Всего: 211 1–20 | 21–40 | 41–60 | 61–80 …
Добавить в вариант
Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.
Найдите площадь треугольника, изображённого на клетчатой бумаге с размером клетки 1 см х 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.
Источник: Яндекс: Тренировочная работа ЕГЭ по математике. Вариант 1.
Найдите площадь четырёхугольника, изображённого на клетчатой бумаге с размером клетки 1х1.
Найдите площадь четырёхугольника, изображённого на клетчатой бумаге с размером клетки 1х1.
Найдите площадь треугольника, изображённого на клетчатой бумаге с размером клетки 1 см × 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.
Источник: Пробный ЕГЭ по математике, Санкт-Петербург, 19.03.2019. Вариант 2
Найдите площадь треугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.
Источник: ЕГЭ по математике 29.06.2021. Резервная волна. Центр. Вариант 402
Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.
Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.
Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см × 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.
На клетчатой бумаге с размером клетки изображён круг. Найдите площадь закрашенного сектора. Ответ дайте в квадратных сантиметрах.
Найдите площадь прямоугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.
Источник: Пробный экзамен Санкт-Петербург 2015. Вариант 2., Пробный экзамен по математике Санкт-Петербург 2015. Вариант 2.
Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.
Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.
Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.
Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.
Найдите площадь ромба, изображённого на клетчатой бумаге с размером клетки 1 см × 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.
Найдите площадь ромба, изображённого на клетчатой бумаге с размером клетки 1 см × 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.
Найдите площадь ромба, изображенного на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.
Найдите площадь треугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.
Найдите площадь ромба, изображенного на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.
Всего: 211 1–20 | 21–40 | 41–60 | 61–80 …
Чтобы уверенно решать задачи по геометрии — даже такие простые — необходимо выучить основные понятия и формулы.
Это формулы площадей фигур — треугольника (5 формул), параллелограмма, ромба, прямоугольника, произвольного четырехугольника, а также круга. Формулы для длины окружности, длины дуги и площади сектора. Для средней линии треугольника и средней линии трапеции.
Надо знать, что такое центральный и вписанный угол. Знать основные тригонометрические соотношения. В общем, учите основы планиметрии.
Больше полезных формул — в нашем ЕГЭ-Справочнике.
Смотри также материал: Как быстро выучить формулы
В этой статье — основные типы заданий №1 Базового ЕГЭ по математике. Задачи взяты из Банка заданий ФИПИ.
Вычисление длин отрезков, величин углов и площадей фигур по формулам
1. На клетчатой бумаге с размером клетки изображена трапеция. Найдите длину средней линии этой трапеции.
Средняя линия трапеции равна полусумме её оснований:
Ответ: 3.
2. Найдите величину угла ABC. Ответ дайте в градусах.
Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу. Соединим точки А и С с центром окружности и проведем диаметры через точки А и С. Видим, что величина центрального угла АОС равна Тогда
Ответ: 45.
3. Найдите синус угла AOB. В ответе укажите значение синуса, умноженное на
Решение:
Проведем из точки В перпендикуляр к прямой ОА. Из прямоугольного треугольника ОВС по теореме Пифагора:
Осталось умножить найденное значение синуса на
Ответ: 1.
4. Найдите площадь ромба, изображенного на клетчатой бумаге с размером клетки Ответ дайте в квадратных сантиметрах.
Самый простой способ — воспользоваться формулой площади ромба, выраженной через его диагонали:
, где и — диагонали.
Получим:
Ответ: 12.
5. Найдите площадь трапеции, изображенной на клетчатой бумаге с размером клетки Ответ дайте в квадратных сантиметрах.
Площадь трапеции равна произведению полусуммы оснований на высоту:
Основания нашей трапеции равны 4 и 8, а высота равна боковой стороне (поскольку трапеция прямоугольная), то есть 3 см. Площадь трапеции
Ответ: 18.
Нахождение площадей многоугольников сложной формы
А что делать, если надо найти не площадь трапеции или треугольника, а площадь какой-либо сложной фигуры? Есть универсальные способы! Покажем их на примерах из банка заданий ФИПИ и на авторских задачах.
6. Как найти площадь нестандартной фигуры? Например, произвольного четырёхугольника? Простой приём — разобьём эту фигуру на такие, о которых мы всё знаем, и найдем её площадь — как сумму площадей этих фигур.
Разделим этот четырёхугольник горизонтальной линией на два треугольника с общим основанием, равным . Высоты этих треугольников равны и . Тогда площадь четырёхугольника равна сумме площадей двух треугольников: .
Ответ: .
7. В некоторых случаях площадь фигуры можно представить как разность каких-либо площадей.
Не так-то просто посчитать, чему равны основание и высота в этом треугольнике! Зато мы можем сказать, что его площадь равна разности площадей квадрата со стороной и трёх прямоугольных треугольников. Видите их на рисунке? Получаем: .
Ответ: .
Многие репетиторы рекомендуют в таких задачах пользоваться формулой Пика. В ней нет необходимости, однако эта формула довольно интересна.
Согласно формуле Пика, площадь многоугольника равна В+Г/2-1
где В — количество узлов внутри многоугольника, а Г — количество узлов на границе многоугольника.
Узлами здесь названы точки, в которых пересекаются линии нашей клетчатой бумаги.
Посмотрим, как решается задача 7 с помощью формулы Пика:
Синим на рисунке отмечены узлы внутри треугольника. Зеленым — узлы на границе.
Аккуратно посчитав те и другие, получим, что В = 9, Г = 5, и площадь фигуры равна S = 9 + 5/2 — 1 = 10,5.
Выбирайте — какой способ вам больше нравится.
8. Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки
Такой четырехугольник получится, если от квадрата размером отрезать 2 прямоугольника и 4 треугольника. Найдите их на рисунке.
Площадь каждого из больших треугольников равна
Площадь каждого из маленьких треугольников равна
Тогда площадь четырехугольника
9. Авторская задача. Найдите площадь закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки
Решение:
На рисунке изображен ромб с вырезанным из него квадратом.
Площадь ромба равна половине произведения его диагоналей.
Площадь вырезанного квадрата равна 4.
Площадь фигуры равна 36 — 4 = 32.
Ответ: 32.
Площадь круга, длина окружности, площадь части круга
Длина дуги во столько раз меньше длины окружности, во сколько раз ее градусная мера меньше, чем полный круг, то есть 360 градусов.
Площадь сектора во столько раз меньше площади всего круга, во сколько раз его градусная мера меньше, чем полный круг, то есть 360 градусов.
10. Иногда в задании надо найти площадь не всей фигуры, а её части. Обычно речь здесь идет о площади сектора — части круга.Найдите площадь сектора круга радиуса , длина дуги которого равна .
На этом рисунке мы видим часть круга. Площадь всего круга равна , так как . Остается узнать, какая часть круга изображена. Поскольку длина всей окружности равна (так как ), а длина дуги данного сектора равна , следовательно, длина дуги в раз меньше, чем длина всей окружности. Угол, на который опирается эта дуга, также в раз меньше, чем полный круг (то есть градусов). Значит, и площадь сектора будет в раз меньше, чем площадь всего круга.
Ответ: .
11. На клетчатой бумаге нарисован круг площадью 2,8. Найдите площадь закрашенного сектора.
На рисунке изображен сектор, то есть часть круга. Но какая же это часть? Это четверть круга и еще круга, то есть круга.
Значит, нам надо умножить площадь круга на . Получим:
Ответ: 1,05.
12. На клетчатой бумаге изображены два круга. Площадь внутреннего круга равна 9. Найдите площадь закрашенной фигуры.
Площадь фигуры равна разности площадей двух кругов, один из которых расположен внутри другого. По условию, площадь внутреннего круга равна 9. Радиус внешнего круга относится к радиусу внутреннего как 4 к 3. Площадь круга равна , то есть пропорциональна квадрату радиуса. Значит, площадь внешнего круга в раза больше площади внутреннего и равна 16. Тогда площадь фигуры равна 16 — 9 = 7.
Ответ: 7.
Задачи на координатной плоскости
13. Найдите площадь четырехугольника, вершины которого имеют координаты (4;2), (8;4), (6;8), (2;6).
Заметим, что этот четырехугольник — квадрат. Сторона квадрата a является гипотенузой прямоугольного треугольника с катетами, равными 2 и 4. Тогда
Ответ: 20
14. Найдите площадь четырехугольника, вершины которого имеют координаты
На рисунке изображен параллелограмм (четырехугольник, имеющий две пары параллельных сторон). Площадь параллелограмма равна произведению основания на высоту. Основание равно 2, высота 8, площадь равна 16.
Ответ: 16.
Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Геометрия. Применение формул. Задача 1 Базового ЕГЭ по математике» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.
Публикация обновлена:
09.03.2023
Егэ математика площадь по клеточкам
Егэ математика площадь по клеточкам
Ускоренная подготовка к ЕГЭ с репетиторами Учи. Дома. Записывайтесь на бесплатное занятие!
—>
Задание 5 № 522802
На рисунке изображён план местности (шаг сетки плана соответствует расстоянию 1 км на местности). Оцените, скольким квадратным километрам равна площадь озера Великое, изображённого на плане. Ответ округлите до целого числа.
Обозначим квадраты буквами так, как показано на рисунке. Перенесём мысленно часть озера, находящуюся в квадрате D, в квадрат А. Сумма этих площадей меньше половины площади квадрата. Площадь части озера в квадрате С примерно половина площади квадрата, другая половина пустая — перенесем в неё части озера из А и D вместе взятые. Этим квадрат С будет заполнен. Теперь перенесём часть озера, лежащую ниже диагонали квадрата Е, на незанятую часть в квадрате F. Теперь квадрат F заполнен почти полностью, а квадрат Е заполнен наполовину. Итак, озеро покрывает приблизительно два полных квадрата С и F, почти полный квадрат В и половину квадрата Е. Значит, площадь озера больше 3 кв. км, но меньше 3,5 кв. км. Округляя, получаем 3 кв. км.
Примечание редакции Решу ЕГЭ.
Понимая необходимость умений проводить подобные оценки и прикидки в прикладных науках, все же отметим, что приведённые выше рассуждения не имеют никакого отношения к математике. Почему? Потому, что нет доказательств. Например, того, часть из Е действительно поместится в F. Доказательство можно было бы провести так: наложить карту на миллиметровку, найти количество квадратиков, в которые попала фигура, и точно установить границы, в которых лежит площадь: отбросив частично заполненные квадратики, получим площадь с недостатком, учитывая все частично заполненные квадратики, найдем площадь с избытком. Но это путь не для экзамена.
Примечание Д. Д. Гущина о применении палетки для определения площади.
Читательница Ольга Кулешова рассказала нам, что в начальных классах изучают способ нахождения площади фигуры с помощью палетки (квадратной сетки). Площадь фигуры считается равной количеству полностью заполненных клеток сетки плюс половина количества не полностью заполненных клеток. Решая данную задачу таким способом, найдем, что количество полностью заполненных клеток равно 0, количество частично заполненных клеток равно 6, следовательно, площадь фигуры равна 0 + 6 : 2 = 3.
Об этом необходимо сказать следующее.
Для фигур случайной формы, покрытых большим количеством клеток, указанное приближение площади нередко дает удовлетворительную точность. Однако в ряде случаев погрешность становится неприемлемой.
Найдем, к примеру, указанным методом площадь изображенных на рисунке круга и пятиугольника. Для круга сложим 5 целых клеток и половину от 16 частично заполненных, вместе 13 клеток. Как нетрудно проверить, используя формулу для площади круга найденная по клеточкам площадь круга мало отличается от расчетной. Но найдем теперь площадь пятиугольника: к 6 целым клеткам прибавим половину от 9, получим 10,5 или, округленно, 11 клеток. Однако в действительности площадь пятиугольника не 11 и даже не 10, а меньше 9 клеток. Ошибка превосходит 17%, а после округления — даже 22%.
По всей вероятности, точной формулы для оценки погрешности использования квадратной палетки при оценке площади не существует. Но ясно, что погрешность может быть достаточно велика, если все частично заполненные клетки заполнены более (либо менее), чем наполовину, или если покрывающих фигуру клеток слишком мало.
В приведенном выше задании ЕГЭ площадь покрыта всего шестью клетками. В таких случаях найденный ответ может получиться верным, но может оказаться и ошибочным. Поэтому на экзамене пользоваться указанным методом нельзя.
Подробнее прочитать о приближенном определении площадей можно, например, в учебном пособии для высших учебных заведений Инженерная геодезия. pdf.
—>
Задание 5 № 522802
Об этом необходимо сказать следующее.
Mathb-ege. sdamgia. ru
11.05.2018 23:58:03
2018-05-11 23:58:03
Источники:
Https://mathb-ege. sdamgia. ru/problem? id=522802
Площадь сектора по клеточкам » /> » /> .keyword { color: red; } Егэ математика площадь по клеточкам
Площадь сектора по клеточкам
Площадь сектора по клеточкам
В этой статье мы разберем, как находить площадь сектора, нарисованного на бумаге в клеточку. Это задание В5 для подготовки к ЕГЭ по математике.
1. Найдите (в см 2 ) площадь закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). В ответе запишите » />.
Сначала найдем радиус круга. Считаем клеточки, и получаем, что радиус равен 4.
Тогда площадь круга равна r^2=4^2=16″ />
Заштрихованная фигура — это половина круга, и ее площадь равна » />
В ответе записываем » />.
Ответ: 8
2. Найдите (в см 2 ) площадь закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). В ответе запишите » />.
Сначала найдем радиус круга. Считаем клеточки, и получаем, что радиус равен 3.
Тогда площадь круга равна r^2=3^2=9″ />
Найдем, какую часть заштрихованная фигура составляет от круга.
Мы видим, что заштрихованная фигура — это половина круга и еще одна четверть от половины, то есть одна восьмая.
Таким образом, площадь заштрихованной фигуры составляет от площади круга.
*9=5,625″ />
В ответе записываем » />.
Ответ: 5,625
3. Найдите (в см 2 ) площадь закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). В ответе запишите » />.
Сначала найдем радиус круга. Считаем клеточки, и получаем, что радиус равен 4.
Тогда площадь круга равна r^2=4^2=16″ />
Найдем, какую часть круга составляет незакрашенный сектор. Если мы незакрашенный центральный угол повернем на угол, то увидим, что его величина равна » />:
Сектор » /> — это часть круга. Следовательно, закрашенный сектор — это круга. И его площадь равна *16=12″ />
В ответе записываем » />.
Тогда площадь круга равна r^2=3^2=9″ />
Тогда площадь круга равна r^2=4^2=16″ />
И его площадь равна 16 12.
Ege-ok. ru
14.10.2018 16:55:24
2018-10-14 16:55:24
Источники:
Https://ege-ok. ru/2013/11/30/ploshhad-sektora-po-kletochkam
Площадь фигуры по клеточкам | Подготовка к ЕГЭ по математике » /> » /> .keyword { color: red; } Егэ математика площадь по клеточкам
Площади фигур, нарисованных на клетчатой бумаге
Площади фигур, нарисованных на клетчатой бумаге
Рассмотрим несколько задач на вычисление площади фигуры, если фигура нарисована на бумаге в клетку.
Клетку считаем размером 1×1 ед.
Попробуйте решить сами предложенные задачи!
Могу сказать следующее – ответ будет выражаться целым числом 🙂 .
Надо сказать, что кто знаком с такого рода задачками, обычно выдает ответ в считанные секунды… Другие же озадачиваются зачастую тем, а что же делать с площадью круга. Куда ж спрятать …
Итак, ищем площадь «ракеты».
Задача 1.
Найдите площадь фигуры, изображенной на рисунке, считая стороны квадратных клеток равными 1.
Я буду кратка… Никаких слов.
Смотрите и все увидите сами:
Следующая задача предлагалась А. Лариным в одном из Тренировочных вариантов.
Задача 2.
Найдите площадь фигуры, изображенной на рисунке, считая стороны квадратных клеток равными 1.
Ну уж если вы справились с «кувшином», то и с «плачущим сердцем» разберетесь также легко, уверена!
Задача 3.
Найдите суммарную площадь фигур, изображенных на рисунке, считая стороны квадратных клеток равными 1.
Ну а вам я, желаю, конечно, чтоб ваше сердце только б пело, радостно пело!
Чтобы не потерять страничку, вы можете сохранить ее у себя:
- С4 (№18) из тренировочной работы №53 А. Ларина Задание №18 (С4) из Тренировочного варианта №88 А. Ларина 03. Вычисление площадей 03. Круг Видеоразбор С4 (№18) ЕГЭ по математике Задача С4 (№18) диагностической работы от 12 декабря 2013 (11 класс)
Для чего нужны такие задачки? что-то подобное может быть на ЕГЭ? или они даны просто для проверки сообразительности? 🙂
Рассмотрим несколько задач на вычисление площади фигуры, если фигура нарисована на бумаге в клетку.
Площади фигур, нарисованных на клетчатой бумаге.
Egemaximum. ru
18.10.2017 0:21:16
2017-10-18 00:21:16
Источники:
Https://egemaximum. ru/ploshhadi-figur-narisovannyx-na-kletchatoj-bumage/
6. Геометрия на плоскости (планиметрия). Часть II
1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения
Задачи на клетчатой бумаге
(blacktriangleright) Помним, что каждая клетка представляет собой квадрат.
(blacktriangleright) В равных прямоугольниках равны диагонали.
(blacktriangleright) Теорема Пифагора: в прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.
(blacktriangleright) В прямоугольном треугольнике катет, лежащий против угла (30^circ), равен половине гипотенузы.
И наоборот: катет, равный половине гипотенузы, лежит против угла (30^circ) (рис. 1).
(blacktriangleright) Медиана, проведенная к основанию в равнобедренном треугольнике, является высотой и биссектрисой (рис. 2).
Задание
1
#3089
Уровень задания: Равен ЕГЭ
На клетчатой бумаге изображен угол. Найдите его градусную величину.
Обозначим этот угол (ASD). Отметим точку (F) так, чтобы получился прямоугольный (triangle SDF):
Тогда (angle ASD=angle ASF+angle FSD). Заметим, что (angle
ASF=90^circ). Заметим также, что (FS=FD), следовательно, (triangle
SDF) прямоугольный и равнобедренный, значит, его острые углы равны по (45^circ).
Следовательно, [angle ASD=90^circ+45^circ=135^circ.]
Ответ: 135
Задание
2
#3088
Уровень задания: Равен ЕГЭ
На клетчатой бумаге с размером клетки (1times 1) изображен треугольник (ABC). Найдите площадь треугольника (A’B’C), где (A’B’) – средняя линия, параллельная стороне (AB).
Пусть (A’in AC, B’in BC).
По свойству средней линии (triangle ABCsim triangle A’B’C) с коэффициентом подобия, равным (2). Следовательно, их площади относятся как коэффициент подобия в квадрате, то есть [dfrac{S_{ABC}}{S_{A’B’C}}=4] Высота (triangle ABC), опущенная из (C), равна (2), (AB=7). Следовательно, (S_{ABC}=frac12cdot 2cdot 7=7). Тогда [S_{A’B’C}=dfrac74=1,75.]
Ответ: 1,75
Задание
3
#3087
Уровень задания: Равен ЕГЭ
На клетчатой бумаге с размером клетки (1times 1) изображен треугольник (ABC). Найдите длину средней линии, параллельной стороне (AB).
Длина средней линии треугольника, параллельной стороне (AB), равна (frac12AB). Так как (AB=7), то средняя линия равна (3,5).
Ответ: 3,5
Задание
4
#3086
Уровень задания: Равен ЕГЭ
На клетчатой бумаге изображен треугольник. Найдите радиус вписанной в него окружности, если сторона одной клетки равна (3).
Будем искать радиус вписанной окружности по формуле (S=pcdot r), где (S) – площадь, (p) – полупериметр.
Заметим, что треугольник равнобедренный: (AB=BC.)
Так как длина стороны клетки равна (3), то (AH=12, BH=9), следовательно, (AB=sqrt{AH^2+BH^2}=15.) Тогда [dfrac12cdot BHcdot AC=dfrac{AB+BC+AC}2cdot r quadRightarrowquad
r=4.]
Заметим, что в задачах подобного типа можно вычислять все длины, как будто длина стороны клетки равна (1), а затем умножать полученный ответ на (3). Если бы длина одной клетки была равна (1), то (AH=4, BH=3), (AB=5) и (r=frac43). Тогда после умножения на (3) также получили бы (r=4). При решении задачи таким способом вычисления будут легче.
Ответ: 4
Задание
5
#297
Уровень задания: Равен ЕГЭ
На клетчатой бумаге с клетками размером (1)мм (times 1)мм нарисована трапеция. Найдите её площадь. Ответ дайте в квадратных миллиметрах.
Площадь трапеции равна произведению полусуммы оснований на высоту. Площадь нарисованной трапеции есть (0,5cdot (3 text{мм} + 4 text{мм})cdot 3 text{мм} = 10,5)мм(^2).
Ответ: 10,5
Задание
6
#298
Уровень задания: Равен ЕГЭ
На клетчатой бумаге с клетками размером (1)мм (times 1)мм нарисован треугольник. Найдите его площадь. Ответ дайте в квадратных миллиметрах.
Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию, тогда площадь нарисованного треугольника есть (0,5cdot 3)мм (cdot 4)мм (= 6)мм(^2).
Ответ: 6
Задание
7
#299
Уровень задания: Равен ЕГЭ
На клетчатой бумаге с клетками размером (1)мм (times 1)мм нарисован четырёхугольник. Найдите его площадь. Ответ дайте в квадратных миллиметрах.
У данного четырёхугольника две стороны параллельны, а две другие не параллельны, следовательно, это трапеция. Площадь трапеции равна произведению полусуммы оснований на высоту. Площадь нарисованной трапеции равна (0,5(2 text{мм} + 3 text{мм})cdot 4 text{мм} = 10) мм(^2).
Ответ: 10
Если выпускник готовится к сдаче ЕГЭ по математике и при этом рассчитывает на получение конкурентных баллов, ему непременно стоит освоить принцип решения задач на клетчатой бумаге. Подобные планиметрические задания каждый год включаются в программу аттестационного испытания. Таким образом, справляться с задачами ЕГЭ на клетчатой бумаге должны все учащиеся, независимо от уровня их подготовки.
Полезная информация
Задания ЕГЭ на клетчатой бумаге часто решаются гораздо проще, чем задачи, для выполнения которых требуется применение аналитических методов. Чаще всего в подобных упражнениях необходимо найти площадь фигуры. Решить такие задачи можно, вспомнив основные теоремы и свойства трапеции, треугольника, шестиугольника и т. д.
Как подготовиться к экзамену?
Если задания ЕГЭ на клетчатой бумаге вызывают у вас трудности, обратитесь к образовательному порталу «Школково». С нами вы сможете повторить материал по темам, которые являются для вас сложными, например, векторы на координатной плоскости и таким образом восполнить пробелы в знаниях. В разделе «Теоретическая справка» представлена вся базовая информация. Ее наши специалисты подготовили и изложили в максимально доступной форме на основе богатого практического опыта.
Освоить принцип решения задач на клетчатой бумаге помогут упражнения, представленные в разделе «Каталог». Мы подготовили простые и более сложные задания. Тренироваться в их выполнении учащиеся из Москвы и других российских городов могут в онлайн-режиме.
Справившись с заданием, выпускники имеют возможность сохранить его в разделе «Избранное». Это позволит в дальнейшем вернуться к нему и, к примеру, обсудить алгоритм его решения со школьным преподавателем. База заданий на сайте «Школково» регулярно обновляется.
Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ
Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ
Площадь круга равна произведению числа на квадрат радиуса:
Задача 1. Найдите площадь круга, считая стороны клеток равными 1 (см. рис. 1). В ответе укажите .
Рис.1
Решение.
Площадь круга равна произведению числа на квадрат радиуса. Найдём радиус. Из центра проведём радиус . В треугольнике сторона — гипотенуза, катеты равны 1 и 2 (см. рис. 2).
Рис.2
Найдём гипотенузу по теореме Пифагора.
Площадь круга
Ответ: 5.
Задача 2. На клетчатой бумаге нарисовано два круга (см. рис. 3). Площадь внутреннего круга равна 3. Найдите площадь заштрихованной фигуры.
Рис.3
Решение.
Радиус внутреннего круга — 3 клетки, его площадь равна . Радиус внешнего круга — 6 клеток, то есть , поэтому его площадь равна Площадь заштрихованной фигуры равна разности 12 — 3 = 9.
Ответ: 9.
Площадь сектора с углом градусов равна
Задача 3. Найдите площадь сектора с углом 18 градусов и радиусом 4. В ответе укажите .
Решение.
Посчитаем площадь сектора по формуле
Ответ: 0,8.
Задача 4. Найдите площадь заштрихованного сектора, считая стороны клеток равными 1 (см. рис. 4). В ответе укажите .
Рис.4
Решение.
На рисунке 4A) площадь круга с радиусом = 2 равна
На рисунке 4В) площадь сектора составляет от площади круга (если круг разделить на 4 равные части, то одна из них как раз и будет равна заданному сектору), то есть
Можно было решать задачу по-другому. Площадь сектора равна площади круга, делённой на 4.
Ответ: 1.
Задача 5. Найдите площадь заштрихованных секторов на рисунках C и D, считая стороны клеток равными 1 (см. рис. 5).
Рис.5
В ответе укажите .
Решение. Посчитаем, какая часть круга закрашена. Проведя дополнительные линии (см. рис. 6), видим, что сектор на рисунке 6C) составляет — часть круга, а сектор на рисунке 6D) составляет
частей круга (круг разделён на 8 равных частей, и закрашено 5 таких частей).
Находим площади секторов на рисунках 6C) и 6D).
Рис.6
1-й способ.
Поделим площадь круга на 8, получим площадь сектора на рисунке 6C), потом умножим эту площадь на 5, получим площадь сектора на рисунке 6D).
Ответ: 0,5 и 2,5.
2-й способ. Найдём площадь круга.
Ответ: 0,5 и 2,5.