Как образуются клоны в природе егэ

Размножение — присущее всему живому свойство воспроизведения себе подобных. Размножение обеспечивает
преемственность и непрерывность жизни.

Размножение

Выделяют две основные формы размножения: бесполое и половое.

Бесполое размножение

Бесполое размножение осуществляется только одной родительской особью без участия половых клеток. Появление
дочернего организма происходит из соматических клеток.

Важно заметить, что обычно потомству передаются только мутации, которые происходят в половых клетках (гаплоидных — n). Однако в
случае бесполого размножения потомству передаются мутации в соматических клетках (диплоидных — 2n).

Наиболее распространено бесполое размножение у бактерий, грибов и растений, встречается и у животных. Существует несколько способов бесполого
размножения:

  • Деление
  • Делением материнской клетки на дочерние размножаются все бактерии и простейшие (амеба, эвглена зеленая, инфузории, водоросли).

    Обратите внимание, что у ядерных организмов (эукариот) деление клетки подразумевает митоз, а у доядерных (прокариот)
    — простое бинарное деление (такая разница связана с отсутствием у прокариот ядра).

    Митоз и простое бинарное деление

    Часто бесполое размножение помогает быстро увеличить численность вида, оно активируется при благоприятных условиях среды. Осенью,
    при наступлении неблагоприятных условий становится активно половое размножение.

  • Споруляция (греч. spora — посев)
  • Споруляция подразумевает размножение с помощью специализированных клеток — спор. Эта форма размножения распространена у растений
    (водорослей, мхов, папоротников, хвощей и плаунов), грибов и некоторых простейших (споровики — малярийный плазмодий).

    У одноклеточной зеленой водоросли — хламидомонады, споры имеют жгутики, вследствие чего называются зооспорами. У растений
    процесс образования спор происходит в обособленных мешковидных образованиях — спорангиях. Споры покрыты защитной
    оболочкой, служат для размножения и расселения растений и грибов.

    Сорусы папортника

    Помимо этого, споры грибов и простейших помогают им пережить влияние неблагоприятных факторов внешней среды, например пересыхание
    водоема. При наступлении благоприятных условий грибы и простейшие освобождаются от спор и продолжают рост и развитие.

    Споры гриба

  • Вегетативное размножение — развито у растений
  • Вариантов вегетативного размножения у растений — масса, им посвящена отдельная статья. Растения размножают
    с помощью клубнелуковиц, клубней, корнеплодов, корневищ, усов, отводок, черенков, луковиц, делением кустов. Прививка — также
    является вариантом вегетативного размножения.

    В случае вегетативного размножения дочерний организм представляет собой генетическую копию материнского организма, а также имеет шанс унаследовать мутации в соматических клетках.

    Вегетативное размножение растений

  • Почкование
  • У некоторых животных дочерние организмы могут появляться из группы клеток — прямо на теле родительской особи. В этом случае небольшой
    участок тела отделяется от родительского организма и развивается самостоятельно.

    Почкованием размножаются многие кишечнополостные, например — пресноводный полип — гидра.

    Вегетативное размножение растений

  • Фрагментация
  • Некоторые живые существа в ходе эволюции развили поразительную способность к регенерации (лат. re — вновь и genus — поколение) — замещению
    утраченной части организма.

    У молочной планарии способность к регенерации развита настолько, что, если разделить ее на несколько частей, то из каждой части
    восстановится полноценный организм.

    Фрагментация у планарии

  • Клонирование
  • Является искусственным методом размножения, которым занимается отдельное направление биологии — биотехнология. Клоном называют дочернюю особь,
    идентичную в генетическом отношении родительской особи.

    На настоящий момент бурно развивается направление выращивания искусственных органов, которые могут заменить «естественные» органы, утратившие
    вследствие болезней свои физиологические и анатомические свойства.

    Искусственное ухо

Половое размножение

Осуществляется с помощью особых половых клеток (гамет). Имеет огромное эволюционное значение, так как в результате него образуются особи
с новыми комбинациями генов, новыми признаками. Такие особи являются материалом для естественного отбора.

В результате бесполого размножения появляются генетические копии материнских организмов, которые содержат точно такой же набор генов в ДНК.
В этом случае при изменении условий среды, если погибает одна особь, рискуют погибнуть все «генетические копии», так как они не обладают
разнообразием, имеют одинаковый генотип, а значит одинаково не приспособлены.

Половое размножение в схожих условиях выигрывает значительно, так как создает генетическое разнообразие.

Спаривание дождевых червей

В ходе гаметогенеза у мужских и женских особей образуются половые клетки (гаметы): сперматозоиды (n) и яйцеклетки (n). При оплодотворении
происходит их слияние, образуется зигота (2n). Далее следует эмбриональный период развития, который переходит в постэмбриональный.

У ряда организмов существуют свои особые варианты полового процесса. Таким является процесс конъюгации у инфузорий. Конъюгация
(лат. conjugatio — соединение) сопровождается обменом ядер между клетками партнеров при их непосредственном контакте.

Важно заметить, что это пример полового процесса без размножения, так как увеличения числа особей не происходит. Однако две разошедшиеся
клетки после конъюгации содержат новые комбинации генов, что в дальнейшем приведет к развитию новых признаков и появлению новых свойств
у их потомства.

Конъюгация у инфузорий

Партеногенез (греч. παρθένος — дева, девица, девушка + γένεσις — возникновение) — одна из форм полового размножения, так называемое
«девственное размножение».

При партеногенезе дочерний организм развивается из неоплодотворенной яйцеклетки. Несмотря на то, что в этом процессе не участвует мужская
половая клетка, партеногенез относят к половому размножению, так как дочерний организм развивается из половой клетки — яйцеклетки.

Партеногенез

Партеногенез выполняет важную функцию регуляции соотношения полов у пчел: из неоплодотворенной яйцеклетки развиваются самцы, из
оплодотворенной — самки. Партеногенез встречается также у муравьев, термитов, тлей.

Говоря о половом размножении нельзя не упомянуть интересное явление в природе — гермафродитизм. Это явление заключается в наличии у
особи как мужских, так и женских половых органов (назван по имени мифического обоеполого существа — Гермафродита).
Аналогичное явление у растений называется однодомностью: и мужские, и женские цветки в таком случае расположены на одном растении.

Очевидно, что особи гермафродиты вырабатывают два типа половых клеток: и сперматозоиды (мужские гаметы), и яйцеклетки (женские гаметы).
Гермафродитизм чаще встречается у низших, более примитивных животных. Гермафродитами являются многие черви, моллюски, кишечнополостные.

Гермафродитизм

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Клонирование организмов

02-Июн-2015 | Нет комментариев | Лолита Окольнова

Клонирование организмов

 
клонирование организмов
 

автор статьи — Саид Лутфуллин

Клон – это точная генетическая копия живого организма.

В природе клоны широко распространены. Это, конечно же, потомки бесполого размножения. Так как полового процесса не происходит, не изменяется генотип. Поэтому дочерний организм является точной генетической копией предыдущего.

Клоны так же создаются с участием человека. Зачем это делается? Представьте, ведется многолетняя работа по отбору и гибридизации растений, из всех полученных гидридов, у одного очень удачная комбинация генов (например, сочные плоды больших размеров). Как размножить это растение? Если проводить скрещивание, то произойдет рекомбинация генов. Поэтому проводят вегетативное размножение.

клонирование организмов

Многие культурные сорта  являются клонами изначально полученного растения. (Фиалки, например, размножают листьями).Можно даже получить клон растения всего из одной клетки.

  • сначала выращивается культура клеток,
  • потом воздействуют нужными гормонами для дифференцировки тканей, и
  • воссоздается новый организм.

С помощью этого метода можно будет получать больше урожая, чем через стандартное разведение. Возможно, в будущем мы будем получать растительные продукты не с полей, а из пробирок.

Огромные площади земли заменит лаборатория. А колхозники останутся без работы. 

Но как создавать клоны организмов, неспособных к бесполому размножению (позвоночных к примеру)?

Это возможно.Такое явление встречается даже в природе. Это – монозиготные близнецы.

клонирование организмов

Из одной зиготы развивается не один организм, при том эти организмы являются генетическими копиями друг друга (так как развились из одной зиготы).

Такое явление позволило возникнуть близнецовому методу (благодаря ему, изучается влияние наследственности и среды на признаки).

Появилась идея искусственного клонирования организмов.

В теории она проста: если из зиготы удалить собственное ядро, и поместить ядро из соматической клетки, то разовьется организм – точная генетическая копия, клон донора соматической клетки. 

Практически осуществить это получилось не сразу. 

клонирование организмов

В 60-е года были проведены опыты по клонированию амфибий. Из икринок лягушек вытаскивали ядра и засовывали ядра, взятые из соматических клеток (метод такой пересадки ядер, между прочим, был разработан у нас в СССР в 1940 году ученым Г.В. Лопашовым). Получились клоны лягушки. С амфибиями проще, у них оплодотворение и эмбриональное развитие происходит во внешней среде.

Как быть с млекопитающими?

Икру то они не метят.В 1996 году группа британских ученых (это не фигура речи, они действительно из Британии) под руководством Иэна Уилмута сделала огромное достижение в области биологии. Они, с помощью метода пересадки ядра, клонировали овцу.

клонирование организмов

Из клетки ткани вымени уже умершей к моменту эксперименту овцы (организма-прототипа) взяли ядро. Из другой овцы взяли яйцеклетку и, предварительно удалив ее собственное ядро, трансплантировали ядро из клеток овцы-прототипа. Полученную уже диплоидную клетку (диплоидную, так как ядро взято из соматической клетки) поместили в другую овцу, которая стала суррогатной матерью. Полученного ягненка назвали Долли.

Она была генетической копией овцы-прототипа.

Но Долли не была первым в истории клоном млекопитающего. И до нее проводились удачные эксперименты. В чем новшество? В том, что ранее брались либо эмбриональные, либо стволовые клетки для донорства ядер. В случае с Долли были взяты уже дифференцированные клетки взрослого организма (клетки вымени). Овечка Долли прожила достойную жизнь, несколько раз становилась мамой. Рожала совершенно здоровых ягнят. Долли ничем не отличалась от других овец, только тем, что она являлась клоном. К концу жизни Долли заболела артритом. Ее усыпили. Болезнь эта никаким образом не связана с клонированием: ей болеют и обычные овцы. 

Эксперимент с Долли продемонстрировал возможность и безопасность клонирования млекопитающих.

Какова практическая значимость клонирования? Оно позволяет решить некоторые проблемы:

  • можно увеличить численность вымирающих животных — спасти от вымирания популяции, которые сами уже не могут поддерживать свою численность и, по сути, обречены;
  • клонирование дает возможность в прямом смысле воскресить вымершие виды, если сохранились образцы ядер клеток этих организмов (вспомните Парк Юрского периода);
  • не обязательно выращивать целиком новый организм. Можно выращивать отдельно органы и заменять ими поврежденные. У человека отказала почка. Взяли у него одну клетку – вырастили новую. И отторгаться она не будет, так как не содержит чужеродных белков: все свое.

 
клонирование организмов
 

В теории все прекрасно, на практике возникают некоторые проблемы. 

Прежде всего, это чисто «механические» проблемы. Несовершенство методов. Белые пятна, пробелы в знаниях: не все еще известно о генах и всех их тонкостях.

Еще одна проблема скрыта в ядре. В процессе дифференциации клеток происходит и дифференциация ядер этих клеток: некоторые гены отключаются, некоторые активируются. То есть в ядре, взятом для пересадки в яйцеклетку, могут быть отключены некоторые гены, которые необходимы для нормального развития зародыша. Понятно, что в этом случае нормального развития не получится. 

Есть проблема этическая — клонирование человека. Сути ее я не понимаю, лично мне она кажется надуманной. Поэтому комментировать ее не буду.

Последняя проблема, которую мы рассмотрим – это проблема старения ядер. В ядрах есть счетчики старения организма – теломеры. С каждым делением они все короче и короче. Очевидно, нужен способ искусственно «сбросить до заводских настроек» ядро: отменить отключение генов, восстановить теломеры.

На клонирование организмов возлагаются огромные надежды. В этом методе видят излечение болезней. Область открыта для исследований: еще многое нужно изучить.

Обсуждение: «Клонирование организмов»

(Правила комментирования)

Воспроизведение организмов, его значение. Способы размножения, сходство и отличие
полового и бесполого размножения. Оплодотворение у цветковых растений и позвоночных
животных. Внешнее и внутреннее оплодотворение

Воспроизведение организмов, его значение

Способность организмов воспроизводить себе подобных является одним из фундаментальных свойств живого. Несмотря на то, что жизнь в целом непрерывна, продолжительность жизни отдельно взятой особи конечна, поэтому передача наследственной информации от одного поколения следующему при воспроизведении обеспечивает выживание данного вида организмов на протяжении длительных периодов времени. Таким образом, размножение обеспечивает непрерывность и преемственность жизни.

Обязательным условием воспроизведения является получение большего числа потомков, нежели родительских особей, поскольку далеко не все потомки смогут дожить до той стадии развития, на которой сами смогут давать потомство, так как они могут быть уничтожены хищниками, погибнуть от болезней и стихийных бедствий, например пожаров, наводнений и т. п.

Способы размножения, сходство и отличие полового и бесполого размножения

В природе различают два основных способа размножения — бесполое и половое.

Бесполое размножение — это способ размножения, при котором не происходит ни образования, ни слияния специализированных половых клеток — гамет, в нем принимает участие всего один родительский организм. В основе бесполого размножения лежит митотическое деление клетки.

В зависимости от того, сколько клеток материнского организма дает начало новой особи, бесполое размножение подразделяют на собственно бесполое и вегетативное. При собственно бесполом размножении дочерняя особь развивается из единственной клетки материнского организма, а при вегетативном — из группы клеток или целого органа.

В природе встречается четыре основных вида собственно бесполого размножения: бинарное деление, множественное деление, спорообразование и простое почкование.

Бинарное деление по сути представляет собой простое митотическое деление одноклеточного материнского организма, при котором вначале делится ядро, а затем и цитоплазма. Оно характерно для различных представителей растительного и животного царства, например амебы протей и инфузории-туфельки.

Множественному делению, или шизогонии, предшествует неоднократное деление ядра, после чего цитоплазма делится на соответствующее число фрагментов. Такой вид бесполого размножения встречается у одноклеточных животных — споровиков, например у малярийного плазмодия.

У многих растений и грибов в жизненном цикле происходит образование спор — одноклеточных специализированных образований, содержащих запас питательных веществ и покрытых плотной защитной оболочкой. Споры разносятся ветром и водой, и при наличии благоприятных условий прорастают, давая начало новому многоклеточному организму.

Характерным примером почкования как разновидности собственно бесполого размножения является почкование дрожжей, при котором на поверхности материнской клетки после деления ядра появляется небольшое выпячивание, в которое перемещается одно из ядер, после чего новая маленькая клетка отшнуровывается. Таким образом сохраняется способность материнской клетки к дальнейшему делению, а численность особей быстро увеличивается.

Вегетативное размножение может осуществляться в форме почкования, фрагментации, полиэмбрионии и др. При почковании у гидры образуется выпячивание стенки тела, которое постепенно увеличивается в размерах, на переднем конце прорывается ротовое отверстие, окруженное щупальцами. Завершается оно образованием маленькой гидры, которая отделяется затем от материнского организма. Почкование характерно также для ряда коралловых полипов и кольчатых червей.

Фрагментация сопровождается разделением тела на две и более части, причем из каждой развиваются полноценные особи (медузы, актинии, плоские и кольчатые черви, иглокожие).

При полиэмбрионии происходит разделение зародыша, сформировавшегося в том числе и в результате оплодотворения, на несколько зародышей. Такое явление регулярно происходит у броненосцев, но может происходить и у человека в случае однояйцевых близнецов.

Наиболее высоко развита способность к вегетативному размножению у растений, у которых начало новому организму могут давать клубни, луковицы, корневища, корневые отпрыски, усы и даже выводковые почки.

Для бесполого размножения требуется только одна родительская особь, что экономит время и энергию, необходимые на поиски полового партнера. Кроме того, из каждого фрагмента материнского организма могут возникнуть новые особи, что также является экономией вещества и энергии, затрачиваемых на размножение. Скорость бесполого размножения также достаточно велика, например, бактерии способны делиться каждые 20–30 минут, чрезвычайно быстро увеличивая свою численность. При этом способе размножения образуются генетически идентичные потомки — клоны, что может рассматриваться как преимущество при условии сохранения постоянства условий окружающей среды.

Однако в связи с тем, что единственным источником генетической изменчивости являются случайные мутации, практически полное отсутствие изменчивости среди потомков снижает их приспособляемость к новым условиям среды обитания при расселении и, как следствие, они погибают в гораздо больших количествах, нежели при половом размножении.

Половое размножение — способ размножения, при котором происходит образование и слияние половых клеток, или гамет, в одну клетку — зиготу, из которой развивается новый организм.

Если бы при половом размножении сливались соматические клетки с диплоидным набором хромосом (у человека 2n = 46), то уже во втором поколении в клетках нового организма содержался бы тетраплоидный набор (у человека 4n = 92), в третьем — октаплоидный и т. д.

Однако размеры эукариотической клетки не беспредельны, они должны колебаться в пределах 10–100 мкм, поскольку при меньших размерах клетки она не будет содержать полного набора необходимых для ее жизнедеятельности веществ и структур, а при больших размерах будет нарушаться равномерное обеспечение клетки кислородом, углекислым газом, водой и другими необходимыми веществами. Соответственно и размеры ядра, в котором находятся хромосомы, не могут превышать 1/5–1/10 объема клетки, а при нарушении этих условий клетка уже не сможет существовать. Таким образом, для полового размножения необходимо предварительное уменьшение количества хромосом, которое будет восстанавливаться при оплодотворении, что и обеспечивается процессом мейотического деления клетки.

Уменьшение числа хромосом должно быть к тому же строго упорядоченным и равноценным, поскольку, если новый организм не будет иметь полных пар хромосом при их общем нормальном количестве, то он либо не будет жизнеспособным, либо это будет сопровождаться развитием тяжелых заболеваний.

Таким образом, мейоз обеспечивает уменьшение числа хромосом, которое восстанавливается при оплодотворении, поддерживая в целом постоянство кариотипа.

Особыми формами полового размножения являются партеногенез и конъюгация. При партеногенезе, или девственном развитии, новый организм развивается из неоплодотворенной яйцеклетки, как, например, у дафний, медоносных пчел и некоторых скальных ящериц. Иногда этот процесс стимулируется внедрением сперматозоидов организмов другого вида.

В процессе конъюгации, которая характерна, например, для инфузорий, особи обмениваются фрагментами наследственной информации, а затем размножаются бесполым путем. Строго говоря, конъюгация является половым процессом, а не примером полового размножения.

Существование полового размножения требует выработки по меньшей мере двух видов половых клеток: мужских и женских. Животные организмы, у которых мужские и женские половые клетки вырабатываются разными особями, называются раздельнополыми, тогда как способные вырабатывать оба вида гамет — гермафродитами. Гермафродитизм характерен для многих плоских и кольчатых червей, брюхоногих моллюсков.

Растения, у которых мужские и женские цветки или другие разноименные половые органы располагаются на разных особях, называются двудомными, а имеющие одновременно оба вида цветков — однодомными.

Половое размножение обеспечивает возникновение генетического разнообразия потомков, основу которого составляют мейоз и рекомбинация родительских генов при оплодотворении. Наиболее удачные комбинации генов обеспечивают лучшее приспособление потомков к среде обитания, их выживание и большую вероятность передачи своей наследственной информации следующим поколениям. Этот процесс приводит к изменению признаков и свойств организмов и, в конечном итоге, к образованию новых видов в процессе эволюционного естественного отбора.

Вместе с тем вещество и энергия при половом размножении используются неэффективно, поскольку организмы вынуждены зачастую продуцировать миллионы гамет, однако только отдельные из них используются при оплодотворении. Кроме того, приходится затрачивать энергию и на обеспечение других условий. Например, растения образуют цветки и вырабатывают нектар, чтобы привлечь животных, которые переносят пыльцу на женские части других цветков, а животные затрачивают много времени и энергии на поиски брачных партнеров и ухаживание. Затем приходится расходовать много энергии на заботу о потомстве, поскольку при половом размножении потомки вначале зачастую бывают такими мелкими, что многие из них гибнут от хищников, голода или просто из-за неблагоприятных условий. Следовательно, при бесполом размножении затраты энергии гораздо меньше. Тем не менее половое размножение имеет по меньшей мере одно неоценимое достоинство — генетическую изменчивость потомства.

Бесполое и половое размножение широко используются человеком в сельском хозяйстве, декоративном животноводстве, растениеводстве и других областях для выведения новых сортов растений и пород животных, сохранения хозяйственно ценных признаков, а также быстрого увеличения числа особей.

При бесполом размножении растений, наряду с традиционными способами — черенкованием, прививкой и размножением отводками, постепенно занимают ведущее положение современные методы, связанные с использованием культуры тканей. При этом новые растения получают из небольших фрагментов материнского растения (клеток или кусочков ткани), выращенных на питательной среде, содержащей все необходимые растению питательные вещества и гормоны. Эти методы позволяют не только быстро размножить сорта растений с ценными признаками, например картофель, устойчивый к вирусу скручивания листьев, но и получить незараженные вирусами и другими возбудителями болезней растений организмы. Культура тканей лежит и в основе получения так называемых трансгенных, или генетически модифицированных организмов, а также гибридизации соматических клеток растений, которые невозможно скрестить иным путем.

Скрещивание растений различных сортов дает возможность получить организмы с новыми комбинациями хозяйственно ценных признаков. Для этого используют опыление пыльцой растений того же или другого вида и даже рода. Это явление называется отдаленной гибридизацией.

Поскольку у высших животных способность к естественному бесполому размножению отсутствует, основным способом их размножения является половое. Для этого применяют скрещивание особей как одного вида (породы), так и межвидовую гибридизацию, при этом получаются такие хорошо известные гибриды, как мул и лошак, в зависимости от того, особи какого вида были взяты в качестве материнских — осла и лошади. Однако межвидовые гибриды зачастую стерильны, то есть неспособны давать потомство, поэтому каждый раз их следует выводить заново.

Для размножения сельскохозяйственных животных используется и искусственный партеногенез. Выдающийся русский генетик Б. Л. Астауров, повышая температуру, вызвал больший выход самок тутового шелкопряда, которые плетут коконы из более тонкой и ценной нити, чем самцы.

Бесполым же размножением можно считать и клонирование, поскольку при этом используется ядро соматической клетки, которая вводится в оплодотворенную яйцеклетку с убитым ядром. Развивающийся организм должен быть копией, или клоном уже существующего организма.

Оплодотворение у цветковых растений и позвоночных животных

Оплодотворение — это процесс слияния мужских и женских половых клеток с образованием зиготы.

В процессе оплодотворения сначала происходит узнавание и физический контакт мужских и женских гамет, затем слияние их цитоплазмы, и только на последнем этапе объединение наследственного материала. Оплодотворение позволяет восстановить диплоидный набор хромосом, редуцированный в процессе формирования половых клеток.

Чаще всего в природе встречается оплодотворение мужскими половыми клетками другого организма, однако в целом ряде случаев возможно также и проникновение собственных сперматозоидов — самооплодотворение. С эволюционной точки зрения самооплодотворение является менее выгодным, так как при этом вероятность возникновения новых комбинаций генов минимальна. Поэтому даже у большинства гермафродитных организмов происходит перекрестное оплодотворение. Данный процесс присущ как растениям, так и животным, однако в его протекании у вышеупомянутых организмов имеется целый ряд отличий.

Так, у цветковых растений оплодотворению предшествует опыление — перенос пыльцы, содержащей мужские половые клетки — спермии — на рыльце пестика. Там она прорастает, образуя пыльцевую трубку с передвигающимися по ней двумя спермиями. Достигнув зародышевого мешка, один спермий сливается с яйцеклеткой с образованием зиготы, а другой — с центральной клеткой (2n), давая начало впоследствии запасающей ткани вторичного эндосперма. Такой способ оплодотворения получил название двойного оплодотворения.

У животных, в частности позвоночных, оплодотворению предшествует сближение гамет, или осеменение. Успеху осеменения способствует синхронизация выведения мужских и женских половых клеток, а также выделение яйцеклетками специфических химических веществ с целью облегчения ориентации сперматозоидов в пространстве.

При разведении культурных растений и домашних животных усилия человека в основном направлены на сохранение и умножение хозяйственно ценных признаков, тогда как устойчивость этих организмов к условиям окружающей среды и жизнеспособность в целом снижаются. Кроме того, соя и многие другие культурные растения являются самоопыляемыми, поэтому для получения новых сортов необходимо вмешательство человека. Могут возникать также и затруднения в самом процессе оплодотворения, поскольку некоторые растения и животные могут иметь гены стерильности.

У растений для целей селекции производится искусственное опыление, для которого из цветков удаляют тычинки, а затем наносят на рыльца пестиков пыльцу из других цветков и накрывают опыленные цветки колпачками-изоляторами во избежание опыления пыльцой других растений. В некоторых случаях искусственное опыление производят для повышения урожайности, поскольку из завязей неопыленных цветков семена и плоды не развиваются. Такой прием практиковали ранее в посевах подсолнечника.

При отдаленной гибридизации, особенно если растения различаются по числу хромосом, естественное оплодотворение становится либо вовсе невозможным, либо уже при первом делении клетки происходит нарушение расхождения хромосом и организм гибнет. В таком случае оплодотворение производят в искусственных условиях, а в начале деления клетку обрабатывают колхицином — веществом, разрушающим веретено деления, при этом хромосомы рассыпаются по клетке, а затем формируется новое ядро уже с удвоенным числом хромосом, и при последующих делениях таких проблем не возникает. Таким образом были созданы редечно-капустный гибрид Г. Д. Карпеченко и тритикале — высокоурожайный гибрид пшеницы и ржи.

У основных видов сельскохозяйственных животных существует еще больше препятствий для оплодотворения, чем у растений, что вынуждает человека к применению решительных мер. Искусственное оплодотворение применяется в основном при разведении скота ценных пород, когда необходимо получить как можно больше потомства от одного производителя. В этих случаях семенную жидкость собирают, смешивают с водой, помещают в ампулы, а затем, по мере необходимости, вводят в половые пути самок. В рыбоводческих хозяйствах при искусственном оплодотворении у рыб полученную из молок сперму самцов смешивают с икрой в специальных емкостях. Молодь, выращенная в специальных садках, затем выпускается в естественные водоемы и восстанавливает популяцию, например, осетровых в Каспийском море и на Дону.

Таким образом, искусственное оплодотворение служит человеку для получения новых, высокопродуктивных сортов растений и пород животных, а также для повышения их продуктивности и восстановления природных популяций.

Внешнее и внутреннее оплодотворение

У животных различают внешнее и внутреннее оплодотворения. При внешнем оплодотворении женские и мужские половые клетки выводятся наружу, где и происходит процесс их слияния, как, например, у кольчатых червей, двустворчатых моллюсков, бесчерепных, большинства рыб и многих земноводных. Несмотря на то, что оно не требует сближения размножающихся особей, у подвижных животных возможно не только их сближение, но и скопление, как при нересте рыб.

Внутреннее оплодотворение связано с введением мужских половых продуктов в половые пути самки, и наружу выводится уже оплодотворенная яйцеклетка. Она зачастую имеет плотные оболочки, препятствующие ее повреждению и проникновению следующих сперматозоидов. Внутреннее оплодотворение характерно для подавляющего большинства наземных животных, например, для плоских и круглых червей, многих членистоногих и брюхоногих моллюсков, пресмыкающихся, птиц и млекопитающих, а также для ряда земноводных. Оно встречается и у некоторых водных животных, в том числе у головоногих моллюсков и хрящевых рыб.

Существует и промежуточный тип оплодотворения — наружно-внутренний, при котором самка захватывает половые продукты, специально оставленные самцом на каком-либо субстрате, как это происходит у некоторых членистоногих и хвостатых земноводных. Наружно-внутреннее оплодотворение может рассматриваться как переходное от внешнего к внутреннему.

Как внешнее, так и внутреннее оплодотворения имеют свои преимущества и недостатки. Так, при внешнем оплодотворении половые клетки выделяются в воду или воздух, вследствие чего подавляющее большинство их гибнет. Однако эта разновидность оплодотворения обеспечивает существование полового размножения у таких прикрепленных и малоподвижных животных, как двустворчатые моллюски и бесчерепные. При внутреннем оплодотворении потери гамет, безусловно, гораздо меньше, однако при этом вещество и энергия затрачиваются на поиск партнера, а появившиеся на свет потомки зачастую слишком малы и слабы и требуют длительной опеки родителей.

Что такое клон

Прежде чем разобраться, что собой представляет понятие «клон», необходимо обозначить на чем основывается процедура клонирования.

Любой живой организм имеет некоторую программу развития (онтогенеза), которая зашифрована в дезоксирибонуклеиновой кислоте. Дезоксирибонуклеиновая кислота – это полимерное соединение, состоящие из мономеров – нуклеотидов, которые объединены в триплеты. Расположение нуклеотидов и триплетов индивидуальное у каждого живого организма – это является основой индивидуальных отличий одного живого существа от другого, принадлежащих к одному виду, семейству, отряду и так далее.

Клонирование – это биотехнологический процесс, в ходе которого происходит образование группы идентичных организмов (клеток или молекул – в клеточной инженерии), которых имеют одинаковую последовательность триплетов в ДНК. Такие организмы называются клонами.

Какие животные были клонированы?

Идея клонирования животных зародилась в учёных кругах более ста лет назад. Первыми клонированными животными являются представители класса амфибий. Английский эмбриолог Джордж Гёрдон проводил эксперименты по созданию копий лягушек. В данных опытах производилось пересадка ядер кишечника головастиков. В результате эксперимента было доказано, что первичные половые клетки могут сохраниться с пересаженными в них ядрами. Данное исследование встретило колоссальную негативную реакцию со стороны общественности, и работы по проведению клонирования амфибий были прекращены на несколько лет. Позже в начале 1970-ых годов была произведена пересадка ядер из соматической клетки взрослой лягушки в ооциты, из которых позже выросли головастики, а затем и взрослые лягушки.

проблемы клонирования

После успешного клонирования лягушек ученые принялись проводить эксперименты по созданию копий представителей класса млекопитающих. Ходят слухи, что в закрытых лабораториях советским ученым в конце восьмидесятых годов удалось получить несколько клонов домовой мыши. Официально первым млекопитающим, которое было получено путем пересадки ядра из соматической клетки в генеративную, является овца по кличке Долли. Клонирование Долли произошло в результате деятельности шотландской группы исследователей в 1996 году. С тех пор были получены клоны целого ряда млекопитающих:

  • мышь;
  • морской ёж;
  • коза;
  • тутовый шелкопряд;
  • насекомые (например, дрозофилы);
  • корова;
  • лошадь;
  • свинья.

Методы клонирования

Клонирование живых организмов осуществляется в рамках молекулярной инженерии, поэтому методы клонирования отчасти пересекаются с методами обозначенной науки.

Метод пересадки ядер

Любая живая клетка состоит из двух основных компонентов: ядра и цитоплазмы. Цитоплазма – хранилище органоидов, в котором они осуществляют свою жизнедеятельность. Ядро – это хранилище генетической информации, также с помощью ядра реализуются такие процессы, как наследственность и изменчивость. При реализации метода пересадки ядер происходит банальное встраивание ядра соматической клетки в генеративную, однако данная технология возможна лишь при работе с амфибиями. При пересадке ядер млекопитающих используется иная технология, суть которой заключается в следующем: посредством микропипетки соматическую клетку вводят под оболочку яйцеклетки, затем, используя электрический ток, проводят разряд, в результате которого происходит столкновение двух субстратов и тем самым обе клетки сливаются в единую, которая содержит генетическую информацию соматической клетки (так как ядро яйцеклетки было предварительно разрушено). Далее наступает стадия культивирования, а затем реализуется имплантация имеющегося эмбриона на этапе морулы (2-ой этап эмбрионального развития млекопитающих) в матку животного данного вида. Данная биотехнология является самой передовой, она использовалась при клонировании овечки Долли.

Метод разделения эмбриона на первых стадия дробления

Во время эмбрионального развития из оплодотворенной яйцеклетки образуются бластомеры, разделенные на несколько субъединиц (в зависимости от стадии эмбрионального развития количество субъединиц-бластомеров меняется, а меняется размер в зависимости от типа дробления). При достижении эмбрионом стадии морулы ученые разделяют организм с образованием двух новых и имплантируют последние в матку «суррогатных матерей». Данный метод применим для морских ежей и лягушек.

клонирование долли

Метод активации неоплодотворенного яйца

Данная технология является одной из первых методик клонирования животных, с её помощью получилось создать клон тутового шелкопряда. Яйцеклетку термически нагревали, не давая произойти первому мейотическому делению, из яйца вылуплялись самки. Позже метод был усовершенствован: под воздействием гамма-излучения, что делало женскую половую клетку не способной к оплодотворению, а проникшее ядро сперматозоида удваивалось, в результате чего появлялись только самцы. Открытие данного метода принадлежит советскому деятелю Астраулову

Зачем нужны клоны?

Клонирование животных – крайне дорогостоящая процедура, однако её проведение имеет теоретический и практический смысл. Во-первых, способность клонировать животных позволяет человеку получить еще больший контроль над природой. Во-вторых, клонирование позволяет понять устройство механизма реализации генетической информации, перенесенной в другой организм, а также подтвердить или опровергнуть гипотезу о накоплении мутаций в ДНК (если гипотеза верна. то клоны должны быть подвержены более быстрому старению). В-третьих, ученые грезят надеждами о том, чтобы сначала воссоздать, а затем клонировать вымершие виды животных, правда, пока что подобное остается лишь в головах исследователей и не имеет практических путей реализации. Клонирование практически применимо для следующих целей:

  • спасение вымирающих видов животных (посредством клонирования особей из Красной книги возможно размножение последних в искусственных ареалах обитания с последующим заселением клонов в естественную среду);
  • накопление и увеличение количества полезных и породистых особей;
  • клонирование человека – принесет возможность разрешить многие вопросы социологии и психологии, а также позволит создавать донорскую базу органов (однако данная цель активно подвергается гонениям со стороны церкви и биоэтических комитетов).

клонирование животных

Трудности и проблемы при клонировании млекопитающих

Трудности клонирования заключаются в финансовых затратах на низкоэффективные процедуры. Дело в том, что в эксперименте с овечкой Долли понадобилось 277 попыток для того, чтобы создание клона овцы завершилось успехом. Проблемы клонирования многочисленны, обозначим самые значимые из них:

  1. Низкая эффективность процедуры (см выше).
  2. Быстрое старение и появление заболеваний у клонов. Это происходит, скорее всего, в результате накопления мутации в ДНК, которое было использовано донором для получения клона. При рождении копий не отмечалось проблем со здоровьем, однако впоследствии наблюдалось резкое старение, возникновение заболеваний органов и систем, а также ранняя смертность. Данная проблема до сих пор не решена учеными, так как невозможно защитить ДНК от свободнорадикальных мутаций, которые происходят с ней на протяжении жизнедеятельности особи.
  3. Отличие клонов от оригинала. Несмотря на единую генетическую информацию, отличия между клоном и оригиналом возможны вследствие двух причин:
  • разные условия фенотипического развития организма;
  • инактивация хромосом во время ранних стадий эмбрионального развития.

клонировали ли человека

Проблема клонирования человека

О клонировании человеческой особи мыслители думали еще в древности. На текущем этапе развития науки это стало возможным (подтверждением данных слов являются эксперименты с клонированием человеческих эмбрионов в Китае). Однако перед учеными встает ряд преград:

  • религиозные общества всеми силами пытаются заблокировать введение технологии клонирования человеческой особи, так как это повлечет за собой крушение канонов церкви о том, что человека создал Бог. Клонирование человека позволит поставить мир на атеистические рельсы;
  • морально-этические комитеты также препятствуют клонированию, так как не имеют четкого ответа на вопрос: «можно ли назвать клона-человеком?»;
  • неоправданность риска капиталовложений в столь дорогостоящую процедуру, так как клонирование человека не сможет решить проблему бесплодия иным способом (разницы между клонированием и экстракорпоральным оплодотворением практически нет), не даст гарантии создания клонов-гениев (так как особи будут иметь разные условия для фенотипического проявления признаков).

Однако абсолютно по-другому картина раскрывается при рассмотрении процедуры клонирования в терапевтических целях, дело в том, что стволовые клетки эмбриона с одинаковой генетической информацией, что и у хозяина, позволят продлить жизнь и омолодить оригинал, а эмбрион просто будет убит. Но данное грамотное использование процедуры создания копий наталкивается на протест со стороны биоэтики, так как многие видные представители последней считают уничтожение эмбриона – убийством.

Клонировали ли человека? На этот вопрос нельзя дать однозначного ответа. С одной стороны, определенно да, так как в последние годы в Китае удалось создать клоны человеческих эмбрионов, с другой стороны, нет четкого понятия в современной общественной науке, с какого момента эмбрион может считать человеком.

Содержание статьи

  • ДНК.
  • Прокариоты.
  • Эукариоты и многоклеточные животные.
  • Партеногенез.
  • Размножение растений и получение рассады.
  • Лабораторное клонирование антител.
  • Клонирование генов.
  • Клонирование млекопитающих.
  • Первые опыты.
  • Клонирование взрослых млекопитающих.
  • Открывающиеся перспективы.

КЛОНИРОВАНИЕ, в биологии – метод получения нескольких идентичных организмов путем бесполого (в том числе вегетативного) размножения. Таким способом на протяжении миллионов лет размножаются в природе многие виды растений и животных. Однако сейчас термин «клонирование» обычно используется в более узком смысле и означает копирование клеток, генов, антител и даже многоклеточных организмов в лабораторных условиях. Появившиеся в результате бесполого размножения экземпляры по определению генетически одинаковы, однако и у них можно наблюдать наследственную изменчивость, обусловленную случайными мутациями или создаваемую искусственно лабораторными методами.

ДНК.

Говоря о клонировании, происходящем в природе или в лаборатории, необходимо представлять себе, что вся генетическая, т.е. наследственная, информация, необходимая для роста, развития, обмена веществ и размножения организмов, передается от родителей потомству в форме дезоксирибонуклеиновой кислоты (ДНК).
См. также НАСЛЕДСТВЕННОСТЬ; НУКЛЕИНОВЫЕ КИСЛОТЫ.

ДНК упакована в хромосомах, которых в клетке бывает от одной у некоторых одноклеточных до нескольких десятков у высших растений и животных. Генетического материала, находящегося всего в одной хромосоме крошечного одноклеточного существа вроде амебы, достаточно для осуществления всех его жизненных функций. Однако сложно устроенному животному для этого необходимо примерно 100 000 различных генов.

Прокариоты.

Прокариоты – это самые простые по строению одноклеточные организмы типа бактерий, в клетках которых нет оформленного ядра и многих органелл, свойственных клеткам эукариотов, т.е. эволюционно более продвинутых организмов. Обычно прокариоты размножаются бесполым путем, а именно простым делением клетки надвое. В результате они образуют клоны.
См. также КЛЕТКА; РАЗМНОЖЕНИЕ.

Эукариоты и многоклеточные животные.

Эукариоты характеризуются тем, что их клетки обладают многочисленными органеллами и ядром, в котором заключены хромосомы, т.е. ДНК. Некоторые из этих организмов – одноклеточные, но в большинстве случаев это многоклеточные формы, состоящие из многих различных по структуре и функциям эукариотных клеток. Некоторые простейшие, например амебы и парамеции, способны быстро размножаться путем деления надвое.

У многоклеточных животных произошла специализация клеток и сформировались половые клетки (гаметы), предназначенные для полового размножения. У низкоорганизованных многоклеточных встречается как половое, так и бесполое размножение. С усложнением и увеличением подвижности животных половое размножение стало преобладать. Оно обеспечивает сочетание в потомстве признаков обоих родителей, т.е. исключает образование клонов.

Партеногенез.

Клонирование в природе наблюдается в случае т.н. партеногенеза, когда потомство развивается из неоплодотворенной женской гаметы (яйцеклетки). Этот процесс широко распространен среди насекомых. Поскольку родительская особь всего одна, она генетически идентична потомкам и составляет с ними клон. У млекопитающих партеногенез можно искусственно стимулировать, но эмбрион погибает на ранних стадиях своего развития.
См. также ЯЙЦО; РАЗМНОЖЕНИЕ.

Размножение растений и получение рассады.

У растений известны различные формы бесполого размножения, обычно называемого вегетативным. Самостоятельный организм может развиться у них из частей листьев, стеблей и корней. Если эти части получены от одного растения, то образуется клон. Для вегетативного размножения у многих видов используются специальные структуры, к которым относятся, например, подземные корневища у золотой розги, надземные столоны («усы») у земляники, луковицы у чеснока, клубни у картофеля и клубнелуковицы у гладиолусов. Таким способом размножают не только травянистые, но и многие древесно-кустарниковые виды. К относительно новым методам коммерческого клонирования некоторых растений относится выращивание их из культуры ткани.

Среди сельскохозяйственных культур вегетативно размножают, например, бананы, ананасы, виноград и землянику. Особый способ клонирования, называемый прививкой, применяют в случае плодовых деревьев, в частности пекана, яблони и персика. Черенки, вырезанные из ветвей ценного в хозяйственном отношении экземпляра (привои), приращивают к укорененным растениям (подвоям) того же вида, а иногда и другого – близкого таксономически. Привой нормально растет и приносит плоды, не уступающие по качеству тем, что развиваются на материнском дереве.

Лабораторное клонирование антител.

Все позвоночные для защиты от инфекций вырабатывают особые белки – антитела. Разработаны методы их клонирования, позволяющие получать большие количества идентичных молекул. Произведенные таким образом антитела называются моноклональными. Эти высокоспецифичные вещества используются для определения концентрации ряда белков в жидкостях тела, например белковых гормонов, или для выявления раковых клеток (и возможного воздействия на них), что очень важно в научных исследованиях, а кроме того, является относительно недорогим методом диагностики некоторых заболеваний.

Клонирование генов.

Становится известно все больше специфических генов, связанных с развитием определенных болезней. Эти гены научились выделять из организма и присоединять к ним соответствующие промоторы, т.е. участки ДНК, управляющие их работой. Получаемые генные комплексы можно клонировать несколькими способами. Один из них – полимеразная цепная реакция (ПЦР), т.е. размножение нужного участка ДНК с помощью фермента полимеразы, что позволяет удваивать количество генных копий каждые несколько минут (см. также ПОЛИМЕРАЗНАЯ ЦЕПНАЯ РЕАКЦИЯ). Клонированные таким образом гены можно затем ввести в организм животного (получив т.н. трансгенную особь), которое в результате приобретет способность синтезировать нужное вещество, например ценный фармацевтический продукт. Трансгенные животные служат также моделями для изучения ряда тяжелых болезней человека, в частности муковисцидоза.

Клонирование млекопитающих.

Выше уже приводились примеры разных типов клонирования в природе. Если любому зверю порезать кожу, клоны новых клеток быстро приходят на смену поврежденным. Однако клонирование целых высокоорганизованных организмов – процесс гораздо более сложный, чем заживление раны.

Зачем вообще клонировать животных? Во-первых, можно было бы воспроизводить ценные с той или иной точки зрения особи, например чемпионов пород крупного рогатого скота, овец, свиней, скаковых лошадей, собак и т.п. Во-вторых, превращение обычных животных в трансгенных сложно и дорого: клонирование позволило бы получать их копии. Проектируется производить трансгенных млекопитающих, способных синтезировать факторы свертывания человеческой крови и другие жизненно важные для нас продукты и выделять их в составе своего молока. Широкомасштабное развитие такой биотехнологии сэкономило бы огромные количества донорской крови, запасы которой ограничены и могли бы использоваться более эффективно.

Первые опыты.

Первый опыт клонирования земноводных датируется 1952. Впоследствии удалось клонировать также мышей, кроликов, овец, свиней, коров и обезьян. Все успешные эксперименты такого рода начинались с клеток эмбриона, изолируемых на ранних стадиях развития до начала их дифференцировки в т.н. зародышевые листки, дающие начало специализированным тканям и органам. Эти клетки (бластомеры) разделяют, пока их число в зародыше не превысило 32 или 64, и с помощью особых микрохирургических методов помещают по одной в ооциты (неоплодотворенные яйцеклетки), из которых предварительно удаляют ядро. У всех бластомеров одного эмбриона одинаковый набор генов, а ооциты служат для них как бы инкубатором. После соответствующей электрической и/или химической стимуляции и культивирования из этих клеток можно получить идентичные зародыши и перенести их (имплантировать) в матку готовых к зачатию самок того же вида. В конечном итоге такие «приемные матери» родят почти идентичных детенышей, однако вся процедура в целом остается с практической точки зрения крайне неэффективной. Вместо вынашивания всех эмбрионов из первого клона практикуют также их разделение на бластомеры и повторный цикл клонирования, получая в итоге гораздо большее количество пригодных для имплантации зародышей.

Клонирование взрослых млекопитающих.

По мере роста и развития животного соответствующие его гены «включаются» и «выключаются» в строго определенное время, что обеспечивает гармоничное формирование и функционирование всех частей сложного организма. У взрослой особи гены, регулирующие процессы в специализированных (дифференцированных) клетках, должны работать без сбоев, выполняя характерную именно для этой части тела программу: малейшее нарушение здесь чревато болезнью, а то и гибелью всей особи. Следовательно, если вырезать кусочек, скажем, уже сформировавшегося подбородка, нос из него не разовьется. Правда, клетки могут терять специализацию (дедифференцироваться), что наблюдается при возникновении раковых опухолей. Таким образом, клонирование животных из их взрослых клеток путем перепрограммирования последних на нормальное эмбриональное развитие представляет собой хотя и выполнимую теоретически, но крайне сложную задачу, которую многие специалисты считали неразрешимой.

В 1997 шотландский эмбриолог Ян Уилмат со своими сотрудниками сообщил об успешном клонировании ягненка из дифференцированной клетки молочной железы шестилетней овцы. Культивируя клетки этого типа на т.н. минимальной (содержащей лишь минимум необходимых для поддержания жизни веществ) питательной среде, не позволявшей им выполнять свои «взрослые» функции, удалось добиться их дедифференцировки до эмбрионального состояния. Затем такую клетку слили с энуклеированной (лишенной ядра) яйцеклеткой другой овцы и имплантировали начавший развитие эмбрион в матку третьей самки. В результате исходная клетка молочной железы повторила и самостоятельно отрегулировала все этапы, которые в норме проходит оплодотворенное яйцо, превращаясь во многие миллиарды специализированных клеток взрослого млекопитающего. Через некоторое время эти исследователи сообщили о клонировании овцы с введенным в нее человеческим геном, а специалисты из США заявили о создании клонов взрослых коров.

Важно подчеркнуть, что особи получаемых описанным способом клонов не достигают того уровня идентичности друг другу, который свойствен однояйцовым близнецам. Во-первых, развитие их происходит в разных ооцитах, каждый из которых сохраняет некоторое количество собственной ДНК в митохондриях (органеллах дыхания). Во-вторых, эмбрионы вынашиваются различными «приемными матерями», и, наконец, после рождения каждый детеныш попадает в условия среды, неизбежно являющиеся в той или иной степени уникальными.

Открывающиеся перспективы.

Работы Уилмата и других биологов служат основой для новых исследований, которые могли бы значительно расширить наши представления о функционировании генов в ходе нормального развития, а также при воздействии на них ряда лекарственных веществ и стрессовых факторов. Это позволило бы усовершенствовать медицинское обслуживание путем создания и применения новых недорогих инструментов ранней диагностики и лечения. Если бы таким путем удалось разработать методы генной терапии, т.е. «исправления» аномальных генов, ответственных за опасные для жизни врожденные нарушения, человечество смогло бы избавиться от некоторых наследственных заболеваний, серьезно снижающих трудоспособность и сокращающих жизнь людей.

О ценности клонирования для создания трансгенных и элитных животных уже говорилось. При его широком применении можно было бы накапливать в замороженном виде неограниченные количества эмбрионов и другого материала, сохраняя таким образом ныне существующую «зародышевую плазму» во всем ее разнообразии.

Статья на конкурс «био/мол/текст»: 27 февраля 1997 года журнал Nature опубликовал статью эмбриолога и генетика Йэна Уилмата и его коллег об успешном клонировании овечки Долли. С этого момента не прекращались споры о целесообразности и этичности опытов по клонированию многоклеточных организмов. В том числе обсуждались вопросы клонирования человека.

Лягушки

Такие слова, как «клонирование» и «клон», могут вызывать различные ассоциации, начиная от фантастических образов одинаковых людей из известного телесериала и, заканчивая историей появления на свет овечки Долли [1]. Но что же такое клон на самом деле?

Клон — группа генетически идентичных организмов или клеток. Если гены идентичны, то, по сути, клоны — одинаковые существа. «Под ударом» оказывается уникальность отдельного многоклеточного организма, в том числе, возможно, и человека [2].

Сегодня существует ряд этических преград для дальнейшего развития клонирования, тем более в отношении человека. Некоторые мировые религии считают клонирование человека недопустимым. В некоторых странах клонирование запрещено вообще. В части стран запрещено клонирование, при котором воспроизводится целый многоклеточный организм [3].

И хотя предметом споров является клонирование многоклеточных организмов, необходимо понять значение термина «клонирование» в широком смысле слова.

Клонирование в биологии — это появление естественным или искусственным путем нескольких генетически идентичных живых организмов. Термин в том же смысле нередко применяют по отношению к одноклеточным организмам и клеткам многоклеточных организмов.

Термин «клонирование» применим как к растениям, так и к животным. Все идентичные организмы, созданные путем клонирования, называют клонами.

Термин «клонирование» можно использовать в двух значениях.

Естественное клонирование

В действительности, клонирование свойственно и растительному, и животному мирам. Например, вегетативное размножение растений, деление бактерий, клональное размножение ящериц. В том числе рождение близнецов у людей — тоже пример естественного клонирования.

Искусственное клонирование

Это группа методов, при которых целенаправленно создаются клоны молекул, клеток, многоклеточных организмов.

Бактериальное клонирование — это целенаправленное создание и выращивание бактериальных клонов для биотехнологий.

Молекулярное клонирование, при котором получают клоны фрагмента ДНК, а затем вставляют в необходимые клетки.

Искусственное клонирование многоклеточных организмов. При этом виде клонирования можно создать клоны клеток, тканей, целого органа или даже организма. Именно искусственное клонирование многоклеточных организмов является предметом споров и разногласий научного сообщества, религии, и предметом этой статьи.

Немного о биологии размножения многоклеточных организмов

Совокупность наследственного материала клетки называется геномом. Многоклеточные организмы — эукариоты. Одной из особенностей эукариотических клеток является то, что наследственный материал находится в ядре клетки в виде хромосом, а также в виде кольцевидной ДНК в митохондриях.

Хромосома — нитевидная структура, состоящая из ДНК и белков. Именно ДНК несет генетическую информацию. Например, в ядре клеток человека содержится 23 пары хромосом (то есть всего 46) [4]. В половых клетках человека содержится половина — 23 хромосомы. При соединении двух половых клеток — маминой и папиной — получается клетка зигота с 46-ю хромосомами (рис. 1). Зигота дает начало всем будущем клеткам и тканям организма. Таким образом, в естественных условиях все клетки многоклеточного организма несут генетическую информацию от своих отца (мужской гаметы) и матери (женской гаметы) [5]. Клетки, содержащие 23 хромосомы, называются гаплоидными, а содержащие все 46 хромосом — диплоидными. В организме млекопитающих все клетки, кроме половых, являются диплоидными соматическими [4], [6].

Результат оплодотворения — зигота человека

Рисунок 1. Результат оплодотворения — зигота человека

У разных млекопитающих — разное количество хромосом (см. табл.).

Название млекопитающего Количество хромосом диплоидного набора Количество хромосом гаплоидного набора
Человек 46 23
Шимпанзе 48 24
Овца 54 27

При клонировании нет процесса оплодотворения (слияния) двух половых клеток. У этого многоклеточного организма (клона) не будет отца и матери в общепринятом смысле слова. У него будет один генетический «родитель». Тот, чье ядро использовалось для клонирования.

Немного истории клонирования

У клонирования сложный и тернистый путь.

Можно сказать, что одной из основ клонирования является клеточная теория, разработанная Теодором Шванном в 1839 году. В 1866 году вышла статья Грегора Менделя по селекции растений, в которой впервые говорится о «единице информации». Таким образом были заложены основы генетики. В 1886 году профессор-зоолог Московского университета А.А. Тихомиров обнаружил возможность развития шелковичного червя из неоплодотворенного яйца. В 1892 году Г. Дриш впервые изучил, что происходит с генетическим материалом клетки во время ее деления, на бластомерах морского ежа. Группой ученых также было доказано, что генетическая информация содержится в ядре. В 1902 году два независимых исследователя, У. Саттон и Т. Бовери, описали хромосомы и объявили, что «единицы информации» Менделя находятся в хромосомах. В 1909 году Вильгельм Йоханнсен дал название этим «единицам информации». С этого момента они стали называться генами. В том же 1909 году советский ученый-гистолог А.А. Максимов впервые использовал термин «стволовая клетка» для клетки, которая дает начало другим клеткам. В 1910 году Томас Хант Морган начал определять расположение различных генов в хромосомах мушек. Можно смело сказать, что указанные исследования внесли фундаментальный вклад в развитие всех наук о живом, а также заложили основы клонирования.

В 40-х годах прошлого века советский ученый-эмбриолог Г.В. Лопашов проводил эксперименты по переносу клеточных ядер в энуклеированную (лишенную ядра) яйцеклетку земноводных. Аналогичные работы с земноводными проводили эмбриологи Т. Кинг и Р. Бриггс в США. В 50-х годах английский эмбриолог Д. Гордон пересаживал ядра соматических клеток в яйцеклетки лягушки. В 1963 году Тонг Дизхоу получал клоны карпа. В 1975 году были опубликованы результаты успешной работы Д. Бромхола по клонирования кроликов. В 1983 году Л.А. Слепцова и ее коллеги клонировали костистых рыб (вьюнов). В 80-х годах прошлого столетия ученый С. Вилладсен провел серию успешных опытов по клонированию сельскохозяйственных животных путем переноса в яйцеклетку ядра зародыша. В 1997 году Йэн Уилмат и Кейт Кэмпбелл из Шотландии объявили о прорыве: проведено клонирование овцы с использованием соматической, не зародышевой, клетки [1], [7]!

Долли — самка овцы, первое млекопитающее, которое смогли клонировать из зрелой соматической клетки путем замещения ядра. Технология получения этого клона была следующей.

При клонировании Долли использовали клетки двух «родителей» и «суррогатную мать» — еще одну самку овцы. От одного «родителя» брали яйцеклетку, из которой удаляли ядро. От второго брали ядро, извлеченное из соматической клетки (вымени). Внутрь безъядерной яйцеклетки первой овцы вводили ядро зрелой соматической клетки другой овцы. Затем физическим (электрическим) методом провоцировали процесс деления и образования эмбриона (рис. 2). После чего эмбрион переносили в матку «суррогатной матери» — овцы.

Схема клонирования овцы Долли

Рисунок 2. Схема клонирования овцы Долли

Потребовалось очень много попыток клонирования, прежде чем на свет появилась Долли. Ученые — биологи из Шотландии Йэн Уилмат и Кейт Кемпбелл — по праву могут считать себя «Родителями» Долли [1]. В 2003 году Долли пришлось усыпить из-за заболевания легких и артрита. После этого ее забальзамированное тело было выставлено в Королевском музее Шотландии.

Овечки

В вопросе о клонировании остается много сложного и спорного. Необходимо соблюсти все этические нормы по отношению к живому [8]. Но исследования наверняка будут продолжаться. А мы должны понимать, что за словом «клонирование» скрываются не научно-фантастические рассказы, а реальная технология, которая может принести и практическую пользу.

Например, клонирование может помочь получить животных и растения с необходимыми параметрами, такими как плодовитость, устойчивость к болезням. Опыты с клонированием могут помочь в лечении болезней. Очень интересной является перспектива использования клонирования для восстановления популяции вымерших или вымирающих видов. Отдельного внимания заслуживают опыты терапевтического клонирования — получение культуры стволовых клеток для разработки новых методов терапии тяжелых заболеваний, например, онкологических [7].

  1. I. Wilmut, A. E. Schnieke, J. McWhir, A. J. Kind, K. H. S. Campbell. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature. 385, 810-813;
  2. Максимова Е.В. (2015). Клонирование: моральные дилеммы. «Вестник РУДН. Серия: Философия». 2;
  3. Shaun D Pattinson, Timothy Caulfield. (2004). Variations and voids: the regulation of human cloning around the world. BMC Med Ethics. 5;
  4. Лима-де-Фариа А. Похвала «глупости» хромосомы. Исповедь непокорной молекулы. М.: «Бином. Лаборатория знаний», 2012;
  5. Заяц Р.Г., Бутвиловский В.Э., Рачковская И.В., Давыдов В.В. Биология: для поступающих в вузы (5-е изд.). Минск: «Вышэйшая школа», 2015. – 640 с.;
  6. Plopper G., Sharp D., Sikorski E. Lewin’s cells. Burlington: Jones & Bartlett Learning, 2015. — 1056 p.;
  7. Миненко И.А. и Сердюков Д.Г. (2014). К вопросу об истории клонирования. «Вестник новых медицинских технологий». 1;
  8. Алексина Т.А. Прикладная этика. М.: РУДН, 2004. — 209 с..

Содержание

  1. КЛОНИРОВАНИЕ
  2. Прокариоты.
  3. Эукариоты и многоклеточные животные.
  4. Партеногенез.
  5. Размножение растений и получение рассады.
  6. Лабораторное клонирование антител.
  7. Клонирование генов.
  8. Клонирование млекопитающих.
  9. Первые опыты.
  10. Клонирование взрослых млекопитающих.
  11. Открывающиеся перспективы.
  12. Химия, Биология, подготовка к ГИА и ЕГЭ
  13. Клонирование организмов

КЛОНИРОВАНИЕ

КЛОНИРОВАНИЕ, в биологии – метод получения нескольких идентичных организмов путем бесполого (в том числе вегетативного) размножения. Таким способом на протяжении миллионов лет размножаются в природе многие виды растений и животных. Однако сейчас термин «клонирование» обычно используется в более узком смысле и означает копирование клеток, генов, антител и даже многоклеточных организмов в лабораторных условиях. Появившиеся в результате бесполого размножения экземпляры по определению генетически одинаковы, однако и у них можно наблюдать наследственную изменчивость, обусловленную случайными мутациями или создаваемую искусственно лабораторными методами.

Говоря о клонировании, происходящем в природе или в лаборатории, необходимо представлять себе, что вся генетическая, т.е. наследственная, информация, необходимая для роста, развития, обмена веществ и размножения организмов, передается от родителей потомству в форме дезоксирибонуклеиновой кислоты (ДНК).
См. также НАСЛЕДСТВЕННОСТЬ; НУКЛЕИНОВЫЕ КИСЛОТЫ.

ДНК упакована в хромосомах, которых в клетке бывает от одной у некоторых одноклеточных до нескольких десятков у высших растений и животных. Генетического материала, находящегося всего в одной хромосоме крошечного одноклеточного существа вроде амебы, достаточно для осуществления всех его жизненных функций. Однако сложно устроенному животному для этого необходимо примерно 100 000 различных генов.

Прокариоты.

Прокариоты – это самые простые по строению одноклеточные организмы типа бактерий, в клетках которых нет оформленного ядра и многих органелл, свойственных клеткам эукариотов, т.е. эволюционно более продвинутых организмов. Обычно прокариоты размножаются бесполым путем, а именно простым делением клетки надвое. В результате они образуют клоны.
См. также КЛЕТКА; РАЗМНОЖЕНИЕ.

Эукариоты и многоклеточные животные.

Эукариоты характеризуются тем, что их клетки обладают многочисленными органеллами и ядром, в котором заключены хромосомы, т.е. ДНК. Некоторые из этих организмов – одноклеточные, но в большинстве случаев это многоклеточные формы, состоящие из многих различных по структуре и функциям эукариотных клеток. Некоторые простейшие, например амебы и парамеции, способны быстро размножаться путем деления надвое.

У многоклеточных животных произошла специализация клеток и сформировались половые клетки (гаметы), предназначенные для полового размножения. У низкоорганизованных многоклеточных встречается как половое, так и бесполое размножение. С усложнением и увеличением подвижности животных половое размножение стало преобладать. Оно обеспечивает сочетание в потомстве признаков обоих родителей, т.е. исключает образование клонов.

Партеногенез.

Клонирование в природе наблюдается в случае т.н. партеногенеза, когда потомство развивается из неоплодотворенной женской гаметы (яйцеклетки). Этот процесс широко распространен среди насекомых. Поскольку родительская особь всего одна, она генетически идентична потомкам и составляет с ними клон. У млекопитающих партеногенез можно искусственно стимулировать, но эмбрион погибает на ранних стадиях своего развития.
См. также ЯЙЦО; РАЗМНОЖЕНИЕ.

Размножение растений и получение рассады.

У растений известны различные формы бесполого размножения, обычно называемого вегетативным. Самостоятельный организм может развиться у них из частей листьев, стеблей и корней. Если эти части получены от одного растения, то образуется клон. Для вегетативного размножения у многих видов используются специальные структуры, к которым относятся, например, подземные корневища у золотой розги, надземные столоны («усы») у земляники, луковицы у чеснока, клубни у картофеля и клубнелуковицы у гладиолусов. Таким способом размножают не только травянистые, но и многие древесно-кустарниковые виды. К относительно новым методам коммерческого клонирования некоторых растений относится выращивание их из культуры ткани.

Среди сельскохозяйственных культур вегетативно размножают, например, бананы, ананасы, виноград и землянику. Особый способ клонирования, называемый прививкой, применяют в случае плодовых деревьев, в частности пекана, яблони и персика. Черенки, вырезанные из ветвей ценного в хозяйственном отношении экземпляра (привои), приращивают к укорененным растениям (подвоям) того же вида, а иногда и другого – близкого таксономически. Привой нормально растет и приносит плоды, не уступающие по качеству тем, что развиваются на материнском дереве.

Лабораторное клонирование антител.

Все позвоночные для защиты от инфекций вырабатывают особые белки – антитела. Разработаны методы их клонирования, позволяющие получать большие количества идентичных молекул. Произведенные таким образом антитела называются моноклональными. Эти высокоспецифичные вещества используются для определения концентрации ряда белков в жидкостях тела, например белковых гормонов, или для выявления раковых клеток (и возможного воздействия на них), что очень важно в научных исследованиях, а кроме того, является относительно недорогим методом диагностики некоторых заболеваний.

Клонирование генов.

Становится известно все больше специфических генов, связанных с развитием определенных болезней. Эти гены научились выделять из организма и присоединять к ним соответствующие промоторы, т.е. участки ДНК, управляющие их работой. Получаемые генные комплексы можно клонировать несколькими способами. Один из них – полимеразная цепная реакция (ПЦР), т.е. размножение нужного участка ДНК с помощью фермента полимеразы, что позволяет удваивать количество генных копий каждые несколько минут (см. также ПОЛИМЕРАЗНАЯ ЦЕПНАЯ РЕАКЦИЯ). Клонированные таким образом гены можно затем ввести в организм животного (получив т.н. трансгенную особь), которое в результате приобретет способность синтезировать нужное вещество, например ценный фармацевтический продукт. Трансгенные животные служат также моделями для изучения ряда тяжелых болезней человека, в частности муковисцидоза.

Клонирование млекопитающих.

Выше уже приводились примеры разных типов клонирования в природе. Если любому зверю порезать кожу, клоны новых клеток быстро приходят на смену поврежденным. Однако клонирование целых высокоорганизованных организмов – процесс гораздо более сложный, чем заживление раны.

Зачем вообще клонировать животных? Во-первых, можно было бы воспроизводить ценные с той или иной точки зрения особи, например чемпионов пород крупного рогатого скота, овец, свиней, скаковых лошадей, собак и т.п. Во-вторых, превращение обычных животных в трансгенных сложно и дорого: клонирование позволило бы получать их копии. Проектируется производить трансгенных млекопитающих, способных синтезировать факторы свертывания человеческой крови и другие жизненно важные для нас продукты и выделять их в составе своего молока. Широкомасштабное развитие такой биотехнологии сэкономило бы огромные количества донорской крови, запасы которой ограничены и могли бы использоваться более эффективно.

Первые опыты.

Первый опыт клонирования земноводных датируется 1952. Впоследствии удалось клонировать также мышей, кроликов, овец, свиней, коров и обезьян. Все успешные эксперименты такого рода начинались с клеток эмбриона, изолируемых на ранних стадиях развития до начала их дифференцировки в т.н. зародышевые листки, дающие начало специализированным тканям и органам. Эти клетки (бластомеры) разделяют, пока их число в зародыше не превысило 32 или 64, и с помощью особых микрохирургических методов помещают по одной в ооциты (неоплодотворенные яйцеклетки), из которых предварительно удаляют ядро. У всех бластомеров одного эмбриона одинаковый набор генов, а ооциты служат для них как бы инкубатором. После соответствующей электрической и/или химической стимуляции и культивирования из этих клеток можно получить идентичные зародыши и перенести их (имплантировать) в матку готовых к зачатию самок того же вида. В конечном итоге такие «приемные матери» родят почти идентичных детенышей, однако вся процедура в целом остается с практической точки зрения крайне неэффективной. Вместо вынашивания всех эмбрионов из первого клона практикуют также их разделение на бластомеры и повторный цикл клонирования, получая в итоге гораздо большее количество пригодных для имплантации зародышей.

Клонирование взрослых млекопитающих.

По мере роста и развития животного соответствующие его гены «включаются» и «выключаются» в строго определенное время, что обеспечивает гармоничное формирование и функционирование всех частей сложного организма. У взрослой особи гены, регулирующие процессы в специализированных (дифференцированных) клетках, должны работать без сбоев, выполняя характерную именно для этой части тела программу: малейшее нарушение здесь чревато болезнью, а то и гибелью всей особи. Следовательно, если вырезать кусочек, скажем, уже сформировавшегося подбородка, нос из него не разовьется. Правда, клетки могут терять специализацию (дедифференцироваться), что наблюдается при возникновении раковых опухолей. Таким образом, клонирование животных из их взрослых клеток путем перепрограммирования последних на нормальное эмбриональное развитие представляет собой хотя и выполнимую теоретически, но крайне сложную задачу, которую многие специалисты считали неразрешимой.

В 1997 шотландский эмбриолог Ян Уилмат со своими сотрудниками сообщил об успешном клонировании ягненка из дифференцированной клетки молочной железы шестилетней овцы. Культивируя клетки этого типа на т.н. минимальной (содержащей лишь минимум необходимых для поддержания жизни веществ) питательной среде, не позволявшей им выполнять свои «взрослые» функции, удалось добиться их дедифференцировки до эмбрионального состояния. Затем такую клетку слили с энуклеированной (лишенной ядра) яйцеклеткой другой овцы и имплантировали начавший развитие эмбрион в матку третьей самки. В результате исходная клетка молочной железы повторила и самостоятельно отрегулировала все этапы, которые в норме проходит оплодотворенное яйцо, превращаясь во многие миллиарды специализированных клеток взрослого млекопитающего. Через некоторое время эти исследователи сообщили о клонировании овцы с введенным в нее человеческим геном, а специалисты из США заявили о создании клонов взрослых коров.

Важно подчеркнуть, что особи получаемых описанным способом клонов не достигают того уровня идентичности друг другу, который свойствен однояйцовым близнецам. Во-первых, развитие их происходит в разных ооцитах, каждый из которых сохраняет некоторое количество собственной ДНК в митохондриях (органеллах дыхания). Во-вторых, эмбрионы вынашиваются различными «приемными матерями», и, наконец, после рождения каждый детеныш попадает в условия среды, неизбежно являющиеся в той или иной степени уникальными.

Открывающиеся перспективы.

Работы Уилмата и других биологов служат основой для новых исследований, которые могли бы значительно расширить наши представления о функционировании генов в ходе нормального развития, а также при воздействии на них ряда лекарственных веществ и стрессовых факторов. Это позволило бы усовершенствовать медицинское обслуживание путем создания и применения новых недорогих инструментов ранней диагностики и лечения. Если бы таким путем удалось разработать методы генной терапии, т.е. «исправления» аномальных генов, ответственных за опасные для жизни врожденные нарушения, человечество смогло бы избавиться от некоторых наследственных заболеваний, серьезно снижающих трудоспособность и сокращающих жизнь людей.

О ценности клонирования для создания трансгенных и элитных животных уже говорилось. При его широком применении можно было бы накапливать в замороженном виде неограниченные количества эмбрионов и другого материала, сохраняя таким образом ныне существующую «зародышевую плазму» во всем ее разнообразии.

Источник

Химия, Биология, подготовка к ГИА и ЕГЭ

Клонирование организмов

автор статьи — Саид Лутфуллин

Клон – это точная генетическая копия живого организма.

В природе клоны широко распространены. Это, конечно же, потомки бесполого размножения. Так как полового процесса не происходит, не изменяется генотип. Поэтому дочерний организм является точной генетической копией предыдущего.

Клоны так же создаются с участием человека. Зачем это делается? Представьте, ведется многолетняя работа по отбору и гибридизации растений, из всех полученных гидридов, у одного очень удачная комбинация генов (например, сочные плоды больших размеров). Как размножить это растение? Если проводить скрещивание, то произойдет рекомбинация генов. Поэтому проводят вегетативное размножение.

Многие культурные сорта являются клонами изначально полученного растения. (Фиалки, например, размножают листьями). Можно даже получить клон растения всего из одной клетки.

  • сначала выращивается культура клеток,
  • потом воздействуют нужными гормонами для дифференцировки тканей, и
  • воссоздается новый организм.

С помощью этого метода можно будет получать больше урожая, чем через стандартное разведение. Возможно, в будущем мы будем получать растительные продукты не с полей, а из пробирок.

Огромные площади земли заменит лаборатория. А колхозники останутся без работы.

Но как создавать клоны организмов, неспособных к бесполому размножению (позвоночных к примеру)?

Это возможно. Такое явление встречается даже в природе. Это – монозиготные близнецы.

Из одной зиготы развивается не один организм, при том эти организмы являются генетическими копиями друг друга (так как развились из одной зиготы).

Такое явление позволило возникнуть близнецовому методу (благодаря ему, изучается влияние наследственности и среды на признаки).

Появилась идея искусственного клонирования организмов.

В теории она проста: если из зиготы удалить собственное ядро, и поместить ядро из соматической клетки, то разовьется организм – точная генетическая копия, клон донора соматической клетки.

Практически осуществить это получилось не сразу.

В 60-е года были проведены опыты по клонированию амфибий. Из икринок лягушек вытаскивали ядра и засовывали ядра, взятые из соматических клеток (метод такой пересадки ядер, между прочим, был разработан у нас в СССР в 1940 году ученым Г.В. Лопашовым). Получились клоны лягушки. С амфибиями проще, у них оплодотворение и эмбриональное развитие происходит во внешней среде.

Икру то они не метят. В 1996 году группа британских ученых (это не фигура речи, они действительно из Британии) под руководством Иэна Уилмута сделала огромное достижение в области биологии. Они, с помощью метода пересадки ядра, клонировали овцу.

Из клетки ткани вымени уже умершей к моменту эксперименту овцы (организма-прототипа) взяли ядро. Из другой овцы взяли яйцеклетку и, предварительно удалив ее собственное ядро, трансплантировали ядро из клеток овцы-прототипа. Полученную уже диплоидную клетку (диплоидную, так как ядро взято из соматической клетки) поместили в другую овцу, которая стала суррогатной матерью. Полученного ягненка назвали Долли.

Она была генетической копией овцы-прототипа.

Но Долли не была первым в истории клоном млекопитающего. И до нее проводились удачные эксперименты. В чем новшество? В том, что ранее брались либо эмбриональные, либо стволовые клетки для донорства ядер. В случае с Долли были взяты уже дифференцированные клетки взрослого организма (клетки вымени). Овечка Долли прожила достойную жизнь, несколько раз становилась мамой. Рожала совершенно здоровых ягнят. Долли ничем не отличалась от других овец, только тем, что она являлась клоном. К концу жизни Долли заболела артритом. Ее усыпили. Болезнь эта никаким образом не связана с клонированием: ей болеют и обычные овцы.

Эксперимент с Долли продемонстрировал возможность и безопасность клонирования млекопитающих.

Какова практическая значимость клонирования? Оно позволяет решить некоторые проблемы:

  • можно увеличить численность вымирающих животных — спасти от вымирания популяции, которые сами уже не могут поддерживать свою численность и, по сути, обречены;
  • клонирование дает возможность в прямом смысле воскресить вымершие виды, если сохранились образцы ядер клеток этих организмов (вспомните Парк Юрского периода);
  • не обязательно выращивать целиком новый организм. Можно выращивать отдельно органы и заменять ими поврежденные. У человека отказала почка. Взяли у него одну клетку – вырастили новую. И отторгаться она не будет , так как не содержит чужеродных белков: все свое.

В теории все прекрасно, на практике возникают некоторые проблемы.

Прежде всего, это чисто «механические» проблемы. Несовершенство методов. Белые пятна, пробелы в знаниях: не все еще известно о генах и всех их тонкостях.

Еще одна проблема скрыта в ядре. В процессе дифференциации клеток происходит и дифференциация ядер этих клеток: некоторые гены отключаются, некоторые активируются. То есть в ядре, взятом для пересадки в яйцеклетку, могут быть отключены некоторые гены, которые необходимы для нормального развития зародыша. Понятно, что в этом случае нормального развития не получится.

Есть проблема этическая — клонирование человека. Сути ее я не понимаю, лично мне она кажется надуманной. Поэтому комментировать ее не буду.

Последняя проблема, которую мы рассмотрим – это проблема старения ядер. В ядрах есть счетчики старения организма – теломеры. С каждым делением они все короче и короче. Очевидно, нужен способ искусственно «сбросить до заводских настроек» ядро: отменить отключение генов, восстановить теломеры.

На клонирование организмов возлагаются огромные надежды. В этом методе видят излечение болезней. Область открыта для исследований: еще многое нужно изучить.

Источник

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • Как обосновать свою позицию в сочинении егэ по русскому
  • Как обосновать свою позицию в сочинении егэ 2023
  • Как обосновать свою позицию в сочинении егэ 2022
  • Как обосновать свое мнение егэ по русскому
  • Как обойти экзамен пдд

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии