Что нужно делать школьнику, чтобы получить 100 баллов?
Чтобы получить 100 баллов, надо любить и понимать математику (быть математиком — по сути, по настроению, по образу жизни). Если школьник рассматривает математику как второстепенный предмет, как предмет, который просто необходимо сдать, например, когда речь идет о поступлении на экономические направления, он не сможет получить 100 баллов ни при каком раскладе. Максимальный балл требует, чтобы человек всем своим «нутром и состоянием своего мозга» был ориентирован на математику. Потому что есть задачи, которые требуют четкого, хорошего логического мышления и владения абсолютно всем материалом. В нужный момент необходимо выудить необходимые знания и применить их для решения задачи. Есть такие задачи, на которые натаскать по принципу «делай вот так» просто нельзя (например, задача № 19). Даже если школьник прекрасно знает математику, 100 баллов получить очень сложно. Это единичные случаи.
По вашему опыту преподавания, какие разделы математики самые сложные и вызывают наибольшие затруднения?
Сегодня для школьника самое сложное — это геометрия. К сожалению, культура геометрии в школе просто отсутствует. И еще, конечно, задачи с параметрами. Старшеклассники их панически боятся. Но ученик, который понимает математику, и с этими задачами справляется. Для их решения требуется именно понимание, а все необходимые для этого знания изложены в курсе школьной математики.
А вообще, в любой теме есть простой материал (азы), который лежит в основе задач из первой части ЕГЭ, и сложный материал, который лежит в основе задач второй части. Думаю, что если есть желание, то каждый в состоянии освоить азы любой темы из школьной программы по математике, а вот более глубокое понимание этих тем и умение решать сложные задачи по силам не всем.
Ни о каком везении разговора быть не может, если школьник хочет получить больше 80 баллов
А какие темы можно назвать самыми простыми?
Обычно школьники легко решают линейные и квадратные уравнения, но только в том случае, если в них нет параметра. Так что по темам «Линейная функция» и «Квадратичная функция» есть простые задачи, а есть сложные. И так по любой теме. Можно сформулировать простую задачу, а можно такую, что никто не решит.
Простыми темами можно считать те, на большинство задач по которым можно школьника натаскать. Простая задача — это гарантированно правильно решенная. А про ЕГЭ (особенно про задачи первой части) так вообще нельзя говорить. Например, школьник знает, как решить задачу, но допускает арифметическую ошибку или невнимательно читает условие (ищет одну величину, а для ответа надо еще что-то с ней сделать). В итоге получается неверный ответ. И задача не решена. И не важно, простая она была или сложная.
Присутствует ли на ЕГЭ по математике фактор везения? Возможно ли получить высокий балл, если знаешь предмет на более скромный результат?
Да, это возможно, но только если речь идет о результате в районе 75 баллов или меньше. Ни о каком везении разговора быть не может, если школьник хочет получить больше 80 баллов. Там нужно решать сложные задачи из второй части, а они требуют четкого обоснования решения, что для большинства является непосильным. Здесь должна быть стабильность.
А можно завалить экзамен, если знаешь предмет очень хорошо?
Элементарно. Арифметические ошибки, невнимательное чтение условия задачи и просто паника. Все это приводит талантливых учеников к более скромным результатам.
Что же делать? Есть «формула успеха», которая поможет подготовиться к ЕГЭ по математике?
Учить математику! Не натаскиваться по вариантам ЕГЭ, а систематически учить темы, разбираться, стараться понять. Тогда до многих задач школьник дойдет сам, своим умом, а это и есть залог успешной подготовки и высоких баллов. Математика — это, в первую очередь, понимание, а потом уже формулы и схемы решения. При подготовке методом натаскивания потолок — это 75 баллов. Одна и та же задача, сформулированная просто «с другого конца», натасканного ребенка деморализует. Он не может узнать знакомую задачу, а разобраться в «новой» сам не в состоянии.
Вот, например, задача № 17. Когда она появилась в вариантах диагностических работ, детям в школе начали давать формулы для ее решения. И школьники заучивали эти формулы, сопротивляясь попыткам учителей объяснить, откуда они взялись. Многие действовали методом «я знаю формулу и по ней буду решать». А на самом экзамене в условие внесли незначительное изменение, и ни одна из выученных формул не подходила. Как получить ту, которая позволит решить задачу, дети не знали. Вроде бы решили все 120 вариантов задания № 17, а на ЕГЭ дали 121-й вариант. В итоге те, кто не разбирался, задачу не решили.
Надо выбросить калькулятор и научиться считать без него
До ЕГЭ по математике осталось 3,5 месяца. Как вы посоветуете выпускникам распределить время, чтобы подготовиться наилучшим образом?
Во-первых, выбросить калькулятор и научиться считать без него. Во-вторых, повторить теорию и выучить формулы (именно сейчас, а не перед экзаменом): то есть подготовить базу, а дальше решать задачи. Можно решать из сборников вариантов ЕГЭ, но, к сожалению, там их не очень много и они часто повторяются.
Каждый ребенок ставит для себя определенную планку в зависимости от того, куда собирается поступать и как знает предмет. Если говорить о заданиях второй части ЕГЭ, то во время подготовки необходимо прежде всего обратить внимание на задачи № 13, № 15 и № 17. Их можно научиться решать. Если решение не вызывает проблем, можно переходить к задачам № 14 и № 16.
Задачи № 18 и № 19 — это, конечно, уже очень высокий уровень, но попробовать можно. Если эти задачи идут хорошо, то я не думаю, что надо тратить оставшееся время на курсы. Лучше решить больше задач самостоятельно. Если же возникают проблемы или неуверенность, что вы все решаете верно, не откладывая обращайтесь за помощью. Эффективная стратегия на этот период — решать, решать и решать!
Как готовиться к заданиям повышенной сложности
Задание № 10 | Задача легкая. Здесь важно внимательно читать условие. Внимание на единицы измерения! Все величины подставлять в одних единицах измерения. |
Задание № 11 | Текстовая задача. Не считаю ее сложной. Обратите внимание на вопрос задачи, что именно спрашивают в условии и в каких единицах измерения необходимо записать ответ. Часто школьники пишут скорость не того пешехода или производительность не той трубы. |
Задания № 13, № 15 | Задания решаемые, но должна быть база по всем темам алгебры. Особенное внимание необходимо обратить на область определения (в особенности это касается логарифма, тангенса и котангенса). Нужно уметь применять те тождественные преобразования, которые помогут решить задачу, а не заведут в тупик, и знать все формулы наизусть. |
Задания № 14, № 16 | Задачи по геометрии. Самое сложное в них — это умение доказать. Для этого школьник должен владеть всем материалом планиметрии и стереометрии, знать все теоремы и следствия из них, уметь их доказывать. И еще важен чертеж! Он может либо стать эффективным инструментом и подсказать правильный ход решения, либо, если сделан некорректно, помешать решению задачи. |
Задание № 17 | Несложная задача. Это задание на умение формализовать текстовую задачу, то есть записать условие задачи в виде уравнений или неравенств (этого же требует и решение задачи № 11). На ЕГЭ под этим номером пока стабильно дают задачу на проценты. Теоретически может быть и задача на поиск оптимального решения, но такие варианты пока встречались только в диагностических работах. После формализации условия получается стандартная математическая задача о нахождении экстремума функции или на нахождение наибольшего (наименьшего) значения функции на отрезке (аналогично задаче № 12). Здесь важно не пользоваться готовыми формулами, а разбираться, почему в этой задаче так, а в другой иначе. Только тогда можно научиться переводить условие текстовой задачи на язык математики. |
Задание № 18 | Для решения этой задачи необходимо отличное владение предметом. Поможет ее решить знание свойств элементарных функций, умение исследовать функции и строить их графики. Все это есть в школьном курсе математики. |
Задание № 19 | Это задача для тех, кому интересна математика. В ходе решения может возникнуть необходимость обратиться к любому разделу предмета из программы любого класса. Нужно найти в своей голове и грамотно применить эти знания. В одной задаче может сочетаться арифметическая прогрессия со свойствами делимости чисел и нахождением наибольшего значения. Для решения этой задачи нужно понимать, когда достаточно привести пример, а когда необходимо строгое обоснование. |
Обычно базовую математику выбирают ребята, у которых есть план: надо как можно скорее разделаться с бесполезным для поступления предметом и сосредоточиться на своем наборе вступительных. Из этой статьи вы узнаете, как сдать базовую математику максимально быстро и просто.
В этом материале мы сделаем акцент на простых номерах, которые принесут вам балл почти задаром! Они обозначены пометкой «Обязательно делать» — таких заданий 10. Как раз с запасом на ошибки, ведь минимум для сдачи базовой математики — 7 баллов.
Для тех, кто хочет получить выше тройки — это 12 баллов и выше, — мы дали рекомендации по еще 3 задачам. В сумме получается 13 номеров. Решите их все, и твердая четверка у вас в кармане.
Какие задания решать, чтобы сдать базовую математику
Задание 1: обязательно делать
Проверяется ваше умение разделить случаи, когда требуется округлить величину в большую сторону, а когда — в меньшую.
Если вы ходите в магазин с наличными, то сталкиваетесь с подобными задачами каждый день. Разделим 100 рублей на стоимость одной упаковки йогурта. Не забывайте приводить все величины к одной размерности:
100 : 14,6 = 6, 849…
Так сколько баночек йогурта вам продадут? На 7 штук денег не хватает, значит, округлить полученную величину надо до целого в меньшую сторону. Математическое правило округление в этой задаче не поможет.
Ответ: 6.
Если одна пачка рассчитана на 6 рулонов, то на 63 рулона:
63 : 6 = 10,5.
Но полпачки вам не продаст. Включаем логику: возьмем меньше — не хватит еще половины пачки на три последних рулона. Значит, округлить надо в большую сторону, взять клей с небольшим запасом. Математическое правило округления снова игнорируем.
Ответ: 11.
Задание 2: обязательно делать
Это задача на здравый смысл. Нужно соотнести величины с их возможными значениями.
Вряд ли грузовой автомобиль может весить как 3 шоколадки (300 г), а взрослый человек — 8 т.
Давайте вместе подберем значения.
- Взрослый человек обычно весит от 50 до 100 кг — что из этого подходит? Конечно, 65 кг.
- Грузовой автомобиль достаточно большой и тяжелый, скорее всего, он весит несколько тонн. Нам подходит 8 т.
- Книга обычно не такая большая и весит до 1 кг. Из оставшегося подойдет 300 г.
- А пуговка совсем маленькая. Значит, берем самый легкий вес — 5 г.
Ответ:
Главное — внимательно перенести ответы в бланк: 3142.
Задание 3: обязательно делать
Задание на работу с графиком, диаграммой или таблицей. Вооружайтесь карандашом, читайте условие с предельной внимательностью и безжалостно отмечайте нужные по условию значения на изображении в КИМ. Вы и представить не можете, сколько выпускников теряет тут баллы по невнимательности.
Мы ярко отметили уровень, соответствующий Амуру, в итоге посчитать все более длинные реки стало проще простого. У вас на экзамене будет так же наглядно!
Ответ: 7.
Задание 4: обязательно делать
Задание проверяет навык работы с формулами. Алгоритм решения напоминает решение задачек на уроке по физике:
- Выписываем формулу из условия.
- Определяем, что нужно найти: единственную букву, значение которой не дано.
- Выражаем искомую величину.
- Подставляем значения из условия в формулу.
- Ищем неизвестное.
Самое трудное тут — правильно выразить искомую величину. Для этого повторяем порядок выполнения арифметических операций, свойства умножения, тренируемся перекидывать через равно множители и слагаемые.
И да, в базе эта задача проста настолько, что даже перекидывать ничего не придется. Нужная величина уже будет слева от равно.
Задание 5: обязательно делать
Простая задача на определение вероятности, которая поможет вам точно сдать базовую математику.
Решаем с помощью формулы:
Внимательно читайте вопрос: спрашивают вероятность купить исправную лампочку. Если из ста 3 неисправны, значит, остальные в порядке и подойдет любая из оставшихся 97. Это и есть наши благоприятные исходы из формулы.
97 : 100 = 0,97.
Ответ: 0,97.
Будьте внимательны: иногда в задаче есть указание к округлению. Значит, ответ у вас выйдет некрасивый, в виде бесконечной десятичной дроби, которую вы округлите до нужного разряда.
Еще один подвох: формулировка с предлогом «на». К примеру, «На 100 лампочек 3 неисправны. Найдите вероятность купить неисправную». Подходящие исходы тут даны явно: 3 неисправные лампочки. А вот число всех исходов спрятано, и найти его будет нужно сложением исправных и неисправных лампочек: 100 + 3 = 103.
Задание 6: обязательно делать
Задание проверяет навык чтения информации из таблицы и подбора подходящего по условию варианта.
Например, вы нашли вариант позвать первого, третьего и пятого переводчиков. Получите весь набор языков как раз за 12 тысяч. Но обратите внимание, что это решение далеко не единственное.
Ответ: 135.
Задание 7
Мы не выделяем это задание в обязательные, так как для его выполнения понадобится навык анализа поведения функции по графику. Но, как его решать, сейчас коротко расскажем.
Запомним: точка максимума будет на «горке», точка минимума — в «ямке». Функция убывает, если идет вниз слева направо. Возрастает, если идет вверх слева направо.
Если не повезет, то придется вспомнить азы теории по производной.
Здесь все дело в касательных. Нужно внимательно к ним присмотреться. Если касательная к графику возрастает, то значение производной будет положительное, если убывает — отрицательное. Производная будет тем больше по величине (модулю), чем быстрее возрастает или убывает касательная.
Ответ: 2143.
Задание 8: обязательно делать
Задача проверяет умение делать логичные выводы из утверждения. Иногда попадаются совсем простые задания, к таким даже дополнительно готовиться не надо.
Все, что от вас требуется, — схематично изобразить на черновике ясень, рябину и осину, указать известную разницу в высоте и внимательно сопоставить картинку с утверждениями.
Важно: не додумывайте дополнительные условия, не указанные в тексте задачи. Учитесь читать строго то, что написано.
Исходя из рисунка выше получаем, что верны только утверждения 1 и 4.
Ответ: 14.
А бывают случаи, когда с визуализацией задачки придется постараться.
Тут иллюстрация не так очевидна, но нам помогут круги Эйлера. Этот инструмент позволяет наглядно изобразить множество объектов. В данном случае — школьников. Давайте прикинем, как ребята могут распределиться по кружкам.
Например, так. Тут из 20 человек на кружки в итоге ходят 13. Причем 10 из них очень активны и выбрали сразу два предмета. Трое ограничились только историей.
Или вот так. Если ребята задались целью по максимуму не пересекаться на дополнительных занятиях, то… У них не получится, и как минимум трое запишутся сразу на оба факультатива.
Конечно, возможны еще промежуточные варианты, но мы нарисовали два крайних. Теперь попробуем ответить на вопросы.
- Смотрим на первую картинку. Даже если все ребята будут очень стараться посетить оба кружка, они ограничены условиями задачи и максимум на оба попадут 10 человек из 20. Нет.
- Тут надо рассмотреть другую крайность, которую мы изобразили на второй картинке. Как бы ребята ни старались не встречаться на кружках, хотя бы трое попадут на оба сразу. Да.
- Уж точно неверно. На обеих наших картинках есть ребята, которые ходят на историю, но не ходят на математику. Нет.
- Смотрим на первую картинку. Оба кружка могут посещать максимум 10 человек.
Ответ: 24.
Так что для решения иногда мало логики — понадобится еще немного воображения. Потренируйтесь, и ваши шансы получить балл увеличатся.
Задание 14: обязательно делать
Задание проверяет базовые навыки счета, которым учат в 5–6-м классах. Чтобы получить балл и сдать базовую математику, надо:
- уметь выполнять арифметические действия с обыкновенными и десятичными дробями;
- правильно расставлять порядок действий;
- быть предельно внимательными.
Уделите пару вечеров отработке алгоритмов сложения, вычитания, умножения и деления обыкновенных и десятичных дробей, и это задание у вас в кармане.
Задание 15
Составители экзамена проверяют ваш навык работы с процентами и единицами отношения. Такие задачи бывают четырех типов.
Тип 1. Найти часть от числа
Часть может быть выражена в процентах или сразу в виде дроби. Например, придется искать треть от чего-то.
Рассмотрим на примере реальной задачи из экзамена:
Прочувствуйте специфику задачи: нам известно целое — вся зарплата до вычета налога. А работать мы будем с кусочком — 13 процентами. Сколько это в рублях, нам еще предстоит узнать.
Чтобы ответить на вопрос задачи, нужно сделать три шага:
1. Перевести процент в десятичную дробь.
Для этого всегда надо количество процентов поделить на 100.
13 : 100 = 0,13.
2. Найти, сколько это от зарплаты в рублях.
Запоминаем главное правило для этого типа задач: чтобы найти дробь от числа, надо число умножить на эту дробь.
12 500 ∙ 0,13 = 1 625 (руб.) — налог, который удержат с зарплаты Ивана Кузьмича.
3. Ответить на вопрос задачи.
У нас просили зарплату после вычета налога, а не сам налог.
12 500 – 1625 = 10 875 (руб.).
Ответ: 10 875.
Будьте внимательны: многие совершают ошибку именно на последнем шаге!
Тип 2. Найти число по его части
Прочувствуйте разницу с прошлой задачей: тут 124 — и есть 25%, то есть одна и та же величина выражена в процентах и в абсолютных величинах, в данном случае — в учениках. Просят узнать целое — 100%.
1. Переводим процент в десятичную дробь:
25 : 100 = 0,25.
2. Находим, сколько учеников всего.
Правило для этого типа задач: чтобы найти целое, надо часть разделить на дробь.
124 : 0,25 = 496 (уч.) — всего.
Ответ: 496.
Тип 3. Найти, сколько процентов часть составляет от целого
Особенность подобных заданий: не дано процентов, есть только абсолютные величины. В данном случае — стоимость футболки в рублях.
1. Находим, какую долю новая цена составляет от первоначальной.
Запоминаем правило: чтобы найти, какую долю часть составляет от целого, надо часть разделить на целое.
680 : 800 = 0,85.
2. Переводим долю в процент.
В прошлых задачах мы уже дважды выполнили обратное действие. В этот раз сделаем наоборот: умножим полученную дробь на 100.
0,85 ∙ 100 = 85% — столько процентов новая цена составляет от старой.
3. Отвечаем на вопрос задачи.
Нас спросили, на сколько процентов цена снизилась, что стала 85% от первоначальной. Конечно, изначально она была 100%. Итого:
100 – 85 = 15%.
Ответ: 15%.
Тип 4. Задачи на соотношение
Если перефразировать условие, то за первого кандидата проголосовали 3 части избирателей, а за второго — 2 части. Особенность этих частей в том, что они одинаковые по величине.
Если одна будет состоять из 10 человек, то за первого кандидата будет 30, а за второго — 20.
1. Считаем общее количество частей:
3 + 2 = 5.
2. Узнаем, сколько голосов составляет одна такая часть.
Тут речь о процентах проголосовавших. Сколько всего проголосовало? Конечно, 100%! Значит, каждая из пяти частей «весит»
100 : 5 = 20%.
3. Отвечаем на вопрос задачи.
За проигравшего проголосовало меньше частей избирателей. В нашем случае 2.
20 ∙ 2 = 40%.
Ответ: 40%.
Решение этих задач удобнее всего оформить табличкой:
1 часть = 100% : 5 = 20%.
Если рассчитываете решать текстовую задачу, включите здравый смысл. Ответ всегда можно проверить на адекватность благодаря обычной логике.
Задание 16: обязательно делать
Задание на решение выражения. На самом деле оно проверяет знание теории, так как в этом задании вам могут встретиться:
- выражения со степенями,
- иррациональные выражения,
- логарифмические выражения,
- тригонометрические выражения.
Ваша задача, соответственно, — знать:
- свойства степеней
- свойства корней
- свойства логарифмов
- формулы тригонометрии
Вы можете подробно ознакомиться с ними и научиться выводить в этой статье.
Обратите внимание: нужная теория будет в справочных материалах на экзамене, но это не поможет, если вы не научитесь применять ее для решения заданий. Практика обязательна!
Задание 17: обязательно делать
В номере с уравнениями вам не встретятся тригонометрические. Зато вы точно увидите там:
- линейные уравнения
Раскрываем скобки, если они есть, слагаемые с х переносим в одну сторону от равно, без х — в другую. Приводим подобные и решаем простейшее уравнение.
- квадратные уравнения
Бывают полные и неполные, всего надо повторить три алгоритма решения! А формула дискриминанта еще и в справочных материалах есть.
- иррациональные уравнения
Это те, что с корнем. Чтобы избавиться от корня, возводим обе части уравнения в квадрат и решаем получившееся уравнение. Есть нюансы с областью допустимых значений: подставьте полученные корни в исходное уравнение и проверьте, выполняется ли равенство. Если нет, то подставленное значение решением не будет.
- показательные уравнения
Ваша задача — с помощью формул свойств степеней привести уравнение к виду, когда слева и справа от равно в основании степени будет одно и то же число. После приравниваем показатели и решаем. Вот так:
Ответ: 7.
- логарифмические уравнения
С помощью формул свойств логарифмов приводим уравнение к виду, когда слева и справа от равно будет логарифм с одинаковым основанием. После приравниваем выражения под логарифмом и решаем.
Ответ: 67.
Прелесть уравнений в том, что ответ всегда можно проверить подстановкой вместо x в уравнение. Не забывайте проверять, ведь это возможность убедиться на 100%, что вы не упустите заветный балл.
Задание 19
Если хотите сдать базовую математику и решить номер 19, надо ознакомиться со свойствами целых чисел и признаками делимости. Иногда решение можно найти даже подбором! Попробуйте — времени на базовом ЕГЭ вам точно хватит.
Для начала нужно запомнить все признаки делимости.
А теперь посмотрим на типичное задание 19.
Тут помогут признаки делимости. Отдельного признака для 12 нет, потому нам надо разложить его на множители, признаки делимости для которых есть.
- На 3: сумма всех цифр делится на 3.
- На 4: число, образованное последними двумя цифрами, делится на 4.
Начнем с признака для 4. Пока что наше число заканчивается на 13 и на 4 не делится. Попробуем вычеркнуть последнюю цифру, и число будет заканчиваться на 61. Тоже не подходит. Вычеркнем еще одну: теперь на конце 76… Вот оно! От изначального числа осталось 751576, две цифры уже вычеркнули, осталось убрать одну.
Теперь проверим признак для 3: 7 + 5 + 1 + 5 + 7 + 6 = 31. Какое ближайшее число разделится на 3? Конечно, 30. Если мы вычеркнем единичку, все сойдется.
Ответ: 75576.
Другой вариант задания:
А задание такого типа можно попытаться подобрать, расположений не слишком много. Мы все же постараемся порассуждать, чтобы уменьшить количество возможных вариантов.
Чтобы число делилось на 10, оно должно заканчиваться на 0. Например, это получится, если сложить 7 + □7 + □□6. Уже немного легче. Остальное просто подберем. Под условие задачи подойдет 7 + 27 + 356 = 390.
Ответ: 390.
Какие задания мы не разобрали и почему
Теперь вы знаете, как сдать базовую математику, решив всего семь заданий. Но некоторые номера базового ЕГЭ включают слишком большое разнообразие прототипов, и методы их решения не ограничиваются парой простых алгоритмов.
Например, в эту группу относятся все задания по геометрии: с 9 по 13. Чтобы решать геометрию, мало знать основные фигуры и формулы. Необходим навык, который вырабатывается только практикой. Однако у нас есть статья про окружность — в ней вы найдете много полезной информации.
Задание 18 обычно, хотя и не всегда, содержит неравенство.
Это объемный блок теории, которую тоже необходимо подкреплять практикой. Но, может, вам повезет и попадется задачка на расположение значений на числовой прямой.
Тут достаточно примерно прикинуть значения и аккуратно внести ответы в бланк. Ясно, что 7/3 больше 2, но меньше 3. Корень из 26 равен 5 с копейками, а степень –1 из 3/5 сделает 5/3, или чуть больше 1,5. Подобные задания надо пытаться делать обязательно!
Задание 20. С этим заданием ученики знакомы еще с 9-го класса, так как оно было под номером 21 на ОГЭ. Это текстовая задача:
- на производительность,
- движение (по прямой, воде, окружности),
- сплавы и смеси,
- проценты (пиджаки, рубашки, брюки; бюджет семьи; акции, которые растут и падают),
- прогрессии.
В задании 21 на ОГЭ не было прогрессий, но они были в первой части на ОГЭ, так что ничего нового.
Задание 21. Здесь попадаются разные типы неочевидных задач на логику — чем-то они даже похожи на олимпиадные. Решение каждой нужно рассматривать отдельно и подробно. Если хотите прочитать о том, какие задачи бывают в 21-м номере, пишите в комментариях, и Maximum поделится своими методами решения!
Не знаете, какой вуз выбрать? Воспользуйтесь бесплатной консультацией в нашем центре. Что это такое? Все просто: вы расскажете о себе и о своих интересах. А специалист посоветует, на какие специальности обратить внимание, в какой вуз поступать, какие ЕГЭ сдавать. Так вы сэкономите время на подготовку и сможете выбрать образование, которое точно окажется для вас интересным и полезным!
Подготовка к ЕГЭ по математике
Из каких частей состоит ЕГЭ по математике в 2023 году
Математика — один из двух обязательных предметов на ЕГЭ. Но, в отличие от русского языка, эта дисциплина предлагает 2 уровня сложности: профильный и базовый. Какий именно вариант выбрать, зависит от вашей цели. Если вуз, в который вы хотите поступить, требует профильного уровня, нужно сдавать его. Обычно это касается технических специальностей.
Для получения аттестата выпускникам школ хватит и базового. Но финальное решение за вами. Если вы хотите сдать профильный вариант, просто чтобы проверить свои знания и уровень подготовки, — дерзайте!
Структура базового уровня ЕГЭ по математике
Базовый уровень проверяет основные знания школьника по математике. Такой экзамен не делится на части: в него входит только 21 задание с кратким ответом. Ответом может быть целое число, десятичная дробь или ряд цифр. По уровням сложности задания экзамена тоже не делятся — все задачи в нем базового уровня. Чтобы выполнить такую работу, ученику дают 180 минут.
Структура профильного уровня ЕГЭ по математике
Варианты профильного уровня проверяют основные и углубленные знания школьника. В 2023 году ЕГЭ состоит из 2 частей:
-
1-я часть: 11 задач с кратким ответом;
-
2-я часть: 7 задач с развернутым ответом.
В первой части ответом может быть целое число, десятичная дробь или ряд цифр. Во второй части — полное обоснованное решение и ответ. Чтобы выполнить задания экзамена, школьнику дают 235 минут.
Задачи ЕГЭ по математике профильного варианта делятся на категории по уровням сложности. В таблице ниже можно увидеть, как именно.
Базовый | 6 |
Повышенный | 10 |
Высокий | 2 |
Всего | 18 |
Получай лайфхаки, статьи, видео и чек-листы по обучению на почту
Демоурок по подготовке к экзаменам
Составим ваш личный путь к высоким баллам — учтем сроки, уровень знаний и цель.
Как сдать ЕГЭ по математике: разбор сложных задач
Экзамен по математике не зря считают одним из самых трудных. Даже в заданиях базового варианта можно легко ошибиться по невнимательности. Что уж говорить о действительно сложных задачах с полным решением, где много «подводных камней»? Чтобы вы знали, как подготовиться к ЕГЭ по профильной математике, мы разобрали несколько из них.
Задание 16
Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй — в точке B. Прямая BK пересекает первую окружность в точке D, прямая AK пересекает вторую окружность в точке C.
а) Докажите, что прямые AD и BC параллельны.
б) Найдите площадь треугольника AKB, если известно, что радиусы окружностей равны 4 и 1.
Совет
Для этого задания советуем повторить темы:
-
Касательные к окружности и их свойства.
-
Свойства вписанных углов.
-
Взаимное расположение окружностей.
-
Свойства прямоугольного треугольника.
-
Признаки и свойства параллельных прямых.
-
Подобные треугольники, площади подобных фигур.
-
Свойство площадей (в частности: отношение площадей треугольников с одинаковой стороной).
-
Трапеция, её свойства. Площадь трапеции.
-
Теорема Пифагора.
Проследите, чтобы они были в вашем плане подготовки к профилю ЕГЭ по математике.
Решение
а) Выполним построение.
-
Окружности с центрами О1 и О2 соответственно касаются друг друга в одной точке К.
-
Прямая АВ касается обеих окружностей в точках А и В соответственно.
-
Прямые АК и ВК пересекают окружности в точках С и D соответственно
-
Пусть общая касательная окружностей в точке К, пересекает прямую АВ в точке М.
Тогда по свойству касательных, проведенных из одной точки, AM = KM и KM = BM.
-
Рассмотрим треугольник АВК. Его медиана АМ равна половине стороны, которую она разбивает. Следовательно, делаем вывод, что треугольник АВК прямоугольный, а угол К = 90°.
-
Вписанный угол AKD является смежным углом АКВ, а значит, он тоже 90° как прямой. Следовательно, угол AKD опирается на диаметр AD. Значит, AD ⊥ AB, так как радиус, а в данном случае диаметр, перпендикулярен касательной в точке касания.
-
Аналогично рассмотрев угол ВКС, получим, что BC⊥ AB.
-
Прямые AD и ВС перпендикулярны третьей прямой АВ, следовательно, прямые AD и BC параллельны. Ч. т. д.
б) Пусть радиус первой окружности равен 4, а радиус второй окружности равен 1. Тогда АD = 8, ВС = 2.
-
Рассмотрим треугольники ADK и СВК. Они подобны, т. к. имеют два равных угла (К – вертикальный, С и А — накрест лежащие). Из подобия треугольников следует, что их площади относятся как коэффициент подобия в квадрате:
-
Обозначим площадь треугольника СВК за S, тогда площадь треугольника ADK будет равна 16S.
-
Пусть площади треугольников АВК и CDK будут равны х и у соответственно.
-
Вспомним свойство, связывающее высоты треугольников с общим основанием и получим следующие равенства: DB — общая сторона треугольников ADB и СDB, следовательно:
(равно 4 из подобия треугольников ADK и СВК, см. выше),
-
Аналогично, AC — общая сторона треугольников ADС и ABC, следовательно,
(равно 4 из подобия треугольников ADK и СВК, см. выше),
-
Решим полученную систему уравнений:
-
Из первого уравнения
подставим во второе и найдем y.
следовательно,
подставим во второе и найдем y.
-
Площадь ABCD равна 16S + 4S + 4S + S = 25S.
-
Заметим, что ABCD — прямоугольная трапеция (AD||BC, AB — перпендикулярна основаниям). Для вычисления ее площади нужно полусумму оснований умножить на высоту.
-
Для того, чтобы найти высоту, рассмотрим меньшую трапецию AO1O2B.
Ее основания равны 1 и 4, так как О2В и О1А — радиусы. O1O2 = 5, так как О2К и О1К — радиусы. О2H — высота трапеции AO1O2B.
-
По теореме Пифагора найдём О2H:
-
Вычислим площадь трапеции ABCD:
-
С другой стороны мы нашли
Отсюда S = 0,8.
-
Площадь треугольника АКВ = 4S, следовательно,
Ответ: 3,2.
Задание 18
В школах № 1 и № 2 учащиеся писали тест. В каждой школе тест писали по крайней мере 2 учащихся, а суммарно тест писали 9 учащихся. Каждый учащийся, писавший тест, набрал натуральное количество баллов. Оказалось, что в каждой школе средний балл за тест был целым числом. После этого один из учащихся, писавших тест, перешел из школы № 1 в школу № 2, а средние баллы за тест были пересчитаны в обеих школах.
а) Мог ли средний балл в школе № 1 уменьшиться в 10 раз?
б) Средний балл в школе № 1 уменьшился на 10%, средний балл в школе № 2 также уменьшился на 10%. Мог ли первоначальный средний балл в школе № 2 равняться 7?
в) Средний балл в школе № 1 уменьшился на 10%, средний балл в школе № 2 также уменьшился на 10%. Найдите наименьшее значение первоначального среднего балла в школе № 2.
Совет
Чтобы справиться с этой задачей, нужно повторить темы:
-
Понятие натурального и целого числа.
-
Среднее арифметическое.
-
Делимость чисел.
-
Процент. Нахождение процента от числа, уменьшение числа на заданный процент.
-
Составление и решение линейных уравнений.
Добавьте их в ваш план подготовки к ЕГЭ по математике, если собираетесь сдавать профиль.
Решение:
а)
-
Допустим, что в школе № 1 писали тест 2 учащихся, один из них набрал 1 балл, а второй набрал Х баллов и перешёл в другую школу. Тогда средний балл в школе был равен (1 + Х) : 2 = 10, а стал равен 1, т. е. уменьшился в 10 раз.
-
Решим уравнение и получим Х = 19 — натуральное число. Следовательно, наше предположение верно.
-
Или мы можем предположить другой вариант: что один учащийся набрал 2 балла. Тогда средний балл изначально равняется 20, а после ухода второго станет 2, т. е. изменится в 10 раз.
-
Решим уравнение (2 + Х) : 2 = 20, отсюда Х = 38 — натуральное число, что тоже удовлетворяет условию задачи.
Ответ: средний балл в школе № 1 мог уменьшиться в 10 раз.
б)
-
Пусть в школе № 2 писали тест m учащихся, n — сумма баллов m учащихся, средний балл равнялся B, а перешедший в неё учащийся набрал u баллов.
-
Умножим обе части полученного уравнения на 10, получим:
-
По условию B = 7, тогда получим, что 10u кратно 10, а
не делится на 10, так как ни один из множителей не делится на 10. Это противоречие.
Ответ: Первоначальный средний балл в школе № 2 не мог равняться 7.
в)
-
Пусть в школе № 1 средний балл равнялся A, общее количество баллов — p, количество писавших работу — (9 – m).
(из пункта б).
Следовательно,
-
Попробуем найти средний балл в школе № 2 методом подбора. Пусть:
В = 1, тогда:
кратно 10, а
не делится на 10.
В = 2, тогда:
пусть u = 1, тогда m = 4:
— не является целым числом.
u = 2 не может быть, т. к. m ≥ 1
В = 3, тогда:
кратно 10, а
не делится на 10.
В = 4, тогда:
Чтобы m было натуральным числом u должно быть четным, u = 2, тогда m = 4, что невозможно (доказали при В = 2).
u = 4, тогда m меньше 0, что невозможно т. к. m ≥ 1.
В = 5, тогда:
пусть u = 1, тогда m = 7, что невозможно (доказали в пункте б);
пусть u = 2, тогда m = 5:
— не является целым числом;
пусть u = 3, тогда m = 3:
-
Этот случай реализуется, например, в школе № 2 при m = 3, B = 5. Предположим, что каждый ученик набрал по 5 баллов. Тогда в школе № 1 писали 9 – m = 9 – 3 = 6 учащихся, 3 из них набрали по 1 баллу, а 3 – по 3 балла, тогда средний балл:
-
Переход из школы № 1 в школу № 2 совершил ученик с 3 баллами, тогда
средний балл в школе № 1 стал равен:что на 10% меньше от первоначального значения.
-
Тогда средний балл в школе № 2 стал равен:
что на 10% меньше от первоначального значения.
Ответ: наименьшее значение первоначального среднего балла в школе № 2 равно 5.
Ответ: а) да; б) нет; в) 5.
Как выставляют баллы за ЕГЭ по математике
С базовым уровнем сложности все просто: за каждый правильный ответ вашего варианта вы получаете по 1 первичному баллу. То же самое касается и первой части профиля: задания 1–11 тоже оценивают в 1 балл.
Как вы помните, во 2-й части профильного варианта нужны и решение, и ответ. Здесь задания оценивают по нескольким критериям. Они сложнее, но и баллов за них можно получить больше. Давайте же разберемся, как выставляют баллы во второй части профиля. Это поможет вам подготовиться к заданиям ЕГЭ по математике как самостоятельно, так и с учителем.
Задание № 12 | Баллы |
---|---|
В обоих пунктах есть обоснованные ответы | 2 |
Есть обоснованный ответ только в пункте а или есть неверный ответ из-за ошибки в вычислениях, но шаги в решениях обоих пунктов верные |
1 |
Все остальные случаи | 0 |
Максимальный балл | 2 |
Задание № 13 | Баллы |
---|---|
Верно доказан пункт а, в пункте б есть обоснованный ответ | 3 |
Есть только обоснованный ответ в пункте б или верно доказан пункт а, в пункте б шаги решения верные, но из-за ошибки в вычислении получен неверный ответ |
2 |
Есть только верное доказательство пункта а, или в пункте б шаги решения верные, но из-за ошибки в вычислении получен неверный ответ, или есть обоснованный ответ в пункте в, который получен с помощью пункта а, но сам пункт а не выполнен |
1 |
Все остальные случаи. | 0 |
Максимальный балл | 3 |
Задание № 14 | Баллы |
---|---|
Есть обоснованный ответ | 2 |
Ответ обоснован, но он отличается от верного исключением точек –12 и/или 0 или шаги решения верные, но из-за ошибки в вычислениях получен неверный ответ |
1 |
Все остальные случаи | 0 |
Максимальный балл | 2 |
Задание № 15 | Баллы |
---|---|
Есть обоснованный ответ | 2 |
Ученик верно построил математическую модель | 1 |
Все остальные случаи | 0 |
Максимальный балл | 2 |
Задание № 16 | Баллы |
---|---|
Верно доказан пункт а, в пункте б есть обоснованный ответ | 3 |
Есть только обоснованный ответ в пункте б иЛИ Верно доказан пункт а, в пункте б шаги решения верные, но из-за ошибки в вычислении получен неверный ответ |
2 |
Есть только верное доказательство пункта а, или в пункте б шаги решения верные, но из-за ошибки в вычислении получен неверный ответ, или есть обоснованный ответ в пункте в, который получен с помощью пункта а, но сам пункт а не выполнен |
1 |
Все остальные случаи | 0 |
Максимальный балл | 3 |
Задание № 17 | Баллы |
---|---|
Есть обоснованный ответ | 4 |
Рассуждения и значения параметра верные, но в ответе есть 1–2 неверных значения или решение недостаточно обосновано | 3 |
Есть верное рассуждение и хотя бы одно правильное значение | 2 |
Задача сведена к исследованию взаимного расположения 3 окружностей или двух квадратных уравнений с параметром | 1 |
Все остальные случаи | 0 |
Максимальный балл | 4 |
Задание № 18 | Баллы |
---|---|
Есть обоснованный ответ в пунктах а, б, в | 4 |
Есть обоснованный ответ в пункте в и есть обоснованный ответ в пунктах а или б | 3 |
Есть обоснованный ответ в пунктах а и б или есть обоснованный ответ в пункте в. |
2 |
Есть обоснованный ответ в пунктах а или б | 1 |
Все остальные случаи | 0 |
Максимальный балл | 4 |
Узнать больше о структуре экзамена, вариантах и критериях, по которым оценивают работы, можно на официальном сайте ФИПИ, в разделе «Демоверсии, спецификации, кодификаторы». Там же вы найдете методические указания для подготовки.
Сколько баллов нужно набрать, чтобы получить 3, 4 и 5
Теперь, когда мы разобрали критерии, можно посчитать, сколько баллов нужно набрать на конкретную оценку. В этом нам помогут таблицы ниже. Заодно разберемся, как первичные баллы переводятся в тестовые — финальные.
Шкала перевода баллов в базовой математике | |
---|---|
Первичные баллы | Оценка |
<7 | 2 |
7–11 | 3 |
12–16 | 4 |
17–21 | 5 |
Максимальный балл | 4 |
Обратите внимание: с 2008 года официально баллы ЕГЭ не переводят в привычные нам оценки по пятибальной системе. Но если вам хочется это сделать, можно примерно оценить работу по таблице ниже.
Шкала перевода баллов в профильной математике (неофициальная) | ||
---|---|---|
Первичные баллы | Тестовые баллы | Оценка |
<5 | <27 | 2 |
5–8 | 27–49 | 3 |
8–20 | 50–67 | 4 |
21–31 | 68–100 | 5 |
6 советов от эксперта, как готовиться к ЕГЭ по математике
Мы занимаемся подготовкой учеников к экзамену каждый год и понимаем, насколько это важно и волнительно. Вам предстоит ответственная работа, от которой многое зависит. Чтобы облегчить ее, мы собрали несколько советов, которые помогут вам как можно лучше подготовиться к ЕГЭ по математике:
-
Осознанно выберите уровень сложности и поставьте цель в баллах.
-
Составьте план подготовки к ЕГЭ по математике: больше времени уделяйте темам, которые у вас «западают». Чтобы выявить их, ученики Skysmart проходят тест на бесплатном уроке.
-
Узнайте все о ЕГЭ: сколько времени длится экзамен, из каких частей состоит, по каким темам будут задания, сколько вариантов, какие дадут справочные материалы и т. д.
-
Составьте сбалансированное расписание для подготовки и следите, чтобы в нем было достаточно времени для отдыха.
-
Много практикуйтесь: решайте варианты из Открытого банка заданий ЕГЭ и сдавайте тестовые экзамены.
-
Систематически консультируйтесь и занимайтесь с наставником, который часто имеет дело с подготовкой к ЕГЭ — преподавателем в школе или репетитором.
Все пункты в этом списке важны для тех, кто хочет набрать 80–100 баллов, но последний — особенно. Преподаватель расскажет о том, что представляет из себя ЕГЭ, и тогда на реальном экзамене не будет неприятных сюрпризов.
На курсах подготовки к ЕГЭ по математике в Skysmart учителя помогают школьникам разобраться в КИМах и прорешать каждый тип задач. Ученики заранее знакомятся с частыми ошибками, что помогает избегать их в работе и сохранять баллы. А еще мы учим готовиться морально, чтобы не допустить ошибок из-за паники и невнимательности. Начните подготовку к ЕГЭ по математике с нуля вместе со Skysmart: первый урок — бесплатно!
Близится конец учебного года, а вместе с ним – выпускные экзамены. Самые важные из них – ЕГЭ – предстоит сдавать одиннадцатиклассникам. Одни выпускники планируют получать высшее образование, другие хотят сразу после школы пойти работать или взять перерыв, чтобы найти себя. Вне зависимости от выбора, чтобы получить аттестат, всем придётся пройти два обязательных письменных испытания – по русскому языку и математике.
О том, что такое ЕГЭ по математике, чем «база» отличается от «профиля» и как к ним подготовиться с нуля, рассказывает заместитель руководителя методического отдела Домашней школы «ИнтернетУрок» Алексей Постный.
Что такое ЕГЭ?
ЕГЭ – это итоговый экзамен, который сдают выпускники старших классов, чтобы подтвердить своё право на получение аттестата. В 11 классе ученикам обязательно нужно сдавать два предмета – математику и русский язык. Однако если испытание по русскому языку едино для всех школьников, то математика разделена на два уровня сложности:
- базовый – для тех, кому для поступления результаты этой дисциплины не нужны; и
- профильный – его сдают те ученики, которым пригодится математика для дальнейшего обучения.
Кроме того, результаты ЕГЭ учитываются при подаче документов в высшие учебные заведения. Надо понимать, что оценка базового экзамена нужна исключительно для получения аттестата.
Особенности проведения экзамена
Одна из основных целей проведения выпускных испытаний формата ЕГЭ – уравнивание условий, в которых оказались ученики. Вне зависимости от места проживания, статуса школы, социального положения дети по всей России получают одинаковые варианты с одинаковыми требованиями. Поэтому писать выпускную работу ученикам придётся не в своей школе, а под контролем чужих учителей.
В качестве меры по борьбе со списыванием в каждой аудитории устанавливаются камеры, но бояться их не стоит: если выпускник добросовестно готовился к испытанию и решает все задачи самостоятельно, их присутствия он даже не заметит.
Во время написания работ в аудиториях находятся проверяющие, которые помогают ученикам, выдают дополнительные бланки, а также следят, чтобы выпускники не списывали. Если у вас заметят запрещённые справочные материалы или телефон, по правилам экзамена вся работа будет аннулирована. Поэтому шпаргалки лучше оставить дома.
Первая неделя занятий бесплатно!
Начните заниматься, а по окончании пробного
периода оплатите выбранный формат!
Начать заниматься
Структура экзамена
В 11 классе математика является обязательным для сдачи предметом. Но её результаты нужны далеко не всем выпускникам. Чтобы ученики, которым для поступления математика не пригодится, не тратили времени и нервов, готовясь к ЕГЭ по математике, а могли уделить больше внимания профильным предметам, испытание разделено на «базу» и «профиль».
База
На написание ЕГЭ по математике базового уровня даётся 3 часа. За это время выпускник должен дать ответы на 20 вопросов. Все они основаны на школьном курсе математики и проверяют умение ученика решать простые уравнения и неравенства, а также применять математические знания в жизни.
Правильным ответом на задания базового уровня будет служить число, последовательность цифр или конечная десятичная дробь. В зависимости от типа задания ученику нужно будет выбрать правильный ответ из предложенных или посчитать самому.
Тематическое деление
Базовый уровень ЕГЭ проверяет знание основных разделов математики. То есть, если выпускникам, выбравшим профиль, нужно уметь решать более серьёзные и сложные задачи, то на базовом уровне достаточно показать понимание основных математических действий.
Разделить базовые задания можно по следующим темам:
- Вычисления, преобразования
- Реальная математика
- Уравнения, неравенства
- Графики функций
- Геометрия
- Теория вероятностей
По заданиям они распределяются примерно следующим образом:
- № 1 – действия с дробными числами. Здесь ответом служит конечная десятичная дробь или целое число.
- № 2 – действия со степенями.
- № 3 – задача на проценты. Чтобы её решить, достаточно понимать, что такое проценты, знать, как они высчитываются.
- № 4 – преобразование выражений, действия с формулами. Чтобы решить это задание, нужно уметь находить переменные и пользоваться формулами.
- № 5 – ученики могут встретиться как с элементарными тригонометрическими задачами, так и с логарифмами.
- № 6, 9, 11, 12, 14 – чтобы найти правильные ответы, необходимо уметь пользоваться графиками, таблицами, диаграммами, анализировать их содержание.
- № 7 – решение простых уравнений.
- № 8, 13, 15, 16 – элементарная геометрия.
- № 10 – теория вероятностей. Бояться нечего, вопрос будет не сложнее, чем те, что приходилось решать во время сдачи ОГЭ,
- № 17 – навык работы с числовой осью, который тоже уже приходилось применять на ОГЭ.
- № 18, 19, 20 – задачи на логику и работу с цифрами.
Баллы
За каждый верный ответ на вопрос базового уровня ученик получает 1 балл. Максимальная оценка – 20. Чтобы получить зачёт, необходимо верно решить как минимум 7 заданий.
Поскольку результаты этого экзамена не принимаются в вузах, то в стобалльную тестовую шкалу баллы не переводятся. А вот на аттестат базовая математика повлиять может, поэтому результат можно оценить по пятибалльной шкале.
ФИПИ рекомендует следующие критерии перевода:
- «3» – 7–11 баллов;
- «4» – 12–16 баллов;
- «5» – 17–20 баллов.
Профиль
На написание ЕГЭ по математике профильного уровня даётся 3 часа 55 минут. За это время ученику нужно решить 19 заданий, разделённых на две части. Первая часть состоит из 12 вопросов с кратким ответом, вторая – из 7 с развёрнутым ответом.
Стоит обратить внимание на сложность этих заданий. В первой части выпускникам предлагают вопросы, как проверяющие базовые школьные знания, так и требующие углублённого владения предметом, знание формул, умение решать текстовые задачи, находить производные.
Вторая часть испытания состоит из заданий средней и повышенной сложности. Но все они также базируются на школьной программе. Ответом на вопросы второй части служит развёрнутое решение. Помимо хороших математических знаний, здесь нужно показать умение логически мыслить, находить творческий подход к решению задач.
Тематическое деление
Задания базового уровня сложности представлены следующими темами:
- № 1,2 – математика в повседневной жизни;
- № 3, 6, 8 – действия с геометрическими фигурами, векторами, координатами;
- № 4 – простейшие математические модели;
- № 5 – уравнения, неравенства;
- № 7 – функции.
Номера с 9 по 17 обладают средней сложностью. Здесь ученику нужно продемонстрировать более глубокие знания предмета, умение выполнять действия не только с простейшими выражениями, искать подход к более серьёзным вопросам.
ЕГЭ по русскому языку
Что ждёт одиннадцатиклассников на обязательном экзамене по русскому языку? Как к нему подготовиться самостоятельно с нуля и чем поможет Домашняя школа «ИнтернетУрок».
По темам задачи делятся следующим образом:
- № 9 – преобразование выражений, вычисления;
- № 10,11,17 – различные текстовые задачи на скорость, производительность, проценты;
- № 12 – различные действия с функциями, их графиками;
- № 13,15 – уравнения, неравенства;
- № 14,16 – координаты, векторы, геометрические фигуры
Два последних номера представляют повышенный уровень сложности. Здесь школьникам необходимо продемонстрировать навык решения уравнений, неравенств с параметрами, построения и исследования математических моделей.
Баллы
В зависимости от сложности заданий за правильное решение можно получить от 1 по 4 первичных баллов:
- № 1-12 – 1 балл;
- № 13-15 – 2 балла;
- № 16, 17 – 3 балла;
- № 18, 19 – 4 балла.
Всего за профильный уровень математики можно набрать 32 первичных балла. При этом минимальный порог, при котором испытание считается пройденным, – 6 первичных баллов.
Поскольку этот экзамен влияет на поступление в вуз, все первичные результаты переводятся в стобалльную тестовую шкалу, где 32 первичных – это 100, а 6 первичных – 27 тестовых. Минимальный порог для подачи документов в вуз начинается от 39 тестовых баллов. Выпускники, которые набрали 80 тестовых (19 первичных), могут уже без страха участвовать в конкурсе, ведь их результаты считаются довольно высокими.
Подпишитесь на нашу рассылку
Актуальное расписание экзаменов ЕГЭ по математике на 2022 год
Продолжительность экзамена математика (профильный уровень): 3 часа 55 минут
Минимальные баллы: 27
Продолжительность экзамена математика (базовый уровень): 3 часа
Минимальные баллы: 3 (удовлетворительно)
В резервные дни сдают те, кто не смог сдать экзамен по состоянию здоровья, а также те ученики, у кого предметы совпали по времени.
Досрочный период ЕГЭ 2022:
28.03.2022 — математика база и профиль
Резервные дни досрочного этапа:
18.04.2022 — математика база и профиль
Основной период ЕГЭ 2022:
02.06.2022 — математика профильная
03.06.2022 — математика базовая
Резервные дни основного этапа:
27.06.2022 — математика профильная и базовая
Резервный день для сдачи экзамена по всем учебным предметам
02.07.2022 — математика профильная и базовая
Дополнительный период ЕГЭ 2022:
05.09.2022 — математика базовая
Резервный день дополнительного периода:
20.09.2022 — математика базовая
План подготовки к экзамену с нуля
База
Базовый экзамен по математике рассчитан на всех учеников, которые не интересуются математикой. Чтобы успешно с ним справиться, достаточно уметь хорошо считать, владеть минимальными знаниями школьной программы по математике за 11 классов.
Подготовиться к «базе» помогут простые правила.
- Откажитесь от калькулятора. Во время испытания вам придётся много считать, так что, если вы привыкли обращаться за помощью к технологиям, отказ от них – ваша основная задача.
- Регулярные занятия: определите ваши сильные и слабые места, шаг за шагом обрабатывайте каждую тему. Идите от простого к сложному, а главное – не сводите подготовку к бездумному прорешиванию пробных вариантов. Обращайте внимание на свои ошибки, исправляйте их.
- Начинайте заранее. Ученикам, которые добросовестно занимались в школе, испытание по базовой математике проблем не доставит. А вот тем, кто по каким-то причинам школьный курс не усвоил, придётся постараться. Начинать готовиться лучше всего за год до экзамена. При этом не обязательно сразу же бежать к репетитору. Научиться решать задания базового уровня можно самостоятельно или с помощью онлайн-курсов. Главное – отнестись к этому ответственно.
Статья подготовлена экспертом Домашней школы «ИнтернетУрок»:
Алексей Постный
Заместитель руководителя методического отдела.
Стаж работы — 7 лет.
Как подготовиться к ЕГЭ по математике?
Мы расскажем о подготовке к ЕГЭ и базового, и профильного уровня.
На что нужно обращать внимание при подготовке к ЕГЭ по математике?
Сначала скажем именно о подготовке. На что обратить внимание при самой сдаче ЕГЭ, то есть на экзамене, – отдельный вопрос, и на него мы ответим чуть позже.
Как отметили средства массовой информации, в этом году в вузах Москвы вырос проходной балл на все специальности. Получив на ЕГЭ по математике 60 баллов, уже невозможно поступить на бюджет. Что же делать, если обычная школа готовит к ЕГЭ не больше чем на 60 баллов?
Ответ один – заниматься дополнительно. Самостоятельно, на курсах или с репетитором.
При подготовке к ЕГЭ по математике самое главное — поставить себе цель. Кем вы хотите стать? Какой будет ваша будущая жизнь и работа? Для решения каких задач вам нужна будет математика? Ведь не для того, чтобы «хоть как-нибудь» сдать ЕГЭ и забыть все на следующий день?
Математика – это язык, который используется и в науке, и в бизнесе, и во многих других сферах жизни. Математика развивает не только логическое мышление, но и интуицию, и характер. Она учит уверенности и доверию к себе; учит оптимально использовать известную вам информацию и искать новые решения. Каждая задача, с которой вы справились, – небольшая тренировка вашего характера.
Очень хорошо, если вы уже знаете, в какой ВУЗ хотите поступить и сколько баллов необходимо набрать. Чем более конкретна и измерима ваша цель – тем легче будет ее достичь, потому что ваша мотивация будет выше. Вам легче будет рассчитать свои силы и время. Вам не нужно будет заставлять себя сесть за домашнее задание – его выполнение будет доставлять вам удовольствие. Потому что вы будете знать, что идете к своей цели.
Поэтому первое задание для тех, кто перешел в 10 или 11 класс и их родителей – выбрать, на какую специальность и в какие вузы поступать, и сколько баллов надо набрать на ЕГЭ по математике. И это надо сделать сразу, чтобы рассчитать силы и правильно выбрать курсы ЕГЭ.
-
Когда надо начинать готовиться к ЕГЭ по математике?
Лучше всего начать в 10 классе, и именно так поступают родители, которые действительно заинтересованы в будущем своих детей.
В 10 классе – повторение всех тем школьной программы, с 5 по 9 класс. Можно не спеша, не напрягаясь, в спокойном режиме закрыть все пробелы, выучить теоремы и формулы, понять и полюбить математику. Заниматься при этом можно всего раз в неделю.
А вот в 11 классе начинается абитуриентская гонка. Но если вы начали готовиться к ЕГЭ по математике в сентябре 11 класса (а лучше в августе – на нашем летнем курсе) – вы еще успеете с 60 баллов улучшить свой результат до 100!
Есть такие родители, которые любят экономить. Например, приходят на курсы к нам в ЕГЭ-Студию готовиться к ЕГЭ в феврале, в марте, а то и в мае. Конечно, опытный преподаватель делает все, что возможно, но ведь для школьника это настоящий аврал. Это не просто экспресс-курс, а экстремальная подготовка. Что же это за экономия, за которой стоят бессонные ночи и потраченные нервы?
Намного лучше готовиться к ЕГЭ по математике спокойно, размеренно, имея возможность повторить каждую тему. И конечно, преподаватель, который готовит к ЕГЭ, должен прекрасно знать всю программу и все задачи и смог бы сам сдать ЕГЭ хотя бы на 98 баллов.
Наш совет: начинайте готовиться к ЕГЭ по математике как можно раньше, не откладывая в долгий ящик. Вам всегда будет казаться, что времени до экзамена еще очень-очень много. Что ваш низкий балл на пробном ЕГЭ был чистой случайностью, а учительница в школе ставит оценки несправедливо.
На собеседование мы приглашаем школьников вместе с родителями. И мы видим, что большинство ребят не знают, как посчитать объем куба, а то и площадь квадрата. Теряются при виде простейших задач на проценты. А уж с задачей про теплоход, плывущий по течению и против, справляется только один из десяти школьников. Причем мамы, решив ее в уме, изо всех сил пытаются помочь своим детям. Как правило, после собеседования мамы принимают решение – немедленно начинать заниматься!
-
Как не волноваться на ЕГЭ по математике?
Считается, что на экзамене обязательно надо волноваться. Или очень сильно волноваться. Но зачем? Ведь времени на ЕГЭ по математике очень мало, и волноваться просто некогда.
Как же действовать на самом экзамене, чтобы получить максимально высокий балл?
Прежде всего – перед экзаменом надо хорошенько выспаться. Как это ни банально. Позавтракать. Прийти на экзамен в хорошем настроении, спокойным и уверенным. Конечно, если вы чуть-чуть волнуетесь – это нормально! Должен быть тонус, легкий кураж, боевой настрой. Говорят, породистый скакун всегда волнуется перед скачками, и только старой кобыле все равно.
И главное – на экзамене надо надеяться только на себя. Хороший репетитор заранее предупреждает своих учеников, что на время экзамена отключит мобильный телефон, чтобы у них не возникало соблазна посылать смс-ки с условиями задач. Потому что это отвлекает, а на экзамене нужна собранность.
Напомним, что на ЕГЭ по математике можно взять с собой только черную гелевую ручку и линейку. Калькулятор нельзя. Мобильный телефон нельзя. Циркуль тоже нельзя.
Проверяйте все ваши действия. Если условие задачи позволяет – подставьте в него полученное в ответе число. Если задача не решается – отвлекитесь, займитесь другими. Посмотрев на сложную задачу свежим взглядом, вы обязательно найдете правильное решение.
-
Какими пособиями по подготовке лучше пользоваться?
Лучше всего пользоваться услугами хорошего преподавателя. Живого диалога с профессионалом ничто не заменит.
Мы рекомендуем вам книгу Анны Малковой «Математика. Авторский курс подготовки к ЕГЭ». Эта книга подходит для подготовки и к базовому, и к профильному ЕГЭ по математике. Книга позволяет начать практически с нулевого уровня и ведет ученика от самых простых задач к более и более сложным, от первых до девятнадцатой, нестандартной задачи.
Эта книга подойдет учащимся с любым уровнем знаний и поможет сдать ЕГЭ на 75-100 баллов. Все задачи пособия полностью соответствуют программе подготовки к ЕГЭ.
Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Как подготовиться к ЕГЭ по математике?» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.
Публикация обновлена:
08.03.2023