Как решать первообразные егэ

Первообразной для функции $f(x)$ называется такая функция $F(x)$, для которой выполняется равенство: $F'(x)=f(x)$

Таблица первообразных

Первообразная нуля равна $С$

Функция Первообразная
$f(x)=k$ $F(x)=kx+C$
$f(x)=x^m, m≠-1$ $F(x)={x^{m+1}}/{m+1}+C$
$f(x)={1}/{x}$ $F(x)=ln|x|+C$
$f(x)=e^x$ $F(x)=e^x+C$
$f(x)=a^x$ $F(x)={a^x}/{lna}+C$
$f(x)=sinx$ $F(x)-cosx+C$
$f(x)=cosx$ $F(x)=sinx+C$
$f(x)={1}/{sin^2x}$ $F(x)=-ctgx+C$
$f(x)={1}/{cos^2x}$ $F(x)=tgx+C$
$f(x)=√x$ $F(x)={2x√x}/{3}+C$
$f(x)={1}/{√x}$ $F(x)=2√x+C$

Если $y=F(x)$ – это первообразная для функции $y=f(x)$ на промежутке $Х$, то $у$ $у=f(x)$ бесконечно много первообразных и все они имеют вид $y=F(x)+C$

Правила вычисления первообразных:

  1. Первообразная суммы равна сумме первообразных. Если $F(x)$ — первообразная для $f(x)$, а $G(x)$ – первообразная для $g(x)$, то $F(x)+G(x)$ — первообразная для $f(x)+g(x)$.
  2. Постоянный множитель выносится за знак первообразной. Если $F(x)$ — первообразная для $f(x)$, а $k$ – постоянная величина, то $k$ $F(x)$ — первообразная для $k$ $f(x)$.
  3. Если $F(x)$ — первообразная для $f(x)$, $а, k, b$ — постоянные величины, причем $k≠0$, то ${1}/{k}$ $F(kx+b)$ — это первообразная для $f(kx+b)$.

Пример:

Найти первообразную для функции $f(x)=2sin⁡x+{4}/{x}-{cos⁡x}/{3}$.

Решение:

Чтобы было проще найти первообразную от функции, выделим коэффициенты каждого слагаемого

$f(x)=2sin⁡x+{4}/{x}-{cos⁡x}/{3}=2∙sin⁡x+4∙{1}/{x}-{1/3}∙cos⁡x$

Далее, воспользовавшись таблицей первообразных, найдем первообразную для каждой функции, входящих в состав $f(x)$

$f_1=sin⁡x$

$f_2={1}/{x}$

$f_3=cos⁡x$

Для $f_1=sin⁡x$ первообразная равна $F_1=-cos⁡x$

Для $f_2={1}/{x}$ первообразная равна $F_2=ln⁡|x|$

Для $f_2=cos⁡x$ первообразная равна $F_3=sin⁡x$

По первому правилу вычисления первообразных получаем:

$F(x)=2F_1+4F_2-{1}/{3}F_3=2∙(-cos⁡x)+4∙ln⁡|x|-{1}/{3}∙sin⁡x$

Итак, общий вид первообразной для заданной функции

$F(x)=-2cos⁡x+4ln⁡|x|-{sin x}/{3}+C$

Связь между графиками функции и ее первообразной:

  1. Если график функции $f (x) > 0$ на промежутке, то график ее первообразной $F(x)$ возрастает на этом промежутке.
  2. Если график функции $f (x) < 0$ на промежутке, то график ее первообразной $F(x)$ убывает на этом промежутке.
  3. Если $f(x)=0$, то график ее первообразной $F(x)$ в этой точке меняется с возрастающего на убывающий (или наоборот).

Пример:

На рисунке изображен график функции $y=F(x)$ – одной из первообразных некоторой функции $f(x)$, определенной на интервале $(-3;5)$. Пользуясь рисунком, определите количество решений $f(x)=0$ на отрезке $(-2;2]$

Если $f(x)=0$, то график ее первообразной $F(x)$ в этой точке меняется с возрастающего на убывающий(или наоборот).

Выделим отрезок $(-2;2]$ и отметим на нем экстремумы.

У нас получилось $6$ таких точек.

Ответ: $6$

Неопределенный интеграл

Если функция $у=f(x)$ имеет на промежутке $Х$ первообразную $у=F(x)$, то множество всех первообразных $у=F(x)+С$, называют неопределенным интегралом функции $у=f(x)$ и записывают:

$∫f(x)dx$

Определенный интеграл – это интеграл с пределами интегрирования (на отрезке)

$∫_a^bf(x)dx$, где $a,b$ — пределы интегрирования

Площадь криволинейной трапеции или геометрический смысл первообразной

Площадь $S$ фигуры, ограниченной осью $Oх$, прямыми $х=а$ и $х=b$ и графиком неотрицательной функции $у=f(x)$ на отрезке $[a;b]$, находится по формуле

$S=∫_a^bf(x)dx$ 

Формула Ньютона — Лейбница

Если функция $у=f(x)$ непрерывна на отрезке $[a;b]$, то справедливо равенство

$∫_a^bf(x)dx=F(x)|_a^b=F(b)-F(a)$, где $F(x)$ — первообразная для $f(x)$

Пример:

На рисунке изображен график некоторой функции $у=f(x)$. Одна из первообразных этой функции равна $F(x)={2х^3}/{3}-2х^2-1$. Найдите площадь заштрихованной фигуры.

Решение:

Площадь выделенной фигуры равна разности значений первообразных, вычисленных в точках $1$ и $-2$

$S=F(1)-F(-2)$

Первообразная нам известна, следовательно, осталось только подставить в нее значения и вычислить

$F(1)={2∙1}/{3}-2∙1-1={2}/{3}-2-1={2}/{3}-3$

$F(-2)={2(-2)^3}/{3}-2(-2)^2-1={2∙(-8)}/{3}-8-1=-{16}/{3}-9$

$S={2}/{3}-3-(-{16}/{3}-9)={2}/{3}-3+{16}/{3}+9={18}/{3}+6=6+6=12$

Ответ: $12$


Образовательный портал для подготовки к экзаменам

Математика профильного уровня

Математика профильного уровня

Сайты, меню, вход, новости

Каталог заданий.
Первообразная


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

На рисунке изображён график функции y  =  F(x)  — одной из первообразных функции f(x), определённой на интервале (−3; 5). Найдите количество решений уравнения f(x)  =  0 на отрезке [−2; 4].

Источник: Пробный экзамен по математике. Санкт-Петербург 2013. Вариант 2.


2

На рисунке изображён график некоторой функции y=f левая круглая скобка x правая круглая скобка (два луча с общей начальной точкой). Пользуясь рисунком, вычислите F(8) − F(2), где F(x)  — одна из первообразных функции f(x).

Источник: Пробный экзамен по математике. Санкт-Петербург 2013. Вариант 1., Пробный экзамен по математике Санкт-Петербург 2014. Вариант 1.


3

На рисунке изображён график функции y = f(x). Функция F левая круглая скобка x правая круглая скобка =x в кубе плюс 30x в квадрате плюс 302x минус дробь: числитель: 15, знаменатель: 8 конец дроби   — одна из первообразных функции y = f(x). Найдите площадь закрашенной фигуры.


4

На рисунке изображён график некоторой функции y = f(x). Функция F левая круглая скобка x правая круглая скобка = минус x в кубе минус 27x в квадрате минус 240x минус 8  — одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.


Пройти тестирование по этим заданиям

Необходимая теория:

Производная функции

Таблица производных

Первообразная функции

Задание 7 Профильного ЕГЭ по математике — это задачи на геометрический и физический смысл производной. Это задачи о том, как производная связана с поведением функции. И еще (правда, очень редко) в этих задачах встречаются вопросы о первообразной.

Геометрический смысл производной 

Вспомним, что производная — это скорость изменения функции.

Производная функции fleft ( x right ) в точке x_0 равна угловому коэффициенту касательной, проведенной к графику функции в этой точке. Производная также равна тангенсу угла наклона касательной.

boldsymbol{f

1. На рисунке изображён график функции y = f(x) и касательная к нему в точке с абсциссой x_0 . Найдите значение производной функции f(x) в точке x_0 .

Производная функции f(x) в точке x_0 равна тангенсу угла наклона касательной, проведенной в точке x_0.

Достроив до прямоугольного треугольника АВС, получим:

f

Ответ: 0,25.

2. На рисунке изображён график функции y = f(x) и касательная к нему в точке с абсциссой x_0.
Найдите значение производной функции y = f(x) в точке x_0.

Начнём с определения знака производной. Мы видим, что в точке x_0 функция убывает, следовательно, её производная отрицательна. Касательная в точке x_0 образует тупой угол alpha с положительным направлением оси X. Поэтому из прямоугольного треугольника мы найдём тангенс угла varphi , смежного с углом alpha.

Мы помним, что тангенс угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему: tg varphi = 0, 25. Поскольку alpha + varphi = 180^{circ}, имеем:

tg alpha = tg(180^{circ} -varphi ) = - tg varphi = -0, 25.

Ответ: −0, 25.

Касательная к графику функции

3. Прямая y = - 4x - 11 является касательной к графику функции y = x^3 + 7x^2 + 7x - 6.

Найдите абсциссу точки касания.

Запишем условие касания функции y=fleft(xright) и прямой y=kx+b в точке x_0 .

При x= x_0 значения выражений fleft(xright) и kx+b равны.

При этом производная функции fleft(xright) равна угловому коэффициенту касательной, то есть k.

left{ begin{array}{c}fleft(xright)=kx+b \f^{

left{ begin{array}{c}x^3+{7x}^2+7x-6=-4x-11 \{3x}^2+14x+7=-4 end{array}right..

Из второго уравнения находим x = -1 или x=-frac{11}{3}. Первому уравнению удовлетворяет только x = -1.

Физический смысл производной

Мы помним, что производная — это скорость изменения функции.

Мгновенная скорость — это производная от координаты по времени. Но это не единственное применение производной в физике. Например, cила тока — это производная заряда по времени, то есть скорость изменения заряда. Угловая скорость — производная от угла поворота по времени.

Множество процессов в природе, экономике и технике описывается дифференциальными уравнениями — то есть уравнениями, содержащими не только сами функции, но и их производные.

4. Материальная точка движется прямолинейно по закону x(t) = t^2 - 3t - 29, где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения. Найдите ее скорость (в м/с) в момент времени t = 3 с.

Мгновенная скорость движущегося тела является производной от его координаты по времени. Это физический смысл производной. В условии дан закон изменения координаты материальной точки, то есть расстояния от точки отсчета: xleft(tright)=t^2-3t-29.

Найдем скорость материальной точки как производную от координаты по времени:

vleft(tright)=x В момент времени t=3 получим:

vleft(3right)=2cdot 3-3=3.

Ответ: 3.

Применение производной к исследованию функций

Каждый год в вариантах ЕГЭ встречаются задачи, в которых старшеклассники делают одни и те же ошибки.

Например, на рисунке изображен график функции — а спрашивают о производной. Кто их перепутал, тот задачу не решил.

Или наоборот. Нарисован график производной — а спрашивают о поведении функции.

И значит, надо просто внимательно читать условие. И знать, как же связана производная с поведением функции.

Если f, то функция f (x) возрастает.

Если f, то функция f (x) убывает.

В точке максимума производная равна нулю и меняет знак с «плюса» на «минус».

В точке минимума производная тоже равна нулю и меняет знак с «минуса» на «плюс».

f(x) возрастает точка максимума убывает точка минимума возрастает
f + 0 - 0 +

5. На рисунке изображен график функции y=f(x), определенной на интервале (-3; 9). Найдите количество точек, в которых производная функции f(x) равна 0.

Производная функции f { в точках максимума и минимума функции f(x). Таких точек на графике 5.

Ответ: 5.

6. На рисунке изображён график y = f — производной функции f(x), определённой на интервале (-6; 5). В какой точке отрезка [-1; 3] функция f(x) принимает наибольшее значение?

Не спешим. Зададим себе два вопроса: что изображено на рисунке и о чем спрашивается в этой задаче?

Изображен график производной, а спрашивают о поведении функции. График функции не нарисован. Но мы знаем, как производная связана с поведением функции.

На отрезке [-1;3] производная функции f(x) положительна.

Значит, функция f(x) возрастает на этом отрезке. Большим значениям х соответствует большее значение f(x). Наибольшее значение функции достигается в правом конце отрезка, то есть в точке 3.

Ответ: 3.

7. На рисунке изображён график функции y= f(x), определённой на интервале (-3; 8). Найдите количество точек, в которых касательная к графику функции параллельна прямой y = 1.

Прямая y=1 параллельна оси абсцисс. Найдем на графике функции y = f(x) точки, в которых касательная параллельна оси абсцисс, то есть горизонтальна. Таких точек на графике 7. Это точки максимума и минимума.

Ответ: 7.

8. На рисунке изображен график производной функции f(x), определенной на интервале (-7; 14). Найдите количество точек максимума функции f(x) на отрезке [-6; 9].

Очень внимательно читаем условие задачи. Изображен график производной, а спрашивают о точках максимума функции. В точке максимума производная равна нулю и меняет знак с «плюса» на «минус». На отрезке [-6; 9] такая точка всего одна! Это x=7.

Ответ: 1.

9. На рисунке изображен график производной функции f(x), определенной на интервале (-6; 5). Найдите точку экстремума функции f(x) на отрезке [-5; 4].

Точками экстремума называют точки максимума и минимума функции. Если производная функции в некоторой точке равна нулю и при переходе через эту точку меняет знак, то это точка экстремума. На отрезке [- 5; 4] график производной (а именно он изображен на рисунке) пересекает ось абсцисс в точке x = -2. В этой точке производная меняет знак с минуса на плюс.

Значит, x= -2 является точкой экстремума.

Первообразная и формула Ньютона-Лейбница

Функция F(x), для которой f(x) является производной, называется первообразной функции y = f(x). Функции вида y = F(x) + C образуют множество первообразных функции y = f(x).

10. На рисунке изображён график y = F(x) — одной из первообразных некоторой функции f(x), определённой на интервале (-6; 6). Пользуясь рисунком, определите количество решений уравнения f(x)=0 на отрезке [-4; 4] .

Функция F(x), для которой f(x) является производной, называется первообразной функции y = f(x).

Это значит, что на графике нужно найти такие точки, принадлежащие отрезку [-4; 4] , в которых производная функции F(x) равна нулю. Это точки максимума и минимума функции F(x). На отрезке [-4; 4] таких точек 4.

Ответ: 4.

Больше задач на тему «Первообразная. Площадь под графиком функции» — в этой статье

Первообразная функции. Формула Ньютона-Лейбница.

Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Задание №7. Производная. Поведение функции. Первообразная u0026#8212; профильный ЕГЭ по Математике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
09.03.2023

Лучшие репетиторы для сдачи ЕГЭ

Задания по теме «Первообразная функции»

Открытый банк заданий по теме первообразная функции. Задания B7 из ЕГЭ по математике (профильный уровень)

Геометрические фигуры на плоскости: вычисление величин с использованием углов

Геометрические фигуры в пространстве: нахождение длины, площади, объема

Задание №1164

Тип задания: 7
Тема:
Первообразная функции

Условие

На рисунке изображён график функции y=f(x) (являющийся ломаной линией, составленной из трёх прямолинейных отрезков). Пользуясь рисунком, вычислите F(9)-F(5), где F(x) — одна из первообразных функции f(x).

График функции y=f(x), являющийся ломаной линией, составленной из трёх прямолинейных отрезков

Показать решение

Решение

По формуле Ньютона-Лейбница разность F(9)-F(5), где F(x) — одна из первообразных функции f(x), равна площади криволинейной трапеции, ограниченной графиком функции y=f(x), прямыми y=0, x=9 и x=5. По графику определяем, что указанная криволинейная трапеция является трапецией с основаниями, равными 4 и 3 и высотой 3.

Её площадь равна frac{4+3}{2}cdot 3=10,5.

Ответ

10,5

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1158

Тип задания: 7
Тема:
Первообразная функции

Условие

На рисунке изображён график функции y=F(x) — одной из первообразных некоторой функции f(x), определённой на интервале (-5; 5). Пользуясь рисунком, определите количество решений уравнения f(x)=0 на отрезке [-3; 4].

График функции y= F(x) - одной из первообразных функции f(x), на интервале (-5; 5)

Показать решение

Решение

Согласно определению первообразной выполняется равенство: F'(x)=f(x). Поэтому уравнение f(x)=0 можно записать в виде F'(x)=0. Так как на рисунке изображён график функции y=F(x), то надо найти те точки промежутка [-3; 4], в которых производная функции F(x) равна нулю. Из рисунка видно, что это будут абсциссы экстремальных точек (максимума или минимума) графика F(x). Их на указанном промежутке ровно 7 (четыре точки минимума и три точки максимума).

Ответ

7

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1155

Тип задания: 7
Тема:
Первообразная функции

Условие

На рисунке изображён график функции y=f(x) (являющийся ломаной линией, составленной из трёх прямолинейных отрезков). Пользуясь рисунком, вычислите F(5)-F(0), где F(x) — одна из первообразных функции f(x).

График функции у=f(x) являющийся ломаной линией, составленной из трёх прямолинейных отрезков

Показать решение

Решение

По формуле Ньютона-Лейбница разность F(5)-F(0), где F(x) — одна из первообразных функции f(x), равна площади криволинейной трапеции, ограниченной графиком функции y=f(x), прямыми y=0, x=5 и x=0. По графику определяем, что указанная криволинейная трапеция является трапецией с основаниями, равными 5 и 3 и высотой 3.

Её площадь равна frac{5+3}{2}cdot 3=12.

Ответ

12

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1149

Тип задания: 7
Тема:
Первообразная функции

Условие

На рисунке изображён график функции y=F(x) — одной из первообразных некоторой функции f(x), определённой на интервале (-5; 4). Пользуясь рисунком, определите количество решений уравнения f (x)=0 на отрезке (-3; 3].

График функции y=F(x) — одной из первообразных некоторой функции f(x) на интервале (-5; 4)

Показать решение

Решение

Согласно определению первообразной выполняется равенство: F'(x)=f(x). Поэтому уравнение f(x)=0 можно записать в виде F'(x)=0. Так как на рисунке изображён график функции y=F(x), то надо найти те точки промежутка [-3; 3], в которых производная функции F(x) равна нулю.

Из рисунка видно, что это будут абсциссы экстремальных точек (максимума или минимума) графика F(x). Их на указанном промежутке ровно 5 (две точки минимума и три точки максимума).

Ответ

5

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1146

Тип задания: 7
Тема:
Первообразная функции

Условие

На рисунке изображен график некоторой функции y=f(x). Функция F(x)=-x^3+4,5x^2-7 — одна из первообразных функции f(x).

Найдите площадь заштрихованной фигуры.

График некоторой функции y=f(x) с известной первообразной и заштрихованной фигурой

Показать решение

Решение

Заштрихованная фигура является криволинейной трапецией, ограниченной сверху графиком функции y=f(x), прямыми y=0, x=1 и x=3. По формуле Ньютона-Лейбница её площадь S равна разности F(3)-F(1), где F(x) — указанная в условии первообразная функции f(x). Поэтому S= F(3)-F(1)= -3^3 +(4,5)cdot 3^2 -7-(-1^3 +(4,5)cdot 1^2 -7)= 6,5-(-3,5)= 10.

Ответ

10

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №907

Тип задания: 7
Тема:
Первообразная функции

Условие

На рисунке изображён график некоторой функции y=f(x). Функция F(x)=x^3+6x^2+13x-5 — одна из первообразных функции f(x). Найдите площадь заштрихованной фигуры.

График функции y=f(x) с заштрихованной областью

Показать решение

Решение

Заштрихованная фигура является криволинейной трапецией, ограниченной графиком функции y=f(x) и прямыми y=0, x=-4 и x=-1. По формуле Ньютона-Лейбница её площадь S равна разности F(-1)-F(-4), где F(x) — указанная в условии первообразная функции f(x).

Поэтому S= F(-1)-F(-4)= (-1)^3+6(-1)^2+13(-1)-5-((-4)^3+6(-4)^2+13(-4)-5)= -13-(-25)=12.

Ответ

12

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №307

Тип задания: 7
Тема:
Первообразная функции

Условие

На рисунке изображен график некоторой функции y=f(x). Функция F(x)=x^3+18x^2+221x-frac12 — одна из первообразных функции f(x). Найдите площадь заштрихованной фигуры.

График некоторой функции y=f(x) с заштрихованной фигурой

Показать решение

Решение

По формуле Ньютона-Лейбница S=F(-1)-F(-5).

F(-1)= (-1)^3+18cdot(-1)^2+221cdot(-1)-frac12= -204-frac12.

F(-5)= (-5)^3+18cdot(-5)^2+221cdot(-5)-frac12= -125+450-1105-frac12= -780-frac12.

F(-1)-F(-5)= -204-frac12-left (-780-frac12right)= 576.

Ответ

576

Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №306

Тип задания: 7
Тема:
Первообразная функции

Условие

На рисунке изображен график некоторой функции y=f(x).Пользуясь рисунком, вычислите F(9)-F(3), где F(x) — одна из первообразных функции f(x).

График функции y=f(x)

Показать решение

Решение

F(9)-F(3)=S, где S — площадь фигуры, ограниченной графиком функции y=f(x), прямыми y=0 и x=3,:x=9. Рассмотрим рисунок ниже.

Трапеция, ограниченная графиком функции y=f(x) и прямыми.

Данная фигура — трапеция с основаниями 6 и 1 и высотой 2. Ее площадь равна frac{6+1}{2}cdot2=7.

Ответ

7

Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №104

Тип задания: 7
Тема:
Первообразная функции

Условие

На координатной плоскости изображен график функции y=f(x). Одна из первообразных этой функции имеет вид: F(x)=-frac13x^3-frac52x^2-4x+2. Найдите площадь заштрихованной фигуры.

График дифференцируемой функции y=f(x)

Показать решение

Решение

На рисунке видно, что заштрихованная фигура ограничена по оси абсцисс точками −4, −1, а по оси ординат графиком функции: f(x). Значит площадь фигуры мы можем найти с помощью разности значений первообразных в точках −4 и −1, по формуле определенного интеграла:

intlimits_{-4}^{-1}f(x)dx=F(-1)-F(-4)

Подставим значение первообразной из условия и получим площадь фигуры:

F(-1)-F(-4)=

=frac13-frac52+4+2-frac{64}{3}+frac{80}{2}-16-2=

=-frac{63}{3}+frac{75}{2}-12=-21+37,5-12=4,5

Ответ

4,5

Задание №103

Тип задания: 7
Тема:
Первообразная функции

Условие

Первообразная y=F(x) некоторой функции y=f(x) определена на интервале (−16; −2). Определите сколько решений имеет уравнение f(x) = 0 на отрезке [−10; −5].

Первообразная y=F(x) функции y=f(x)

Показать решение

Решение

Формула первообразной имеет следующий вид:

f(x) = F'(x)

По условию задачи нужно найти точки, в которых функция f(x) равна нулю. Принимая во внимание формулу первообразной, это значит, что, нужно найти точки, в которых F'(x) = 0, то есть те точки, в которых производная от первообразной равна нулю.

Мы знаем, что производная равна нулю в точках локального экстремума, т.е. функция имеет решения в тех точках, в которых возрастание F(x) сменяется убыванием и наоборот.

На отрезке [−10; −5] видно что это точки: −9; −7; −6. Значит уравнение f(x) = 0 имеет 3 решения.

Первообразная y=F(x) функции y=f(x)

Ответ

3

Лучшие репетиторы для сдачи ЕГЭ

Сложно со сдачей ЕГЭ?

Звоните, и подберем для вас репетитора: 78007750928

Определение первообразной.

Функция F(x) называется первообразной для функции f(x), если для всех x выполняется равенство:

F'(x) = f(x)

То есть первообразная функции – это функция, от которой взяли производную и получили .

Например:

  • Функция F(x) = х² является одной из первообразных* для функции f(x) = 2х, так как

F'(x) = (х²)’ = 2x = f(x)

  • Функция F(x) = х³+6 является одной из первообразных для функции f(x) = 3х², так как

F'(x) = (х²)’ = 3х² = f(x)

* — Фраза «одна из первообразных» предполагает, что у одной из функций есть несколько первообразных. Например, для функции f(x) = 2х первообразными являются функции F(x) = х², F(x) = х²+5, F(x) = х²+17, и множество других. Их общий вид записывается как F(x) = х² + C, а C называются константой интегрирования.

ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ПЕРВООБРАЗНОЙ

Пусть имеется график функции На оси ОХ отмечены две точки a и b, и через них проведены две прямые до пересечения с графиком Требуется найти площадь, ограниченную графиком осью OX и прямыми x = a и x = b (на рисунке).

Эта площадь будет считаться как определенный интеграл от функции .

Таким образом, если нам заранее известен явный вид первообразной (то есть ), то просто нужно сделать ряд простых шагов, чтобы найти площадь S:

1. Подставить в первообразную левую точку (b) и вычислить ее значение в этой точке – F(b).

2. Подставить в первообразную правую точку (a) и вычислить ее значение в этой точке — F(a).

3. Вычислить F(b) — F(a) (из значения первообразной в левой точке вычитаем значение первообразной в правой точке).

10
Авг 2013

Категория: 07 Производная, ПО

07. Первообразная

2013-08-10
2022-09-11

Задача 1. На рисунке изображён график некоторой функции y=f(x)  (два луча с общей начальной точкой). Пользуясь рисунком, вычислите F(8)-F(2), где F(x)  — одна из первообразных функции f(x).

у

Решение: + показать



Задача 2. На рисунке изображён график некоторой функции  y=f(x). Функция F(x)=x^3+12x^2+51x-3 — одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.

ed

Решение: + показать



Задача 3. На рисунке изображён график некоторой функции y=f(x). Функция F(x)=-frac{4}{9}x^3-frac{34}{3}x^2-frac{280}{3}x-frac{18}{5} — одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.

u

Решение: + показать



Задача 4. На рисунке изображён график функции y=F(x) – одной из первообразных некоторой функции f(x), определённой на интервале (-2;4). Пользуясь рисунком, определите количество решений уравнения f(x)=0  на отрезке [-1;3].

r

Решение: + показать



колоЗагляните –> + показать


тест

Вы можете пройти тест «Первообразная»

Автор: egeMax |

комментариев 7

Первообразная функции и общий вид

20 июля 2015

Этот урок — первый из серии видео, посвященных интегрированию. В нём мы разберём, что такое первообразная функции, а также изучим элементарные приёмы вычисления этих самых первообразных.

На самом деле здесь нет ничего сложного: по существу всё сводится к понятию производной, с которым вы уже должны знакомы.:)

Сразу отмечу, что, поскольку это самый первый урок в нашей новой теме, сегодня не будет никаких сложных вычислений и формул, но то, что мы изучим сегодня, ляжет в основу гораздо более сложных выкладок и конструкций при вычислении сложных интегралов и площадей.

Кроме того, приступая к изучению интегрирования и интегралов в частности, мы неявно предполагаем, что ученик уже, как минимум, знаком к понятиям производной и имеет хотя бы элементарные навыки их вычисления. Без четкого понимания этого, делать в интегрировании совершенно нечего.

Однако здесь же кроется одна из самых частых и коварных проблем. Дело в том, что, начиная вычислять свои первые первообразные, многие ученики путают их с производными. В результате на экзаменах и самостоятельных работах допускаются глупые и обидные ошибки.

Поэтому сейчас я не буду давать четкого определения первообразной. А взамен предлагаю вам посмотреть, как она считается на простом конкретном примере.

Что такое первообразная и как она считается

Допустим, нам необходимо посчитать следующую производную:

[fleft( x right)={{x}^{3}}]

Мы знаем такую формулу:

[{{left( {{x}^{n}} right)}^{prime }}=ncdot {{x}^{n-1}}]

Считается эта производная элементарно:

[{f}’left( x right)={{left( {{x}^{3}} right)}^{prime }}=3{{x}^{2}}]

Посмотрим внимательно на полученное выражение и выразим ${{x}^{2}}$:

[{{x}^{2}}=frac{{{left( {{x}^{3}} right)}^{prime }}}{3}]

Но мы можем записать и так, согласно определению производной:

[{{x}^{2}}={{left( frac{{{x}^{3}}}{3} right)}^{prime }}]

А теперь внимание: то, что мы только что записали и есть определением первообразной. Но, чтобы записать ее правильно, нужно написать следующее:

[{{x}^{2}}to frac{{{x}^{3}}}{3}]

Аналогично запишем и такое выражение:

[{{x}^{4}}to frac{{{x}^{5}}}{5}]

Если мы обобщим это правило, то сможем вывести такую формулу:

[{{x}^{n}}to frac{{{x}^{n+1}}}{n+1}]

Теперь мы можем сформулировать четкое определение.

Первообразной функции называется такая функция, производная которой равна исходной функции.

Вопросы о первообразной функции

Казалось бы, довольно простое и понятное определение. Однако, услышав его, у внимательного ученика сразу возникнет несколько вопросов:

  1. Допустим, хорошо, эта формула верна. Однако в этом случае при $n=1$ у нас возникают проблемы: в знаменателе появляется «ноль», а на «ноль» делить нельзя.
  2. Формула ограничивается только степенями. Как считать первообразную, например, синуса, косинуса и любой другой тригонометрии, а также констант.
  3. Экзистенциальный вопрос: а всегда ли вообще можно найти первообразную? Если да, то как быть с первообразной суммы, разности, произведения и т.д.?

На последний вопрос я отвечу сразу. К сожалению, первообразная, в отличие от производной, считается не всегда. Нет такой универсальной формулы, по которой из любой исходной конструкции мы получим функцию, которая будет равна этой сходной конструкции. А что касается степеней и констант — сейчас мы об этом поговорим.

Решение задач со степенными функциями

Давайте попробуем посчитать такое выражение:

[{{x}^{-1}}to frac{{{x}^{-1+1}}}{-1+1}=frac{1}{0}]

Как видим, данная формула для ${{x}^{-1}}$ не работает. Возникает вопрос: а что тогда работает? Неужели мы не можем посчитать ${{x}^{-1}}$? Конечно, можем. Только давайте для начала вспомним такое:

[{{x}^{-1}}=frac{1}{x}]

Теперь подумаем: производная какой функции равна $frac{1}{x}$. Очевидно, что любой ученик, который хоть немного занимался этой темой, вспомнит, что этому выражению равна производная натурального логарифма:

[{{left( ln x right)}^{prime }}=frac{1}{x}]

Поэтому мы с уверенностью можем записать следующее:

[frac{1}{x}={{x}^{-1}}to ln x]

Эту формулу нужно знать, точно так же, как и производную степенной функции.

Итак, что нам известно на данный момент:

  • Для степенной функции — ${{x}^{n}}to frac{{{x}^{n+1}}}{n+1}$
  • Для константы — $=constto cdot x$
  • Частный случай степенной функции — $frac{1}{x}to ln x$

Идем далее. Что нам еще может потребоваться? Конечно же, правило вычисления первообразных от суммы и от разности. Запишем так:

[fleft( x right)to Fleft( x right)]

[gleft( x right)to Gleft( x right)]

[f+gto F+G]

[f-g=F-G]

[ccdot fto ccdot Fleft( c=const right)]

А если простейшие функции мы начнем умножать и делить, как тогда посчитать первообразную произведения или частного. К сожалению, аналогии с производной произведения или частного здесь не работают. Какой-либо стандартной формулы не существует. Для некоторых случаев существуют хитрые специальные формулы — с ними мы познакомимся на будущих видеоуроках.

Однако запомните: общей формулы, аналогичной формуле для вычисления производной частного и произведения, не существует.

Решение реальных задач

Задача № 1

[fleft( x right)={{x}^{2}}+5{{x}^{4}}]

Давайте каждую из степенных функций посчитаем отдельно:

[{{x}^{2}}to frac{{{x}^{3}}}{3}]

[5{{x}^{4}}to 5cdot frac{{{x}^{5}}}{5}={{x}^{5}}]

Возвращаясь к нашему выражению, мы запишем общую конструкцию:

[Fleft( x right)=frac{{{x}^{3}}}{3}+{{x}^{5}}]

Задача № 2

[fleft( x right)=frac{x+1}{x}]

Как я уже говорил, первообразные произведений и частного «напролом» не считаются. Однако здесь можно поступить следующим образом:

[fleft( x right)=frac{x}{x}+frac{1}{x}=1+frac{1}{x}]

Мы разбили дробь на сумму двух дробей.

Посчитаем:

[Fleft( x right)=1cdot x+ln x]

[Fleft( x right)=x+ln x]

Хорошая новость состоит в том, что зная формулы вычисления первообразных, вы уже способны считать более сложные конструкции. Однако давайте пойдем дальше и расширим наши знания еще чуть-чуть. Дело в том, что многие конструкции и выражения, которые, на первый взгляд, не имеют никакого отношения к ${{x}^{n}}$, могут быть представлены в виде степени с рациональным показателем, а именно:

[sqrt{x}={{x}^{frac{1}{2}}}]

[sqrt[n]{x}={{x}^{frac{1}{n}}}]

[frac{1}{{{x}^{n}}}={{x}^{-n}}]

Все эти приемы можно и нужно комбинировать. Степенные выражения можно

  • умножать (степени складываются);
  • делить (степени вычитаются);
  • умножать на константу;
  • и т.д.

Решение выражений со степенью с рациональным показателем

Пример № 1

[fleft( x right)=7sqrt{x}+sqrt[4]{x}]

Посчитаем каждый корень отдельно:

[]

[sqrt{x}={{x}^{frac{1}{2}}}to frac{{{x}^{frac{1}{2}+1}}}{frac{1}{2}+1}=frac{{{x}^{frac{3}{2}}}}{frac{3}{2}}=frac{2cdot {{x}^{frac{3}{2}}}}{3}]

[sqrt[4]{x}={{x}^{frac{1}{4}}}to frac{{{x}^{frac{1}{4}}}}{frac{1}{4}+1}=frac{{{x}^{frac{5}{4}}}}{frac{5}{4}}=frac{4cdot {{x}^{frac{5}{4}}}}{5}]

Итого всю нашу конструкцию можно записать следующим образом:

[Fleft( x right)=7cdot frac{2cdot {{x}^{frac{3}{2}}}}{3}+frac{5cdot {{x}^{frac{5}{4}}}}{4}=frac{14cdot {{x}^{frac{3}{2}}}}{3}+frac{4cdot {{x}^{frac{5}{4}}}}{5}]

Пример № 2

[fleft( x right)=frac{1}{sqrt{x}}-frac{1}{{{x}^{3}}}]

Запишем:

[frac{1}{sqrt{x}}={{left( sqrt{x} right)}^{-1}}={{left( {{x}^{frac{1}{2}}} right)}^{-1}}={{x}^{-frac{1}{2}}}]

Следовательно, мы получим:

[Fleft( x right)=frac{{{x}^{-frac{1}{2}+1}}}{-frac{1}{2}+1}=frac{{{x}^{frac{1}{2}}}}{frac{1}{2}}=2{{x}^{frac{1}{2}}}=2sqrt{x}]

[frac{1}{{{x}^{3}}}={{x}^{-3}}to frac{{{x}^{-3+1}}}{-3+1}=frac{{{x}^{-2}}}{-2}=-frac{1}{2{{x}^{2}}}]

Итого, собирая все в одно выражение, можно записать:

[Fleft( x right)=2sqrt{x}+frac{1}{2{{x}^{2}}}]

Пример № 3

[fleft( x right)=sqrt[4]{x}-xsqrt{x}+1]

Для начала заметим, что $sqrt[4]{x}$ мы уже считали:

[sqrt[4]{x}to frac{4{{x}^{frac{5}{4}}}}{5}]

[xsqrt{x}={{x}^{1}}cdot {{x}^{frac{1}{2}}}={{x}^{frac{3}{2}}}]

[{{x}^{frac{3}{2}}}to frac{{{x}^{frac{3}{2}+1}}}{frac{3}{2}+1}=frac{2cdot {{x}^{frac{5}{2}}}}{5}]

[1to x]

Перепишем:

[Fleft( x right)=frac{4{{x}^{frac{5}{4}}}}{5}-frac{2{{x}^{frac{5}{2}}}}{5}+x]

Надеюсь, я никого не удивлю, если скажу, что то, что мы только что изучали — это лишь самые простые вычисления первообразных, самые элементарные конструкции. Давайте сейчас рассмотрим чуть более сложные примеры, в которых помимо табличных первообразных еще потребуется вспомнить школьную программу, а именно, формулы сокращенного умножения.

Решение более сложных примеров

Задача № 1

[fleft( x right)={{left( sqrt[3]{x}-2 right)}^{2}}]

Вспомним формулу квадрата разности:

[{{left( a-b right)}^{2}}={{a}^{2}}-ab+{{b}^{2}}]

Давайте перепишем нашу функцию:

[fleft( x right)=left( sqrt[3]{x} right)-2cdot sqrt[3]{x}cdot 2+4]

[fleft( x right)={{x}^{frac{2}{3}}}-4{{x}^{frac{1}{3}}}+4]

Первообразную такой функции нам сейчас предстоит найти:

[{{x}^{frac{2}{3}}}to frac{3cdot {{x}^{frac{5}{3}}}}{5}]

[{{x}^{frac{1}{3}}}to frac{3cdot {{x}^{frac{4}{3}}}}{4}]

[4to 4x]

Собираем все в общую конструкцию:

[Fleft( x right)=frac{3{{x}^{frac{5}{3}}}}{5}-3{{x}^{frac{4}{3}}}+4x]

Задача № 2

[fleft( x right)={{left( frac{1}{x}-2 right)}^{3}}]

В этом случае нам нужно раскрыть куб разности. Вспомним:

[{{left( a-b right)}^{3}}={{a}^{3}}-3{{a}^{2}}cdot b+3acdot {{b}^{2}}-{{b}^{3}}]

С учетом этого факта можно записать так:

[fleft( x right)=frac{1}{{{x}^{3}}}-3cdot frac{1}{{{x}^{2}}}cdot 2+3cdot frac{1}{x}cdot 4-8]

Давайте немного преобразуем нашу функцию:

[fleft( x right)={{x}^{-3}}-6{{x}^{-2}}+12cdot {{x}^{-1}}-8]

Считаем как всегда — по каждому слагаемому отдельно:

[{{x}^{-3}}to frac{{{x}^{-2}}}{-2}]

[{{x}^{-2}}to frac{{{x}^{-1}}}{-1}]

[{{x}^{-1}}to ln x]

[8to 8x]

Запишем полученную конструкцию:

[Fleft( x right)=-frac{1}{2{{x}^{2}}}+frac{6}{x}+12ln x-8x]

Задача № 3

[fleft( x right)=frac{{{left( x+sqrt{x} right)}^{2}}}{x}]

Сверху у нас стоит квадрат суммы, давайте его раскроем:

[frac{{{left( x+sqrt{x} right)}^{2}}}{x}=frac{{{x}^{2}}+2xcdot sqrt{x}+{{left( sqrt{x} right)}^{2}}}{x}=]

[=frac{{{x}^{2}}}{x}+frac{2xsqrt{x}}{x}+frac{x}{x}=x+2{{x}^{frac{1}{2}}}+1]

Далее все легко:

[xto frac{{{x}^{2}}}{2}]

[{{x}^{frac{1}{2}}}to frac{2cdot {{x}^{frac{3}{2}}}}{3}]

[1to x]

Давайте напишем итоговое решение:

[Fleft( x right)=frac{{{x}^{2}}}{x}+frac{4{{x}^{frac{3}{2}}}}{3}+x]

А теперь внимание! Очень важная вещь, с которой связана львиная доля ошибок и недопониманий. Дело в том, что до сих пор считая первообразные с помощью производных, приводя преобразования, мы не задумывались о том, чему равна производная константы. А ведь производная константы равна «нулю». А это означает, что можно записать такие варианты:

  1. ${{x}^{2}}to frac{{{x}^{3}}}{3}$
  2. ${{x}^{2}}to frac{{{x}^{3}}}{3}+1$
  3. ${{x}^{2}}to frac{{{x}^{3}}}{3}+C$

Вот это очень важно понимать: если производная функции всегда одна и та же, то первообразных у одной и той же функции бесконечно много. Просто к нашим первообразным мы можем дописывать любые числа-константы и получать новые.

Неслучайно, в пояснении к тем задачам, которые мы только что решали, было написано «Запишите общий вид первообразных». Т.е. уже заранее предполагается, что их не одна, а целое множество. Но, на самом деле, они отличаются лишь константой $C$ в конце. Потому в наших задачах мы исправим то, что мы не дописали.

Еще раз переписываем наши конструкции:

[Fleft( x right)=frac{3{{x}^{frac{5}{3}}}}{5}-3{{x}^{frac{4}{3}}}+4x+C]

В таких случаях следует дописывать, что $C$ — константа — $C=const$.

Во второй нашей функции мы получим следующую конструкцию:

[Fleft( x right)=-frac{1}{2{{x}^{2}}}+frac{6}{x}+12ln x+C]

И последняя:

[Fleft( x right)=frac{{{x}^{2}}}{2}+frac{4{{x}^{frac{3}{2}}}}{3}+x+C]

И вот теперь мы действительно получили то, что от нас требовалось в исходном условии задачи.

Решение задач на нахождение первообразных с заданной точкой

Сейчас, когда мы знаем о константах и об особенностях записи первообразных, вполне логично возникает следующий тип задач, когда из множества всех первообразных требуется найти одну-единственную такую, которая проходила бы через заданную точку. В чем состоит эта задача?

Дело в том, что все первообразные данной функции отличаются лишь тем, что они сдвинуты по вертикали на какое-то число. А это значит, что какую бы точку на координатной плоскости мы не взяли, обязательно пройдет одна первообразная, и, причем, только одна.

Итак, задачи, которые сейчас мы будем решать, сформулированы следующем образом: не просто найти первообразную, зная формулу исходной функции, а выбрать именно такую из них, которая проходит через заданную точку, координаты которой будут даны в условии задачи.

Пример № 1

[fleft( x right)=5{{x}^{4}}+6{{x}^{3}}-2x+6]

[M=left( -1;4 right)]

Для начала просто посчитаем каждое слагаемое:

[{{x}^{4}}to frac{{{x}^{5}}}{5}]

[{{x}^{3}}to frac{{{x}^{4}}}{4}]

[xto frac{{{x}^{2}}}{2}]

[6to 6x]

Теперь подставляем эти выражения в нашу конструкцию:

[Fleft( x right)=5cdot frac{{{x}^{5}}}{5}+6cdot frac{{{x}^{4}}}{4}-2cdot frac{{{x}^{2}}}{2}+6x+C]

[Fleft( x right)={{x}^{5}}+frac{3{{x}^{4}}}{2}-{{x}^{2}}+6x+C]

Эта функция должна проходить через точку $Mleft( -1;4 right)$. Что значит, что она проходит через точку? Это значит, что если вместо $x$ поставить везде $-1$, а вместо $Fleft( x right)$ — $-4$, то мы должны получить верное числовое равенство. Давайте так и сделаем:

[4={{left( -1 right)}^{5}}+frac{3cdot {{left( -1 right)}^{4}}}{2}-{{left( -1 right)}^{2}}+6cdot left( -1 right)+C]

Мы видим, что у нас получилось уравнение относительно $C$, поэтому давайте попробуем его решить:

[4=-1+frac{3}{2}-1-6+C]

[C=4+6+2-frac{3}{2}=10,5]

Давайте запишем то самое решение, которое мы искали:

[Fleft( x right)={{x}^{5}}+frac{3{{x}^{4}}}{2}-{{x}^{2}}+6x+10,5]

Пример № 2

[fleft( x right)={{left( x-3 right)}^{2}}]

[M=left( 2;-1 right)]

В первую очередь необходимо раскрыть квадрат разности по формуле сокращенного умножения:

[fleft( x right)={{x}^{2}}-6x+9]

Считаем:

[{{x}^{2}}to frac{{{x}^{3}}}{3}]

[xto frac{{{x}^{2}}}{2}]

[9to 9x]

Исходная конструкция запишется следующим образом:

[Fleft( x right)=frac{{{x}^{3}}}{3}-6cdot frac{{{x}^{2}}}{2}+9x+C]

[Fleft( x right)=frac{{{x}^{3}}}{3}-3{{x}^{2}}+9x+C]

Теперь давайте найдем $C$: подставим координаты точки $M$:

[-1=frac{8}{3}-12+18+C]

Выражаем $C$:

[C=-1-6-2frac{2}{3}=-9frac{2}{3}]

Осталось отобразить итоговое выражение:

[Fleft( x right)=frac{{{x}^{3}}}{3}-3{{x}^{2}}+9x-9frac{2}{3}]

Решение тригонометрических задач

В качестве финального аккорда к тому, что мы только что разобрали, предлагаю рассмотреть две более сложные задачи, в которых содержится тригонометрия. В них точно так же потребуется найти первообразные для всех функций, затем выбрать из этого множества одну-единственную, которая проходит через точку $M$ на координатной плоскости.

Забегая наперед, хотел бы отметить, что тот прием, который мы сейчас будем использовать для нахождения первообразных от тригонометрических функций, на самом деле, является универсальным приемом для самопроверки.

Задача № 1

[fleft( x right)=frac{1}{{{cos }^{2}}x}]

[M=left( frac{text{ }!!pi!!text{ }}{text{4}};-1 right)]

Вспомним следующую формулу:

[{{left( text{tg}x right)}^{prime }}=frac{1}{{{cos }^{2}}x}]

Исходя из этого, мы можем записать:

[Fleft( x right)=text{tg}x+C]

Давайте подставим координаты точки $M$ в наше выражение:

[-1=text{tg}frac{text{ }!!pi!!text{ }}{text{4}}+C]

[-1=1+C]

[C=-2]

Перепишем выражение с учетом этого факта:

[Fleft( x right)=text{tg}x-2]

Задача № 2

[fleft( x right)=frac{1}{{{sin }^{2}}x}]

[M=left( -frac{text{ }!!pi!!text{ }}{text{4}};2 right)]

Тут будет чуть сложнее. Сейчас увидите, почему.

Вспомним такую формулу:

[{{left( text{ctg}x right)}^{prime }}=-frac{1}{{{sin }^{2}}x}]

Чтобы избавится от «минуса», необходимо сделать следующее:

[{{left( -text{ctg}x right)}^{prime }}=frac{1}{{{sin }^{2}}x}]

Вот наша конструкция

[Fleft( x right)=-text{ctg}x+C]

Подставим координаты точки $M$:

[2=-text{ctg}left( -frac{text{ }!!pi!!text{ }}{4} right)+C]

[2=text{ctg}frac{text{ }!!pi!!text{ }}{text{4}}+C]

[2=1+C]

[C=1]

Итого запишем окончательную конструкцию:

[Fleft( x right)=-text{ctg}x+1]

Вот и все, о чем я хотел сегодня вам рассказать. Мы изучили сам термин первообразных, как считать их от элементарных функций, а также как находить первообразную, проходящую через конкретную точку на координатной плоскости.

Надеюсь, этот урок хоть немного поможет вам разобраться в этой сложной теме. В любом случае, именно на первообразных строятся неопределенные и неопределенные интегралы, поэтому считать их совершенно необходимо. На этом у меня все. До новых встреч!

Смотрите также:

  1. Таблица первообразных
  2. Интегрирование по частям
  3. Решение задач B12: №448—455
  4. Что такое ЕГЭ по математике 2011 и как его сдавать
  5. Задача B4: случай с неизвестным количеством товара
  6. Задача B15: что делать с квадратичной функцией

Понравилась статья? Поделить с друзьями:
  • Как решать первое задание егэ профильной математики
  • Как решать первое задание егэ по химии 2023
  • Как решать первое задание егэ по химии 2022
  • Как решать первое задание егэ по физике
  • Как решать первое задание егэ по русскому языку 2022