Исследование частных производная решу егэ



СДАМ ГИА:

РЕШУ ЕГЭ

Образовательный портал для подготовки к экзаменам

Математика профильного уровня

Математика профильного уровня

≡ Математика

Базовый уровень

Профильный уровень

Информатика

Русский язык

Английский язык

Немецкий язык

Французский язык

Испанский язык

Физика

Химия

Биология

География

Обществознание

Литература

История

Сайты, меню, вход, новости

СДАМ ГИАРЕШУ ЕГЭРЕШУ ОГЭРЕШУ ВПРРЕШУ ЦТ

Об экзамене

Каталог заданий

Варианты

Ученику

Учителю

Школа

Эксперту

Справочник

Карточки

Теория

Сказать спасибо

Вопрос — ответ

Чужой компьютер

Зарегистрироваться

Восстановить пароль

Войти через ВКонтакте

Играть в ЕГЭ-игрушку

Новости

10 марта

Как подготовиться к ЕГЭ и ОГЭ за 45 дней

6 марта

Изменения ВПР 2023

3 марта

Разместили утвержденное расписание ЕГЭ

27 января

Вариант экзамена блокадного Ленинграда

23 января

ДДОС-атака на Решу ЕГЭ. Шантаж.

6 января

Открываем новый сервис: «папки в избранном»

22 декабря

От­кры­ли но­вый пор­тал Ре­шу Олимп. Для под­го­тов­ки к пе­реч­не­вым олим­пи­а­дам!

4 ноября

Материалы для подготовки к итоговому сочинению 2022–2023

31 октября

Сертификаты для учителей о работе на Решу ЕГЭ, ОГЭ, ВПР

21 марта

Новый сервис: рисование

31 января

Внедрили тёмную тему!

НАШИ БОТЫ

Все новости

ЧУЖОЕ НЕ БРАТЬ!

Экзамер из Таганрога

10 апреля

Предприниматель Щеголихин скопировал сайт Решу ЕГЭ

Наша группа

Каталог заданий.
Исследование частных


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Тип 11 № 77467

Найдите точку максимума функции y= минус дробь: числитель: x в квадрате плюс 289, знаменатель: x конец дроби .

Аналоги к заданию № 77467: 129843 129871 523993 524020 548510 548529 129845 129847 129849 129851 … Все

Кодификатор ФИПИ/Решу ЕГЭ: 3.2.1 Монотонность функции. Промежутки возрастания и убывания, 3.2.5 Точки экстремума функции, 3.2.6 Наибольшее и наименьшее значения функции, 4.2.1 Применение производной к исследованию функций и построению графиков, Наименьшее (наибольшее) значение функции на бесконечном промежутке

Решение

·

·

Курс Д. Д. Гущина

·

Сообщить об ошибке · Помощь


2

Тип 11 № 77468

Найдите точку минимума функции y= минус дробь: числитель: x в квадрате плюс 1, знаменатель: x конец дроби .

Аналоги к заданию № 77468: 129873 129899 129901 129875 129877 129879 129881 129883 129885 129887 … Все

Кодификатор ФИПИ/Решу ЕГЭ: 3.2.1 Монотонность функции. Промежутки возрастания и убывания, 3.2.5 Точки экстремума функции, 3.2.6 Наибольшее и наименьшее значения функции, 4.2.1 Применение производной к исследованию функций и построению графиков, Наименьшее (наибольшее) значение функции на бесконечном промежутке

Решение

·

·

Курс Д. Д. Гущина

·

1 комментарий · Сообщить об ошибке · Помощь


3

Тип 11 № 77469

Найдите наименьшее значение функции y= дробь: числитель: x в квадрате плюс 25, знаменатель: x конец дроби на отрезке  левая квадратная скобка 1;10 правая квадратная скобка .

Аналоги к заданию № 77469: 129903 129931 129905 129907 129909 129911 129913 129915 129917 129919 … Все

Кодификатор ФИПИ/Решу ЕГЭ: 3.2.1 Монотонность функции. Промежутки возрастания и убывания, 3.2.5 Точки экстремума функции, 3.2.6 Наибольшее и наименьшее значения функции, 4.2.1 Применение производной к исследованию функций и построению графиков, Наименьшее (наибольшее) значение функции во внутренней точке отрезка

Решение

·

·

Курс Д. Д. Гущина

·

Сообщить об ошибке · Помощь


4

Тип 11 № 77470

Найдите наибольшее значение функции y= дробь: числитель: x в квадрате плюс 25, знаменатель: x конец дроби на отрезке  левая квадратная скобка минус 10; минус 1 правая квадратная скобка .

Аналоги к заданию № 77470: 129933 129961 129935 129937 129939 129941 129943 129945 129947 129949 … Все

Кодификатор ФИПИ/Решу ЕГЭ: 3.2.1 Монотонность функции. Промежутки возрастания и убывания, 3.2.5 Точки экстремума функции, 3.2.6 Наибольшее и наименьшее значения функции, 4.2.1 Применение производной к исследованию функций и построению графиков, Наименьшее (наибольшее) значение функции на бесконечном промежутке

Решение

·

·

Курс Д. Д. Гущина

·

Сообщить об ошибке · Помощь


5

Тип 11 № 77471

Найдите точку максимума функции y= дробь: числитель: 16, знаменатель: x конец дроби плюс x плюс 3.

Аналоги к заданию № 77471: 129965 129963 130011 129967 129969 129971 129973 129975 129977 129979 … Все

Кодификатор ФИПИ/Решу ЕГЭ: 3.2.1 Монотонность функции. Промежутки возрастания и убывания, 3.2.5 Точки экстремума функции, 3.2.6 Наибольшее и наименьшее значения функции, 4.2.1 Применение производной к исследованию функций и построению графиков, Наименьшее (наибольшее) значение функции на бесконечном промежутке

Решение

·

·

Курс Д. Д. Гущина

·

1 комментарий · Сообщить об ошибке · Помощь

Пройти тестирование по этим заданиям

О проекте · Редакция · Правовая информация · О рекламе

© Гущин Д. Д., 2011—2023

Задание 11 первой части Профильного ЕГЭ по математике — это нахождение точек максимума и минимума функции, а также наибольших и наименьших значений функции с помощью производной.

Вот какие типы задач могут встретиться в этом задании:

Нахождение точек максимума и минимума функций

Исследование сложных функций

Нахождение наибольших и наименьших значений функций на отрезке

Нахождение точек максимума и минимума функций

1. Найдите точку максимума функции displaystyle y=-{{x^2+289}over{x}}.

Найдем производную функции.

Приравняем производную к нулю. Получим:

x^2=289Leftrightarrow left[ begin{array}{c}  x=17, hfill \ x=-17. end{array} right.

Исследуем знаки производной.

В точке x = 17 производная y меняет знак с «плюса» на «минус». Значит, x= 17 — точка максимума функции y(x).

Ответ: 17.

2. Найдите точку минимума функции y=2x^2-5x+lnx-3.

Найдем производную функции.

y{

Приравняем производную к нулю.

4x-5+{{1}over{x}}=0Leftrightarrow 4x^2-5x+1=0Leftrightarrow left[ begin{array}{c}  x=1, \ x={{1}over{4}}. end{array} right.

Определим знаки производной.

В точке x = 1 производная y меняет знак с «минуса» на «плюс». Значит, x= 1 — точка минимума функции y(x).

Ответ: 1.

Исследование сложных функций

3. Найдите точку максимума функции y=2^{5-8x-x^2}.

Перед нами сложная функция y=2^{5-8x-x^2}. Возможно, вы знаете формулы производной сложной функции. Но вообще-то их изучают на первом курсе вуза, поэтому мы решим задачу более простым способом.

Так как функция y=2^t монотонно возрастает, точка максимума функции y=2^{5-8x-x^2} будет при том же x_0, что и точка максимума функции tleft(xright)=5-8x-x^2. А ее найти легко.

t^{

t^{ при x=-4. В точке x = -4 производная {{ t}}^{{ меняет знак с «плюса» на «минус». Значит, x= - 4 — точка максимума функции { t}left({ x}right).

Заметим, что точку максимума функции tleft(xright)=5-8x-x^2 можно найти и без производной.

Графиком функции tleft(xright) является парабола ветвями вниз, и наибольшее значение tleft(xright) достигается в вершине параболы, то есть при x=-frac{8}{2}=-4.

Ответ: — 4.

4. Найдите абсциссу точки максимума функции y=sqrt{4-4x-x^2}.

Напомним, что абсцисса — это координата по X.

Снова сложная функция. Применяем тот же прием, что и в предыдущей задаче.

Так как функция y=sqrt{z} монотонно возрастает, точка максимума функции y=sqrt{4-4x-x^2} является и точкой максимума функции tleft(xright)=4-4x-x^2.

Это вершина квадратичной параболы tleft(xright)=4-4x-x^2;x_0=frac{-4}{2}=-2.

Нахождение наибольших и наименьших значений функций на отрезке

5. Найдите наибольшее значение функции y=x^3+2x^2-4x+4 на отрезке [-2;0].

Мы помним, что наибольшее значение функции на отрезке может достигаться либо в точке максимума, либо на конце отрезка. Эти случаи показаны на рисунке.

Будем искать точку максимума функции y=x^3+2x^2-4x+4 с помощью производной. Найдем производную и приравняем ее к нулю.

y

y

{3x}^2+4x-4=0;

D=64;x=frac{-4pm 8}{6};x_1=frac{2}{3},x_2=-2.

Найдем знаки производной.

В точке x = - 2 производная равна нулю и меняет знак с «+» на «-«. Значит, x = — 2 — точка максимума функции y(x). Поскольку при xin [-2;0] функция y(x) убывает, y_{max}left(xright)=yleft(-2right)=12. В этой задаче значение функции на концах отрезка искать не нужно.

Ответ: 12.

6. Найдите наименьшее значение функции y={4x}^2-10x+2lnx-5 на отрезке [0,3;3].

Найдем производную функции y={4x}^2-10x+2lnx-5 и приравняем ее к нулю.

y при x_1=1,x_2=frac{1}{4}.

Найдем знаки производной.

Точка x_1=1 — точка минимума функции yleft(xright). Точка x_2=frac{1}{4} не лежит на отрезке [0,3;1]. Поэтому

 и  Значит, наименьшее значение функции на отрезке left[0,3;1right] достигается при x=1. Найдем это значение.

y_{min}left(xright)=yleft(1right)=4-10-5=-11.

Ответ: -11.

7. Найдите наименьшее значение функции y=9x-{ln left(9xright)}+3 на отрезке left[frac{1}{18};frac{5}{18}right].

Иногда перед тем, как взять производную, формулу функции полезно упростить.

y=9x-{ln left(9xright)}+3=9x-{ln 9-{ln x}}+3.

Мы применили формулу для логарифма произведения. y при x=frac{1}{9}.

Если  то  Если , то 

Значит, x=frac{1}{9} — точка минимума функции y(x). В этой точке и достигается наименьшее значение функции на отрезке left[frac{1}{18};frac{5}{18}right].

y_{min}left(xright)=yleft(frac{1}{2}right)=1+3=4.

Ответ: 4.

8. Найдите наибольшее значение функции y(x)=14x-7tgx-3,5pi +11 на отрезке left[-frac{pi }{3};frac{pi }{3}right].

Найдем производную функции y(x)=14x-7tgx-3,5pi +11. y

Приравняем производную к нулю: 14-frac{7}{{cos}^2x}=0.

{cos}^2x=frac{1}{2}.

{cos}^2x=pm frac{1}{sqrt{2}}=pm frac{sqrt{2}}{2}. Поскольку xin left[-frac{pi }{3};frac{pi }{3}right], y если x=pm frac{pi }{4}.

Найдем знаки производной на отрезке left[-frac{pi }{3};frac{pi }{3}right].

При x=frac{pi }{4} знак производной меняется с «плюса» на «минус». Значит, x=frac{pi }{4} — точка максимума функции y(x).

Мы нашли точку максимума, но это еще не все. Сравним значения функции в точке максимума и на конце отрезка, то есть при x=-frac{pi }{3} и x =frac{pi }{4}.

yleft(frac{pi }{4}right)=-7+11=4;

Мы нашли, что y_{max}left(xright)=yleft(frac{pi }{4}right)=-7+11=4.

Заметим, что если вам попадется такая задача в первой части ЕГЭ по математике, то находить значение функции при -frac{pi }{3} не обязательно. Как мы видим, это значение — число иррациональное. А в первой части ЕГЭ по математике ответом может быть только целое число или конечная десятичная дробь.

Ответ: 4.

9. Найдите наименьшее значение функции y=e^{2x}-{8e}^x+9 на отрезке [0;2].

Снова сложная функция. Запишем полезные формулы:

{{(e}^{-x})}^{

{left(e^{cx}right)}^{

{(e}^{x+a})

Найдем производную функции y=e^{2x}-{8e}^x+9.

y

y если e^x=4. Тогда x=ln4.

 При x=ln4 знак производной меняется с «минуса» на «плюс». Значит, x=ln4 — точка минимума функции y(x). yleft(ln4right)=4^2-8cdot 4+9=16-32+9=-7.

Ответ: -7.

10. Найдите наибольшее значение функции y=12cosx+6sqrt{3}x-2sqrt{3}pi +6 на отрезке left[0;frac{pi }{2}.right]

Как всегда, возьмем производную функции и приравняем ее к нулю.

y

y 12sinx=6sqrt{3};

sinx=frac{sqrt{3}}{2}.

По условию, xin left[0;frac{pi }{2}right]. На этом отрезке условие sinx=frac{sqrt{3}}{2} выполняется только для x=frac{pi }{3}. Найдем знаки производной слева и справа от точки x=frac{pi }{3}.

В точке x_0=frac{pi }{3} производная функции меняет знак с «плюса» на «минус». Значит, точка x_0=frac{pi }{3} — точка максимума функции y(x). Других точек экстремума на отрезке left[0;frac{pi }{2}right] функция не имеет, и наибольшее значение функции { y=12cosx+6}sqrt{{ 3}}{ }{ x}{ -}{ 2}sqrt{{ 3}}{ }pi { +6} на отрезке left[{ 0};frac{pi }{{ 2}}right] достигается при { x=}frac{pi }{{ 3}}.

y_{max}left(xright)=yleft(frac{pi }{3}right)=12.

Ответ: 12.

11.Найдите наименьшее значение функции y=16x-6sinx+6 на отрезке left[0;frac{pi }{2}right].

Найдем производную функции и приравняем ее к нулю.  — нет решений.

Что это значит? Производная функции y=16x-6sinx+6 не равна нулю ни в какой точке. Это значит, что знак производной в любой точке одинаков, а функция не имеет экстремумов и является монотонной.

Поскольку cosxle 1, получим, что  для всех x, и функция yleft(xright)=16x-6sinx+6 монотонно возрастает при xin left[0;frac{pi }{2}right].

Значит, наименьшее свое значение функция принимает в левом конце отрезка left[{ 0};frac{pi }{{ 2}}right], то есть при x=0.

y_{min}left(xright)=yleft(0right)=6.

Ответ: 6

Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Задание 11 Профильного ЕГЭ по математике» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
09.03.2023

В задаче 11 предлагается исследовать функцию с помощью производной. Это стандартная задача по математическому анализу, и ее сложность сильно меняется в зависимости от рассматриваемой функции: некоторые решаются буквально устно, другие требуют серьезных размышлений.

Все задачи 11 делятся на два класса, каждому из них будет посвящен отдельный цикл уроков и тестов:

  1. Найти точку максимума или минимума — значение переменной, при которой функция достигает наибольшего (наименьшего) значения. Такие точки еще называются точками экстремума;
  2. Найти наибольшее или наименьшее значение самой функции на отрезке. Если отрезок не указан, работаем на всей числовой прямой. Другое название таких значений — глобальные экстремумы.

Большинство задач 11 решаются через производную. Но есть такие, которые считаются «напролом», без всяких производных — достаточно внимательно читать условие. Это замечание настолько важно, что ему будет посвящен отдельный урок.

§ 1.
Разбор нестандартных задач 12 с логарифмами и тригонометрией из пробников ЕГЭ-2016.
Глава 1.
Общая схема решения
§ 1.
Общая схема решения задач B15
§ 2.
Задача B15 — исследование функции с помощью производной
§ 3.
Задача B15: Решение сложных задач и производная частного
§ 4.
B15: Линейные функции и производная частного
§ 5.
Задача B15: что делать с квадратичной функцией
§ 6.
Задача B15: Когда без производной сложной функции не обойтись?
Глава 2.
Производная логарифма и экспоненты
§ 1.
Специфика работы с логарифмами в задаче B15
§ 2.
Показательные функции в задаче B15
§ 3.
Задача B15: частный случай при работе с квадратичной функцией
§ 4.
Сводный тест по задачам B15 (1 вариант)
§ 5.
Сводный тест по задачам B15 (2 вариант)
Глава 3.
Производная в тригонометрии и корнях
§ 1.
Тригонометрические функции
§ 2.
Задача B15: Линейные выражения под знаком тригонометрической функции
§ 3.
Сложные задачи B15: комбинация тригонометрии и многочленов
§ 4.
Иррациональные функции в задаче B15: показательная функция и линейная замена
Глава 4.
Хитрости и нестандартные методы
§ 1.
Как решать задачи B15 без производных
§ 2.
Показательные функции в задаче B15: хитрости решения
§ 3.
Задача B15: работаем с показательной функцией без производной
§ 4.
Тригонометрия в задаче B15: решаем без производных
§ 5.
Как считать логарифмы еще быстрее

12. Исследование функций с помощью производной


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Исследование функций с помощью производной


Задание
1

#2390

Уровень задания: Легче ЕГЭ

Найдите точку максимума функции (y = -x^2).

ОДЗ: (x) – произвольный.

1) [y’ = -2x]

Найдём критические точки (то есть внутренние точки области определения функции, в которых её производная равна (0) или не существует): [-2x = 0qquadLeftrightarrowqquad x = 0,.] Производная существует при любом (x).

2) Найдём промежутки знакопостоянства (y’):

3) Эскиз графика:

Таким образом, (x = 0) – точка максимума функции (y).

Ответ: 0


Задание
2

#2391

Уровень задания: Легче ЕГЭ

Найдите точку минимума функции (y = x^2 + 2x + 2) на отрезке ([-2; 2]).

ОДЗ: (x) – произвольный.

1) [y’ = 2x + 2]

Найдём критические точки (то есть внутренние точки области определения функции, в которых её производная равна (0) или не существует): [2x + 2 = 0qquadLeftrightarrowqquad x = -1,.] Производная существует при любом (x).

2) Найдём промежутки знакопостоянства (y’):

3) Найдём промежутки знакопостоянства (y’) на рассматриваемом отрезке ([-2; 2]):

4) Эскиз графика на отрезке ([-2; 2]):

Таким образом, (x = -1) – точка минимума функции (y) на ([-2; 2]).

Ответ: -1


Задание
3

#2392

Уровень задания: Легче ЕГЭ

Найдите точку минимума функции (y = 3x^2 — 6x + pi) на отрезке ([-3; 3]).

ОДЗ: (x) – произвольный.

1) [y’ = 6x — 6]

Найдём критические точки (то есть внутренние точки области определения функции, в которых её производная равна (0) или не существует): [6x — 6 = 0qquadLeftrightarrowqquad x = 1,.] Производная существует при любом (x).

2) Найдём промежутки знакопостоянства (y’):

3) Найдём промежутки знакопостоянства (y’) на рассматриваемом отрезке ([-3; 3]):

4) Эскиз графика на отрезке ([-3; 3]):

Таким образом, (x = 1) – точка минимума функции (y) на ([-3; 3]).

Ответ: 1


Задание
4

#2691

Уровень задания: Равен ЕГЭ

Найдите точку локального минимума функции (y = x^3 — 3x).

ОДЗ: (x) – произвольный.

1) [y’ = 3x^2 — 3]

Найдём критические точки (то есть внутренние точки области определения функции, в которых её производная равна (0) или не существует): [3x^2 — 3 = 0qquadLeftrightarrowqquad x = pm 1,.] Производная существует при любом (x).

2) Найдём промежутки знакопостоянства (y’):

3) Эскиз графика (y):

Таким образом, (x = 1) – точка локального минимума функции (y).

Ответ: 1


Задание
5

#2710

Уровень задания: Равен ЕГЭ

Найдите точку локального максимума функции

(y = x^3 — 15x^2 + 48x + e).

1) (y’ = 3x^2 — 30x + 48 = 3(x^2 — 10x + 16)).

Найдём критические точки (то есть внутренние точки области определения функции, в которых её производная равна (0) или не существует):

[3(x^2 — 10x + 16) = 0qquadLeftrightarrowqquad x^2 — 10x + 16 = 0,] откуда находим (x_1 = 2, x_2 = 8) . Таким образом, [y’ = 3(x — 2)(x — 8).] Для того, чтобы найти точки локального максимума/минимума функции, нужно понять, как схематично выглядит её график.

2) Найдём промежутки знакопостоянства (y’):

3) Эскиз графика (y):

Таким образом, (x = 2) – точка локального максимума функции (y).

Ответ: 2


Задание
6

#869

Уровень задания: Равен ЕГЭ

Найдите точку локального максимума функции (y = dfrac{1}{3}x^3 — 8x^2 + 55x + 11).

1) (y’ = x^2 — 16x + 55).

Найдём критические точки (то есть внутренние точки области определения функции, в которых её производная равна (0) или не существует):

(x^2 — 16x + 55 = 0), откуда находим корни (x_1 = 5, x_2 = 11). Таким образом, [y’ = (x-5)(x-11).] Для того, чтобы найти точки локального максимума/минимума функции, нужно понять, как схематично выглядит её график.

2) Найдём промежутки знакопостоянства (y’):

3) Эскиз графика (y):

Таким образом, (x = 5) – точка локального максимума функции (y).

Ответ: 5


Задание
7

#868

Уровень задания: Равен ЕГЭ

Найдите точку локального минимума функции (y = dfrac{1}{3}x^3 — 3x^2 + 8x + 2).

1) (y’ = x^2 — 6x + 8) .

Найдём критические точки (то есть внутренние точки области определения функции, в которых её производная равна (0) или не существует):

(x^2 — 6x + 8 = 0), откуда находим корни (x_1 = 2, x_2 = 4). Таким образом, [y’ = (x-2)(x-4).] Для того, чтобы найти точки локального максимума/минимума функции, нужно понять, как схематично выглядит её график.

2) Найдём промежутки знакопостоянства (y’):

3) Эскиз графика (y):

Таким образом, (x = 4) – точка локального минимума функции (y).

Ответ: 4

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Skip to content

ЕГЭ Профиль №7. Применение производной к исследованию функций

ЕГЭ Профиль №7. Применение производной к исследованию функцийadmin2018-11-29T18:58:03+03:00


Задача 1. Найдите точку максимума функции y=x^3-108x+11.

Решение: + показать


Задача 2. Найдите точку минимума функции y=21x^2-x^3+17.

Решение: + показать


Задача 3. Най­ди­те наи­мень­шее зна­че­ние функ­ции y=x^3-15x^2+19 на от­рез­ке [5;15].

Решение: + показать


Задача 4. Найдите наибольшее значение функции  y=2+9x-frac{x^3}{3} на отрезке [2;6].

Решение: + показать


Задача 5. Найдите наибольшее значение функции y=3x^5-20x^3-54 на отрезке [-4;-1].

Решение: + показать


Задача 6. Найдите наибольшее значение функции y=-3x^5-6x^3+14  на отрезке [-1;8].

Решение: + показать


Задача 7. Най­ди­те точку мак­си­му­ма функ­ции y=6+12x-2x^{frac{3}{2}}.

Решение: + показать


Задача 8. Найдите наибольшее значение функции y=-frac{2}{3}xsqrt x+3x+8 на отрезке [1;9].

Решение: + показать


Задача 9. Най­ди­те точку минимума функ­ции y=-frac{x^2+25}{x}.

Решение: + показать


Задача 10. Най­ди­те наи­мень­шее зна­че­ние функ­ции y=frac{x^2+900}{x} на [3;40].

 Решение: + показать


Задача 11. Найдите точку максимума функции y=frac{441}{x}+x+18.

Решение: + показать


Задача 12. Най­ди­те точку ми­ни­му­ма функ­ции y=(3x^2-15x+15)e^{x-15}.

Решение: + показать


Задача 13. Найдите точку максимума функции y=(x+11)^2cdot e^{3-x}.

Решение: + показать


Задача 14. Най­ди­те наи­мень­шее зна­че­ние функ­ции y=(x-3)^2(x-6)-1 на  отрезке [4;6].

Решение: + показать


Задача 15. Най­ди­те наи­боль­шее зна­че­ние функ­ции y=ln(x+4)^9-9x  на от­рез­ке [-3,5;0].

Решение: + показать


Задача 16. Найдите наименьшее значение функции y=6x-ln(6x)+17  на отрезке [frac{1}{12};frac{5}{12}].

Решение: + показать


Задача 17.  Найдите наименьшее значение функции y=2x^2-3x-lnx+13 на отрезке [frac{3}{4};frac{5}{4}].

Решение: + показать


Задача 18. Най­ди­те наи­мень­шее зна­че­ние функ­ции y=e^{2x}-11e^x-1  на от­рез­ке [-1;2].

Решение: + показать


Задача 19. Най­ди­те наи­боль­шее зна­че­ние функ­ции y=12sqrt{2}cosx+12x-3pi+9  на от­рез­ке [0;frac{pi}{2}].

Решение: + показать


Задача 20. Най­ди­те наи­мень­шее зна­че­ние функ­ции y=-4x+2tgx+pi+16 на от­рез­ке [-frac{pi}{3};frac{pi}{3}].

Решение: + показать


Задача 21. Най­ди­те наи­боль­шее зна­че­ние функ­ции y=9cosx+15x-4  на от­рез­ке [-frac{3pi}{2};0] .

Решение: + показать


Задача 22.  Найдите наименьшее значение функции y=4cosx+frac{15}{pi}x+9  на отрезке [-frac{2pi}{3};0].

Решение: + показать


Задача 23.  Найдите наименьшее значение функции y=5tgx-5x+6  на отрезке [0;frac{pi}{4}].

Решение: + показать


Задача 24. Най­ди­те точку ми­ни­му­ма функ­ции y=(3-2x)cosx+2sinx+19, при­над­ле­жа­щую про­ме­жут­ку (0;frac{pi}{2}).

Решение: + показать


* Замечание. Важно!  

Не следует считать (могло сложиться такое мнение при разборе примеров выше), что наименьшее (наибольшее) значение функции на отрезке совпадает с минимумом (максимумом) на отрезке!

Например, на рисунке ниже наименьшее значение функции  на отрезке [a;b] достигается на конце отрезка [a;b], а именно, в точке x=b.

hj


То есть, вообще говоря, при нахождении наименьшего значения функции на отрезке [a;b] следует выбрать наименьшую из величин:

1) y(x_{min}) (их может быть несколько) из рассматриваемого отрезка [a;b]

2) y(a),  y(b).


При нахождении наибольшего значения функции на отрезке [a;b] следует выбрать большую из величин:

1) y(x_{max}) (их может быть несколько) из рассматриваемого отрезка [a;b]

2) y(a),  y(b).


Но, если, например, на рассматриваемом отрезке функция имеет только один экстремум – минимум и мы ищем наименьшее значение, то отпадает необходимость находить значения функции на концах отрезка.

Аналогично в случае с нахождением наибольшего значения функции на отрезке, на котором содержится только один экстремум – максимум.


В случае же, когда на отрезке рассматриваемом функция не имеет экстремумов, то для нахождения наибольшего/наименьшего значений требуется лишь сравнить эти самые значения функции на концах отрезка и взять наибольшее/наименьшее из них.


тест

Вы можете пройти тест  “Исследование функции при помощи производной”

Понравилась статья? Поделить с друзьями:
  • Исследование функций математика егэ
  • Исследование функции егэ профильного уровня
  • Исследование функции без помощи производной решу егэ
  • Испытывать потребовать ливневые дожди ослабевать задумчивый егэ
  • Испытуемый пробежал 3 километра егэ биология