Задание 14 Профильного ЕГЭ по математике можно считать границей между «неплохо сдал ЕГЭ» и «поступил в вуз с профильной математикой». Здесь не обойтись без отличного знания алгебры. Потому что встретиться вам может любое неравенство: показательное, логарифмическое, комбинированное (например, логарифмы и тригонометрия). И еще бывают неравенства с модулем и иррациональные неравенства. Некоторые из них мы разберем в этой статье.
Хотите получить на Профильном ЕГЭ не менее 70 баллов? Учитесь решать неравенства!
Темы для повторения:
New
Решаем задачи из сборника И. В. Ященко, 2021
Квадратичные неравенства
Метод интервалов
Уравнения и неравенства с модулем
Иррациональные неравенства
Показательные неравенства
Логарифмические неравенства
Метод замены множителя (рационализации)
Решение неравенств: основные ошибки и полезные лайфхаки
Решаем задачи из сборника И. В. Ященко, 2020. Вариант 8, задача 15
Решаем задачи из сборника И. В. Ященко, 2020. Вариант 32, задача 15
Решаем задачи из сборника И. В. Ященко, 2020. Вариант 36, задача 15
Логарифмические неравенства повышенной сложности
Разберем неравенства разных типов из вариантов ЕГЭ по математике.
Дробно-рациональные неравенства
1. Решите неравенство:
Сделаем замену
Тогда , а
Получим:
Решим неравенство относительно t методом интервалов:
Получим:
Вернемся к переменной x:
Ответ:
Показательные неравенства
2. Решите неравенство
Сделаем замену Получим:
Умножим неравенство на
Дискриминант квадратного уравнения
Значит, корни этого уравнения:
Разложим квадратный трехчлен на множители.
. Вернемся к переменной x.
Внимание. Сначала решаем неравенство относительно переменной t. Только после этого возвращаемся к переменной x. Запомнили?
Ответ:
Следующая задача — с секретом. Да, такие тоже встречаются в вариантах ЕГЭ.
3. Решите неравенство
Сделаем замену Получим:
Вернемся к переменной
Первое неравенство решим легко: С неравенством тоже все просто. Но что делать с неравенством ? Ведь Представляете, как трудно будет выразить х?
Оценим Для этого рассмотрим функцию
Сначала оценим показатель степени. Пусть Это парабола с ветвями вниз, и наибольшее значение этой функции достигается в вершине параболы, при х = 1. При этом
Мы получили, что
Тогда , и это значит, что Значение не достигается ни при каких х.
Но если и , то
Мы получили:
Ответ:
Логарифмические неравенства
4. Решите неравенство
Запишем решение как цепочку равносильных переходов. Лучше всего оформлять решение неравенства именно так.
Ответ:
Следующее неравенство — комбинированное. И логарифмы, и тригонометрия!
5. Решите неравенство
ОДЗ:
Замена
Ответ:
А вот и метод замены множителя (рационализации). Смотрите, как он применяется. А на ЕГЭ не забудьте доказать формулы, по которым мы заменяем логарифмический множитель на алгебраический.
6. Решите неравенство:
Мы объединили в систему и область допустимых значений, и само неравенство. Применим формулу логарифма частного, учитывая, что . Используем также условия
Обратите внимание, как мы применили формулу для логарифма степени. Строго говоря,
Поскольку
Согласно методу замены множителя, выражение заменим на
Получим систему:
Решить ее легко.
Ответ: .
Разберем какое-нибудь нестандартное неравенство. Такое, что не решается обычными способами.
7. Решите неравенство:
ОДЗ:
Привести обе части к одному основанию не получается. Ищем другой способ.
Заметим, что при x = 9 оба слагаемых равны 2 и их сумма равна 4.
Функции и — монотонно возрастающие, следовательно, их сумма также является монотонно возрастающей функцией и каждое свое значение принимает только один раз.
Поскольку при x=9 значение монотонно возрастающей функции равно 4, при значения этой функции меньше 4. Конечно, при этом , то есть x принадлежит ОДЗ.
Ответ:
Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Задание 14. Неравенства u0026#8212; профильный ЕГЭ по математике» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.
Публикация обновлена:
09.03.2023
1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения
Решение неравенств
Задание
1
#2500
Уровень задания: Легче ЕГЭ
Решите неравенство [x+10<3x^2]
Перенесем слагаемые в левую часть: [-3x^2+x+10<0] Разложим на множители выражение (-3x^2+x+10): [-3x^2+x+10=0 quad Rightarrow quad x_1=2quadtext{и}quad x_2=-dfrac53] Следовательно, (-3x^2+x+10=-3(x-2)left(x-frac53right)=-(x-2)(3x+5)).
Тогда неравенство примет вид [-(x-2)(3x+5)< 0quad Rightarrow
quad (x-2)(3x+5)>0] Решим его методом интервалов:
Таким образом, подходят (xin
left(-infty;-frac53right)cup(2;+infty)).
Ответ:
(left(-infty;-frac53right)cup(2;+infty))
Задание
2
#2501
Уровень задания: Легче ЕГЭ
Решите неравенство [x^2+34x+289>0]
Заметим, что по формуле квадрата суммы (x^2+34x+289=(x+17)^2), следовательно, неравенство принимает вид: [(x+17)^2>0] Решим его методом интервалов:
Таким образом, нам подходят (xin(-infty;-17)cup(-17;+infty)).
Ответ:
((-infty;-17)cup(-17;+infty))
Задание
3
#2502
Уровень задания: Легче ЕГЭ
Решите неравенство [x^2-4x+4leqslant 0]
Заметим, что по формуле квадрата разности (x^2-4x+4=(x-2)^2), следовательно, неравенство принимает вид: [(x-2)^2leqslant 0] Решим его методом интервалов:
Таким образом, нам подходят (xin{2}).
Ответ:
({2})
Задание
4
#2503
Уровень задания: Легче ЕГЭ
Решите неравенство [x^2+3x+3geqslant 0]
Разложим на множители выражение (x^2+3x+3), для этого решим уравнение (x^2+3x+3=0). Оно имеет отрицательный дискриминант, следовательно, не разлагается на множители и принимает значения одного знака: либо положительно, либо отрицательно при всех (x). Проверить его знак можно, подставив вместо (x) любое число, например, (x=0): получим (3), следовательно, выражение всегда (>0).
Таким образом, нам подходят (xin mathbb{R}).
Ответ:
(mathbb{R})
Задание
5
#2412
Уровень задания: Легче ЕГЭ
Решите неравенство
[begin{aligned}
dfrac{(x — 1)(x + 2)}{(x — 3)(x + 4)}leqslant 0
end{aligned}]
ОДЗ:
[begin{aligned}
(x — 3)(x + 4)neq 0
end{aligned}]
Решим исходное неравенство методом интервалов. Для этого найдём нули числителя и знаменателя.
1) Нули числителя находятся из уравнения [(x — 1)(x + 2) = 0] Произведение выражений равно нулю в том и только том случае, когда хотя бы одно из них равно нулю и все они не теряют смысл, тогда нули числителя: [x = 1,qquadqquad x = -2]
2) Найдём нули знаменателя: [(x — 3)(x + 4) = 0qquadLeftrightarrowqquad
left[
begin{gathered}
x = 3\
x = -4
end{gathered}
right.]
По методу интервалов:
откуда [xin(-4; -2]cup[1; 3),.] В этом ответе ОДЗ уже учтено (мы учли его, когда выкололи на числовой прямой нули знаменателя).
Ответ:
((-4; -2]cup[1; 3))
Задание
6
#3762
Уровень задания: Легче ЕГЭ
Решить неравенство [dfrac 6{xsqrt3-3}+dfrac{xsqrt3-6}{xsqrt3-9}geqslant 2]
(Задача от подписчиков)
Пусть (xsqrt3-3=t). Тогда [dfrac 6t+dfrac{t-3}{t-6}geqslant 2quadLeftrightarrowquad
dfrac{t^2-15t+36}{t(t-6)}leqslant 0quadLeftrightarrowquad
dfrac{(t-3)(t-12)}{t(t-6)}leqslant 0] Решая данное неравенство методом интервалов, получим (0<tleqslant 3) или (6<tleqslant 12). Следовательно, [left[begin{gathered}begin{aligned}
&0<xsqrt3-3leqslant 3\
&6<xsqrt3-3leqslant
12end{aligned}end{gathered}right.quadLeftrightarrowquad
left[begin{gathered}begin{aligned}
&sqrt3<xleqslant 2sqrt3\
&3sqrt3<xleqslant 5sqrt3
end{aligned}end{gathered}right.]
Ответ:
((sqrt3;2sqrt3]cup(3sqrt3;5sqrt3])
Задание
7
#2413
Уровень задания: Легче ЕГЭ
Решите неравенство
[begin{aligned}
dfrac{(x + 1)(x — 2)}{(x + 3)(x^2 + 4)}leqslant 0
end{aligned}]
ОДЗ:
[begin{aligned}
(x — 3)(x^2 + 4)neq 0
end{aligned}]
Решим исходное неравенство методом интервалов. Для этого найдём нули числителя и знаменателя.
1) Нули числителя находятся из уравнения [(x + 1)(x — 2) = 0] Произведение выражений равно нулю в том и только том случае, когда хотя бы одно из них равно нулю и все они не теряют смысл, тогда нули числителя: [x = -1,qquadqquad x = 2]
2) Найдём нули знаменателя: [(x + 3)(x^2 + 4) = 0] так как (x^2geqslant 0), то (x^2 + 4geqslant 4), следовательно, нули знаменателя: [x = -3]
По методу интервалов:
откуда [xin(-infty; -3)cup[-1; 2],.] В этом ответе ОДЗ уже учтено (мы учли его, когда выкололи на числовой прямой нули знаменателя).
Ответ:
((-infty; -3)cup[-1; 2])
Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ
Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ
Прототипы задания №14 ЕГЭ по математике профильного уровня — неравенства. Практический материал для подготовки к экзамену в 11 классе.
Для успешного выполнения задания №14 необходимо уметь решать уравнения и неравенства.
Практика
time4math.ru | Скачать задания |
math100.ru | Рациональные неравенства
Неравенства с модулями Показательные неравенства Логарифмические неравенства Логарифмические неравенства с переменным основанием |
Коды проверяемых элементов содержания (по кодификатору) — 2.1, 2.2
Уровень сложности задания — повышенный.
Примерное время выполнения задания выпускником, изучавшим математику на профильном уровне (в мин.) — 15
Связанные страницы:
Задание 11 ЕГЭ по математике профильный уровень — наибольшее и наименьшее значение функций
Решение 17 задания ЕГЭ по профильной математике
Задание 5 ЕГЭ по математике профильный уровень — стереометрия
Задание 4 ЕГЭ по математике (профиль) — вычисления и преобразования
Задание 11 ЕГЭ 2022 по математике: «Наибольшее и наименьшее значения функции»
Тип 14 № 508319
Решите неравенство
Аналоги к заданию № 508319: 517423 511507 Все
Источник: Пробный экзамен Санкт-Петербург 2015. Вариант 1., Пробный экзамен по математике Санкт-Петербург 2015. Вариант 1.
Классификатор алгебры: Неравенства рациональные относительно показательной функции
Методы алгебры: Замена — сумма или разность
Кодификатор ФИПИ/Решу ЕГЭ: 2.2.9 Метод интервалов
В (14) задании ЕГЭ предлагается решить неравенство. За это задание можно получить (2) балла.
Алгоритм выполнения задания
1. Определи вид неравенства, выбери метод решения.
2. Найди ОДЗ неравенства или используй равносильные преобразования неравенств.
3. Реши неравенство, используя соответствующие виду неравенства свойства и правила. Все найденные решения должны принадлежать области определения неравенства.
4. Запиши все шаги решения на чистовик разборчиво и кратко.
5. Запиши ответ.
Если ход решения верный и обоснованно получен верный ответ, то решение оценивается в (2) балла. Если верна последовательность всех шагов решения, но допущена описка или вычислительная ошибка, и в результате получен неверный ответ, можно получить (1) балл. Если в ответ по ошибке не включена одна точка из правильного решения (в результате того, что поставлена круглая скобка вместо квадратной), то также можно получить (1) балл. При включении в ответ хотя бы одной точки, не входящей в ОДЗ, ставится (0) баллов.
Как решить задание из примера
1.
log0,4(x2−6x+8)−log0,4(12−6x)≤−log0,4(x+3).
Неравенство является логарифмическим. Логарифмы имеют одинаковое основание.
Нам пригодится формула:
loga(b⋅c)=logab⋅logac.
Применение этой формулы может сузить ОДЗ, поэтому его лучше найти.
2. Найдём ОДЗ:
.
3. Преобразуем неравенство:
log0,4((4−x)(2−x))−log0,4(6(2−x))≤−log0,4(x+3).
При
−3<x<2
неравенство примет вид:
log0,4(4−x)+log0,4(2−x)−log0,46−log0,4(2−x)+log0,4(x+3)≤0;
log0,4(4−x)−log0,46+log0,4(x+3)≤0;log0,4((4−x)(x+3))≤log0,46;(4−x)(x+3)≥6;−x2+x+12≥6;x2−x−6≤0;−2≤x<2.
4. Перепишем шаги решения в чистовик.
5. Запишем ответ.
Решите неравенство
!!! Смотрите также подборку задач С3 (с ответами) для подготовки к ЕГЭ !!!
Список всех неравенств (С3), разобранных на сайте:
-11. (Реальный ЕГЭ, 2021) Решите неравенство:
Ответ: Решение
-10. (Реальный ЕГЭ, 2021) Решите неравенство:
Ответ: Решение
-9. (Демо ЕГЭ, 2020) Решите неравенство
Ответ: Видеорешение New*
-8. (Реальный ЕГЭ, 2019) Решите неравенство
Ответ: Решение Видеорешение New*
-7. (Реальный ЕГЭ, 2019) Решите неравенство
Ответ: Решение
-6. (Реальный ЕГЭ, 2018) Решите неравенство
Ответ: Решение Видеорешение New*
-5. (Досрочный резервный ЕГЭ, 2018) Решите неравенство
Ответ: Решение Видеорешение New*
-4. (Досрочный ЕГЭ, 2018) Решите неравенство
Ответ: Решение Видеорешение New*
-3. (Резервный ЕГЭ, 2017) Решите неравенство
Ответ: Решение
-2. (Резервный ЕГЭ, 2017) Решить неравенство
Ответ: {} Решение Видеорешение New*
-1. (Реальный ЕГЭ, 2017) Решить неравенство
Ответ: {} Решение
0. (Реальный ЕГЭ, 2017) Решить неравенство
Ответ: {} Решение
1. (Досрочн. ЕГЭ, 2017) Решите неравенство
Ответ: Решение Видеорешение New*
2. (Резервн. ЕГЭ, 2016) Решите неравенство
Ответ: Решение Видеорешение New*
3. (ЕГЭ, 2016) Решите неравенство
Ответ: Решение
4. (Т/Р, 2016) Решите неравенство
Ответ: Решение
5. (Досрочн. ЕГЭ, 2016) Решите неравенство
Ответ: . Решение Видеорешение New*
6. (ЕГЭ, 2015) Решите неравенство
Ответ: {} Решение
7. (Т/Р 2013) Решите систему неравенств
Ответ: Решение
8. (Т/Р 2013) Решите систему неравенств
Ответ: Решение
9. (Т/Р 2013) Решите систему неравенств
Ответ: {}. Решение
10. (ДЕМО 2014) Решите систему неравенств
Ответ: Решение
11. (ЕГЭ 2013) Решите систему неравенств
Ответ: {} Решение
12. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
13. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
14. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
15. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение Видеорешение
16. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
17. (Т/Р А. Ларина) Решите неравенство
Ответ: {} Решение
18. (Т/Р А. Ларина) Решите неравенство
Ответ: {}. Решение
19. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
20. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
21. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
22. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
23. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
24. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
25. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
26. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
27. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
28. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
29. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
30. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
31. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
33. (Т/Р А. Ларина) Решите неравенство
.
Ответ: {} Решение
34. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
35. (Т/Р А. Ларина) Решите неравенство
.
Ответ: {} Решение
36. (Т/Р А. Ларина) Решите неравенство
Ответ: {}. Решение
37. (Т/Р А. Ларина) Решите неравенство
Ответ: {} Решение
38. (Т/Р А. Ларина) Решите неравенство
Ответ: {} Решение
39. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
40. (Т/Р А. Ларина) Решите неравенство
.
Ответ: Решение
41. (Т/Р А. Ларина) Решите неравенство
Ответ: {}. Решение
42. (Т/Р А. Ларина) Решите неравенство
Ответ: {}. Решение
43. (Т/Р А. Ларина) Решите неравенство
Ответ: {} Решение
44. (Т/Р А. Ларина) Решите неравенство
Ответ: {}. Решение
45. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
46. (Т/Р А. Ларина) Решите неравенство
Ответ: {} Решение
47. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
48. (Т/Р А. Ларина) Решите неравенство
.
Ответ: Решение
49. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
50. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
51. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
52. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
53. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
54. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
55. (Т/Р А. Ларина) Решите неравенство
.
Ответ: Решение
56. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
57. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
58. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
59. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
60. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
61. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
62. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
63. (Т/Р А. Ларина) Решите неравенство
Ответ: {}. Решение
64. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
65. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
66. (Т/Р А. Ларина) Решите неравенство
Ответ: (]. Решение
67. (Т/Р А. Ларина) Решите неравенство
Ответ: [)(]. Решение
68. (Т/Р А. Ларина) Решите неравенство
Ответ: [). Решение
69. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
70. (Т/Р А. Ларина) Решите систему неравенств
Ответ: Решение
71. (Т/Р А. Ларина) Решите систему неравенств
Ответ:
72. (Т/Р А. Ларина) Решите систему неравенств
Ответ: Решение
73. (Т/Р А. Ларина) Решите неравенство
Ответ: {} Решение
74. (Т/Р А. Ларина) Решите неравенство
Ответ: {}, Решение
75. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
76. (Т/Р А. Ларина) Решите неравенство
Ответ: {} Решение
77. (Т/Р А. Ларина) Решите неравенство
Ответ: {} Решение
78. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
79. (Т/Р А. Ларина) Найдите область определения функции
Ответ: {} Решение
80. (Т/Р А. Ларина) Решите неравенство
Ответ: {}. Решение
81. (Т/Р А. Ларина) Решите неравенство
Ответ: {} Решение
82. (Т/Р А. Ларина) Решите неравенство
Ответ: {} Решение
83. (Т/Р А. Ларина) Решите неравенство
Ответ: {} Решение
84. (Т/Р А. Ларина) Решите неравенство
Ответ: {}. Решение
85. (Т/Р, 2017) Решите неравенство
Ответ: Решение
86. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
87. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
88. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
89. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
90. (Т/Р А. Ларина) Решите неравенство
Ответ: {} Решение
91. (Т/Р А. Ларина) Решите неравенство
Ответ: {} Решение
92. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
93. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
94. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
95. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
96. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
97. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
98. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
99. (Т/Р А. Ларина) Решите неравенство
Ответ: {}. Решение
100. (Т/Р А. Ларина) Решите неравенство
Ответ: {} Решение
101. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
102. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
103. (Т/Р А. Ларина) Решите неравенство
Ответ: Решение
104. (Т/Р 283 А. Ларина) Решите неравенство
Ответ: Видеорешение
Как подготовиться к решению задач ЕГЭ по неравенствам | 1С:Репетитор
Задание № 15 варианта КИМ ЕГЭ по математике профильного уровня
Обычно это показательное или логарифмическое неравенство. Оно может быть непростым для школьника, который не учился в профильном классе или специализированной математической школе. Чтобы его решить, необходимо не только уметь применять свойства показательной и логарифмической функций, но и знать основные методы решения алгебраических неравенств вообще. Тем не менее, именно это задание — одно из тех, которое можно выполнить на экзамене без ошибок, если заранее потренироваться в решении подобных задач.
С чего начать подготовку к решению задачи 15
Прежде всего, усвойте два понятия:
равносильные неравенства — неравенства, множества решений которых совпадают;
равносильные преобразования — такие действия с неравенством, при совершении которых мы заменяем данное неравенство равносильным ему, но более простым.
Необходимо следить за равносильностью преобразований на каждом шаге решения: если преобразование оказалось не равносильным, то велика вероятность получения лишних решений или их потери. В большинстве случаев эта ошибка приведет к неправильному ответу, а уж само решение точно будет неверным.
После того, как вы разобрались с равносильностью, следует изучить основные методы решения неравенств, связанных практически со всеми функциями, изучаемыми в школьном курсе математики (за исключением, может быть, тригонометрических; хотя простейшие тригонометрические неравенства могут встретиться в задаче № 13).
Основные методы решения неравенств
1. Метод интервалов для рациональных и дробно-рациональных функций.
В качестве примера рассмотрим неравенство, которое предлагалось на экзамене в 2016 году:
4x-2x+4+302x-2+4x-7⋅2x+32x-7 ≤ 2x+1-14
После ведения новой переменной t = 2x это неравенство приводится к дробно-рациональному, для решения которого как раз и нужен метод интервалов.
2. Метод равносильных переходов
Необходимо запомнить готовые схемы решения для некоторых типов неравенств с модулем, а хорошо бы — и для иррациональных неравенств (с корнями), это может пригодиться и при решении задачи с параметром.
3. Основные методы решения показательных и логарифмических неравенств:
- Приведение к простейшему неравенству
- Решение неравенств с переменным основанием степени или логарифма (с помощью равносильных переходов или так называемого метода рационализации)
- Введение новых неизвестных
- Логарифмирование
- Обобщенный метод интервалов
Неравенства, в которых основание степени или логарифма зависит от переменной, встречаются на экзамене достаточно часто, например, такого вида (ЕГЭ 2017 года):
2logx2-6x+1025×2+3≤logx2-6x+104×2+7x+3
Здесь для решения нужно использовать равносильный переход или рационализировать неравенство.
4. Использование свойств функций при решении неравенств
Иногда область определения или область значений входящих в неравенство выражений, их четность, симметричность либо еще какие-то свойства являются ключом к решению задачи. Такие задачи в вариантах КИМ ЕГЭ встречаются нечасто, тем не менее, ознакомиться с методами их решения полезно.
Для успеха на экзамене нужно не просто знать о существовании перечисленных выше методов. Нужно уметь их применять, не допускать досадных Для успеха на экзамене нужно не просто знать о существовании перечисленных выше методов. Нужно уметь их применять, не допускать досадных ошибок в преобразованиях и вычислениях, комбинировать методы для решения конкретной задачи, выбирать оптимальный путь решения. Время на экзамене ограничено, а задач (в том числе и весьма непростых) много. К тому же большинство методов имеет свои «подводные камни», обнаружить которые самостоятельно сложно. Гораздо эффективнее в этой ситуации воспользоваться помощью опытного преподавателя.
Регулярные и систематизированные занятия при подготовке к ЕГЭ по математике профильного уровня могут значительно повлиять на финальную экзаменационную оценку. Наша статистика показывает, что учащиеся, уделившие достаточное внимание такой подготовке, на ЕГЭ получили баллы существенно выше средних (вплоть до 100 баллов) и успешно поступили в выбранные технические вузы.
Регулярно тренируйтесь в решении задач
Чтобы начать заниматься на портале «1С:Репетитор», достаточно Зарегистрироваться.
Вы можете:
- Начать заниматься бесплатно.
- Получить доступ ко всей теории и тренажерам задачи №15. Это стоит всего 990 рублей.
- Купить доступ к этой задаче в составе экспресс-курса «Алгебра» и научиться решать задачи №13, №15, №17, №18 и №19 на максимальный балл.
Все курсы состоят из методически правильной последовательности теории и практики, необходимой для успешного решения задач. Включают теорию в форме текстов, слайдов и видео, задачи с решениями, интерактивные тренажеры, модели, и тесты.
Остались вопросы? Позвоните нам по телефону 8 800 551-50-78 или напишите в онлайн-чат.
Здесь ключевые фразы, чтобы поисковые роботы лучше находили наши советы:
Как решать задание 15 в экзамене ЕГЭ на неравенства, показательные неравенства ЕГЭ, задания с параметром ЕГЭ, решение параметров ЕГЭ, решение уравнений неравенств ЕГЭ по математике профильного уровня выпускникам 11 класса в 2018 году, поступающим в технический вуз.