Автор материала — Анна Малкова
Какими были задачи с параметрами на ЕГЭ-2022? На этой странице — обзор всех типов задач №17, предложенных на ЕГЭ по математике в этом году, с полным решением и оформлением.
Напомним, что «параметры» — одна из дорогостоящих задач ЕГЭ. Она оценивается в 4 первичных балла.
Основной темой задач с параметрами на ЕГЭ этого года были модули.
Если вы не помните, что такое модуль числа, — вам сюда.
Способы решения — разные. В одних задачах удобнее графический способ, в других — аналитический.
Мы начнем с тех задач, которые решаются графическим способом. В первых трех, которые мы здесь разбираем, нам встретится уравнение окружности.
Почитать о нем подробно можно здесь.
1. При каких значениях параметра уравнение имеет ровно 4 решения?
Решение:
Вспомним, как решать уравнения вида
Поэтому исходное уравнение равносильно системе:
Получим:
Изобразим решения системы в координатах
Уравнение задает окружность с центром и радиусом 5; уравнение задает окружность с центром и радиусом ; при этом должно выполняться условие
Заметим, что обе окружности проходят через точки и
Найдем, при каких значениях параметра исходное уравнение имеет ровно 4 решения.
При прямая проходит через точку общую для двух окружностей; уравнение имеет ровно 3 решения.
Если прямая проходит через точку (нижнюю точку окружности ), уравнение также имеет 3 решения.
При этом поскольку разность ординат точек Q и A равна то есть радиусу окружности
При уравнение имеет 4 решения.
Если решений меньше 4.
Если уравнение имеет ровно 3 решения, т.к. точка O(0; 0) общая для обеих окружностей.
Если прямая проходит через B — верхнюю точку окружности уравнение имеет ровно 3 решения.
В этом случае
При уравнение имеет ровно 4 решения.
Если решений меньше, чем 4.
Объединив случаи, получим ответ.
Ответ:
2. При каких значениях параметра уравнение имеет ровно 2 решения?
Решение:
Раскроем модуль по определению.
Уравнение (1) задает окружность с центром в точке Р (4; 3) и радиусом 5,
уравнение (2) задает окружность с центром в точке Q(-3; 4) и радиусом 5.
Изобразим график совокупности двух систем в системе координат (x;a).
При получаем часть окружности (1), лежащую ниже прямой a = 7x;
при получаем часть окружности (2), лежащую выше прямой a = 7x.
Исходное уравнение имеет ровно два различных решения, если прямая пересекает график совокупности двух систем ровно два раза.
Прямая проходящая через точку С, пересекает график совокупности двух систем один раз.
Найдем координаты С — самой нижней точки и Е — самой верхней точки правой окружности.
Для этих точек x = 4. Найдем координату a:
или
Координаты точек С (4; и Е (4; 8).
Найдем координаты D — самой нижней точки и F — самой верхней точки левой окружности
Для этих точек x = — 3, найдем координату a.
или
Координаты точек: D (3; 1), F(3; 9).
Точки А и В, в которых пересекаются две окружности, лежат на прямой
a = 7x (так как при a = 7x выражение под модулем равно нулю).
Подставив a = 7x в уравнение окружности (1) получим:
x = 0 или x = 1.
Получили точки В (0; 0) и А (1; 7).
Прямая пересекает график совокупности двух систем ровно два раза в следующих случаях:
1) если прямая проходит выше точки С, но ниже точки D:
2) если прямая проходит выше точки В, но ниже точки А:
3) если прямая проходит выше точки Е, но ниже точки F:
Если или то решений нет.
Если или a = 9, уравнение имеет ровно одно решение.
Если или a = 8, ровно три решения.
Если или ровно четыре решения. Эти случаи нам не подходят.
Ответ: a
3. При каких значениях параметра уравнение
имеет ровно 2 корня?
Решение:
Раскрыв модуль, получим:
Решим систему графически в координатах
Прямая — это биссектриса первого и третьего координатных углов.
Неравенство задает полуплоскость, расположенную ниже прямой
Уравнение задает окружность 1 с центром в точке и радиусом
Уравнение задает окружность 2 с центром в точке и радиусом
Заметим, что обе окружности проходят через точки О(0; 0) и М(1; 1). В этом легко убедиться, подставив координаты этих точек в уравнения окружностей.
Исходное уравнение имеет ровно 2 корня, если прямая пересекает совокупность двух окружностей ровно в двух точках, лежащих не выше прямой a = x.
Это происходит в следующих случаях:
1) Прямая проходит выше точки А и ниже точки В на рисунке, где А — нижняя точка окружности 2, В — нижняя точка окружности 1.
2) Прямая проходит выше точки С и ниже точки D на рисунке, где D — верхняя точка окружности 2, С — верхняя точка окружности 1.
3) Прямая проходит выше точки О(0; 0) и ниже точки М(1;1).
Найдем координаты точек А, В, С, D.
Получим, что
Ответ:
Заметим, что в каждом из уравнений присутствовало выражение — как в уравнении окружности. Именно поэтому становилось понятно, что их можно решить графически в координатах x; a.
Теперь — следующий тип задач. Здесь окружностей уже не будет. Зато будет разложение на множители.
4. При каких значениях параметра уравнение
имеет ровно 4 решения?
Решение:
Раскроем модуль. Уравнение равносильно совокупности двух систем:
Упростим по очереди каждую из них.
1) Случай
Найдем дискриминант и корни этого квадратного уравнения.
2) Случай
В этом случае также найдем дискриминант и корни квадратного уравнения.
Получим:
или .
Решим совокупность двух систем графически в координатах
Если уравнение имеет меньше 4 решений.
Если также меньше 4 решений.
Если прямая проходит через точку A или точку B, уравнение имеет ровно 3 решения.
В точке A пересекаются прямые и , значит, для этой точки
В точке B пересекаются прямые и , то для точки B:
.
Уравнение имеет ровно 4 решения, если или или .
Ответ:
Следующие две задачи мы решим (для разнообразия) аналитическим способом.
5. При каких значениях параметра уравнение
имеет меньше 4 решений?
Решение:
Уравнение равносильно совокупности:
Рассмотрим каждый случай отдельно
1)
2)
Каждое из уравнений — квадратное и не может иметь больше 2 корней.
Если уравнение (1) имеет 2 неотрицательных корня, а уравнение (2) имеет 2 отрицательных корня, исходное уравнение имеет ровно 4 решения. Найдем, при каких значениях это происходит, а затем исключим эти значения. Получим случай, когда исходное уравнение имеет менее 4 корней.
Исходное уравнение имеет ровно 4 решения, если уравнение имеет два неотрицательных корня, а уравнение имеет два отрицательных корня.
1 уравнение:
По теореме Виета,
для уравнения
.
При этом
Оценим и
Сравним т.к.
также
Получим:
2 уравнение:
При этом т.е.
— верно при всех a.
Получим:
Исходное уравнение имеет ровно 4 решения, если выполняется система условий:
При всех остальных значениях a — меньше четырёх решений. Значит, подходят значения
Ответ:
6. Найдите все положительные значения a, при каждом из которых уравнение
имеет ровно 4 корня.
Решение:
Раскроем модуль по определению.
Мы получили совокупность двух систем. Чтобы исходное уравнение имело ровно 4 корня, нужно, чтобы каждая система имела ровно два решения. Решим каждую из систем отдельно.
1) Первая система:
Чтобы квадратное уравнение имело два неотрицательных корня, необходимо и достаточно выполнения условий:
Другой способ: можно рассмотреть квадратичную функцию
и воспользоваться условиями:
Найдем дискриминант соответствующего квадратного уравнения.
при этом
Получим:
Корни уравнения
Отсюда
2) Вторая система:
Чтобы система имела ровно 2 решения, для квадратичной функции
необходимо и достаточно выполнения условий:
— верно для всех
Решение второй системы:
Исходное уравнение имеет ровно 4 различных решения, если
Ответ:
Как всему этому научиться? Если вы решили освоить тему «Параметры» — не нужно начинать со сложных задач. Вначале — подготовительная работа. Элементарные функции и их графики, базовые элементы для решения задач с параметрами. Кроме того, надо отлично знать методы алгебры: разложение выражений на множители, выделение полных квадратов, решение уравнений и неравенств всех типов и многое другое.
Изучить все это можно на Онлайн-курсе подготовки к ЕГЭ по математике. На нем мы решаем и такие задачи, и более сложные. Изучаем не менее 11 методов решения задач с параметрами. Выпускники Онлайн-курса отлично справились с «параметрами» на ЕГЭ-2022.
Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Задачи с параметрами на ЕГЭ-2022: модули, окружности, квадратные уравнения» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.
Публикация обновлена:
09.03.2023
Тема 17.
Задачи с параметром
17
.
22
Графика. Функции с модулем: корыто и другие
Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами — ЛЕГКО!
Подтемы раздела
задачи с параметром
17.01Задачи из ЕГЭ прошлых лет
17.02Задачи из сборника И.В. Ященко ЕГЭ 2023
17.03Алгебра. Исследование при всех значениях параметра
17.04Алгебра. Связь между множествами решений
17.05Алгебра. Теорема Виета
17.06Алгебра. «Гвозди» для квадратичной функции
17.07Алгебра. Исследование замены
17.08Алгебра. Метод хорошего/плохого корня
17.09Алгебра. Задачи, решающиеся аналитически
17.10Функции. Монотонность: f(x) ∨ const и f(f(x)) = x
17.11Функции. Монотонность: f(t) = f(z)
17.12Функции. Монотонность: f(x) ∨ g(x), f(x)↑, g(x)↓
17.13Функции. Метод главного модуля/слагаемого
17.14Функции. Область значений функций
17.15Функции. Четность/нечетность функций
17.16Функции. Исследование функции на возрастание/убывание
17.17Функции. Сумма взаимно обратных
17.18Функции. Метод оценки
17.19Графика. Базовые задачи
17.20Графика. Нахождение касательной к графику
17.21Графика. Окружность
17.22Графика. Функции с модулем: корыто и другие
17.23Графика. Области
17.24Графика. Отрезок, ромб, квадрат и другие нестандартные графики
17.25Метод xOa (параметр как вторая неизвестная)
17.26Четность как частный случай симметрии
17.27Симметрия
17.28Три неизвестные x,y,z
17.29Задачи с несколькими параметрами
Решаем задачи
При каких значениях параметра уравнение
имеет бесконечно много решений?
Показать ответ и решение
Рассмотрим уравнение левой части раскроем модули и представим ее в кусочном виде:
Это «корыто» с углами в точках и Построим его график.
Уравнение правой части задает произвольную горизонтальную прямую. Единственный случай, в котором эта прямая
имеет с корытом бесконечное количество точек пересечения, достигается при когда горизонтальная прямая содержит
отрезок дна корыта.
Ответ:
Критерии оценки
Содержание критерия |
Балл |
Обоснованно получен верный ответ |
4 |
Недостаточное обоснование построения |
3 |
Верно найдено значение |
2 |
Верно сведено к исследованию графически |
1 |
Решение не соответствует ни одному из |
0 |
Максимальный балл |
4 |
При каких значениях параметра уравнение
имеет ровно одно решение?
Показать ответ и решение
Обозначим
Возможны три случая раскрытия модулей в левой части, поскольку первый модуль меняет знак в точке второй — в
точке
- 1.
-
- 2.
-
- 3.
Резюмируя, получим
Это «корыто» с ветвями вверх, дно которого лежит на наклонной прямой
Правая часть задает пучок прямых, проходящих через точку так как независимо от выбора При этом
как обычно вертикальная прямая не входит в пучок.
Видим, что прямая пучка имеет ровно одно пересечение с корытом в положении а также между положениями и
включая и не включая за исключением вертикальной прямой.
Переходя к угловым коэффициентам, получаем
Ответ:
Критерии оценки
Содержание критерия |
Балл |
Обоснованно получен верный ответ |
4 |
Ответ отличается от |
3 |
ИЛИ |
|
Недостаточное обоснование построения |
|
Рассмотрены верно два из трёх взаимных |
2 |
Верное сведение к исследованию |
1 |
Решение не соответствует ни одному из |
0 |
Максимальный балл |
4 |
При каких положительных значениях параметра уравнение
имеет решения?
Показать ответ и решение
Обозначим
Для положительных выполняется тогда возможны три случая раскрытия модулей:
- 1.
-
- 2.
-
- 3.
Резюмируя, получим
Это «корыто» с ветвями вверх, дно которого лежит на горизонтальной прямой
В правой части уравнения имеем константу ей соответствует горизонтальная прямая Очевидно, что если
эта прямая проходит не ниже дна корыта, то уравнение имеет решения. Тогда имеем:
Пересекая с условием, что положительно, получаем
Ответ:
Критерии оценки
Содержание критерия |
Балл |
Обоснованно получен верный ответ |
4 |
Недостаточное обоснование построения |
3 |
Выполнен обоснованный переход |
2 |
ИЛИ |
|
Неравенство составлено верно, но |
|
Верно сведено к исследованию графически |
1 |
Решение не соответствует ни одному из |
0 |
Максимальный балл |
4 |
Исследуйте траекторию движения графиков функций, записанных в системе
и определите, при каких система имеет бесконечное множество решений.
Показать ответ и решение
Обозначим , .
- 1)
- Ищем траектории движения графиков.
График представляет собой “корыто с кривым дном”, а при равенстве нулей подмодульных выражений (при )
уголок. Боковые ветви корыта имеют вид , .Чтобы найти траекторию движения этого графика, можно следить за любой его точкой, например, за точкой .
Следовательно, корыто движется по кривой .График представляет собой уголок, ветви которого имеют вид , .
Чтобы найти траекторию движения уголка, можно следить за его вершиной . Значит, уголок движется по
прямой - 2)
- Определяем, при каком число решений системы бесконечно.
Заметим, что левая ветвь корыта с левая ветвь уголка параллельны, так как имеют одинаковый коэффициент перед . То
же можно скапзать про их правые ветви. Бесконечное множество решений у системы будет, если корыто и уголок будут иметь
бесконечно много точек пересечения, что происходит только в тех случаях, когда одна из боковых ветвей одного графика
накладывается на боковую ветвь другого. Это значит, что уравнения, задающие прямые, на которых расположены эти ветви,
одинаковы.Следовательно,
Схематично это выглядит так:
Ответ:
Найдите все значения при которых система
имеет единственное решение.
Показать ответ и решение
Пусть Тогда
График — это «корыто» с изломами в точках и График — это уголок модуля с
вершиной в точке График получается из графика сдвигом по вертикали на Изобразим графики
функций и те положения графика при которых графики и будут иметь единственную точку
пересечения.
При график будет находиться в положении 1. Чтобы убедиться в этом, достаточно найти точку пересечения
оси ординат с левой веткой и понять, что эта точка находится ниже точки При этом точка
на правой ветке с абсциссой будет находиться выше точки а именно иметь ординату
Если менять значение от до то график будет двигаться снизу вверх, причем сначала он пройдет
через точку затем через точку Все положения графика между прохождениями через эти точки, не
включая сами прохождения, нас устраивают, так как мы будем иметь одну точку пересечения графиков и
Далее, двигаясь от точки к точке график будет иметь 3 точки пересечения с графиком , что нам не подходит.
Строго выше положения, когда график проходит через точку мы будем иметь одну точку пересечения графиков и
, что нам подходит. При этом координаты точки ищутся как координаты точки на отрезке прямой абсцисса
которой равна абсциссе вершины графика
Найдем значения параметра, соотвествующие прохождению графика через точки
Тогда исходная система имеет единственное решение при
Ответ:
Найдите , при которых уравнение
имеет
хотя бы один корень.
Показать ответ и решение
Сделаем замену , получим
В левой части имеем корыто, значит, левая чаcть будет равна 2 при , т.к. дно корыта принадлежит
горизонтальной прямой .
Нам нужно найти такие значения , при которых существует хотя бы одно значение такое, что . Это
равносильно нахождению таких , при которых двойное неравенство
имеет
непустое множество решений. Рассмотрим два случая
- При наше двойное неравенство равносильно системе
Решения есть, значит, подходит.
- При , поделив все части неравенства на , получим
Заметим, что как сумма взаимно обратных дробей, причем равенство будет достигаться для
при любом . Тогда при любом , для которого
хотя бы будет решением (возможно решений будет больше, но нам важно, что как минимум одно точно
есть), если же
то решений точно не будет, т.к. независимо от и будет выполняться
Объединив, получим ответ .
Ответ:
в условии
в решении
в тексте к заданию
в атрибутах
Категория:
Атрибут:
Всего: 121 1–20 | 21–40 | 41–60 | 61–80 …
Добавить в вариант
Найдите все значения параметра a, при каждом из которых наименьшее значение функции
меньше −2.
Источник: Досрочная волна ЕГЭ по математике 29.03.2019. Вариант 2, Задания 18 (С6) ЕГЭ 2019
Найдите все значения a, при каждом из которых наименьшее значение функции
меньше −2.
Источник: ЕГЭ по математике 29.03.2019. Досрочная волна. Вариант 3 (только часть С)., Задания 18 (С6) ЕГЭ 2019
Найдите все значения а, при каждом из которых множество решений неравенства содержит ровно четыре целых значения x.
Источник: А. Ларин: Тренировочный вариант № 144.
Найдите все значения параметра а, при которых неравенство
выполняется для любого действительного числа х.
Источник: А. Ларин. Тренировочный вариант № 328. (часть C).
При каких значениях параметра a неравенство
верно при любом x?
Источник: А. Ларин: Тренировочный вариант № 83.
Найдите все значения параметра a, при каждом из которых наименьшее значение функции
меньше 2.
Источник: Досрочная волна ЕГЭ по математике 29.03.2019. Вариант 4, Задания 18 (С6) ЕГЭ 2019
Найдите все значения параметра a, при каждом из которых уравнение
имеет хотя бы одно решение, удовлетворяющее неравенству
Источник: А. Ларин. Тренировочный вариант № 320. (Часть C)
Найдите все значения а, при которых неравенство
имеет единственное решение.
Источник: А. Ларин. Тренировочный вариант № 335.
Найдите все значения параметра a, при каждом из которых множеством решений неравенства
является ровно один промежуток числовой прямой.
Источник: А. Ларин. Тренировочный вариант № 379.
Источник: А. Ларин: Тренировочный вариант № 107.
Найти все значения параметра a, при каждом из которых неравенство
имеет одно решение.
Источник: Пробный вариант ЕГЭ по математике 18.03.21 Санкт-Петербург. Вариант №2, А. Ларин. Тренировочный вариант № 348.
Найдите все значения параметра a, при которых решением неравенства
является отрезок длиной 0,5.
Источник: А. Ларин: Тренировочный вариант № 12.
Найдите все значения параметра a при каждом из которых система
не имеет решений.
Найдите все значения параметра a, при каждом из которых неравенство
имеет ровно два решения.
Источник: А. Ларин. Тренировочный вариант № 372.
Найдите все значения параметра такие, что неравенство
не имеет решений.
Источник: А. Ларин. Тренировочный вариант № 314. (Часть C)
Найдите все значения a, при каждом из которых неравенство
имеет хотя бы одно решение из промежутка [−4; 4].
Источник: Избранные задания по математике из последних сборников ФИПИ
Найдите все значения параметра a, при каждом из которых неравенство
имеет не более двух решений.
Источник: А. Ларин. Тренировочный вариант № 380.
Найдите все значения a, при которых неравенство не имеет решений.
Источник: Пробный экзамен по математике Санкт-Петербург 2014. Вариант 2.
Найти все значения параметра p, при каждом из которых множество решений неравенства не содержит ни одного решения неравенства
Источник: А. Ларин: Тренировочный вариант № 50.
Найти все значения параметра a, при каждом из которых неравенство
выполняется для всех x из отрезка
Источник: А. Ларин: Тренировочный вариант № 59.
Всего: 121 1–20 | 21–40 | 41–60 | 61–80 …
165 задач с параметрами
1. Линейные уравнения и приводимые к ним уравнения с параметрами.
2. Квадратичные и сводимые к ним уравнения с параметрами.
3. Уравнения с параметрами, содержащие модуль.
4. Системы уравнений с параметрами.
5. Иррациональные уравнения с параметрами.
6. Линейные неравенства и неравенства, приводимые к линейным. Системы неравенств.
7. Квадратичные неравенства с параметрами.
8. Иррациональные неравенства с параметрами.
9. Уравнения и неравенства с параметрами, содержащие логарифмы.
10. Тригонометрические уравнения, неравенства и системы уравнений с параметрами.
Уравнения с модулем
Эта статья посвящена приёмам решения различных уравнений и неравенств, содержащих
переменную под знаком модуля.
Если на экзамене вам попадётся уравнение или неравенство с модулем, его можно решить,
вообще не зная никаких специальных методов и пользуясь только определением модуля. Правда,
занять это может часа полтора драгоценного экзаменационного времени.
Поэтому мы и хотим рассказать вам о приёмах, упрощающих решение таких задач.
Прежде всего вспомним, что
Рассмотрим различные типы уравнений с модулем. (К неравенствам перейдём позже.)
Слева модуль, справа число
Это самый простой случай. Решим уравнение
Есть только два числа, модули которых равны четырём. Это 4 и −4. Следовательно, уравнение
равносильно совокупности двух простых:
Второе уравнение не имеет решений. Решения первого: x = 0 и x = 5.
Переменная как под модулем, так и вне модуля
Здесь приходится раскрывать модуль по определению. . . или соображать!
Уравнение распадается на два случая, в зависимости от знака выражения под модулем.
Другими словами, оно равносильно совокупности двух систем:
Решение первой системы: . У второй системы решений нет.
Ответ: 1.
Первый случай: x ≥ 3. Снимаем модуль:
Число , будучи отрицательным, не удовлетворяет условию x ≥ 3 и потому не является корнем исходного уравнения.
Выясним, удовлетворяет ли данному условию число . Для этого составим разность и определим её знак:
Значит, больше трёх и потому является корнем исходного уравнения
Стало быть, годятся лишь и .
Ответ:
Квадратные уравнения с заменой |x| = t
Поскольку , удобно сделать замену |x| = t. Получаем:
Модуль равен модулю
Речь идёт об уравнениях вида |A| = |B|. Это — подарок судьбы. Никаких раскрытий модуля по определению! Всё просто:
Например, рассмотрим уравнение: . Оно равносильно следующей совокупности:
Остаётся решить каждое из уравнений совокупности и записать ответ.
Два или несколько модулей
Не будем возиться с каждым модулем по отдельности и раскрывать его по определению — слишком много получится вариантов. Существует более рациональный способ — метод интервалов.
Выражения под модулями обращаются в нуль в точках x = 1, x = 2 и x = 3. Эти точки делят числовую прямую на четыре промежутка (интервала). Отметим на числовой прямой эти точки и расставим знаки для каждого из выражений под модулями на полученных интервалах. (Порядок следования знаков совпадает с порядком следования соответствующих модулей в уравнении.)
Таким образом, нам нужно рассмотреть четыре случая — когда x находится в каждом из интервалов.
Случай 1: x ≥ 3. Все модули снимаются «с плюсом»:
Полученное значение x = 5 удовлетворяет условию x ≥ 3 и потому является корнем исходного уравнения.
Случай 2: 2 ≤ x ≤ 3. Последний модуль теперь снимается «с минусом»:
Полученное значение x также годится — оно принадлежит рассматриваемому промежутку.
Случай 3: 1 ≤ x ≤ 2. Второй и третий модули снимаются «с минусом»:
Мы получили верное числовое равенство при любом x из рассматриваемого промежутка [1; 2] служат решениями данного уравнения.
Случай 4: x ≤ 1 ≤ 1. Второй и третий модули снимаются «с минусом»:
Ничего нового. Мы и так знаем, что x = 1 является решением.
Модуль в модуле
Начинаем с раскрытия внутреннего модуля.
1) x ≤ 3. Получаем:
Выражение под модулем обращается в нуль при . Данная точка принадлежит рассматриваемому
промежутку. Поэтому приходится разбирать два подслучая.
1.1) Получаем в этом случае:
Это значение x не годится, так как не принадлежит рассматриваемому промежутку.
1.2) . Тогда:
Это значение x также не годится.
Итак, при x ≤ 3 решений нет. Переходим ко второму случаю.
Здесь нам повезло: выражение x + 2 положительно в рассматриваемом промежутке! Поэтому никаких подслучаев уже не будет: модуль снимается «с плюсом»:
Это значение x находится в рассматриваемом промежутке и потому является корнем исходного уравнения.
Так решаются все задачи данного типа — раскрываем вложенные модули по очереди, начиная с внутреннего.
Читайте также о том, как решать неравенства с модулем.
Решение уравнений с модулями и параметрами
Презентация к уроку
Загрузить презентацию (434 кБ)
Цель урока. Решение уравнений с параметрами и модулями, применяя свойства функций в неожиданных ситуациях и освоение геометрических приемов решения задач. Нестандарные уравнения.
Задачи:
- Образовательные: научить решать некоторые виды уравнений уравнений модулями и параметрами;
- Развивающие: развивать культуру мысли, культуру речи и умение работать с тетрадью и доской.
- Воспитательные: воспитывать самостоятельность и умение преодолевать трудности.
Оборудование: наглядный материал для устного счёта и объяснения новой темы. Интерактивная доска, мультимедийное оборудование урока.
Структура урока:
- Повторение изученного материала (устный счёт).
- Изучение нового материала.
- Закрепление изученного материала.
- Итог урока.
- Домашнее задание.
1. Повторение важнейшего теоретического материала по темам: «Уравнения, содержащие модуль», «Решение уравнений с параметрами»
1) «Уравнения, содержащие модуль»
Абсолютной величиной или модулем числа a называется число a, если a > 0, число – a, если a <a, если a > 00, если a = 0– a, если a 0 и | a | > a для всех a € R .
Неравенство | x | 0) равносильно двойному неравенству – a 0.
Неравенство | x | > a, (если a > 0) равносильно двум неравенствам
Неравенство | x | > a, (если a : | x + 3 | + | y – 2 | = 4;
Расcмотрим четыре случая
< | x + 3 > 0 | < | x > – 3 |
y – 2 > 0 | y > 2 | ||
x + 3 + y – 2 = 4 | y = – x + 3 |
< | x + 3 > 0 | < | x > – 3 |
y – 2 < | x + 3 < | x 0 | y > – 2 |
– x – 3 – y – 2 = 4 | y = x + 9 |
< | x + 3 < | x 2 – 1) х = а + 1.
Нетрудно сообразить, что при решении этого уравнения достаточно рассмотреть такие случаи: 1) а = 1; тогда уравнение принимает вид ОX = 2 и не имеет решения 2) а = – 1; получаем ОX = О , и очевидно х – любое. Ответ: 3. Решения примеров (из вариантов С) 1. При каком значении параметра р уравнение | х 2 – 5х + 6 | + | х 2 – 5х + 4 | = р имеет четыре корня. Рассмотрим функцию у = | х 2 – 5х + 6 | + | х 2 – 5х + 4 | Так как х 2 – 5х + 6 = (х – 2)(х – 3) и х 2 – 5х + 4 = (х – 1)(х – 4), то y = | (х – 2)(х – 3) | + | (х – 1)(х – 4) |, корни квадратных трехчленов отметим на числовой прямой
Числовая прямая при этом разбивает на 5 промежутков
Для случая 3) х0 = – b | 2a = 2, y0 = 25 : 2 + 25 – 10 = 2,5 Итак, (2,5; 2,5) – координаты вершины параболы y = – 2x 2 + 10x – 10. Построим график функции, заданной равенством Как видно из рисунка, исходное уравнение имеет четыре корня, если 2 2 – | x | = 6 1. Решить уравнение: | x – 5 | – | 2x + 3 | = 10 1. Решить уравнение | x – 5 | – | 2x + 3| = 10 5. Итог урока 1. Определение модуля. 6. Задание на дом. C5 варианта №11 Ф.Ф. Лысенко. Математика, 2012 источники: http://ege-study.ru/ru/ege/materialy/matematika/uravneniya-i-neravenstva-s-modulem/ http://urok.1sept.ru/articles/615749
|
Пора начать разбираться с один и самых сложных заданий на ЕГЭ – с параметрами. Этот номер может принести целых 4 балла.
Итак, параметр – это буква (обычно в заданиях используют букву а), вместо которой можно подставить число.
Решить задачу с параметром – значит найти такое значение параметра а, при котором будет выполняться условие задачи. Стоит отметить, что существует огромное количество различных вариантов формулировки задачи. Самым популярным является: «Найти все значения параметра а, при котором уравнение такое-то имеет столько-то корней».
Что нужно знать, чтобы научиться решать параметры?
Таким вопросом задаются многие школьники. Ответ прост: буквально всё. Параметры – самая обширная тема ЕГЭ, тут может быть и тригонометрия, и функции (здесь надо уметь исследовать функцию при помощи производной), и степени, и логарифмы, и дроби и всё-всё-всё остальное, а возможно и все темы сразу. Причём не только в уравнениях, но и в неравенствах.
Так что прежде чем браться за параметры, убедись, что ты отлично решаешь обычные уравнения, щёлкаешь неравенства, а первая часть занимает у тебя не более 15-ти минут.
Краткий алгоритм решения параметров, где дробь равна нулю:
1) необходимо перейти к системе, состоящей из двух условий: знаменатель не равен 0, а числитель равен 0.
2) далее нужно дать условие, чтобы уравнение (числитель) имело два корня, следовательно его дискриминант больше 0.
3) выписать дискриминант, обозначить, что он больше 0 и решить неравенство.
4) выразить из неравенства (которое вышло из знаменателя) а и подставить в уравнение (числитель).
5) дать условие, что при подстановке а в уравнение не должно получаться верное равенство.
6) выписать промежуток из пункта 3 и выколоть точки, которые получились в пункте 5. Это и будет ответ.
Параметры с модулем
Для начала стоит вспомнить, что же такое модуль и как его раскрыть.
Модуль числа — это расстояние, а расстояние не может быть отрицательным. Поэтому и модуль числа не бывает отрицательным:
|a| > 0
Модуль положительного числа равен самому числу.
|a| = a, если a > 0
Модуль отрицательного числа равен противоположному числу.
|−a| = a
Модуль нуля равен нулю.
|0| = 0, если a = 0
Противоположные числа имеют равные модули.
|−a| = |a| = a
Когда писать систему, а когда совокупность?
Многие ученики, решая параметры (и не только их) задаются вопросом: тут ставить систему или совокупность?
В двух словах это можно прокомментировать так:
Если надо пересечь решения, то будет система, а если объединить – совокупность. Или, сформулировав по-другому, скажем: система – это когда мы говорим «выполняется и одно условие, и другое», а совокупность – «и то, и другое».
Допустим, мы решаем квадратное уравнение, в котором дискриминант больше нуля. Следовательно оно будет иметь два корня. Но ведь х не может быть двумя числами одновременно, а значит мы говорим, что х – это такое-то число или другое число.
(по оформлению: такое-то число и другое число сделать более бледным, серым)
В этом случае мы используем совокупность.
Заметим, что когда мы решаем квадратное уравнение по теореме Виета (а кто-то вообще использует теорему Виета вместо дискриминанта?), то условие о сумме и произведении мы записываем в системе, ведь они должны выполняться одновременно:
x2+px+q=0
{ x1+x2=-p
x1*x2=q
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter. Мы обязательно поправим!
План урока:
Модуль числа
Решение уравнений с модулем
Уравнения с параметрами
Модуль числа
Напомним, что такое модуль числа. Так называют значение числа, взятое без учета его знака. То есть модуль чисел 9 и (– 9) одинаков и равен 9. Для обозначения модуля применяют специальные прямоугольные скобки:
|9| = |– 9| = 9
|674| = |– 674| = 674
|2,536| = |– 2,536| = 2,536
Грубо говоря, операция нахождения модуля сводится к отбрасыванию у числа знака «минус», если он у него есть. Вообще, если число х неотрицательно, то его модуль |х| = х. Если же число отрицательно, то его модуль имеет противоположное значение: |х| = х. Математически это можно записать так:
Именно такое определение обычно и применяется в математике.
Модуль играет важную роль в математике. Дело в том, с его помощью удобно записывать расстояние между двумя точками на координатной прямой. Пусть на ней отмечены точки a и b. Расстояние между ними равно |a – b|, причем неважно, какое из этих чисел больше, а какое меньше:
Также модуль возникает при извлечении квадратного корня из четной степени числа:
В частности, если n = 1, получим формулу:
Для того чтобы получить график функции у = |x|, сначала надо построить график функции без учета знака модуля:
Далее следует выполнить преобразование. Те точки графика, которые располагаются выше оси Ох, остаются на своем месте. В данном случае это та часть графика, которая находится в I четверти. Те же точки, которые располагаются ниже оси Ох, должны быть симметрично (относительно этой самой оси Ох) отображены. В результате они окажутся выше оси Ох:
В результате получилась «галочка».
Пример. Постройте график ф-ции у = |х2 – 4х + 3|
Решение. Для построения графика функции, содержащей модуль, сначала надо построить график для «подмодульного» выражения. Поэтому построим график у = х2 – 4х + 3. Это квадратичная ф-ция, ее график – это парабола:
Часть графика, в промежутке от 1 до 3, находится ниже оси Ох. Чтобы построить ф-цию у = |х2 – 4х + 3|, надо перевернуть эту часть графика:
Решение уравнений с модулем
Изучим простейший случай уравнения, содержащего модуль, когда вся его слева записано выр-ние в модульных скобках, а справа находится число. То есть уравнение имеет вид
|у(х)| = b
где b – какое-то число, а у(х) – произвольная ф-ция.
Если b< 0, то ур-ние корней не имеет, ведь модуль не может быть отрицательным.
Пример. Найдите корни ур-ния
|125x10 + 97x4– 12,56х3 + 52х2 + 1001х – 1234| = – 15
Решение: Справа стоит отрицательное число. Однако модуль не может быть меньше нуля. Это значит, что у ур-ния отсутствуют корни.
Ответ: корни отсутствуют.
Если b = 0, то мы получим какое-то произвольное ур-ние у(х) = 0, у которого могут быть корни. Проще говоря, модульные скобки в таком случае можно просто убрать.
Пример. Решите ур-ние
|13х – 52| = 0
Решение.
Ясно, что подмодульное выр-ние равно нулю:
13х – 52 = 0
13х = 52
х = 4
Ответ: 4.
Наиболее интересен случай, когда b> 0, то есть в правой части стоит положительное число. Ясно, что тогда под модулем находится либо само это число b, либо противоположное ему число – b:
|b| = b
|– b| = b
То есть мы получаем два различных ур-ния: у(х) = bи у(х) = – b.
Пример. Решите ур-ние
|х| = 10
Решение. В правой части – положительное число, поэтому либо х = – 10, либо х = 10.
Ответ: 10; (– 10).
Пример. Решите ур-ние
|10х + 5| = 7
Решение. Исходное ур-ние разбивается на два других ур-ния:
10х + 5 = 7 или 10х + 5 = – 7
10х = 2 или 10х = – 12
х = 0,2 или х = – 1,2
Ответ: 0,2; (– 1,2).
Пример. Найдите корни ур-ния
|x2– 2х – 4| = 4
Решение. Снова заменим исходное равенство на два других:
x2– 2х – 4 = 4 или x2– 2х – 4 = – 4
Имеем два квадратных ур-ния. Решим каждое из них:
x2– 2х – 4 = 4
x2– 2х – 8 = 0
D = b2– 4ас = (– 2)2 – 4•1•(– = 4 + 32 = 36
х1 = (2 – 6)/2 = – 2
х2 = (2 + 6)/2 = 4
Нашли корни (– 2) и 4. Решаем второе ур-ние:
x2– 2х – 4 = – 4
x2– 2х = 0
х(х – 2) = 0
х = 0 или х – 2 = 0
х = 0 или х = 2
Получили ещё два корня: 0 и 2.
Ответ: – 2, 4, 0, 2
Встречаются случаи, когда в уравнении, содержащем знак модуля, под ним находятся обе части равенства:
|у(х)| = |g(x)|
Здесь возможны два варианта. Либо подмодульные выр-ния равны друг другу (у(х) = g(x)), либо у них противоположные значения (у(х) = – g(x)). То есть снова надо решить два ур-ния.
Пример. Решите ур-ние
|x2 + 2x– 1| = |х + 1|
Решение. Выр-ния справа и слева (без знака модуля) либо равны, либо противоположны. Можно составить два ур-ния:
x2 + 2x– 1 = х + 1 или x2 + 2x– 1 = – (х + 1)
х2 + х – 2 = 0 или х2 + 3х = 0
Решим 1-ое ур-ние:
х2 + х – 2 = 0
D = b2– 4ас = 12 – 4•1•(– 2) = 1 + 8 = 9
х1 = (1 – 3)/2 = – 1
х2 = (1 + 3)/2 = 2
Теперь переходим ко 2-омуур-нию:
х2 + 3х = 0
х(х + 3) = 0
х = 0 или х + 3 = 0
х = 0 или х = – 3
Всего удалось найти 4 корня: (– 1), (– 2), 2 и 0.
Ответ:(– 1), (– 2), 2, 0.
Возможен случай, когда в левой части равенства находится модуль выр-ния, а в правой – обычное выражение, без модуля. Такое ур-ние имеет вид |у(х)| = g(x). Здесь также возможны два варианта: у(х) = g(x) или у(х) = – g(x). Однако следует учитывать ещё один факт. Модуль не может быть отрицательным, а потому должно выполняться нер-во g(x)⩾ 0. Но это неравенство не надо решать. Достаточно просто подставить в него все полученные корни и проверить, справедливо ли нер-во.
Пример. Найдите решение уравнения, содержащего модуль:
|х2 + 3,5х – 20| = 4,5х
Решение. Рассмотрим два отдельных равенства:
х2 + 3,5х – 20 = 4,5х илих2 + 3,5х – 20 = – 4,5х
х2 – х – 20 = 0 или х2 + 8х – 20 = 0
Решим каждое из полученных квадратных ур-ний.
х2 – х – 20 = 0
D = b2– 4ас = 12 – 4•1•(– 20) = 1 + 80 = 81
х1 = (1 – 9)/2 = – 4
х2 = (1 + 9)/2 = 5
х2 + 8х – 20 = 0
D = b2– 4ас = 82 – 4•1•(– 20) = 64 + 80 = 144
х3 = (– 8 – 12)/2 = – 10
х4 = (– 8 + 12)/2 = 2
Итак, получили 4 корня: (– 4), 5, (– 10) и 2. Однако правая часть исходного ур-ния, 4,5x, не может быть отрицательной, ведь модуль числа – это всегда неотрицательная величина:
4,5х ≥ 0
Для х = – 4 и х = – 10 это условие не выполняется, поэтому эти корни должны быть исключены.
Ответ: 2 и 5
Мы рассмотрели три случая, когда ур-ние имеет вид:
- у(х) = b (b– это некоторая константа)
- |у(х)| = |g(x)|
- |у(х)| = g(x)
Однако порою ур-ние не удается свести ни к одному из этих видов. Тогда для решения уравнений и неравенств, содержащих модуль, следует рассматривать их на отдельных интервалах, где подмодульные выр-ния не изменяют свой знак.
Пример. Найдите корни ур-ния
|x + 1| + |x– 4| = 6
Решение. Выр-ния х + 1 и х – 4 меняют знак при переходе через точки (– 1) и 4:
Если отметить обе точки на прямой, то они образуют на ней 3 интервала:
Исследуем ур-ние на каждом из полученных промежутков.
Так как при х <– 1 оба подмодульные выр-ния отрицательны, то можно записать, что
|x + 1| = – (х + 1) = – х – 1
|x– 4| = – (х – 4) = – х + 4
Тогда ур-ние примет вид
|x + 1| + |x– 4| = 6
– х – 1 – х + 4 = 6
–2х = 3
х = – 1,5
Это значение удовлетворяет условию х <– 1, поэтому корень верный.
Далее изучим случай, когда х∊[– 1; 4). Здесь отрицательно только выражение x– 4, поэтому модули заменяются так:
|x + 1| = х + 1
|x– 4| = – (х – 4) = – х + 4
Ур-ние примет вид:
|x + 1| + |x– 4| = 6
x + 1 – x+ 4 = 6
5 = 6
Получили неверное тождество. Получается, что на промежутке [– 1; 4) корней нет.
При х ≥4 выр-ния х – 4 и х + 1 положительны, поэтому
|x + 1| = х + 1
|x– 4| = х – 4
Исходное ур-ние будет выглядеть так
|x + 1| + |x– 4| = 6
х + 1 + х – 4 = 6
2х = 9
х = 4,5
Найденный корень удовлетворяет условию х ≥4, поэтому он также должен быть включен в ответ.
Уравнения с параметрами
Изучим ур-ния:
5х = 10
5х = 15
5х = 20
Для решения каждого из них надо число справа поделить на 5 (множитель перед х). В итоге получаем значения х, равные 2, 3 и 4.
Теперь обозначим число в правой части буквой, например, как v. Тогда все эти ур-ния будут выглядеть одинаково:
5х = v
Решением таких ур-ний будет дробь v/5.
Надо понимать разный смысл, который мы вкладываем при этом в буквы х и v. Через х мы обозначили переменную, то есть ту величину, значение которой необходимо найти. Под буквой v подразумевалась заранее известная величина, то есть константа, которая известна заранее в каждом конкретном ур-нии. Такую величину называют параметром, а ур-ние 5х = v называют уравнением с параметром.
Изучая уравнение с параметром, мы рассматриваем не одно конкретное ур-ние, а сразу целую группу, или семейство ур-ний. Например, все ур-ния первой степени можно описать в виде
ах + b= 0
где х – это переменная величина, а числа а, b– это параметры. Для описания квадратного ур-ния в общем виде необходимы уже три параметра (а, b и с):
ах2 + bx + c = 0
Параметры встречаются не только при описании ур-ний, но и, например, при рассмотрении функций. Так, линейная функция задается формулой у = kx + b. Здесь числа k и b являются параметрами. Так как ур-ние у = kx + b задает на плоскости прямую линию, то величины k и b порою называют параметрами уравнения прямой.
Если при решении обычного ур-ния мы определяем значение его корней в виде конкретных чисел, то при решении ур-ний с параметром находят формулу, позволяющую при заданном значении параметра вычислить значение корня.
Пример. Решите ур-ние
х2 – 2ах = 0
и найдите его корни при значении параметра а, равном 3.
Решение. Вынесем множитель х за скобки:
х2 – 2ах = 0
х(х – 2а) = 0
х = 0 или х – 2а = 0
х = 0 или х = 2а
Получили, что при любом значении параметра а ур-ние имеет два корня. Один из них равен нулю при любом значении а, а второй вычисляется по формуле х = 2а:
при а = 3х = 2•3 = 6
Ответ: есть два корня – 0 и 2а. При а = 2 корни равны 0 и 6.
Пример. Решите ур-ние
р2х – 3рх = р2 – 9
Решение. Слева вынесем за скобки множитель рх, а выр-ние справа преобразуем, используя формулу разности квадратов:
рх(р – 3) = (р – 3)(р + 3)
Возникает желание поделить обе части рав-ва на р(р – 3), чтобы выразить х. Однако сразу так делать нельзя, ведь если величина р(р – 3) равна нулю, то получится деление на ноль.
Поэтому сначала изучим случаи, когда один из множителей слева равен нулю. Если р = 0, то мы получим рав-во
0•х•(0 – 3) = (0 – 3) (3 – 0)
0 = – 9
Это неверное тождество, а потому при р = 0 ур-ние корней не имеет.
Если р – 3 = 0, то есть р = 3, получится следующее
3•х•0 = 0•(3 + 3)
0 = 0
Это равенство верно при любом х. Значит, при р = 3 корнем ур-ния является любое число.
Если же р≠ 0 и р ≠ 3, то произведение р(р – 3) также не равно нулю, а потому обе части равенства можно поделить на р(р – 3). Тогда получим
В этом случае ур-ние имеет единственный корень.
Ответ: при р = 0 корней нет; при р = 3 корнем является любое число; при других рх = (р + 3)/р.
Часто в задаче требуется не выразить корень ур-ния через параметр, а лишь оценить количество корней ур-ния или диапазон их значений.
Пример. Сколько корней имеет ур-ние
|х2 – 6х + 5| = b
при различных значениях параметра b.
Решение. Будем решать ур-ние графическим методом. Для этого сначала построим график у = |х2 – 6х + 5|. В модульных скобках находится обычная квадратичная функция, чьи ветви смотрят вверх. Найдем нули функции:
х2 – 6х + 5 = 0
D = b2– 4ас = (– 6)2 – 4•1•5 = 36 + 20 = 16
х1 = (6 – 4)/2 = 1
х2 = (6 + 4)/2 = 5
Итак, нули ф-ции – это точки 1 и 5. Найдем координату х0 вершины параболы по формуле:
х0 = –b/2a = 6/2 = 3
Подставив х0 в квадратичную ф-цию найдем координату у0 вершины параболы:
32 – 6•3 + 5 = 9 – 18 + 5 = – 4
Теперь построим квадратичную ф-цию:
Для построения графика, содержащего модуль функции, надо отобразить точки с отрицательными ординатами (они находятся ниже оси Ох) симметрично относительно оси Ох:
Мы построили график левой части ур-ния. График правой части представляет собой горизонтальную прямую у = b. Можно выделить 5 различных случаев взаимного расположения этих графиков:
При b< 0 прямая пролегает ниже графика. Общих точек у графиков нет, а потому ур-ние корней не имеет.
При b = 0 прямая у = 0 касается графика в 2 точках: (1; 0) и (5; 0). Получаем 2 корня.
Если 0 <b< 4, то прямая пересекает график в 4 точках.
При b = 4 прямая у = 4 касается перевернутой вершины параболы, а также пересекает ветви ещё в 2 точках. Итого 3 корня.
Наконец, при b>4 есть горизонтальная прямая пересекает график лишь в 2 точках, то есть получаем 2 корня.
Ответ: нет корней при b< 0; 2 корня при b = 0 и b> 4; 3 корня при b = 4; 4 корня при 0 <b< 4.
Пример. При каком а ур-ние
х4 – (а + 2)х2 + 3а – 3 = 0
имеет ровно 4 корня?
Решение. Это ур-ние является биквадратным, то есть для его решения нужно произвести замену у = х2:
у2 – (а + 2)у + 3а – 3 = 0 (1)
Для того, чтобы исходное ур-ние имело 4 корня, необходимо, чтобы у квадратного уравнения с параметром(1) было два положительных корня: у1 и у2. Тогда, проводя обратную замену х2 = у1 и х2 = у2, мы получим два разных квадратных ур-ния, корни которых будут равны
Если же хоть один из двух корней, например, у1, окажется равным нулю, то величины
Совпадут (они обе будут равны нулю), и останется лишь 3 корня. Если же у1 будет отрицательным числом, то ур-ние
х2 = у1
вовсе не будет иметь решений, и тогда останется не более 2 корней.
Итак, решим ур-ние (1):
у2 – (а + 2)у + 3а – 3 = 0
D = b2– 4ас = (– (а + 2))2 – 4•1•(3а – 3) = (а + 2)2 – 12 а + 12 =
= а2 + 4а + 4 – 12а + 12 = а2 – 8а + 16 = а2 – 2•4•а + 42 = (а – 4)2
Чтобы у ур-ния (1) было два различных корня, дискриминант должен быть положительным. Величина (а – 4)2 положительна при всех значениях а, кроме а = 4, которое обращает дискриминант в ноль. Значит, а ≠ 4.
Извлечем корень из дискриминанта:
Корни ур-ния (1) можно вычислить по формулам:
И у1, и у2 должны быть положительными величинами, однако у1 меньше, чем у2 (ведь для его вычисления дискриминант брали со знаком «минус», а не «плюс»). Поэтому достаточно записать нер-во:
Получили неравенство, содержащее модуль. Для избавления от модульных скобок в нер-ве рассмотрим 2 случая. Если а – 4>0, то есть а > 4, выполняется равенство
|а – 4| = а – 4
Тогда имеем
а + 2 – (а – 4) > 0
6> 0
Это нер-во выполняется при любом допустимом значении а, поэтому при а >4 исходное ур-ние имеет 4 корня.
Если а < 4, то справедливо соотношение
|а – 4| = – (а – 4)
Тогда получится следующее:
а + 2 – |а – 4|> 0
а + 2 – (– (а – 4)) > 0
а + 2 + а – 4 > 0
2а > 2
а > 1
Итак, при условии, что а< 4, должно выполняться нер-во а > 1. Это значит, что а∊(1; 4). С учетом первого случая, при котором было получено решение
а > 4
можно записать окончательный ответ: а∊(1; 4)∪(4; + ∞).
Ответ: а∊(1; 4)∪(4; + ∞).
Пример. При каких параметрах а у ур-ния
х2 – 2(а + 1)х + а2 + 2а – 3 = 0
существует два корня, которые принадлежат интервалу (– 5; 5)?
Решение. Данное ур-ние является квадратным. Найдем его дискриминант:
D = b2– 4ас = (– 2(а + 1))2 – 4•1•( а2 + 2а – 3) = 4(а2 + 2а + 1) – 4(а2 + 2а – 3) =
= 4(а2 + 2а + 1 – а2– 2а + 3) = 4•4 = 16
Получаем, что при любом а дискриминант положителен, а потому уур-ния 2 корня. Вычислить их можно по формулам
Для того, чтобы оба решения уравнения с параметром принадлежали интервалу (– 5; 5), нужно, чтобы меньший из них (это х1) был больше – 5, больший (это х2) – меньше – 5:
Значит, должны выполняться два нер-ва
х1>– 5и х2<5
а – 1 >– 5 и а + 3 < 5
а >– 4 и а < 2
Эти два нер-ва выполняются, если а∊(– 4; 2)
Ответ: (– 4; 2)
Задание № 18 варианта КИМ ЕГЭ по математике профильного уровня
Задача с параметром – для обычного школьника одна из самых сложных задач варианта КИМ ЕГЭ: в программах по математике для общеобразовательных школ (за исключением профильных и специализированных классов, школ и лицеев) таким задачам либо не уделяется должного внимания, либо они не рассматриваются вовсе. Несмотря на это, знание набора методов и подходов к решению таких задач и определенная практика их решения позволяют продвинуться в решении задачи с параметром достаточно далеко и если уж не решить ее полностью, то хотя бы получить за нее некоторое количество баллов на экзамене.
Ранее, до появления единого государственного экзамена, задачи с параметрами входили в варианты вступительных экзаменов по математике в ведущие вузы, а сегодня входят в вариант КИМ ЕГЭ профильного уровня. Дело в том, что эти задачи обладают высокой диагностической ценностью: они позволяют не только определить, насколько хорошо выпускник знает основные разделы школьного курса математики, но и проверить, насколько высок уровень его математического и логического мышления, насколько сильны первоначальные навыки математической исследовательской деятельности, а главное – насколько успешно он сможет овладеть курсом математики в вузе.
«Научите меня решать задачи с параметром», – такую просьбу я часто слышу от своих учеников. Что ж, эта задача потребует от выпускника немало интеллектуальных усилий. С чего начать изучение? С освоения методов решения задач с параметром. Собственно, если вы внимательно читали наши рекомендации, как подготовиться к решению сложных задач варианта КИМ ЕГЭ, то заметили, что это универсальный совет. Именно так построен наш курс «1С:Репетитор»: изучаем как можно более широкий спектр методов и приемов решения задач и тренируемся в применении этих методов на практике.
Чему нужно научиться, решая задачи с параметром
В первую очередь – правильно применять равносильные преобразования уравнений, неравенств и их систем. То есть понять, при каких ограничениях, накладываемых на параметр, можно выполнять то или иное преобразование. Лучше всего начать с заданий вида: «Для каждого значения параметра решить…» и рассмотреть по возможности все основные элементарные функции, встречающиеся в школьном курсе математики.
Если с несложными задачами такого вида школьник справляется неплохо, то можно переходить к изучению аналитических методов решения задач, содержательно усложняя и классифицируя задачи с точки зрения применения к ним этих методов исследования. Имеется в виду знакомство с подходами к решению задач, содержащих формулировки типа: «При каких значениях параметра уравнение (неравенство, система) имеет одно (два, три, бесконечно много и т.д.) решений», «При каких значениях параметра решением уравнения (неравенства, системы) является некоторое подмножество множества действительных чисел» и т.д.
Следующий шаг, который мы рекомендуем, – тщательно изучить схему исследования квадратичной функции. Поскольку квадратичная функция является одной из самых хорошо изученных в школьном курсе математики, на ее основе можно предложить большое количество исследовательских задач, разнообразных по форме и содержанию, чем и пользуются составители вариантов КИМ ЕГЭ.
Мы рекомендуем подойти к рассмотрению данных задач по следующей схеме:
Следующая тема курса – графические методы решения задач с параметром
Существует два принципиально различных подхода – построение графиков функций или уравнений в плоскости (x; y) или в плоскости (x; a). Кроме того, для графического метода решения задач с параметром в плоскости (x; y) необходимо рассмотреть различные виды преобразования графиков – обычно это параллельный перенос, поворот прямой и гомотетия. Есть класс задач, решение которых основано на аналитических свойствах функций (области определения, области значений, четности, периодичности и т.д.), эти свойства и приемы их использования тоже нужно знать.
На этом перечень методов решения задач с параметрами, разумеется, не заканчивается, но анализ вариантов КИМ ЕГЭ профильного уровня и практика показывают, что в настоящее время этого достаточно для успешного решения задачи № 18 на экзамене.
В заключение отметим, что выстроить подобный курс самостоятельно, без преподавателя, обычный школьник не сможет, даже имея под рукой хорошие учебные пособия по методам решения задач с параметром. Здесь необходима помощь опытного наставника, который сможет подобрать нужные задачи и выстроить траекторию движения школьника по ним.
Заметим, кстати, что весьма эффективным инструментом для изучения именно методов решения задач с параметром являются интерактивные тренажеры с пошаговым разбором решения.
Работая с таким тренажером, школьник одновременно учится выстраивать логику решения задачи с параметром и контролирует правильность выполнения каждого шага решения. Это очень важное умение, так как одна из основных сложностей в решении задачи с параметром состоит в том, что необходимо на каждом шаге решения понимать, что означают уже полученные результаты и что (в зависимости от этих результатов) еще остается сделать, чтобы довести решение до конца.
Регулярно тренируйтесь в решении задач
Чтобы начать заниматься на портале «1С:Репетитор», достаточно Зарегистрироваться.
Вы можете:
- Начать заниматься бесплатно.
Купить доступ к этой задаче в составе
экспресс-курса «Алгебра» и научиться решать задачи №13, №15, №17, №18 и №19 на максимальный балл.
Все курсы состоят из методически правильной последовательности теории и практики, необходимой для успешного решения задач. Включают теорию в форме текстов, слайдов и видео, задачи с решениями, интерактивные тренажеры, модели, и тесты.
Остались вопросы? Позвоните нам по телефону 8 800 551-50-78 или напишите в онлайн-чат.
Здесь ключевые фразы, чтобы поисковые роботы лучше находили наши советы:
Разбор задач с параметрами из ЕГЭ по математике, по теме задачи с параметром ЕГЭ, как решать задание 18 в экзамене ЕГЭ, задачи с параметром ЕГЭ, задания с параметром ЕГЭ, задача 18 ЕГЭ, модуль и окружности, решение параметров ЕГЭ, решение задачи 18, система уравнений с параметром, научиться решать задачи с параметрами, сложных задач варианта КИМ ЕГЭ, начертить графики функций, ЕГЭ по математике профильного уровня, методы решения уравнений и неравенств, выпускникам 11 класса в 2018 году, поступающим в технический вуз.