравнения»

5 вариант

  1. Найдите корень уравнения  .

  2. Найдите корень уравнения 

  3. Найдите корень уравнения  .

  4. Найдите корень уравнения   Если уравнение имеет более одного корня, укажите меньший из них.

  5. Найдите корень уравнения  . Если уравнение имеет более одного корня, в ответе запишите меньший из корней.

  6. Найдите корень уравнения 

  7. Найдите корень уравнения  .

  8. Найдите корень уравнения 

  9. Найдите корень уравнения  .

Ответы «Иррациональные уравнения»

1 вариант

2 вариант

3 вариант

4 вариант

5 вариант

1

2

3

6

2

6

2

602

21

137

9

87

3

35

58

151

122

16

4

-8

-8

-9

-9

-9

5

2

3

5

4

5

6

-14

-183

-8

9

-20

7

0

-887

-201

-80

-580

8

73

120

62

-29

26

9

2

4

17

4

33

Иррациональные уравнения и неравенства на егэ профиль

Автомобиль разгоняется на прямолинейном участке шоссе с постоянным ускорением a км/ч 2 . Скорость вычисляется по формуле , где l — пройденный автомобилем путь. Найдите ускорение, с которым должен двигаться автомобиль, чтобы, проехав один километр, приобрести скорость 100 км/ч. Ответ выразите в км/ч 2 .

Найдём, при каком ускорении гонщик достигнет требуемой скорости, проехав один километр. Задача сводится к решению уравнения при известном значении длины пути км:

км/ч 2 .

Если его ускорение будет превосходить найденное, то, проехав один километр, гонщик наберёт большую скорость, поэтому наименьшее необходимое ускорение равно 5000 км/ч 2 .

При движении ракеты еe видимая для неподвижного наблюдателя длина, измеряемая в метрах, сокращается по закону где м – длина покоящейся ракеты, км/с – скорость света, а – скорость ракеты (в км/с). Какова должна быть минимальная скорость ракеты, чтобы еe наблюдаемая длина стала не более 4 м? Ответ выразите в км/с.

Найдем, при какой скорости длина ракеты станет равна 4 м. Задача сводится к решению уравнения при заданном значении длины покоящейся ракеты м и известной величине скорости света км/с:

км/с.

Если скорость будет превосходить найденную, то длина ракеты будет менее 4 метров, поэтому минимальная необходимая скорость равна 180 000 км/с.

Здравствуйте! Возможно, задам крайне тупой вопрос, но.

Почему с измеряется в км/с, а «эль» в м, а в формулу подставляем без перевода к единой СИ?

Иногда в физике или технике бывает удобно записать какую-либо формулу в определённых единицах измерения, особенно часто это используется при инженерных расчётах. При этом часто получается, что одни величины измеряются, скажем, в метрах (длина трубы), другие в сантиметрах (диаметр трубы), третьи — в миллиметрах (толщина стенок трубы). Это, конечно, усложняет жизнь тем, что приходится помнить, что и в каких единицах входит в формулу, но зато не нужно каждый раз 2 метра переводить в 2000 миллиметров.

А Вам не кажется,что 18000 км/с как-то слишком много?Мы ещё не научились летать со скоростью света

Всё в порядке: скорость света 300 000 км/с, а эта — меньше. Теоретически вполне возможно.

Наблюдатель находится на высоте h, выраженной в метрах. Расстояние от наблюдателя до наблюдаемой им линии горизонта, выраженное в километрах, вычисляется по формуле где км — радиус Земли. С какой высоты горизонт виден на расстоянии 4 километров? Ответ выразите в метрах.

Задача сводится к решению уравнения при заданном значении R:

м.

Иногда в физике или технике бывает удобно записать какую-либо формулу в определённых единицах измерения, особенно часто это используется при инженерных расчётах. При этом, длины, например, могут быть выражены в различных единицах измерения. Здесь удобно использовать величины R и L, выраженные в километрах, а h, выражать в метрах. Если бы в этой формуле все величины измерялись в одних и тех же единицах измерения, то формула выглядела бы так: В формуле, приведённой в задании, коэффициент 500 как раз отражает, то что все величины, за исключением h, выражены в километрах.

В задаче все известные величины выражены в километрах. Если h=1,25 км, то в метрах это будет величина, равная 1250.

По условию данная формула справедлива для значений высот, выраженных в метрах.

Я согласна с Евгением Гудисом из Нижнего Новгорода — мы подставляем в формулу 6400 КМ, справа тоже 4КМ, возводим в квадрат, получаем слева КМ, а справа 16 КМ в квадрате! Откуда берутся метры в ответе.

Иногда в физике или технике бывает удобно записать какую-либо формулу в определённых единицах измерения, особенно часто это используется при инженерных расчётах. При этом, длины, например, могут быть выражены в различных единицах измерения. Здесь удобно использовать величины и выраженные в километрах, а выражать в метрах. Если бы в этой формуле все величины измерялись в одних и тех же единицах измерения, то формула выглядела бы так: В формуле, приведённой в задании, коэффициент 500 в знаменателе как раз отражает то, что все величины, за исключением выражены в километрах.

Расстояние (в км) от наблюдателя, находящегося на высоте h м над землeй, выраженное в километрах, до наблюдаемой им линии горизонта вычисляется по формуле где км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 4,8 км. На сколько метров нужно подняться человеку, чтобы расстояние до горизонта увеличилось до 6,4 километров?

Задача сводится к решению уравнений и при заданном значении R:

Следовательно, чтобы видеть горизонт на более далеком расстоянии, наблюдателю нужно подняться на метра.

Примечание Дмитрия Гущина.

Внимательный читатель заметит, что в условии задачи радиус Земли и расстояние до горизонта выражены в километрах, а рост человека — в метрах. В этих единицах их требуется подставлять в формулу. В этом нет ошибки: за согласование единиц отвечает коэффициент 500. Если бы в этой формуле все длины были выражены в километрах, она выглядела бы так: Но в таком виде формула менее удобна, поскольку при каждом вычислении рост человека необходимо переводить в километры. Вот почему иногда в физике или технике формулы выводят так, чтобы величины в них были выражены хоть и в несогласованных, но удобных для вычислений единицах.

Приведем пример из школьного курса физики. Когда необходимо вычислить электрическое сопротивление проводника известной длины и поперечного сечения, используют формулу Удельное сопротивление ρ в таблицах физических величин приводится в Поэтому чтобы сопротивление было в омах, длину l подставляют в формулу в метрах, а сечение S — в квадратных миллиметрах (но не в квадратных метрах, как могло бы показаться неопытному читателю). Подумайте, почему принято именно так.

решение иррациональных уравнений и неравенств
материал для подготовки к егэ (гиа) по алгебре (11 класс)

при подготовке к ЕГЭ материал «иррациональные уравнения и неравенства «являются необходимым материалом для успешной сдачи экзамена по математике в 11 классе

Скачать:

Вложение Размер
решение иррациональных уравнений и неравенств 2 части ЕГЭ 665.5 КБ

Предварительный просмотр:

уравнения и неравенства

  1. Иррациональные уравнения:
  • Решение иррациональных уравнений стандартного вида.
  • Решение иррациональных уравнений смешанного вида.
  • Решение сложных иррациональных уравнений.
  1. Иррациональные неравенства:
  • Решение иррациональных неравенств стандартного вида.
  • Решение нестандартных иррациональных неравенств.
  • Решение иррациональных неравенств смешанного вида.

I. Иррациональные уравнения

Иррациональным называется уравнение, в котором переменная содержится под знаком корня.

Решаются такие уравнения возведением обеих частей в степень. При возведении в четную степень возможно расширение области определения заданного уравнения. Поэтому при решении таких иррациональных уравнений обязательны проверка или нахождение области допустимых значений уравнений. При возведении в нечетную степень обеих частей иррационального уравнения область определения не меняется.

Иррациональные уравнения стандартного вида можно решить пользуясь следующим правилом:

Решение иррациональных уравнений стандартного вида:

а) Решить уравнение = x – 2,

2x – 1 = x 2 – 4x + 4, Проверка:

x 2 – 6x + 5 = 0, х = 5, = 5 – 2,

x 2 = 1 – постор. корень х = 1, 1 – 2 ,

Ответ: 5 пост. к. 1 -1.

б) Решить уравнение = х + 4,

в) Решить уравнение х – 1 =

х 3 – 3х 2 + 3х – 1 = х 2 – х – 1,

х 3 – 4х 2 + 4х = 0,

х = 0 или х 2 – 4х + 4 = 0,

г) Решить уравнение х – + 4 = 0,

х + 4 = , Проверка:

х 2 + 8х + 16 = 25х – 50, х = 11, 11 – + 4 = 0,

х 2 – 17х + 66 = 0, 0 = 0

х 1 = 11, х = 6, 6 – + 4 = 0,

Решение иррациональных уравнений смешанного вида:

  • Иррациональные уравнения, содержащие знак модуля:

а) Решить уравнение =

x

Учитывая ноль подкоренного выражения, данное уравнение равносильно двум системам:

или

б) Решить уравнение

, – +

Учитывая ноль подкоренного выражения, данное уравнение равносильно двум системам:

  • Иррациональные показательные уравнения:

а) Решить уравнение

Сделаем обратную замену:

– ( ур-ние не имеет решений) x = 3.

б) Решить уравнение

Приведем все степени к одному основанию 2:

данное уравнение равносильно уравнению:

  • Иррациональное уравнение, содержащее иррациональность четной степени:

возведем обе части уравнения в квадрат

  • Иррациональное уравнение, содержащее иррациональность нечетной степени:

Решить уравнение

возведем обе части уравнения в куб

возведем обе части уравнения в куб

  • Иррациональные уравнения, которые решаются заменой:

а) Решить уравнение

Пусть = t, тогда = , где t > 0

Сделаем обратную замену:

= 2, возведем обе части в квадрат

б) Решить уравнение

Пусть = t, значит = , где t > 0

Сделаем обратную замену:

= 2, возведем обе части уравнения в четвертую степень

x + 8 = 16, Проверка:

в) Решить уравнение

Пусть = t, где t > 0

Сделаем обратную замену:

= 2, возведем обе части уравнения в квадрат

Решение сложных иррациональных уравнений:

  • Иррациональное уравнение, содержащее двойную иррациональность:

возведем обе части уравнения в куб

возведем обе части уравнения в квадрат

t 2 – 11t + 10 = 0,

Сделаем обратную замену: Проверка:

= 10, или = 1, x = ,

x = -пост. корень 0

  • Иррациональные логарифмические уравнения:

а) Решить уравнение lg3 + 0,5lg(x – 28) = lg

lg3 + 0,5lg(x – 28) = lg ,

Учитывая ОДЗ, данное уравнение равносильно системе:

б) Решить уравнение

IV. Иррациональные неравенства

Неравенства называются иррациональными, если его неизвестное входит под знак корня (радикала).

Иррациональное неравенство вида равносильно системе неравенств:

Иррациональное неравенство вида равносильно совокуп-ности двух систем неравенств:

Решение иррациональных неравенств стандартного вида:

а) Решить неравенство

Данное неравенство равносильно системе неравенств:

+ – +

Ответ: [1; 2) . 1 3 x

б) Решить неравенство

Данное неравенство равносильно двум системам неравенств:

в) Решить неравенство

Данное неравенство равносильно системе неравенств:

Ответ: нет решений

Решение иррациональных неравенств нестандартного вида:

а) Решить неравенство

Данное неравенство равносильно системе неравенств:

б) Решить неравенство

Данное неравенство равносильно системе неравенств:

  • Решение иррациональных неравенств с помощью правила знаков при умножении и делении:

а) Решить неравенство

Учитывая то, что и правило знаков при делении данное неравенство равносильно системе неравенств:

б) Решить неравенство (2x – 5)

Учитывая то, что и правило знаков при делении данное неравенство равносильно системе неравенств:

  • Решение иррациональных неравенств способом группировки:

сгруппируем по два слагаемых

вынесем общий множитель за скобку

учитывая, что > 0 и правило знаков при умножении данное неравенство равносильно системе неравенств:

  • Иррациональное неравенство, содержащее два знака иррациональности:

Данное неравенство равносильно системе неравенств:

  • Решение иррациональных неравенств заменой:

Пусть = t, тогда = , t > 0

Сделаем обратную замену:

возведем в квадрат обе части неравенства

Решение иррациональных неравенств смешанного вида:

  • Иррациональные показательные неравенства:

а) Решить неравенство

Нули функции: x 1 = 4; x 2 = – 1. –1 4 x

б) Решить неравенство 4 – 2 – 32

4 – 2 – 32, ОДЗ: x > 0

2 – 2 2 2 4 – 2 5 , выполним группировку слагаемых

2 (2 – 2) – 2 4 (2 –2)

(2 – 2) (2 – 2 4 ) , учитывая правило знаков и ОДЗ данное неравенство равносильно 2-м системам:

т.к. y = 2 t , то т.к. y = 2 t , то

  • Решение иррациональных логарифмических неравенств:

уч. ОДЗ данное нер-во равносильно системе нер-ств

Иррациональные уравнения

Уравнения, содержащие неизвестную под знаком корня, называются иррациональными.

Чтобы решить иррациональное уравнение, необходимо:

  1. Преобразовать заданное иррациональное уравнение к виду: $√=g(x)$ или $√=√$
  2. Обе части уравнение возвести в квадрат: $√^2=(g(x))^2$ или $√^2=√^2$
  3. Решить полученное рациональное уравнение.
  4. Сделать проверку корней, так как возведение в четную степень может привести к появлению посторонних корней. (Проверку можно сделать при помощи подстановки найденных корней в исходное уравнение.)

Решите уравнение $√<4х-3>=х$. Если уравнение имеет более одного корня, укажите наименьший из них.

Обе части уравнение возведем в квадрат:

Получаем квадратное уравнение:

Перенесем все слагаемые в левую часть уравнения:

Решим данное квадратное уравнение устным способом, так как

Проведем проверку корней, подставив их вместо икса в исходное уравнение

$1=1$, получили в результате проверки верное равенство, следовательно $х_1=1$ подходит.

$3=3$, получили в результате проверки верное равенство, следовательно корень $х_2=3$ подходит

$х_1=1$ наименьший корень.

Так как в иррациональных уравнениях иногда необходимо возводить в квадрат не только число, но и целое выражение, необходимо вспомнить формулы сокращенного умножения:

  1. Квадрат разности двух чисел равен квадрату первого числа минус удвоенное произведение первого на второе число плюс квадрат второго числа. $(a-b)^2=a^2-2ab+b^2$
  2. Квадрат суммы двух чисел равен квадрату первого числа плюс удвоенное произведение первого числа на второе плюс квадрат второго числа. $(a+b)^2=a^2+2ab+b^2$

Решить уравнение: $х-6=√<8-х>$

Возведем обе части уравнения в квадрат

В левой части уравнения при возведении в квадрат получаем формулу сокращенного умножения квадрат разности. В правой части уравнения квадрат и корень компенсируют друг друга и в результате остается только подкоренное выражение

Получили квадратное уравнение. Все слагаемые переносим в левую часть уравнения. При переносе слагаемых через знак равно их знаки меняются на противоположные.

Приводим подобные слагаемые:

Найдем корни уравнения через дискриминант:

Проведем проверку корней, подставив их вместо икса в исходное уравнение

$1=1$, получили верное равенство, следовательно, корень нам подходит.

$-2=2$, получили неверное равенство, следовательно, данный корень посторонний.

источники:

http://nsportal.ru/shkola/algebra/library/2019/07/10/reshenie-irratsionalnyh-uravneniy-i-neravenstv

http://examer.ru/ege_po_matematike/teoriya/irracionalnye_uravneniya

Понравилась статья? Поделить с друзьями:
  • Иррациональные уравнения в заданиях егэ по математике
  • Иррациональные уравнения 10 класс решу егэ
  • Иррациональные тригонометрические уравнения егэ
  • Иррациональные неравенства егэ теория
  • Иррациональные неравенства в егэ профильный уровень