Как решать 12 задание егэ математика профиль тригонометрия

Задание 12 Профильного ЕГЭ по математике – это решение уравнений. Чаще всего, конечно, это тригонометрические уравнения. Но встречаются и другие типы – показательные, логарифмические, комбинированные.

Сейчас задание 12 Профильного ЕГЭ на решение уравнения состоят из двух пунктов: собственно решения и отбора корней на определенном отрезке.

Что нужно знать, чтобы справиться с этой задачей на ЕГЭ? Вот необходимые темы для повторения.

Задачи из сборников Ященко, 2021 год

Квадратные уравнения

Показательные уравнения

Логарифмические уравнения

Модуль числа

Уравнения с модулем

Тригонометрический круг

Формулы тригонометрии

Формулы приведения

Простейшие тригонометрические уравнения 1

Простейшие тригонометрические уравнения 2

Тригонометрические уравнения

Что необходимо помнить при решении уравнений?

1) Помним про область допустимых значений уравнения! Если в уравнении есть дроби, корни, логарифмы или арксинусы с арккосинусами — сразу записываем ОДЗ. А найдя корни, проверяем, входят они в эту область или нет. Есть в уравнении есть tg x — помним, что он существует, только если {cos xne 0}.

2) Стараемся записывать решение в виде цепочки равносильных переходов.

3) Если есть возможность сделать замену переменной — делаем замену переменной! Уравнение сразу станет проще.

4) Если еще не выучили формулы тригонометрии — пора это сделать! Много формул не нужно. Самое главное — тригонометрический круг, формулы синусов и косинусов двойных углов, синусов и косинусов суммы (разности), понижения степени. Формулы приведения не надо зубрить наизусть! Надо знать, как они получаются.

5) Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам -4 pi , -2 pi , 0, 2 pi , 4 pi dots Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений x=frac{pi}{3}+2pi n , где n — целое, а найти надо корни на отрезке left [frac{5 pi}{2};frac{9 pi}{2} right ]. На указанном промежутке лежит точка 4 pi. От нее и будем отсчитывать. Получим: x=4 pi +frac{pi}{3}=frac{13 pi}{3}.

6) Получив ответ, проверьте его правильность. Просто подставьте найденные решения в исходное уравнение!

Давайте потренируемся.

а) Решите уравнение 2{{sin}^2 left(frac{pi }{2}+xright)}=-sqrt{3}{cos x}

б) Найдите все корни этого уравнения, принадлежащие промежутку left[-3pi right.;left.-frac{3pi }{2}right]

2{{sin}^2 left(frac{pi }{2}+xright)}=-sqrt{3}{cos x}

Упростим левую часть по формуле приведения.

2{{cos}^2 x+sqrt{3}{cos x}=0}

Вынесем {cos x} за скобки. Произведение двух (или нескольких) множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

б) Отметим на тригонометрическом круге найденные серии решений и отрезок left[-3pi right.;left.-frac{3pi }{2}right].

Видим, что указанному отрезку принадлежат решения -frac{17pi }{6};-frac{5pi }{2};-frac{3pi }{2}.

Ответ: -frac{17pi }{6};-frac{5pi }{2};-frac{3pi }{2}.

Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам -4 pi , -2 pi , 0, 2 pi , 4 pi dots Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений x=frac{pi }{3}+2pi n, где n — целое, а найти надо корни на отрезке [frac{5pi }{2};frac{9pi }{2}]. На указанном промежутке лежит точка 4 pi. От нее и отсчитываем.

Получим: x=4pi +frac{pi }{3}=frac{13pi }{3}.

2. а) Решите уравнение {({27}^{{cos x}})}^{{sin x}}=3^{frac{3{cos x}}{2}}

б) Найдите все корни этого уравнения, принадлежащие отрезку left[-pi ;frac{pi }{2}right].

Это уравнение — комбинированное. Кроме тригонометрии, применяем свойства степеней.

а) 3^{3{cos x{sin x}}}=3^{frac{3{cos x}}{2}}

Степени равны, их основания равны. Значит, равны и показатели.

3{cos x{sin x}}=frac{3{cos x}}{2}

2{cos x{sin x-{cos x=0}}}

{cos x({sin x-frac{1}{2})=0}}

Это ответ в пункте (а).

б) Отберем корни, принадлежащие отрезку left[-pi ;frac{pi }{2}right].

Отметим на тригонометрическом круге отрезок left[-pi ;frac{pi }{2}right] и найденные серии решений.

Видим, что указанному отрезку принадлежат точки x=-frac{pi }{2} и x=frac{pi }{2} из серии x=frac{pi }{2}+pi n,nin z.

Точки серии x=frac{5pi }{6}+2pi n,nin z не входят в указанный отрезок.

А из серии x=frac{pi }{6}+2pi n,nin z в указанный отрезок входит точка x=frac{pi }{6}.

Ответ в пункте (б): -frac{pi }{2},frac{pi }{6} , frac{pi }{2}.

3. а) Решите уравнение {cos 2x}+{{sin}^2 x=0,5}

б) Найдите все корни этого уравнения, принадлежащие отрезку left[-frac{7pi }{2}right.;left.-2pi right].

а)
{cos 2x}+{{sin}^2 x=0,5}

Применим формулу косинуса двойного угла: boldsymbol{cos2alpha =1-{2sin}^2alpha }

1-2{{sin}^2 x}+{{sin}^2 x}=0,5

{{-sin}^2 x=-0,5}

{{sin}^2 x=0,5}

Перенесем всё в левую часть уравнения и разложим по формуле разности квадратов.

Обратите внимание: мы отметили серии решений на тригонометрическом круге. Это помогло нам увидеть, как их записать одной формулой.

б) Для разнообразия отберем корни на отрезке left[-frac{7pi }{2}right.;left.-2pi right] с помощью двойного неравенства.

Сначала серия x=frac{pi }{4}+pi n,nin Z.

-frac{7pi }{2}le frac{pi }{4}+pi nle -2pi

-frac{7}{2}le frac{1}{4}+nle -2

-3,75le nle -2,25

n=-3, x_1=frac{pi }{4}-3pi =-frac{11pi }{4}

Теперь серия x=-frac{pi }{4}+pi n,nin Z

-frac{7pi }{2}le -frac{pi }{4}+pi nle -2pi

-frac{7}{2}le -frac{1}{4}+nle -2

-3,25le nle -1,75

n=-3, x_2=-frac{pi }{4}-3pi =-frac{13pi }{4}

n=-2, x_3=-frac{pi }{4}-2pi =-frac{9pi }{4}

Ответ: -frac{13pi }{4};-frac{11pi }{4};-frac{9pi }{4} .

Какой способ отбора корней лучше — с помощью тригонометрического круга или с помощью двойного неравенства? У каждого из них есть «плюсы» и «минусы».

Пользуясь тригонометрическим кругом, вы не ошибетесь. Вы видите и интервал, и сами серии решений. Это наглядный способ.

Зато, если интервал больше, чем один круг, удобнее отбирать корни с помощью двойного неравенства. Например, надо найти корни из серии x=-frac{pi }{4}+2pi n,nin Z на отрезке left[-frac{pi }{2}right.;left.20pi right]. Это больше 10 кругов! Конечно, в таком случае лучше решить двойное неравенство.

4. а) Решите уравнение left({tg}^2x-3right)sqrt{11{cos x}}=0.

б) Найдите все корни этого уравнения, принадлежащие отрезку left[-frac{5pi }{2};-pi right].

Самое сложное здесь — область допустимых значений (ОДЗ). Условие {11cos x}ge 0 заметно сразу. А условие {cos x}ne 0 появляется, поскольку в уравнении есть {tg x=frac{{sin x}}{{cos x}}}.

ОДЗ:

Уравнение равносильно системе:

Отберем решения с помощью тригонометрического круга. Нам нужны те серии решений, для которых , то есть те, что соответствуют точкам справа от оси Y.

Ответ в пункте а) x=pm frac{pi }{3}+2pi n, nin z

б) Отметим на тригонометрическом круге найденные серии решений и отрезок left[-frac{5pi }{2};-pi right].

Как обычно, ориентируемся на начало круга. Видим, что указанному промежутку принадлежат точки

x=frac{pi }{3}-2pi =-frac{5pi }{3} и x=-frac{pi }{3}-2pi =-frac{7pi }{3}.

5. а) Решите уравнение sqrt{{cos x+{sin x}}}({{cos}^2 x-frac{1}{2})=0}

б) Найдите корни, принадлежащие отрезку [-pi ;4pi ].

Выражение под корнем должно быть неотрицательно, а произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

Это значит, что уравнение равносильно системе:

Решим эту систему с помощью тригонометрического круга. Отметим на нем углы, для которых {cos x}=frac{sqrt{2}}{2} или {cos x}=-frac{sqrt{2}}{2}. Заметим, что среди них находятся и углы, для которых tgx=-1.

Числа серии x=-frac{3pi }{4}+2pi n не могут быть корнями исходного уравнения, т.к. для этих чисел не выполнено условие {cos x+{sin x}}ge 0. Остальные серии решений нас устраивают.

Тогда в ответ в пункте (а) войдут серии решений:

б) Отберем корни, принадлежащие отрезку [-pi ;4pi ] любым способом — с помощью тригонометрического круга или с помощью двойного неравенства.

На отрезке left[-pi ;0right] нам подходит корень x =-frac{pi }{4}.

На отрезке left[0;2pi right] нам подходят корни x=frac{pi }{4};frac{3pi }{4};frac{7pi }{4}.

На отрезке left[2pi ;4pi right] — корни x= frac{9pi }{4} ; frac{11pi }{4};frac{15pi }{4}.

Ответ в пункте б): -frac{pi }{4};frac{3pi }{4};frac{7pi }{4};frac{pi }{4};frac{9pi }{4} ; frac{11pi }{4};frac{15pi }{4}.

Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Задание №12. Уравнения u0026#8212; профильный ЕГЭ по математике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
09.03.2023

Задание №12. Уравнения — профильный ЕГЭ по математике

Задание 12 Профильного ЕГЭ по математике – это решение уравнений. Чаще всего, конечно, это тригонометрические уравнения. Но встречаются и другие типы – показательные, логарифмические, комбинированные.

Сейчас задание 12 Профильного ЕГЭ на решение уравнения состоят из двух пунктов: собственно решения и отбора корней на определенном отрезке.

Что нужно знать, чтобы справиться с этой задачей на ЕГЭ? Вот необходимые темы для повторения.

Что необходимо помнить при решении уравнений?

1) Помним про область допустимых значений уравнения! Если в уравнении есть дроби, корни, логарифмы или арксинусы с арккосинусами — сразу записываем ОДЗ. А найдя корни, проверяем, входят они в эту область или нет. Есть в уравнении есть — помним, что он существует, только если

2) Стараемся записывать решение в виде цепочки равносильных переходов.

3) Если есть возможность сделать замену переменной — делаем замену переменной! Уравнение сразу станет проще.

4) Если еще не выучили формулы тригонометрии — пора это сделать! Много формул не нужно. Самое главное — тригонометрический круг, формулы синусов и косинусов двойных углов, синусов и косинусов суммы (разности), понижения степени. Формулы приведения не надо зубрить наизусть! Надо знать, как они получаются.

5) Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений , где — целое, а найти надо корни на отрезке На указанном промежутке лежит точка . От нее и будем отсчитывать. Получим:

6) Получив ответ, проверьте его правильность. Просто подставьте найденные решения в исходное уравнение!

а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие промежутку

Упростим левую часть по формуле приведения.

Вынесем за скобки. Произведение двух (или нескольких) множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

б) Отметим на тригонометрическом круге найденные серии решений и отрезок

Видим, что указанному отрезку принадлежат решения

Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений , где — целое, а найти надо корни на отрезке На указанном промежутке лежит точка От нее и отсчитываем.

2. а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку

Это уравнение — комбинированное. Кроме тригонометрии, применяем свойства степеней.

Степени равны, их основания равны. Значит, равны и показатели.

Это ответ в пункте (а).

б) Отберем корни, принадлежащие отрезку

Отметим на тригонометрическом круге отрезок и найденные серии решений.

Видим, что указанному отрезку принадлежат точки и из серии

Точки серии не входят в указанный отрезок.

А из серии в указанный отрезок входит точка

Ответ в пункте (б):

3. а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку

Применим формулу косинуса двойного угла:

Перенесем всё в левую часть уравнения и разложим по формуле разности квадратов.

Обратите внимание: мы отметили серии решений на тригонометрическом круге. Это помогло нам увидеть, как их записать одной формулой.

б) Для разнообразия отберем корни на отрезке с помощью двойного неравенства.

Какой способ отбора корней лучше — с помощью тригонометрического круга или с помощью двойного неравенства? У каждого из них есть «плюсы» и «минусы».

Пользуясь тригонометрическим кругом, вы не ошибетесь. Вы видите и интервал, и сами серии решений. Это наглядный способ.

Зато, если интервал больше, чем один круг, удобнее отбирать корни с помощью двойного неравенства. Например, надо найти корни из серии на отрезке Это больше 10 кругов! Конечно, в таком случае лучше решить двойное неравенство.

4. а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку

Самое сложное здесь — область допустимых значений (ОДЗ). Условие заметно сразу. А условие появляется, поскольку в уравнении есть

Уравнение равносильно системе:

Отберем решения с помощью тригонометрического круга. Нам нужны те серии решений, для которых , то есть те, что соответствуют точкам справа от оси .

Ответ в пункте а)

б) Отметим на тригонометрическом круге найденные серии решений и отрезок

Как обычно, ориентируемся на начало круга. Видим, что указанному промежутку принадлежат точки

5. а) Решите уравнение

б) Найдите корни, принадлежащие отрезку

Выражение под корнем должно быть неотрицательно, а произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

Это значит, что уравнение равносильно системе:

Решим эту систему с помощью тригонометрического круга. Отметим на нем углы, для которых или . Заметим, что среди них находятся и углы, для которых

Числа серии не могут быть корнями исходного уравнения, т.к. для этих чисел не выполнено условие . Остальные серии решений нас устраивают.

Тогда в ответ в пункте (а) войдут серии решений:

б) Отберем корни, принадлежащие отрезку любым способом — с помощью тригонометрического круга или с помощью двойного неравенства.

Материал для подготовки к заданию номер 12 из ЕГЭ по профильной математике

Все уравнения можно разделить на несколько групп:

— Целые рациональные уравнения

Каждая группа уравнений имеет свои особенности. На первый взгляд может показаться, что это очень большой материал и на его изучение понадобится много времени, однако на самом деле для подготовки в экзамену и выполнению задания номер 12 можно подготовиться достаточно быстро, используя верно подобранные материалы и разбирая примеры заданий

Комбинируя все представленные в данных материалах способы и обладая базовыми знаниями математики, можно успешно решить большинство уравнений, которые могут встретиться учащимся во время обучения в средней и старшей школе а так же успешно решить задания на данную тему в контрольно-измерительных материалах

СОВЕТ: после прохождения какой-либо темы в моём пособии, необходимо прорешать похожие уравнения (этой же группы) на одном из подобранных мной сайтов (смотрите ниже)

Часть I. Способы решения уравнений. Метод “Замена переменной”

Уравнение вида af²(x)+bf (x)+c=0 Такие уравнения (их иногда называют трехчленными) являются одними из наиболее распространенных. Скорее всего, самый известный и яркий пример этого типа уравнений — биквадратное уравнение ax⁴ + bx2 + c = 0 (здесь f (x) = x 2 ). Заменой переменной t = f (x) трехчленное уравнение сводится к квадратному относительно переменной t уравнению at² + bt + c = 0

Решить уравнение (2x² – 3x + 1) = 22x² – 33x + 1.

Задание 12. Тригонометрическое уравнение

Типичная задача №12 из ЕГЭ по математике 2022 содержит два пункта:

  1. Решить несложное тригонометрическое уравнение (хотя иногда попадаются довольно сложные).
  2. Среди полученных корней отобрать те, которые принадлежат заданному отрезку. Вот здесь большинство учеников «пасует».

Все видеоуроки по задачам 12, опубликованные на моем сайте, содержат оба пункта: и решение уравнения (со всеми тонкостями), и различные подходы к отбору корней.

Глава 1. Тригонометрические уравнения § 1. Задача C1: тригонометрические уравнения с ограничением § 2. Задача C1: тригонометрические уравнения и формула двойного угла § 3. Задача C1: тригонометрия и показательная функция — 1 вариант § 4. Задача C1: тригонометрия и показательная функция — 2 вариант Глава 2. Показательные и логарифмические уравнения § 1. Задача C1: показательные уравнения с ограничением § 2. Задача C1: еще одно показательное уравнение § 3. Логарифмические уравнения в задаче C1 § 4. Задача C1: логарифмы и тригонометрия в одном уравнении § 5. Вебинар по заданию 13: тригонометрия § 6. Формулы двойного угла в тригонометрических уравнениях из ЕГЭ § 7. Отбор корней из некрасивых арктангенсов, арксинусов и т.д. § 8. Нестандартные периоды и отбор корней в тригонометрическом уравнении § 11. Задача из пробного ЕГЭ 2016 от 3 марта § 12. Вебинар по заданию 13: предварительное задание

источники:

http://vc.ru/u/1019775-egor-borodin/330865-material-dlya-podgotovki-k-zadaniyu-nomer-12-iz-ege-po-profilnoy-matematike

http://www.berdov.com/ege/equation-root/

Skip to content

ЕГЭ Профиль №12. Тригонометрические уравнения

ЕГЭ Профиль №12. Тригонометрические уравненияadmin2022-08-08T15:32:31+03:00

Используйте LaTeX для набора формулы

По статистике, лишь 5% школьников сдают госэкзамен по математике на 80+ баллов с первой попытки. Неспроста этот предмет считается одним из сложнейших в школьной программе. Вы готовы начать с простейших тригонометрических уравнений? Давайте проверим! Наша серия видеоуроков посвящена подробному разбору 12 задания ЕГЭ по математике 2023 года, то есть разделу тригонометрии. Посмотрите все 8 видео по порядку – и вы станете экспертом в этом вопросе.

Радианы – инструкция по применению. Разбор 12 задания ЕГЭ математика профиль. Теория.

Начинаем с простого: угол в 1 радиан. Старший эксперт ЕГЭ по математике  и член проверочной комиссии ЕГЭ Михаил Попов напомнит, что же это такое. Вы узнаете, чему соответствует угол 30о, 60о, 90о и так далее, а также что делать с непонятными углами, которые нередко встречаются в госэкзамене по математике.

Не забывайте, что в задачах на радианы важно записывать все ответы не в градусах, а в радианах!

Тригонометрический круг, уравнения – быстрый старт. 12 задание ЕГЭ профильная математика. Теория

Тригонометрия – не самая простая наука. Особенно когда дело касается вычислений нестандартных углов. Что же с этим делать? Ответит на данный вопрос наш эксперт. В видеоразборе задания вы узнаете, как находить синусы и косинусы углов окружности единичного радиуса и почему нужно идти по окружности по часовой стрелке, а не наоборот. Посмотрите видео – педагог все объяснит простыми словами.

12 задания ЕГЭ по математике профильный уровень. Простейшие тригонометрические уравнения (часть 1,2)

Простейшие тригонометрические уравнения – фундамент, который позволяет решать остальные уравнения в математике. Несколько подробных разборов примеров дадут каждому школьнику базу для понимания задачи 12. Михаил Попов покажет два варианта, как расписать ответ. Подробнее смотрите в видео о способах решения 12 задания ЕГЭ по математике.

Вторая часть рассматривает общий случай поиска косинуса и арккосинуса угла. На графике становится видно, как и что использовать для решения задачи. Подробный разбор 12 задания ЕГЭ по математике смотрите по ссылке ниже.

Как запомнить табличные значения синуса, косинуса и т.д.?

Если вы еще не знаете основных табличных значений, пора приступить к их заучиванию. Сделать этот процесс более простым и увлекательным поможет наш эксперт ЕГЭ по математике. Разбираемся в вопросе максимально быстро – потребуется всего 5 минут!

ЕГЭ по математике 2023. Задание 12. Теория. Синус, косинус и все, все, все

В этом видео речь пойдет о том, как разложить по полочкам все основные понятия тригонометрии: синус, косинус, тангенс, котангенс. Наш преподаватель знает в этом толк и способен объяснить теорию просто и понятно даже последнему двоечнику.

Хотите заниматься с этим преподавателем? Записывайтесь на бесплатное пробное занятие в учебный центр Годограф.

ЕГЭ по математике – задание 12 2023 года. Практика. Решение задач. Задача 1

Пора перейти к практическим занятиям. Перед нами довольно простая задача по тригонометрии, которая идеально подойдет для разгона. Что нужно сделать, чтобы найти ответ:

  1. С помощью формул заменить тригонометрическое уравнение на обычное уравнение.
  2. Решить обычное уравнение.
  3. Вернуться и решить простейшее тригонометрическое уравнение.

Кажется, что все легко! Однако не обойтись без каверзных моментов, которые важно учитывать при решении задания 12 ЕГЭ по математике. Наш педагог по полочкам все разложит.

Вторая часть практических видео – про отбор корней. Небольшое теоретическое вступление, и можно приступать к решению задачи. Обязательно делаем полное обоснование, иначе можно вообще не получить ни одного балла! Как это сделать – смотрите в нашем видеоролике.

В целом, решение 12 задания ЕГЭ профильной математики не назвать одним из самых сложных. Важно только разобраться в основах и запомнить основные алгоритмы решения. Остальные учебные материалы смотрите на нашем канале.



Рассылка с лучшими статьями. Раз в неделю для самых занятных

Для тех, кто ценит свое время. Выбирайте интересную вам тему и подписывайтесь, чтобы ничего не пропустить. Это бесплатно!


Все уравнения можно разделить на несколько групп:

— Целые рациональные уравнения

— Дробно-рациональные уравнения

— Иррациональные уравнения

— Тригонометрические уравнения

— Показательные уравнения

Каждая группа уравнений имеет свои особенности. На первый взгляд может показаться, что это очень большой материал и на его изучение понадобится много времени, однако на самом деле для подготовки в экзамену и выполнению задания номер 12 можно подготовиться достаточно быстро, используя верно подобранные материалы и разбирая примеры заданий

Комбинируя все представленные в данных материалах способы и обладая базовыми знаниями математики, можно успешно решить большинство уравнений, которые могут встретиться учащимся во время обучения в средней и старшей школе а так же успешно решить задания на данную тему в контрольно-измерительных материалах

СОВЕТ: после прохождения какой-либо темы в моём пособии, необходимо прорешать похожие уравнения (этой же группы) на одном из подобранных мной сайтов (смотрите ниже)

Часть I. Способы решения уравнений. Метод “Замена переменной”

Уравнение вида af²(x)+bf (x)+c=0 Такие уравнения (их иногда называют трехчленными) являются одними из наиболее распространенных. Скорее всего, самый известный и яркий пример этого типа уравнений — биквадратное уравнение ax⁴ + bx2 + c = 0 (здесь f (x) = x 2 ). Заменой переменной t = f (x) трехчленное уравнение сводится к квадратному относительно переменной t уравнению at² + bt + c = 0

Решить уравнение (2x² – 3x + 1) = 22x² – 33x + 1.

Решение:

Пример1

Перепишем уравнение в виде

(2x² – 3x + 1)² = 11(2x² – 3x) + 1. Произведем замену. Пусть 2x² – 3x = a, тогда уравнение примет вид:

(a + 1)² = 11a + 1.

a² + 2a + 1 = 11a + 1;

a² – 9a = 0.

В получившемся неполном квадратном уравнении вынесем общий множитель за скобки и получим следующее:

a(a – 9) = 0;

a= 0 или a= 9 (записывается как система).

2x² – 3x = 0 или 2x² – 3x = 9

x = 0 или x = 3/2 x = 3 или x = -3/2

Ответ: x=0, x=3, x=+-3/2

Пример 2

Решить уравнение (x – 1)(x – 3)(x + 5)(x + 7) = 297

Решение: Попытаемся перемножить между собой множители и получим

((x – 1)(x + 5))((x – 3)(x + 7)) = 297;

(x² + 5x – x – 5)(x² + 7x – 3x – 21) = 297;

(x² + 4x – 5)(x² + 4x – 21) = 297.

Замечаем замену x² + 4x = a, тогда уравнение будет выглядеть следующим образом:

(a – 5)(a – 21) = 297.

Раскроем скобки, приведем подобные слагаемые:

a² – 21a – 5a + 105 = 297;

a² – 26t – 192 = 0.

По теореме Виета определяем, что корнями полученного уравнения будут числа -6 и 32.

После обратной замены будем иметь:

x² + 4x = -6 или x² + 4x = 32

x² + 4x + 6 = 0 x² + 4x – 32 = 0

D = 16 – 24 < 0 D = 16 + 128 > 0

Нет корней x1 = -8; x2 = 4

Ответ: x=-8; x=4

Метод “Применение свойств функции”

Некоторые (не обязательно целые) уравнения могут быть решены с помощью таких свойств функций, как монотонность и ограниченность. Приведем простой пример решения уравнения таким методом

Решим данное нам уравнение:

Решение.

Каждая из корней в правой части уравнения — возрастающая функция, которая при любом x будет принимать только положительные значения. Значит и их сумму тоже будет принимать значение больше или равные нулю. Значение в правой части уравнения меньше 0, из этого следует, что уравнение не будет иметь решения

Ответ: нет корней

Для дробно-рациональных уравнений метод “применения свойств” функции также будет очень эффективным

Алгебраические преобразования для решения уравнений

Одним из основных способов сведения уравнения к одному или нескольким простейшим являются алгебраические преобразования одной или обеих его частей, позволяющие свести дробно-рациональное уравнение к целому. В некоторых случаях для решения рациональных уравнений приходится применять искусственные приемы: добавление и вычитание одного и того же числа и т. п.

Тригонометрические уравнения

Основной идеей при решении тригонометрических уравнений является сведение большого многочлена к простейшему уравнению вида sin x = a, cos x = a, tg x = a, ctg x = a. А потом они уже решаются при помощи числовой окружности. Но при этом для решения этого типа уравнений так же подходят изученные нами ранее способы: замена переменной, алгебраические преобразования и, конечно, применение свойств функции

Представленный выше пример является простейшим тригонометрическим уравнением вида tg x = a, который мы решали используя тригонометрический круг

Теперь рассмотрим пример уравнения, где необходимо выполнить преобразования для того, чтобы прийти к простейшему тригонометрическому уравнению

Теперь предлагаю разобрать одно из самых сложных заданий на эту тему по данным сайта Решуегэ.РФ

Логарифмические уравнения

Основная идея решения любого логарифмического уравнения —

сведение его к одному или нескольким простейшим уравнениям, а ос-

новными средствами реализации этой идеи являются следующие:

• равносильные преобразования,

• переход к уравнению-следствию,

• разложение на множители,

• замена переменной,

• применение свойств функций.

Решение большинства логарифмических уравнений после некото-

рых преобразований сводится к решению логарифмического уравне-

ния вида logh(x)

f (x)=logh(x)

g(x) или совокупности таких уравнений.

Приведем соответствующее равносильное преобразование:

Часть II. Решение систем уравнений. Системы целых алгебраических уравнений

Основными методами решения систем, содержащих нелинейные урав-

нения, являются следующие:

• подстановка,

• замена переменной,

• алгебраическое сложение,

• разложение на множители.

Рассмотрим пример решения систем целых алгебраических уравнений:

При возможности, нужно решать по одному уравнению день за днём. Причём я рекомендую делать так: 2 дня решать тригонометрические уравнения, 1 день показательные и 1 день логарифмические. Это будет наиболее эффективный метод подготовки к решению задания номер 12 из егэ по профильной математике

Ссылки для тренировки:

Тригонометрические уравнения

Иррациональные уравнения

Показательные уравнения

Уравнения смешанного типа

Банк заданий с уравнениями от ФИПИ

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • Как решать 12 задание егэ математика профиль тригонометрические уравнения
  • Как решать 12 задание егэ информатика чертежник
  • Как решать 12 задание егэ информатика робот
  • Как решать 11 задание егэ математика профиль быстро
  • Как решать 10 задание егэ математика профиль с косинусом

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии