Как подготовиться к 15 заданию егэ профильной математики

Основные схемы решения задач №15 по Ященко
36 вариантов.

Вариант 1

Решение

S-сумма долга, п=8 (срок),
S/n-уменьшение
долга,
R1
-% первый,
R2-процент второй

Год

Долг

Остаток

Платеж

0/25

S

1/26

R1*S

R1*S

2/27

*R1

*R1 —

3/28

*R1

*R1-

4/29

*R1

*R1-

5/30

*R2

*R2-

6/31

*R2

*R2-

7/32

*R2

*R2-

8/33

*R2

0

*R2 -0

После заполнения таблицы строим математическую
модель

R1*S
+*R1
+*R1+*R1+*R2+*R2+*R2+*R2
-0 = 1125

Очевидно, здесь спрятана арифметическая
прогрессия, теперь все запишем для простаты вычислений, выполним сложение по цветам

Получаем

R1**(8+7+6+5)+R2**(4+3+2+1)-*(7+6+5+4+3+2+1)=1125

То что выделено это прогрессия,
воспользуемся формулой суммы арифметической прогрессии

Получаем следующий результат

R1**26+ R2**10-*28=1125  умножим обе
части на 8

R1*S*26+R2*S*10-S*28=9000

S(1,2*26+1,18*10-28)=9000

15*S=9000

S=9000/15

S=600 тыс. рублей

Вариант 2 (аналогичная задача, выполните
самостоятельно, для закрепления навыка решения задачи)

Вариант 3

Для решения таких задач необходимо
составить две таблицы для вклада А и вклада Б

год

сумма

Сумма +%

1

S

1.2*S

2

1.2*S

1.2*1.2*S

3

1.2*1.12*S

1.2*1.2*1.2*S

Это и есть итоговое уравнение для вклада А
(выделено цветом)

Год

Сумма

Сумма +%

1

S

1.12*S

2

1.12*S

1.12*1.12*S

3

1.12*1.12*S

1.12*1.12*S*()

Это есть итоговое уравнение для вклада Б

Возвращаемся к условию задачи: при каком
условии Б менее выгоден, чем А

 Б
<
A

1.12*1.12*S*(<  1.2*1.2*1.2*S

Решаем это уравнение

1,2544* S*()  < 1.728*S
сокращаем на
S

1,2544* ()  < 1.728

()  <1.728/1.2544

()  <1.377551 умножаем
на 100

100 + n<137.7551
вычитаем 100

n<37.7551

ближайшее целое число меньшее 37.7551 –
это 37

следовательно ответ 37.

Вариант 4(аналогичен варианту 3 выполните
самостоятельно по предложенной схеме).

Вариант 5

Для решения данной задачи потребуется таже
таблица, что и в варианте 1(2)

S=300, срок п=6, поэтому
осуществляем деление на 6,
R2
((на самом деле находим
n
неизвестная величина),
R2
– это сумма (1+
n/100)), R1=1.2

Год

Долг

Остаток

Платеж

0/25

S

1/26

R1*S

R1*S

2/27

*R1

*R1 —

3/28

*R1

*R1-

4/29

*R2

*R1-

5/30

*R2

*R2-

6/31

*R2

0

*R2-

Цветом отмечаю разделение процентов по
годам, чтобы не было путаницы

R1*S — +*R1 — +*R1-+*R1-+*R2-+*R2-=498

Опять можно заметить арифметическую
прогрессию и выполнить все действия аналогично первой задаче

R1**(6+5+4)+ R2**(3+2+1)- *(5+4+3+2+1)=498

2.5*R1+R2*1-2.5=498/300

2.5*1.2+R2-2.5=1.66

R2=1.66-0.5

R2=1.16

R2==1.16 умножим обе части
на 100

n=16 %

ответ 16

Вариант 6 решается аналогично, выполните самостоятельно.

Вариант 7

Данную задачу удобно решать через вершину
параболы, а затем подставить полученные данные и спокойно решить поставленную
задачу.

p*xq
=
p*x-2 —5*x-10
= сгруппируем подобные =

-2+x*(p-5)-10
-графиком является парабола, находим х как вершину параболы.

=
 теперь подставляем вместо х значение
полученное выше

                                                   
p>=29

Ответ: 29

Вариант 8 (задание аналогичное, выполните
самостоятельно)

Вариант 9

Задача данного варианта решается
аналогично задаче варианта №1, единственное сумма столбца ПЛАТЕЖИ это и есть
общая сумма выплат, т.е составляете таблицу и находите сумму всех членов данной
таблицы. Помните, что % меняется, и соответственно надо будет таблицу разделить
на две части используя соответствующий %.

Вариант10
(выполняете самостоятельно, опираясь на решении в варианте 1).

Вариант 11

Для решения данной задачи составляем
таблицу и обязательно учитываем условие, что долг 23,24,25 годов остается
равным 1050 тыс. рублей

Обозначим через S = 1050
тыс. рублей начальную сумму долга. Каждый январь следующего года сумма долга
увеличивается на 10% (100+10=110%, в долях это 1,1), то есть, становится равной
1,1S тыс. рублей. В следующие три года (2023, 2024 и 2025) выплаты делаются
так, что долг остается равным S = 1050 тыс. руб, то есть:

2023: ;

2024: ;

2025: .

Получаем равные выплаты в
размере

 тыс. рублей

Затем, в 2026 и 2027
годах делаются равные выплаты k тыс. руб. так, что долг полностью гасится:

Здесь виден аннуитет

Год

Сумма

Сумма +%

Платеж

2026

S

1.1S

1.1*S-k

2027

1.1*S-k

(1.1*S-k)*1.1

(1.1*S-k)*1.1-k

И после этого платежа
сумма долга станет равной 0

Таким образом, последний
платеж будет равен 605 тыс. р., зная первый платеж легко найти ответ к задаче. Получаем
разницу между первой и последней выплатами:

605 000 – 105 000 = 500 000 рублей

Ответ: 500 000

Вариант 12

Обозначим через S = 220
тыс. рублей начальную сумму долга. Каждый январь следующего года сумма долга
увеличивается на r %, то есть, становится равной  тыс. рублей. Обозначим
через .
В следующие три года (2023, 2024 и 2025) выплаты делаются так, что долг остается
равным S = 220 тыс. руб, то есть, выплаты равны:

откуда

Затем, в 2026 и 2027
годах делаются равные выплаты k тыс. руб. так, что долг полностью гасится:

откуда

По условию задания сумма
всех выплат равна 420 тыс. рублей, то есть:

Найдем t. Умножим обе
части уравнения на 1+t, получим:

Подставим вместо S = 220,
получим:

Имеем один положительный
корень, следовательно

и

%

Ответ: 20

В задании 14 в ЕГЭ 2023 г. профильного уровня проверяется умение решать неравенства и их системы.

Эксперт, проверяющий выполнение этого задания, выставляет баллы в строгом соответствии с критериями, приведёнными в таблице:

Содержание критерия Баллы
Обоснованно получен верный ответ 2
Обоснованно получен ответ, отличающийся от верного исключением конечного числа точек ИЛИ получен неверный ответ из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов 1
Решение не соответствует ни одному из критериев, перечисленных выше 0
Максимальный балл 2

Плюс в том, что вы сами выбираете метод решения и форму записи, и этот выбор не влияет на оценивание.

Оценивается математическая грамотность, обоснованность и полнота приведённого решения и ответа, а также отсутствие или наличие вычислительных ошибок.

Полнота и правильность приведённого решения и ответа определяются:

  1. Выбором метода решения уравнения.
  2. Соответствием выбранному методу верной последовательности всех необходимых шагов решения.
  3. Обоснованием основных моментов решения неравенства.
  4. Правильным применением формул, выполнением преобразований и вычислений.
  5. Верным ответом и его соответствием условию задачи.

Что нужно знать для успешного решения задания 14?

Разбор 14 задания ЕГЭ математика профильный уровень (с примерами решения)

Для того чтобы знать как правильно решать 15 задание ЕГЭ по математике профильного уровня в 2023 году, полезно ознакомится с подробным разбором решений данного вида заданий для ЕГЭ за прошлые годы.

Пример 1. 

Решите неравенство

Решение. Находим ОДЗ: . В левой части неравенства применяем свойство логарифмов:

В правой – формулу квадрата разности и свойство логарифмов:

Исходное неравенство равносильно неравенству

преобразовывая которое получим

пример-1-4.jpg

Воспользуемся методом интервалов (см. рис.):

С помощью кривой знаков получаем

Ответ. пример-1-7.jpg

Лайфхак

Знаки выражений совпадают на ОДЗ, поэтому неравенства пример-1-9.jpg и  равносильны при

Пример 2. 

Решите неравенство

Решение. Пусть . Неравенство примет вид

Решая последнее неравенство методом интервалов (см. рис.) и учитывая, что , получим .

Возвращаемся к переменной

Функция возрастающая, поэтому пример-1-17.jpg.

Ответ.

РЕКОМЕНДУЕМЫЕ ТОВАРЫ

ЕГЭ по математике профиль

В презентации: консультация по математике «Подготовка к ЕГЭ по профильной математике 2020» показаны примеры и анализ решения заданий повышенного уровня с развернутым ответом заданий профильного уровня 13, 15 и 17.

На слайдах представлен примерный ход решения с ответом. Также даны рекомендации и задания на повторение.

Автор: Козляковская Л. С.

→ Скачать примеры

Пример заданий:

Задача №13

Суть задачи №13 сводится к решению уравнения (в 95% случаев – тригонометрического) с использованием различных формул и методов преобразования и упрощения выражений.

В задаче №15 нужно решить неравенство (т.е. найти множество всех значений х, при которых это неравенство выполняется), подробно изложив ход решения.

Задачи №17 — это текстовые задачи экономического содержания, в которой усилена практическая составляющая условия.

Данные задачи можно разделить на два типа: задачи, использующие дискретные модели (проценты, кредиты, вклады, вклады с пополнением и др.), и задачи, использующие непрерывные модели (производство, объемы выпускаемой продукции, протяженные во времени, и др.).

В любом случае, данные задачи требуют построения математической модели, введения переменных и решения составленных уравнений или системы уравнений.

Связанные страницы:

Решите неравенство

!!! Смотрите также подборку задач С3 (с ответами) для подготовки к ЕГЭ !!!

Список всех неравенств (С3), разобранных на сайте:   


-11. (Реальный ЕГЭ, 2021) Решите неравенство:

(9^x-3^{x+1})^2+8cdot 3^{x+1}<8cdot 9^x+20.

Ответ: (-infty;0)cup (log_32;log_35). Решение


-10. (Реальный ЕГЭ, 2021) Решите неравенство: 16^{frac{1}{x}-1}-4^{frac{1}{x}-1}-2geq 0.

Ответ: (0;frac{2}{3}]. Решение


-9. (Демо ЕГЭ, 2020) Решите неравенство

log_{11}(8x^2+7)-log_{11}(x^2+x+1)geq log_{11}(frac{x}{x+5}+7).

Ответ: (-infty;-12]cup (-frac{35}{8};0].  Видеорешение New*


-8. (Реальный ЕГЭ, 2019) Решите неравенство

log_{frac{1}{3}}(18-9x)<log_{frac{1}{3}}(x^2-6x+5)+ log_{frac{1}{3}}(x+2).

Ответ: (-2;1). Решение Видеорешение New*


-7. (Реальный ЕГЭ, 2019) Решите неравенство log_4(6-6x)<log_4(x^2-5x+4)+ log_4(x+3).

Ответ: (-2;1). Решение


-6. (Реальный ЕГЭ, 2018) Решите неравенство

log_7(2x^2+12)-log_7(x^2-x+12)geq log_7(2-frac{1}{x}).

Ответ: (frac{1}{2};frac{4}{3}]cup [3;+infty). Решение  Видеорешение New*


-5. (Досрочный резервный ЕГЭ, 2018) Решите неравенство  frac{6^x-4cdot 3^x}{xcdot 2^x-5cdot 2^x-4x+20}leq frac{1}{x-5}.

Ответ: [0;2)cup (2;5). Решение Видеорешение New*


-4. (Досрочный ЕГЭ, 2018) Решите неравенство 3^{x^2}cdot 5^{x-1}geq 3.

Ответ: (-infty;-1-log_35]cup [1;+infty). Решение Видеорешение New*


-3. (Резервный ЕГЭ, 2017) Решите неравенство frac{1}{3^x-1}+frac{9^{x+frac{1}{2}}-3^{x+3}+3}{3^x-9}geq 3^{x+1}.

Ответ: (0;1]cup (2;+infty). Решение


-2. (Резервный ЕГЭ, 2017) Решить неравенство 9^{4x-x^2-1}-36cdot 3^{4x-x^2-1}+243geq 0.

Ответ: (-infty;1]cup {2}cup[3;+infty). Решение Видеорешение New*


-1. (Реальный ЕГЭ, 2017) Решить неравенство frac{log_2(4x^2)+35}{log_2^2x-36}geq -1.

Ответ: (0;frac{1}{64})cup{frac{1}{2}}cup (64;+infty). Решение


0. (Реальный ЕГЭ, 2017) Решить неравенство frac{log_4(64x)}{log_4x-3}+frac{log_4x-3}{log_4(64x)}geq frac{log_4x^4+16}{log_4^2x-9}.

Ответ: (0;frac{1}{64})cup{4}cup (64;+infty). Решение


1. (Досрочн. ЕГЭ, 2017) Решите неравенство log_2^2(25-x^2)-7log_2(25-x^2)+12geq 0.

 Ответ: (-5;-sqrt{17}]cup [-3;3]cup [sqrt{17};5). Решение  Видеорешение New*


2. (Резервн. ЕГЭ, 2016) Решите неравенство

frac{9^x-3^{x+1}-19}{3^x-6}+frac{9^{x+1}-3^{x+4}+2}{3^x-9}leq 10cdot 3^x+3.

Ответ: (-infty;1]cup (log_36;2).  Решение Видеорешение New*


 3. (ЕГЭ, 2016) Решите неравенство

frac{25^x-5^{x+2}+26}{5^x-1}+frac{25^x-7cdot 5^{x}+1}{5^x-7}leq 2cdot 5^x-24.

Ответ: (-infty;0)cup [1;log_57).  Решение


 4. (Т/Р, 2016) Решите неравенство

2^{frac{x}{x+1}}-2^{frac{5x+3}{x+1}}+8leq 2^{frac{2x}{x+1}}.

Ответ: (-infty;-1)cup [0;+infty). Решение


 5. (Досрочн. ЕГЭ, 2016) Решите неравенство

(5x-13)log_{2x-5}(x^2-6x+10)geq 0.

Ответ: (2,5;2,6]cup (3;+infty). Решение Видеорешение New*


 6. (ЕГЭ, 2015) Решите неравенство

frac{3}{(2^{2-x^2}-1)^2}-frac{4}{2^{2-x^2}-1}+1geq 0.

Ответ: (-infty;-sqrt2)cup (-sqrt2;-1]cup{0}cup [1;sqrt2)cup(sqrt2;+infty). Решение


7. (Т/Р 2013) Решите систему неравенств

begin{cases} 9^x-5cdot 3^x+4geq 0,;(1)& &log_{frac{3x^2+4x+1}{4x+1}}|frac{x}{2}|leq 0;;(2) end{cases}

Ответ: (-frac{1}{3};0)cup[log_53;1]. Решение


8. (Т/Р 2013) Решите систему неравенств

begin{cases} 1-frac{2}{|x|}leq frac{23}{x^2},;(1)& & frac{2-(x-5)^{-1}}{2(x-5)^{-1}-1}leq -0,5;;(2) end{cases}

Ответ: [2-2sqrt6;0 )cup (0;6). Решение


9. (Т/Р 2013) Решите систему неравенств

 begin{cases} log_{6x^2-x-1}(2x^2-5x+3)geq 0,& & frac{12x^2-31x+14}{4x^2+3x-1}leq 0; end{cases}

Ответ: (-2;-1)cup [frac{1}{10};frac{1}{6})cup{frac{3}{2}}. Решение


10. (ДЕМО 2014) Решите систему неравенств

begin{cases} 4^xle9cdot 2^x+22,& & log_3(x^2-x-2)le1+log_3frac{x+1}{x-2}; end{cases}

Ответ: (2;log_211]. Решение


11. (ЕГЭ 2013) Решите систему неравенств

begin{cases}log_{6-x}frac{x+5}{(x-6)^{12}}ge  - 12,& & x^3+7x^2+frac{30x^2+7x-42}{x-6}le 7;& end{cases}

Ответ: {-4;0}cup [3;5). Решение


12. (Т/Р А. Ларина) Решите неравенство

log_4(x^2-4)^2+log_2(frac{x-1}{x^2-4})>0.

Ответ: (-2;0)cup (2;+infty). Решение


13. (Т/Р А. Ларина) Решите неравенство

log_5(2+x)(x-5)>log_{25}(x-5)^2.

Ответ: (-infty;-3)cup (5;+infty). Решение


14. (Т/Р А. Ларина) Решите неравенство

 sqrt{7-log_2x^2}+log_2x^4>4.

Ответ: [-8sqrt2;-sqrt[8]{8})cup (sqrt[8]{8};8sqrt2]. Решение


15. (Т/Р А. Ларина) Решите неравенство

frac{1}{2}log_{x-1}(x^2-8x+16)+log_{4-x}(-x^2+5x-4)>3.

Ответ: (2;2,5)cup (2,5;3). Решение Видеорешение  


16. (Т/Р А. Ларина) Решите неравенство

log_2(5-x)log_2(x+1)leq log_2frac{(x^2-4x-5)^2}{16}.

Ответ: (-1;1]cup [3;5). Решение


17. (Т/Р А. Ларина) Решите неравенство

frac{x^4-2x^2+1}{2x^2-x-6}geq frac{1-2x^2+x^4}{2x^2-7x+6}.

Ответ: (-infty;-1,5)cup{-1;1}cup(1,5;2). Решение


18. (Т/Р А. Ларина) Решите неравенство

frac{(3^x-3)^3}{2cdot 3^x-4}leq frac{27^x-2cdot 3^{2x+1}+3^{x+2}}{3^x-9^x+2}.

Ответ: [frac{1}{2};log_32)cup{1}. Решение


19. (Т/Р А. Ларина) Решите неравенство

log_x(log_2(4^x-6))leq 1.

Ответ: (log_47;log_23]. Решение


20. (Т/Р А. Ларина) Решите неравенство

frac{4^{x^2-2x}-16cdot 2^{(x-1)^2}+35}{1-2^{(x-1)^2}}leq 4^xcdot 2^{(x-2)^2}.

Ответ: (-infty;1)cup (1;+infty). Решение


21. (Т/Р А. Ларина) Решите неравенство

frac{log_{x+0,5}(4^x-3cdot 2^{x+1}+8)}{log_{sqrt{x+0,5}}2}leq x.

Ответ: [2-log_23;0,5)cup (0,5;1)cup (2;+infty). Решение


22. (Т/Р А. Ларина) Решите неравенство

sqrt{1+x^2}-xleq frac{5}{2sqrt{1+x^2}}.

Ответ: [-frac{3}{4};+infty). Решение


23. (Т/Р А. Ларина) Решите неравенство

frac{1}{2}log_{134+tg^2(frac{x}{2})}(21x+16)<log_{134+tg^2(frac{x}{2})}(20+sqrt{x-4}).

Ответ: [4;3pi)cup (3pi;5pi)cup (5pi;7pi)cup (7pi;9pi)cup (9pi;29). Решение


24. (Т/Р А. Ларина) Решите неравенство

log_2(log_3(log_4(log_5^2(133-2x)+7)+25)-1)leq 1.

Ответ: [4;66,496]. Решение


25. (Т/Р А. Ларина) Решите неравенство

frac{x^3-18x^2+89x-132}{(sqrt x-2)(5^x-25)(|x|-1)}leq 0.

Ответ: (1;2)cup [3;4)cup(4;11]. Решение


26. (Т/Р А. Ларина) Решите неравенство

2sqrt{x+131}-frac{5}{sqrt{x+131}-3}leq 15.

Ответ: [-131;-124,75]cup (-122;-67]. Решение


27. (Т/Р А. Ларина) Решите неравенство

x^2+xsqrt{3-3x^2}geq 0,5+x.

Ответ: [-1;-sinfrac{5pi}{18}]cup [frac{1}{2};sinfrac{7pi}{18}]. Решение


28. (Т/Р А. Ларина) Решите неравенство

log_{x+1}2leq log_{3-x}2.

Ответ: (-1;0)cup [1;2). Решение


29. (Т/Р А. Ларина) Решите неравенство

 frac{2x^2}{x+3}+frac{x+3}{x^2}leq 3.

Ответ: (-infty;-3)cup [frac{1-sqrt{13}}{2};-1]cup [frac{3}{2};frac{1+sqrt{13}}{2}]. Решение


30. (Т/Р А. Ларина) Решите неравенство

log_{2x}(x+4)cdot log_x(2-x)leq 0.

Ответ: (0,5;1)cup (1;2). Решение


31. (Т/Р А. Ларина) Решите неравенство

 log_{(x-2)^2}frac{5-x}{4-x}leq 1+log_{(2-x)^2}frac{1}{x^2-9x+20}.

Ответ: (1;2)cup (2;3)cup [3,5;4)cup (5;+infty). Решение


33. (Т/Р А. Ларина) Решите неравенство

frac{2sqrt{x+3}}{x+1}leq frac{3sqrt{x+3}}{x+2}.

Ответ: {-3}cup (-2;-1)cup [1;+infty). Решение


34. (Т/Р А. Ларина) Решите неравенство

log_{9x}27leq frac{1}{log_3x}.

Ответ: (0;frac{1}{9})cup(1;3]. Решение


35. (Т/Р А. Ларина) Решите неравенство

frac{7-71cdot 3^{-x}}{3^x+10cdot 3^{-x}-11}leq 1.

Ответ: (-infty;0)cup{2}cup (log_310;+infty). Решение


36. (Т/Р А. Ларина) Решите неравенство

log_x512leq log_2frac{64}{x}.

Ответ: (0;1)cup{8}. Решение


37. (Т/Р А. Ларина) Решите неравенство

xsqrt x+2sqrt x+3leq frac{6}{2-sqrt x}.

Ответ: {0}cup [1;4). Решение


38. (Т/Р А. Ларина) Решите неравенство

log_x(11x-2x^2)+log_{11-2x}x^4leq 5.

Ответ: (0;1)cup{-1+2sqrt3}(5;5,5).  Решение


39. (Т/Р А. Ларина) Решите неравенство

frac{log_{(-36x)}6^{x+2}}{log_{36}6^{x+2}}leq log_{x^2}36.

Ответ: [-36;-2)cup (-2;-1)cup (-frac{1}{36};0). Решение


40. (Т/Р А. Ларина) Решите неравенство

log^2_2frac{x-5}{x+2}-log_2(x-5)^2cdot log_{(x-5)^2}frac{x-5}{x+2}geq 0.

Ответ: [-9;-2)cup (5;6)cup (6;+infty). Решение


41. (Т/Р А. Ларина) Решите неравенство

log_x(1-2x)leq 3-log_{(frac{1}{x}-2)}x.

Ответ: (0;frac{1}{3})cup{sqrt2-1}. Решение


42. (Т/Р А. Ларина) Решите неравенство

log_3(x+1,5)-log_{sqrt2}(3,5-x)+log_{x+1,5}3cdot log_2^2(3,5-x)leq 0.

Ответ: (-1,5;-0,5)cup {1,5}. Решение


43. (Т/Р А. Ларина) Решите неравенство

frac{log_{3-x}sqrt x}{1-log_{x^2}(3-x)}leq 1.

Ответ: (0;1)cup (1;frac{sqrt{13}-1}{2})cup{1,5}cup(2;3). Решение


44. (Т/Р А. Ларина) Решите неравенство

|6-7^x|leq (7^x-6)cdot log_6(x+1).

Ответ: (-1;-frac{5}{6}]cup{log_76}[5;+infty). Решение


45. (Т/Р А. Ларина) Решите неравенство

(x+3)(x+1)+3(x+3)sqrt{frac{x+1}{x+3}}+2leq 0.

Ответ: [-2-sqrt5;-2-sqrt2]. Решение


46. (Т/Р А. Ларина) Решите неравенство

log_{5-x}(5+9x-2x^2)+log_{1+2x}(x^2-10x+25)^2leq 5.

Ответ: (-0,5;0)cup{6-2sqrt3}cup (4;5). Решение


47. (Т/Р А. Ларина) Решите неравенство

log_2(x^2-8x+6)geq 2+frac{1}{2}log_2(2x-1).

Ответ: (frac{1}{2};2-sqrt2]cup [6+sqrt{10};+infty). Решение


48. (Т/Р А. Ларина) Решите неравенство

frac{sqrt{2x-1}+sqrt{x-3}-3x+10}{sqrt{2x^2-7x+3}}>2.

Ответ: (3;25-6sqrt{13}). Решение


49. (Т/Р А. Ларина) Решите неравенство

frac{6-3x+sqrt{2x^2-5x+2}}{3x-sqrt{2x^2-5x+2}}geq frac{1-x}{x}.

Ответ: [-1;0)cup (frac{2}{7};frac{1}{2}]cup [2;+infty). Решение


50. (Т/Р А. Ларина) Решите неравенство

log_{4x}2x-log_{2x^2}4x^2geq -frac{3}{2}.

Ответ: (0;frac{1}{4})cup [frac{1}{sqrt8};frac{1}{sqrt2})cup [1;+infty). Решение


51. (Т/Р А. Ларина) Решите неравенство

frac{log_2(2cdot 4^x-11cdot 2^x+9)}{x+3}leq 1.

Ответ: (-infty;-3)cup [-1;0)cup (2log_23-1;2log_23]. Решение


52. (Т/Р А. Ларина) Решите неравенство

log_x(3-x)log_x(4-x)-log_x(x^2-7x+12)+1geq 0.

Ответ: (0;1)cup (1;1,5]cup [2;3). Решение


53. (Т/Р А. Ларина) Решите неравенство

frac{sqrt{6+x-x^2}}{log_2(5-2x)}leq frac{sqrt{6+x-x^2}}{log_2(x+4)}.

Ответ: [-2;frac{1}{3}]cup (2;2,5). Решение


54. (Т/Р А. Ларина) Решите неравенство

log_3(x^2-4x+5)leq frac{2x}{log_{x^2-4x+5}(9^x+3^x-12)}.

Ответ: (log_3frac{-1+sqrt{53}}{2};2)cup (2;log_312]. Решение


55. (Т/Р А. Ларина) Решите неравенство

log_x(frac{100}{x})leq sqrt{log_x(100x^5)}.

Ответ: (0;frac{1}{sqrt[5]100}]cup [sqrt{10};+infty). Решение


56. (Т/Р А. Ларина) Решите неравенство

log_{2x^2-x}(3x-1)cdot log_{2x-x^2}(3-2x)geq 0.

Ответ:  [frac{2}{3};1)cup (1;1,5). Решение


57. (Т/Р А. Ларина) Решите неравенство

log_{2x}(x-4)log_{x-1}(6-x)<0.

Ответ: (4;5)cup (5;6). Решение


58. (Т/Р А. Ларина) Решите неравенство

 log_3(x+6)leq (1-log_{9x}(6-x))cdot log_3(9x).

Ответ: [3;6). Решение


59. (Т/Р А. Ларина) Решите неравенство

sqrt{1-log_5(x^2-2x+2)}<frac{1}{2}log_{sqrt5}(5x^2-10x+10).

Ответ: [-1;1)cup (1;3]. Решение


60. (Т/Р А. Ларина) Решите неравенство

log_xlog_2(3-4^{x-1})leq 1.

Ответ: (0;1)cup (1;1,5). Решение


61. (Т/Р А. Ларина) Решите неравенство

frac{log_5(x^2-4x-11)^2-log_{11}(x^2-4x-11)^3}{2-5x-3x^2}geq 0.

Ответ: (-infty;-2)cup (-2;2-sqrt{15})cup [6;+infty). Решение


62. (Т/Р А. Ларина) Решите неравенство

frac{log_{2^{x+3}}4}{log_{2^{x+3}}(-4x)}leq frac{1}{log_2(log_{frac{1}{2}}2^x)}.

Ответ: [-4;-3)cup (-3;-1)cup (-frac{1}{4};0). Решение


63. (Т/Р А. Ларина) Решите неравенство

log_x(1-2x)leq 3-log _{frac{1}{x}-2}x.

Ответ:  (0;frac{1}{3})cup{-1+sqrt2}. Решение


64. (Т/Р А. Ларина) Решите неравенство

log_2(5-x)cdot log_{x+1}frac{1}{8}geq -6.

Ответ: (-1;0)cup [1;5). Решение


65. (Т/Р А. Ларина) Решите неравенство

frac{log_712}{log_7(x^2-9)}geq frac{log_5(x^2+8x+12)}{log_5(x^2-9)}.

Ответ: [-8;-6)cup (3;sqrt{10}). Решение


66. (Т/Р А. Ларина) Решите неравенство

4log_2x+log_2frac{x^2}{8(x-1)}leq 4-log_2(x-1)-log^2_2x.

Ответ: (1;2]. Решение


67. (Т/Р А. Ларина) Решите неравенство

sqrt{1-log_5(x^2-2x+2)}<log_5(5x^2-10x+10).

Ответ: [-1;1)cup(1;3]. Решение 


68. (Т/Р А. Ларина) Решите неравенство

log_{frac{x^2-18x+91}{90}}(5x-frac{3}{10})leq0.

Ответ: [frac{13}{50};9+4sqrt5). Решение


69. (Т/Р А. Ларина) Решите неравенство

log_{cosx^2}(frac{3}{x}-2x)<log_{cosx^2}(2x-1).

Ответ: (frac{1}{2};1). Решение


70. (Т/Р А. Ларина) Решите систему неравенств

begin{cases} log_2(5-x)(2-x)>log_4(x-2)^2,& &frac{2^x-2^{2-x}-3}{2^x-2}geq 0; end{cases}

Ответ: (-infty;1)cup(6;+infty). Решение


71. (Т/Р А. Ларина) Решите систему неравенств

begin{cases} 4^{x+1}-33cdot 2^x+8leq 0,& & 2log_2frac{x-1}{x+1,3}+log_2(x+1,3)^2geq 2. end{cases}

Ответ:

Показать скрытое содержание
{-4}cup (3,7;4] Решение


72. (Т/Р А. Ларина) Решите систему неравенств

begin{cases} frac{|x-5|-1}{2|x-6|-4}leq 1,& & frac{1}{4}log_2(x-2)-frac{1}{2}leq log_{frac{1}{4}}sqrt{x-5}. end{cases}

Ответ: (5;6]. Решение


73. (Т/Р А. Ларина)  Решите неравенство

frac{x^2-x+1}{x-1}+frac{x^2-3x-1}{x-3}leq 2x+2.

Ответ: (-infty;1)cup{2}cup (3;+infty). Решение


 74. (Т/Р А. Ларина)  Решите неравенство

frac{2^{cosx}-1}{3cdot 2^{cosx}-1}leq 2^{1+cosx}-2.

Ответ: [-frac{pi}{2}+2pi n;frac{pi}{2}+2pi n]cup{pi+2pi n}, nin Z. Решение


75. (Т/Р А. Ларина)  Решите неравенство

frac{5(x-6sqrt x+8)}{x-16}leq sqrt x-2.

Ответ: [0;1]cup [4;16)cup (16;+infty). Решение


76. (Т/Р А. Ларина)  Решите неравенство

frac{2^{x+1}sqrt{2^{x+1}-1}}{2^x-15}leq frac{sqrt{2^{x+1}-1}}{2^x-8}.

Ответ: {-1}cup [0;log_215-1]cup (3;log_215). Решение


77. (Т/Р А. Ларина) Решите неравенство

frac{4^{x}-3cdot 2^x+3}{2^x-2}+frac{4^{x}-5cdot 2^x+3}{2^x-4}leq 2^{x+1}.

Ответ: (-infty;1)cup{log_23}cup (2;+infty). Решение


78. (Т/Р А. Ларина)  Решите неравенство

log_{6x-x^2-8}(5-x)geq log_{6x-x^2-8}(4x^2-17x+20).

Ответ: [2,5;3)cup (3;4). Решение


79. (Т/Р А. Ларина) Найдите область определения функции y=sqrt{1-frac{2^{x+1}-14}{4^x-2^{x+2}-5}}.

Ответ: {log_23}cup (log_25;+infty). Решение


80. (Т/Р А. Ларина)  Решите неравенство |3^{x+1}-9^x|+|9^x-5cdot 3^x+6|leq 6-2cdot 3^x.

Ответ: (-infty;log_32)cup{1}. Решение


81. (Т/Р А. Ларина)   Решите неравенство frac{9}{3+log_3xcdot log_3frac{9}{x}}leq log_3^2x-log_3frac{x^2}{27}.

Ответ: (0;frac{1}{3})cup{1;9}cup (27;+infty). Решение


82. (Т/Р А. Ларина)  Решите неравенство frac{8^x-3cdot 2^{2x+1}+2^{x+3}+1}{4^x-3cdot 2^{x+1}+8}geq 2^x-1.

Ответ: (-infty;1)cup{log_23}cup (2;+infty). Решение


83. (Т/Р А. Ларина) Решите неравенство frac{(2^x-2)^3}{2^{x+2}-12}geq frac{8^x-4^{x+1}+2^{x+2}}{9-4^x}.

Ответ: (-infty;0]cup{1}cup (log_23;+infty). Решение


84. (Т/Р А. Ларина)  Решите неравенство sqrt{4sqrt3 sinfrac{pi x}{3}-4sin^2frac{pi x}{3}-3}cdot (log_{frac{2}{3}}frac{3x+22}{14-x})leq 0.

Ответ:  {-5;-4;1;2;7;8;13}. Решение


85. (Т/Р, 2017)  Решите неравенство 3^{|x|}-8-frac{3^{|x|}+9}{9^{|x|}-4cdot 3^{|x|}+3}leq frac{5}{3^{|x|}-1}.

Ответ: [-2;-1)cup [-log_32;0)cup (0;log_32]cup (1;2]. Решение


86. (Т/Р А. Ларина)  Решите неравенство

frac{sqrt{(x-1)(x-2)log_{x^2}frac{2}{x^2}}}{|x+2|}>frac{x^2-3x+1+log_{|x|}sqrt2}{x+2}.

Ответ: [sqrt2;2]. Решение


87. (Т/Р А. Ларина) Решите неравенство

3sqrt{x^2+6x+9}-(sqrt{3x+7})^2-2|x-1|leq 0.

Ответ: [-frac{7}{3};0]cup[2;+infty). Решение


88. (Т/Р А. Ларина)  Решите неравенство

2^{1+2x-x^2}-3geq frac{3}{2^{2x-x^2}-2}.

Ответ: [1-sqrt2;1)cup (1;1+sqrt2]. Решение


89. (Т/Р А. Ларина)  Решите неравенство

frac{log_2(|x|-1)log_2(frac{|x|-1}{16})+3}{sqrt{log_2(7-|x+4|)}}geq 0.

Ответ: (-10;-9]cup[-3;-1)cup (1;2). Решение


90. (Т/Р А. Ларина)  Решите неравенство

frac{4^{sqrt{x-1}}-5cdot 2^{sqrt{x-1}}+4}{log^2_2(7-x)}}geq 0.

Ответ: {1}cup [5;6)cup (6;7). Решение


91. (Т/Р А. Ларина) Решите неравенство

frac{2^{x+1}-7}{4^x-2^{x+1}-3}leq 1.

Ответ: {1}cup (log_23;+infty). Решение


92. (Т/Р А. Ларина) Решите неравенство

frac{5-7log_x3}{log_3x-log_x3}geq 1.

Ответ: (frac{1}{3};1)cup(1;3)cup [9;27]. Решение


93. (Т/Р А. Ларина) Решите неравенство

frac{x+6sqrt x+28}{120}leq frac{2-sqrt x}{x-6sqrt x+8}.

Ответ: [0;4)cup (4;16). Решение


94. (Т/Р А. Ларина) Решите неравенство

frac{9}{log_2(4x)}leq 4-log_2x.

Ответ: (0;0,25)cup left { 2 right }. Решение


 95. (Т/Р А. Ларина) Решите неравенство

frac{1}{log_3(2x-1)cdot log_{x-1}9}< frac{log_3sqrt{2x-1}}{log_3(x-1)}.

Ответ: (1;1,5)cup (2;+infty). Решение


96. (Т/Р А. Ларина) Решите неравенство

log_{frac{5-x}{4}}(x-2)cdot log_{x-2}(6x-x^2)geq log_{frac{5-x}{4}}(3x^2-10x+15).

Ответ: [2,5;3)cup (3;5). Решение


97. (Т/Р А. Ларина) Решите неравенство

log_3(2^x+1)+log_{2^x+1}3geq 2,5.

Ответ: (-infty;log_2(sqrt3-1)]cup [3;+infty). Решение


98. (Т/Р А. Ларина) Решите неравенство

frac{83-17cdot 2^{x+1}}{4^x-2^{x+2}+3}leq 4^x+3cdot 2^{x+1}+17.

Ответ: [0;1,5)cup(log_23;+infty). Решение


99. (Т/Р А. Ларина) Решите неравенство

xlog_2frac{x}{2}+log_x4leq 2.

Ответ: (0;1)cup {2}. Решение


100. (Т/Р А. Ларина) Решите неравенство

(3^x-2^x)(6^{x+1}+1)+6^xgeq 3^{2x+1}-2^{2x+1}.

Ответ: {-1}cup [0;+infty). Решение


 101. (Т/Р А. Ларина) Решите неравенство

2sqrt{sin^2x-sinx-1}geq cos^2x+sinx+3.

Ответ: -frac{pi}{2}+2pi n,nin Z. Решение


102. (Т/Р А. Ларина)  Решите неравенство

frac{log_8x}{log_2(1+2x)}leq frac{log_2sqrt[3]{1+2x}}{log_2x}.

Ответ: (0;0,5]cup (1;+infty).  Решение


103. (Т/Р А. Ларина) Решите неравенство

-3log_{(x-1)}frac{1}{3}+log_{frac{1}{3}}(x-1)>2|log_{frac{1}{3}}(x-1)|.

Ответ: (2;4). Решение


104. (Т/Р 283 А. Ларина) Решите неравенство

log_{sqrt3-1}(9^{|x|}-2cdot 3^{|x|})leq log_{sqrt3-1}(2cdot 3^{|x|-3).

Ответ: (-infty;-1]cup [1;+infty) Видеорешение


Like this post? Please share to your friends:
  • Как подготовиться к 1 заданию егэ по русскому языку 2022
  • Как подготовиться за год к егэ по обществознанию
  • Как подготовиться дома к егэ
  • Как подготовиться в егэ по русскому за один день
  • Как подготовить шпоры к экзамену в ворде