Задание 13 Профильного ЕГЭ (Стереометрия) многие старшеклассники считают самой сложной задачей в варианте. И напрасно! Ничего особенного в ней нет. Просто начинать надо вовремя, лучше всего в десятом классе. И конечно, не с самых сложных задач. Действуем по порядку!
1. Подготовительный этап — решение задач по стереометрии из первой части ЕГЭ. Повторите формулы объемов и площадей поверхности многогранников и тел вращения. Посмотрите, как решаются типовые задачи.
2. Повторите необходимую теорию. Вот краткая Программа по стереометрии. Проверьте себя. Все ли вы знаете? В освоении стереометрии вам поможет наш ЕГЭ-Справочник.
3. Посмотрите, как правильно строить чертежи.
4. Выучили теорию? Применяем на практике — строим сечения.
5. Решаем простые задачи по стереометрии. И после этого — переходим к реальным задачам ЕГЭ.
6. Задачи 13 по стереометрии из Профильного ЕГЭ по математике обычно относятся к одному из типов. Смотрите нашу Классификацию задач по стереометрии и методы их решения.
Вот примеры простых подготовительных задач по стереометрии:
1. Высота правильной треугольной пирамиды равна 4, а угол между боковой гранью и плоскостью основания равен 60 градусов. Найдите расстояние от вершины основания до плоскости противолежащей ей боковой грани.
Посмотреть решение
2. В правильной шестиугольной призме , все ребра которой равны 1, точка G — середина ребра Найдите угол между прямой АG и плоскостью
Посмотреть решение
3. В правильной шестиугольной призме все рёбра равны 1. Найдите расстояние от точки В до плоскости
Посмотреть решение
4. В основании прямой призмы лежит ромб. Найти угол между прямыми и
Посмотреть решение
5. Точка E — середина ребра куба Найдите угол между прямыми и
Посмотреть решение
6. В правильной треугольной призме , все рёбра которой равны . Найдите расстояние между прямыми и
Посмотреть решение
7. Радиус основания конуса с вершиной P равен 6, а длина его образующей равна 9. На окружности основания конуса выбраны точки A и B, делящие окружность на две дуги, длины которых относятся как 1 : 5. Найдите площадь сечения конуса плоскостью ABP.
Посмотреть решение
А теперь — реальные задачи по стереометрии, встретившиеся выпускникам на Профильном ЕГЭ по математике.
8. Точки М и N — середины ребер соответственно АВ и СD треугольной пирамиды АВСD, О — точка пересечения медиан грани АВС.
а) Докажите, что прямая DO проходит через середину отрезка MN.
б) Найдите угол между прямыми MN и ВС, если АВСD — правильный тетраэдр.
Посмотреть решение
9. В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки A, B и C, а на окружности другого основания — точка , причём — образующая цилиндра, а AC — диаметр основания. Известно, что
а) Докажите, что угол между прямыми и равен
б)Найдите объём цилиндра.
Посмотреть решение
10. В основании призмы лежит правильный треугольник, вершина проецируется в центр Q основания АВС.
а) Докажите, что плоскости и перпендикулярны.
б) Найдите угол между прямой и плоскостью если боковое ребро призмы равно стороне основания.
Посмотреть решение
11. Сечением прямоугольного параллелепипеда плоскостью , содержащей прямую и параллельной прямой АС, является ромб.
а) Докажите, что грань ABCD — квадрат.
б) Найдите угол между плоскостями и , если
Посмотреть решение
12. На ребрах АВ и ВС треугольной пирамиды АВСD отмечены точки М и N соответственно, причем
Точки P и Q — середины ребер DA и DC соответственно.
а) Докажите, что точки P, Q, M и N лежат в одной плоскости.
б) Найдите, в каком отношении эта плоскость делит объем пирамиды.
Посмотреть решение
Решаем задачи из сборника И. В. Ященко, 2020. Вариант 6, задача 14
7 лайфхаков для решения задач по стереометрии:
1. Задача по стереометрии не решается без хорошего чертежа! Чертеж строим по линейке, черной ручкой, на клетчатой бумаге, по правилам построения чертежей. На ЕГЭ можно и нужно пользоваться линейкой! А бланк будет в клеточку.
2. Все, что нужно, на чертеже должно быть хорошо видно! Если вам не понравился чертеж — не сидите над ним, бросьте и нарисуйте другой. Одного объемного чертежа будет недостаточно — понадобится один или несколько плоских.
3. Учимся записывать решение кратко. Вспомним основные обозначения
— точка M принадлежит плоскости АВС.
— прямые а и b пересекаются в точке О.
— прямые а и b параллельны.
— прямые а и b перпендикулярны.
4. Почти в каждой задаче по стереометрии встречаются «особенные треугольники»
Давайте вспомним:
— В прямоугольном равнобедренном треугольнике гипотенуза в раз больше катета.
— В треугольнике с углами 30, 60 и 90 градусов гипотенуза в 2 раза больше меньшего катета, а больший катет в раз больше меньшего.
5. Формула для площади прямоугольной проекции фигуры помогает найти угол между плоскостями. Здесь — угол между плоскостью фигуры и плоскостью проекции.
6. Метод объемов помогает найти расстояние от точки до плоскости. Надо выбрать треугольную пирамиду, записать ее объем двумя способами и найти из полученного уравнения нужное расстояние.
7. Сначала изучаем «классику». После этого, если время есть, можно браться и за координатный метод
Почему именно в таком порядке?
Конечно, координатный метод удобен. Однако большинство задач по стереометрии из вариантов ЕГЭ «заточены» под классику.
И если в решении задачи координатным методом вы сделаете арифметическую ошибку — можете потерять все баллы. Эксперт не будет разбираться, правильно ли вы посчитали определитель или смешанное произведение векторов. Потому что эти темы не входят в школьную программу, и составители «конструировали» задачи по стереометрии так, чтобы они решались обычными, «классическими» способами.
Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Задание 13 Профильного ЕГЭ по математике. Стереометрия» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.
Публикация обновлена:
09.03.2023
Цилиндр – тело, ограниченное цилиндрической поверхностью и двумя кругами с границами $М$ и $М_1$. Цилиндрическая поверхность называется боковой поверхностью цилиндра, а круги – основаниями цилиндра.
Образующие цилиндрической поверхности называются образующими цилиндра, на рисунке образующая $L$.
Цилиндр называется прямым, если его образующие перпендикулярны основаниям.
Осевое сечение цилиндра — это прямоугольник, у которого одна сторона равна диаметру основания, а вторая – высоте цилиндра.
Основные понятия и свойства цилиндра:
- Основания цилиндра равны и лежат в параллельных плоскостях.
- Все образующие цилиндра параллельны и равны.
- Радиусом цилиндра называется радиус его основания ($R$).
- Высотой цилиндра называется расстояние между плоскостями оснований (в прямом цилиндре высота равна образующей).
- Осью цилиндра называется отрезок, соединяющий центры оснований ($ОО_1$).
- Если радиус или диаметр цилиндра увеличить в n раз, то объем цилиндра увеличится в $n^2$ раз.
- Если высоту цилиндра увеличить в m раз, то объем цилиндра увеличится в то же количество раз.
- Если призму вписать в цилиндр, то ее основаниями будут являться равные многоугольники, вписанные в основание цилиндра, а боковые ребра — образующими цилиндра.
- Если цилиндр вписан в призму, то ее основания — равные многоугольники, описанные около оснований цилиндра. Плоскости граней призмы касаются боковой поверхности цилиндра.
- Если в цилиндр вписана сфера, то радиус сферы равен радиусу цилиндра и равен половине высоты цилиндра.
$R_{сферы}=R_{цилиндра}={h_{цилиндра}}/{2}$
Площадь поверхности и объем цилиндра.
Площадь боковой поверхности цилиндра равна произведению длины окружности основания на высоту.
$S_{бок.пов.}=2πR·h$
Площадь поверхности цилиндра равна сумме двух площадей оснований и площади боковой поверхности.
$S_{полной.пов.}=2πR^2+2πR·h=2πR(R+h)$
Объем цилиндра равен произведению площади основания на высоту.
$V=πR^2·h$
Объем части цилиндра, в основании которого лежит сектор: $V={πR^2·n°·h}/{360}$, где $n°$ — это градусная мера центрального угла, отсекающего заданный сектор.
Пример:
Цилиндр описан около шара. Объём цилиндра равен $30$. Найдите объём шара.
Решение:
Если в цилиндр вписан шар, то радиус цилиндра равен радиусу шара, а высота цилиндра в два раза больше радиуса шара.
$R_{цилиндр}=R_{шар}; h_{цилиндр}=2R_{шар}$
Распишем формулы объема цилиндра и шара.
$V_{цилиндра}=πR_{цилиндр}^2·h_{цилиндр}=πR_{шар}^2·2R_{шар}=2πR_{шар}^3$
$V_{шара}={4π·R_{шар}^3}/{3}$
Далее надо сравнить во сколько раз объем цилиндра больше объема шара, для этого разделим объемы друг на друга.
${V_{цилиндра}}/{V_{шара}}={2πR_{шар}^3·3}/{4π·R_{шар}^3}={3}/{2}=1.5$
Объем цилиндра больше объема шара в $1.5$ раза, следовательно, чтобы найти объем шара, надо объем цилиндра разделить на $1.5$.
$V_{шара}=30:1.5=20$
Ответ: $20$
Конусом (круговым конусом) называется тело, которое состоит из круга, точки, не лежащей в плоскости этого круга, и всех отрезков, соединяющих заданную точку с точками круга.
Отрезки, соединяющие вершину конуса с точками окружности основания, называются образующими и обозначаются (l).
$l=SA$
Высотой конуса называется перпендикуляр, опущенный из его вершины на плоскость основания. Ось прямого конуса и его высота равны.
$SО$ — высота и ось конуса.
Свойства конуса:
- Все образующие конуса равны.
- Осевым сечением конуса является равнобедренный треугольник, основание которого равно двум радиусам, а боковые стороны равны образующим конуса.
- Если боковая поверхность конуса – полукруг, то осевым сечением является равносторонний треугольник, угол при вершине равен $60°$.
- Если радиус или диаметр конуса увеличить в n раз, то его объем увеличится в $n^2$ раз.
- Если высоту конуса увеличить в m раз, то объем конуса увеличится в то же количество раз.
Площадь поверхности и объем конуса.
Площадь боковой поверхности конуса равна произведению половины длины окружности основания на образующую.
$S_{бок.пов.}=πR·l$
Площадь поверхности конуса равна сумме площади основания и площади боковой поверхности.
$S_{полной.пов.}=πR^2+πR·l=πR(R+l)$
Объем конуса равен трети произведения площади основания на высоту.
$V={πR^2·h}/{3}$
Объем части конуса, в основании которого лежит сектор: $V={πR^2·n°·h}/{360·3}$, где $n°$ — это градусная мера центрального угла, отсекающего заданный сектор.
Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии ($R$) от данной точки (центра сферы $О$).
Тело, ограниченное сферой, называется шаром.
Осевое сечение шара это круг, радиус которого равен радиусу шара. Осевым сечением является самый большой круг шара.
Площадь поверхности сферы: $S_{п.п}=4π·R^2=π·d^2$, где $R$ — радиус сферы, $d$ — диаметр сферы
Объем шара: $V={4π·R^3}/{3}={π·d^3}/{6}$, где $R$ — радиус шара, $d$ — диаметр шара.
Если радиус или диаметр шара увеличить в n раз, то площадь поверхности увеличится в $n^2$ раз, а объем в $n^3$ раз.
Теорема Пифагора
В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.
$АС^2+ВС^2=АВ^2$
Соотношение между сторонами и углами в прямоугольном треугольнике:
В прямоугольном треугольнике $АВС$, с прямым углом $С$:
Для острого угла $В: АС$ — противолежащий катет; $ВС$ — прилежащий катет.
Для острого угла $А: ВС$ — противолежащий катет; $АС$ — прилежащий катет.
- Синусом ($sin$) острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
- Косинусом ($cos$) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
- Тангенсом ($tg$) острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему катету.
Значения тригонометрических функций некоторых углов:
$α$ | $30$ | $45$ | $60$ |
$sinα$ | ${1}/{2}$ | ${√2}/{2}$ | ${√3}/{2}$ |
$cosα$ | ${√3}/{2}$ | ${√2}/{2}$ | ${1}/{2}$ |
$tgα$ | ${√3}/{3}$ | $1$ | $√3$ |
$ctgα$ | $√3$ | $1$ | ${√3}/{3}$ |
Признаки подобия треугольников:
- Если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны.
- Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между ними равны, то такие треугольники подобны.
- Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны. Периметры подобных треугольников и их линейные величины (медианы, биссектрисы, высоты) относятся друг к другу как коэффициент подобия $k$. Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.
Как подготовиться к решению заданий ЕГЭ № 14 по стереометрии | 1С:Репетитор
Как показывают результаты профильного экзамена по математике, задачи по геометрии — в числе самых сложных для выпускников. Тем не менее, решить их, хотя бы частично, а значит заработать дополнительные баллы к общему результату возможно. Для этого необходимо, конечно, знать достаточно много о «поведении» геометрических фигур и уметь применять эти знания для решения задач. Здесь мы постараемся дать некоторые рекомендации, как подготовиться к решению задачи по стереометрии.
Эта задача обычно состоит из двух частей:
За решение данной задачи на экзамене по математике в 2018 году можно получить максимум два первичных балла. Допускается решить только «доказательную» или только «вычислительную» часть задачи и заработать в этом случае один первичный балл.
Многие школьники на экзамене даже не приступают к решению задачи №14, хотя она значительно проще, например, задачи № 16 — по планиметрии.
В задачу № 14 традиционно включается лишь несколько вопросов из всех возможных для стереометрических задач:
В соответствии с этими вопросами строится и подготовка к решению задачи.
Сначала, разумеется, нужно выучить все необходимые аксиомы и теоремы, которые понадобятся для доказательной части задачи. Помимо того, что знание аксиом и теорем поможет вам на экзамене непосредственно при решении задачи, их повторение позволит систематизировать и обобщить ваши знания по стереометрии вообще, то есть создать из этих знаний некую целостную картину.
Итак, что же нужно выучить?
После того как вы повторили теорию, можно приступать к рассмотрению методов решения задач. В курсе «1C:Репетитор» представлены все необходимые материалы для подготовки: видеолекции с теорией, тренажеры с пошаговым решением задач, тесты для самопроверки, интерактивные модели, позволяющие ученикам 10-х и 11-х классов наглядно рассмотреть методы решения задач по стереометрии, в том числе на примерах задач ЕГЭ 2017 года.
Мы рекомендуем решать задачи в такой последовательности:
- Углы в пространстве (между скрещивающимися прямыми, между прямой и плоскостью, между плоскостями);
- Расстояния в пространстве (между двумя точками, между точкой и прямой, между точкой и плоскостью, между скрещивающимися прямыми);
- Решение многогранников, то есть нахождение углов между ребрами и гранями, расстояний между ребрами, площадей поверхностей, объемов по заданным в условии задачи элементам;
- Сечения многогранников — методы построения сечений (например, метод следов) и нахождения площадей сечений и объемов получившихся после построения сечения многогранников (например, использование свойств перпендикулярной проекции и метод объемов).
Для всех указанных типов задач существуют различные методы решения:
Эти методы нужно знать и уметь применять, так как есть задачи, которые довольно сложно решаются одним методом и гораздо проще — другим.
При решении стереометрических задач более эффективным по сравнению с классическим методом нередко оказывается векторно-координатный. Классический метод решения задач требует отличного знания аксиом и теорем стереометрии, умения применять их на практике, строить чертежи пространственных тел и сводить стереометрическую задачу к цепочке планиметрических. Классический метод, как правило, быстрее приводит к искомому результату, чем векторно-координатный, но требует определенной гибкости мышления. Векторно-координатный метод представляет собой набор готовых формул и алгоритмов, но при этом требует более длительных расчетов; тем не менее, для некоторых задач, например, для нахождения углов в пространстве, он предпочтительнее классического.
Многим абитуриентам не позволяет справиться со стереометрической задачей неразвитое пространственное воображение. В этом случае мы рекомендуем использовать для самоподготовки интерактивные тренажеры с динамическими моделями пространственных тел. Такие тренажеры есть на портале «1С:Репетитор» (для перехода к их использованию необходимо зарегистрироваться): работая с ними, вы не только сможете «выстроить» решение задачи «по шагам», но и на объемной модели увидеть все этапы построения чертежа в различных ракурсах.
С помощью таких же динамических чертежей мы рекомендуем учиться строить сечения многогранников. Кроме того, что модель автоматически проверит правильность вашего построения, вы сами сможете, рассматривая сечение с разных сторон, убедиться, верно или неверно оно построено, и если неправильно, то в чем именно ошибка. Построение сечения на бумаге, с помощью карандаша и линейки, конечно, таких возможностей не дает. Посмотрите пример построения сечения пирамиды плоскостью с использованием такой модели (Нажмите на картинку, что бы перейти к тренажеру):
Последний вопрос, на который надо обратить внимание, — это нахождение площадей сечений или объемов, получившихся после построения сечения многогранников. Здесь также существуют подходы и теоремы, которые позволяют в общем случае существенно сократить трудозатраты на поиск решения и получение ответа. В курсе «1С:Репетитор» мы знакомим вас с этими приемами.
Если вы следовали нашим советам, разобрались со всеми вопросами, которые здесь затронуты, и решили достаточное количество задач, то велика вероятность, что вы практически готовы к решению задачи по стереометрии на профильном ЕГЭ по математике в 2018 году. Дальше необходимо только поддерживать себя «в форме» до самого экзамена, то есть решать, решать и решать задачи, совершенствуя свое умение применять изученные приемы и методы в разных ситуациях. Удачи!
Регулярно тренируйтесь в решении задач
Чтобы начать заниматься на портале «1С:Репетитор», достаточно зарегистрироваться.
Вы можете:
- Начать заниматься бесплатно.
- Получить доступ ко всей теории и тренажерам задачи №14. Это стоит всего 990 рублей.
- Купить доступ к этой задаче в составе экспресс-курса «Геометрия» и научиться решать задачи №14 и №16 на максимальный балл.
Все курсы состоят из методически правильной последовательности теории и практики, необходимой для успешного решения задач. Включают теорию в форме текстов, слайдов и видео, задачи с решениями, интерактивные тренажеры, модели, и тесты.
Остались вопросы? Позвоните нам по телефону 8 800 551-50-78 или напишите в онлайн-чат.
Здесь ключевые фразы, чтобы поисковые роботы лучше находили наши советы:
Как решать задание 14 на экзамене ЕГЭ, задачи по геометрии, решение задач, по стереометрии, методы решения задач, тренажеры, видео, КИМ ЕГЭ 2017, подготовка к ЕГЭ, профиль математика, математика профильного уровня, решение задачи по наклонной треугольной призме, грани, взаимно перпендикулярно, общее ребро, плоскости, точки, ребро равно, боковая поверхность, решение задач на сечение многогранника, перпендикулярное сечение, вычислить объем фигуры, в основании прямой треугольной призмы лежит, признаки равенства и подобия треугольников, примеры решения задач ЕГЭ по геометрии, вычисление сечения, задачи по математике профильного уровня, применение методов сечения, решение задач на площадь, задачи ЕГЭ 2017 по стереометрии, подготовка к ЕГЭ, выпускникам 11 класса, в 2018 году, поступающим в технический вуз.
Задание ЕГЭ №13 (бывшая ЕГЭ №14) по стереометрии считается очень сложным на ЕГЭ. И многие за нее не берутся.
А зря!
Если проходить стереометрию от простого к сложному освоить стереометрию можно. В 2022 году за ЕГЭ №13 дают не 2, а целых 3 балла на ЕГЭ! И вы можете их получить.
Читайте эту статью, смотрите вебинары и решайте задачи вместе с Алексеем Шевчуком и вы полюбите стереометрию.
ЕГЭ 13 Стереометрия. Расстояние между точками и от точки до прямой
Расстояние между точками и от точки до прямой – это первое видео раздела “Стереометрия”, входящее в наш курс подготовки к ЕГЭ (о нем ниже).
В этом видео мы научимся “видеть” 3-мерное пространство и изображать 3-мерные объекты на бумаге (то есть на плоской поверхности).
Затем мы научимся двум основным вещам – находить расстояние между точками на таких рисунках, а также расстояние от точки до прямой.
На этих умениях строится всё дальнейшее изучение стереометрии. В общем это очень важное, базовое видео, с которого нужно начинать изучение стереометрии. Не перескакивайте, не пропускайте его!
Даже если вы знаете стереометрию, вы найдете для себя очень много полезного и нового в этом видео.
ЕГЭ 13 (14). Стереометрия. Разбор варианта профильного ЕГЭ 2020
Нужно великолепно знать основные теоремы планиметрии, уметь рассчитывать расстояния, площади и объемы плоских и объемных фигур.
Но самое сложное, нужно научиться строить доказательства с помощью этих теорем и правильно их записывать.
Давайте этим займемся.
- 00:00 Условие задачи
- 00:25 Как нарисовать шестиугольную пирамиду
- 05:52 Как подписать вершины пирамиды
- 06:24 Как исправить рисунок, если грани пирамиды сливаются
- 10:18 Доказательство пункта А
- 14:13 Запись доказательства пункта А
- 18:50 Доказательство (решение) пункта Б (Найти объем пирамиды)
- 23:45 Запись доказательства (решения) пункта Б
- 26:08 Найдем площадь основания пирамиды (чтобы найти объем) и запишем решение
- 29:18 Нахождение объема пирамиды
- 29:59 На что рекомендуем обратить внимание
Самые бюджетные курсы по подготовке к ЕГЭ на 90+
Алексей Шевчук – ведущий мини-групп
математика, информатика, физика
+7 (905) 541-39-06 – WhatsApp/Телеграм для записи
alexei.shevchuk@youclever.org – email для записи
- тысячи учеников, поступивших в лучшие ВУЗы страны
- автор понятного всем учебника по математике ЮКлэва (с сотнями благодарных отзывов);
- закончил МФТИ, преподавал на малом физтехе;
- репетиторский стаж – c 2003 года;
- в 2021 году сдал ЕГЭ (математика 100 баллов, физика 100 баллов, информатика 98 баллов – как обычно дурацкая ошибка:);
- отзыв на Профи.ру: “Рейтинг: 4,87 из 5. Очень хвалят. Такую отметку получают опытные специалисты с лучшими отзывами”.
4 марта 2022
В закладки
Обсудить
Жалоба
Задачи по стереометрии в профильном ЕГЭ
Запись вебинара.
Задание 5
Основные типы задач на нахождение
→ объёма тела (многогранника, цилиндра, конуса или других)
→ площади поверхности
→ угла между прямыми
→ расстояния между точками
Задание 13
→ Построение сечений.
→ Угол между прямыми.
→ Угол между плоскостями.
→ Угол между прямой и плоскостью.
→ Расстояние от точки до плоскости.
→ Расстояние между скрещивающимися прямыми.
Презентация: zster.pdf
Подготовка к профильному уровню единого государственного экзамена по математике. Полезные материалы по стереометрии, видеоразборы задач и подборка заданий прошлых лет.
Полезные материалы
Подборки видео и онлайн-курсы
- Все ролики с заданием 14
- Все ролики по стереометрии
- Мини-курс «Задачи по стереометрии на ЕГЭ по математике (задача №14)»
- Мини-курс «Векторный метод в пространстве»
Как решать стереометрию
Теорема о трёх перпендикулярах
Как найти объем. Принцип Кавальери
Видеоразборы задач
В треугольной пирамиде $SABC$ $SB=SC=AC=AB=sqrt{17}$, $SA= BC = 2sqrt5$.
а) Докажите, что прямые $BC$ и $SA$ перпендикулярны.
б) Найдите расстояние между прямыми $BC$ и $SA$.
В прямом круговом конусе с вершиной $S$ и центром основания $O$ радиус основания равен 13, а высота равна $3sqrt{41}$. Точки $A$ и $B$ — концы образующих, $M$ — середина $SA$, $N$ — точка в плоскости основания такая, что прямая $MN$ параллельна прямой $SB$.
а) Докажите что угол $ANO$ — прямой.
б) Найдите угол между $MB$ и плоскостью основания, если дополнительно известно что $AB = 10$.
В правильной треугольной призме $ABCA_1B_1C_1$ все рёбра равны 2. Точка $M$ — середина ребра $AA_1$.
а) Докажите, что прямые $MB$ и $B_1C$ перпендикулярны.
б) Найдите расстояние между прямыми $MB$ и $B_1C$.
На окружности одного из оснований прямого кругового цилиндра выбраны точки $A$ и $B$, а на окружности другого основания — точки $B_1$ и $C_1$, причём $BB_1$ — образующая цилиндра, а отрезок $AC_1$ пересекает ось цилиндра.
а) Докажите, что угол $C_1BA$ прямой.
б) Найдите расстояние от точки $B$ до прямой $AC_1$, если $AB=12$, $BB_1=4$ и $B_1C_1 = 3$.
Дана правильная четырехугольная призма $ABCDA_1B_1C_1D_1$. На ребре $AA_1$ отмечена точка $K$ так, что $AK : KA_1 = 1 : 2$. Плоскость $alpha$ проходит через точки $B$ и $K$ параллельно прямой $AC$. Эта плоскость пересекает ребро $DD_1$ в точке $M$.
а) Докажите, что $DM : MD_1 = 2 : 1$.
б) Найдите площадь сечения, если $AB = 4$, $AA_1 = 6$.
Длина диагонали куба $ABCDA_1B_1C_1D_1$ равна 3. На луче $A_1C$ отмечена точка $P$ так, что $A_1P = 4$.
a) Докажите, что грань $PBDC_1$ — правильный тетраэдр.
б) Найдите длину отрезка $AP$.
Сечением прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$ плоскостью $alpha$, содержащей прямую $BD_1$ и параллельной прямой $AC$, является ромб.
a) Докажите, что грань $ABCD$ — квадрат.
б) Найдите угол между плоскостями $alpha$ и $BCC_1$, если $AA_1 = 6$, $AB = 4$.
В правильной треугольной призме $ABCA_1B_1C_1$ сторона основания $AB$ равна 6, а боковое ребро $AA_1$ равно 3. На ребре $AB$ отмечена точка $K$ так, что $AK = 1$. Точки $M$ и $L$ — середины ребер $A_1C_1$ и $B_1C_1$ соответственно. Плоскость $gamma$ параллельна прямой $AC$ и содержит точки $K$ и $L$.
а) Докажите, что прямая $BM$ перпендикулярна плоскости $gamma$;
б) Найдите расстояние от точки $C$ до плоскости $gamma$.
Дана правильная четырехугольная призма $ABCDA_1B_1C_1D_1$. На ребре $AA_1$ отмечена точка $K$ так, что $AK : KA_1 = 1 : 2$. Плоскость $alpha$ проходит через точки $B$ и $K$ параллельно прямой $AC$. Эта плоскость пересекает ребро $DD_1$ в точке $M$.
а) Докажите, что $DM : MD_1 = 2 : 1$.
б) Найдите площадь сечения, если $AB = 4$, $AA_1 = 6$.
Подборка заданий прошлых лет
- В прямом круговом конусе с вершиной $S$ и центром основания $O$ радиус основания равен 13, а высота равна $3sqrt{41}$. Точки $A$ и $B$ — концы образующих, $M$ — середина $SA$, $N$ — точка в плоскости основания такая, что прямая $MN$ параллельна прямой $SB$.
а) Докажите что угол $ANO$ — прямой.
б) Найдите угол между $MB$ и плоскостью основания, если дополнительно известно что $AB = 10$.
(ЕГЭ-2019, досрочная волна, резервный день) - В треугольной пирамиде $SABC$ $SB=SC=AC=AB=sqrt{17}$, $SA= BC = 2sqrt5$.
а) Докажите, что прямые $BC$ и $SA$ перпендикулярны.
б) Найдите расстояние между прямыми $BC$ и $SA$.
(ЕГЭ-2019, досрочная волна) - В треугольной пирамиде $SABC$ $SB=SC=sqrt{17}$, $AB=AC=sqrt{29}$, $SA= BC = 2sqrt5$.
а) Докажите, что прямые $BC$ и $SA$ перпендикулярны.
б) Найдите угол между прямой $SA$ и плоскостью $SBC$.
(ЕГЭ-2019, досрочная волна) - Дана правильная четырехугольная призма $ABCDA_1B_1C_1D_1$. На ребре $AA_1$ отмечена точка $K$ так, что $AK : KA_1 = 1 : 2$. Плоскость $alpha$ проходит через точки $B$ и $K$ параллельно прямой $AC$. Эта плоскость пересекает ребро $DD_1$ в точке $M$.
а) Докажите, что $DM : MD_1 = 2 : 1$.
б) Найдите площадь сечения, если $AB = 4$, $AA_1 = 6$.
(ЕГЭ-2018, досрочная волна) - В правильной треугольной призме $ABCA_1B_1C_1$ все рёбра равны~2. Точка $M$ — середина ребра $AA_1$.
а) Докажите, что прямые $MB$ и $B_1C$ перпендикулярны.
б) Найдите расстояние между прямыми $MB$ и $B_1C$.
(ЕГЭ-2018, досрочная волна, резервный день) - На окружности одного из оснований прямого кругового цилиндра выбраны точки $A$ и $B$, а на окружности другого основания — точки $B_1$ и $C_1$, причём $BB_1$ — образующая цилиндра, а отрезок $AC_1$ пересекает ось цилиндра.
а) Докажите, что угол $C_1BA$ прямой.
б) Найдите расстояние от точки $B$ до прямой $AC_1$, если $AB=12$, $BB_1=4$ и $B_1C_1 = 3$.
(ЕГЭ-2018, основная волна) - На окружности одного из оснований прямого кругового цилиндра выбраны точки $A$ и $B$, а на окружности другого основания — точки $B_1$ и $C_1$, причём $BB_1$ — образующая цилиндра, а отрезок $AC_1$ пересекает ось цилиндра.
а) Докажите, что угол $ABC_1$ прямой.
б) Найдите угол между прямыми $BB_1$ и $AC_1$, если $AB = 6$, $BB_1 = 15$, $B_1C_1 = 8$.
(ЕГЭ-2018, основная волна) - На окружности одного из оснований прямого кругового цилиндра выбраны точки $A$, $B$ и $C$, а на окружности другого основания — точка $C_1$, причём $CC_1$ — образующая цилиндра, а $AC$ — диаметр основания. Известно, что $angle ACB = 30^{circ}$, $AB = sqrt2$, $CC_1 = 2$.
а) Докажите,что угол между прямыми $AC_1$ и $BC$ равен $45^{circ}$.
б) Найдите объём цилиндра.
(ЕГЭ-2018, основная волна) - В кубе $ABCDA_1B_1C_1D_1$ все ребра равны 6.
а) Докажите, что угол между прямыми $AC$ и $BC_1$ равен $60^{circ}$.
б) Найдите расстояние между прямыми $AC$ и $BC_1$.
(ЕГЭ-2018, основная волна) - На ребре $AB$ правильной четырёхугольной пирамиды $SABCD$ с основанием $ABCD$ отмечена точка $Q$, причём $AQ:OB=1:2$. Точка $P$ — середина ребра $AS$.
а) Докажите, что плоскость $DPQ$ перпендикулярна плоскости основания пирамиды.
б) Найдите площадь сечения $DPQ$, если площадь сечения $DSB$ равна 6.
(ЕГЭ-2018, основная волна, резервный день) - В правильном тетраэдре $ABCD$ точка $H$ — центр грани $ABC$, а точка $M$ — середина ребра $CD$.
а) Докажите, что прямые $AB$ и $CD$ перпендикулярны.
б) Найдите угол между прямыми $DH$ и $BM$.
(ЕГЭ-2018, основная волна, резервный день) - Основанием прямой четырехугольной призмы $ABCDA_1B_1C_1D_1$ является ромб $ABCD$, $AB = AA_1$.
а) Докажите, что прямые $A_1C$ и $BD$ перпендикулярны.
б) Найдите объем призмы, если $A_1C = BD = 2$.
(ЕГЭ-2017, основная волна, резервный день) - В правильной четырехугольной пирамиде $SABCD$ все ребра равны 5. На ребрах $SA$, $AB$, $BC$ взяты точки $P$, $Q$, $R$ соответственно так, что $PA = AQ = RC = 2$.
а) Докажите, что плоскость $PQR$ перпендикулярна ребру $SD$.
б) Найдите расстояние от вершины $D$ до плоскости $PQR$.
(ЕГЭ-2017, основная волна, резервный день) - В треугольной пирамиде $PABC$ с основанием $ABC$ известно, что $AB = 17$, $PB = 10$, $cos angle PBA = dfrac{32}{85}$. Основанием высоты этой пирамиды является точка $C$. Прямые $PA$ и $BC$ перпендикулярны.
а) Докажите, что треугольник $ABC$ прямоугольный.
б) Найдите объем пирамиды $PABC$.
(ЕГЭ-2017, основная волна, резервный день) - Ребро куба $ABCDA_1B_1C_1D_1$ равно 6. Точки $K$, $L$ и $M$ — центры граней $ABCD$, $AA_1D_1D$ и $CC_1D_1D$ соответственно.
а) Докажите, что $B_1KLM$ — правильная пирамида.
б) Найдите объём $B_1KLM$.
(ЕГЭ-2017, основная волна) - В треугольной пирамиде $SABC$ известны боковые рёбра: $SA = SB = 7$, $CS = 5$. Основанием высоты этой пирамиды является середина медианы $CM$ треугольника $ABC$. Эта высота равна 4.
а) Докажите, что треугольник $ABC$ равнобедренный.
б) Найдите объём пирамиды $SABC$.
(ЕГЭ-2017, основная волна) - Основанием прямой треугольной призмы $ABCA_1B_1C_1$ является прямоугольный треугольник $ABC$ с прямым углом $C$. Диагонали боковых граней $AA_1B_1B$ и $BB_1C_1C$ равны 15 и 9 соответственно, $AB = 13$.
а) Докажите, что треугольник $BA_1C_1$ прямоугольный.
б) Найдите объём пирамиды $AA_1C_1B$.
(ЕГЭ-2017, основная волна) - Основанием прямой треугольной призмы $ABCA_1B_1C_1$ является прямоугольный треугольник $ABC$ с прямым углом $C$. Прямые $CA_1$ и $AB_1$ перпендикулярны.
а) Докажите, что $AA_1 = AC$.
б) Найдите расстояние между прямыми $CA_1$ и $AB_1$, если $AC = 6$, $BC = 3$.
(ЕГЭ-2017, основная волна) - На ребрах $AB$ и $BC$ треугольной пирамиды $ABCD$ отмечены точки $M$ и $N$ соответственно, причём $AM:MB = CN:NB = 1:3$. Точки $P$ и $Q$ — середины сторон $DA$ и $DC$ соответственно.
а) Доказать, что $P$, $Q$, $M$ и $N$ лежат в одной плоскости.
б) Найти отношение объемов многогранников, на которые плоскость $PQM$ разбивает пирамиду.
(ЕГЭ-2017, основная волна) - Сечением прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$ плоскостью $alpha$ содержащей прямую $BD_1$ и параллельной прямой $AC$, является ромб.
а) Докажите, что грань $ABCD$ — квадрат.
б) Найдите угол между плоскостями $alpha$ и $BCC_1$, если $AA_1 = 6$, $AB = 4$.
(ЕГЭ-2017, досрочная волна) - В правильной треугольной призме $ABCA_1B_1C_1$ сторона $AB$ основания равна 12, а высота призмы равна 2. На рёбрах $B_1C_1$ и $AB$ отмечены точки $P$ и $Q$ соответственно, причём $PC_1 = 3$, а $AQ = 4$. Плоскость $A_1PQ$ пересекает ребро $BC$ в точке $M$.
а) Докажите, что точка $M$ является серединой ребра $BC$.
б) Найдите расстояние от точки $B$ до плоскости $A_1PQ$.
(ЕГЭ-2016, основная волна) - На рёбрах $DD_1$ и $BB_1$ куба $ABCDA_1B_1C_1D_1$ с ребром 12 отмечены точки $P$ и $Q$ соответственно, причём $DP = 10$, а $B_1Q = 4$. Плоскость $A_1PQ$ пересекает ребро $CC_1$ в точке $M$.
а) Докажите, что точка $M$ является серединой ребра $CC_1$.
б) Найдите расстояние от точки $C_1$ до плоскости $A_1PQ$.
(ЕГЭ-2016, основная волна) - В правильной четырёхугольной пирамиде $SABCD$ сторона $AB$ основания равна $2sqrt{3}$, а высота $SH$ пирамиды равна 3. Точки $M$ и $N$ — середины рёбер $CD$ и $AB$, соответственно, а $NT$ — высота пирамиды $NSCD$ с вершиной $N$ и основанием $SCD$.
а) Докажите, что точка $T$ является серединой $SM$.
б) Найдите расстояние между $NT$ и $SC$.
(ЕГЭ-2016, основная волна) - В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ сторона $AB$ основания равна 6, а боковое ребро $AA_1$ равно $3sqrt2$. На ребрах $BC$ и $C_1D_1$ отмечены точки $K$ и $L$ соответственно, причём $BK = 4$, $C_1L = 5$. Плоскость $gamma$ параллельна прямой $BD$ и содержит точки $K$ и $L$.
а) Докажите, что прямая $AC_1$ перпендикулярна плоскости $gamma$;
б) Найдите расстояние от точки $B_1$ до плоскости $gamma$.
(ЕГЭ-2016, основная волна) - В правильной четырёхугольной пирамиде $SABCD$ сторона $AB$ основания равна 16, а высота пирамиды равна 4. На рёбрах $AB$, $CD$ и $AS$ отмечены точки $M$, $N$ и $K$ соответственно, причём $AM = DN = 4$ и $AK = 3$.
а) Докажите, что плоскости $MNK$ и $SBC$ параллельны.
б) Найдите расстояние от точки $M$ до плоскости $SBC$.
(ЕГЭ-2016, основная волна) - В правильной треугольной призме $ABCA_1B_1C_1$ все рёбра равны 8. На рёбрах $AA_1$ и $CC_1$ отмечены точки $M$ и $N$ соответственно, причём $AM = 3$, $CN = 1$.
а) Докажите, что плоскость $MNB_1$ разбивает призму на два многогранника, объёмы которых равны.
б) Найдите объём тетраэдра $MNBB_1$.
(ЕГЭ-2016, досрочная волна) - В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ сторона $AB$ основания равна 6, а боковое ребро $AA_1$ равно $3sqrt2$. На ребрах $BC$ и $C_1D_1$ отмечены точки $K$ и $L$ соответственно, причём $BK = 4$, $C_1L = 5$. Плоскость $gamma$ параллельна прямой $BD$ и содержит точки $K$ и $L$.
а) Докажите, что прямая $AC_1$ перпендикулярна плоскости $gamma$;
б) Найдите расстояние от точки $B_1$ до плоскости $gamma$.
(ЕГЭ-2016, основная волна) - В правильной четырёхугольной пирамиде $SABCD$ сторона $AB$ основания равна 16, а высота пирамиды равна 4. На рёбрах $AB$, $CD$ и $AS$ отмечены точки $M$, $N$ и $K$ соответственно, причём $AM = DN = 4$ и $AK = 3$.
а) Докажите, что плоскости $MNK$ и $SBC$ параллельны.
б) Найдите расстояние от точки $M$ до плоскости $SBC$.
(ЕГЭ-2016, основная волна) - В правильной треугольной призме $ABCA_1B_1C_1$ все рёбра равны 8. На рёбрах $AA_1$ и $CC_1$ отмечены точки $M$ и $N$ соответственно, причём $AM = 3$, $CN = 1$.
а) Докажите, что плоскость $MNB_1$ разбивает призму на два многогранника, объёмы которых равны.
б) Найдите объём тетраэдра $MNBB_1$.
(ЕГЭ-2016, досрочная волна) - Дана правильная треугольная призма $ABCA_1B_1C_1$, все рёбра которой равны 6. Через точки $A$, $C_1$ и середину $T$ ребра $A_1B_1$ проведена плоскость.
а) Докажите, что сечение призмы указанной плоскостью является прямоугольным треугольником.
б) Найдите угол между плоскостью сечения и плоскостью $ABC$.
(ЕГЭ-2016, досрочная волна) - В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ сторона основания $AB = 6$, а боковое ребро $AA_1 = 4sqrt3$. На рёбрах $AB$, $A_1D_1$ и $C_1D_1$ отмечены точки $M$, $N$ и $K$ соответственно, причём $AM = A_1N = C_1K = 1$.
а) Пусть $L$ — точка пересечения плоскости $MNK$ с ребром $BC$. Докажите, что $MNKL$ — квадрат.
б) Найдите площадь сечения призмы плоскостью $MNK$.
(ЕГЭ-2016, досрочная волна) - В правильной треугольной пирамиде $SABC$ сторона основания $AB$ равна 24, а боковое ребро $SA$ равно 19. Точки $M$ и $N$ — середины рёбер $SA$ и $SB$ соответственно. Плоскость $alpha$ содержит прямую $MN$ и перпендикулярна плоскости основания пирамиды.
а) Докажите, что плоскость $alpha$ делит медиану $CE$ основания в отношении $5 : 1$, считая от точки $C$.
б) Найдите площадь многоугольника, являющегося сечением пирамиды $SABC$ плоскостью $alpha$.
(ЕГЭ-2015, основная волна) - В кубе $ABCDA_1B_1C_1D_1$ все рёбра равны 4. На его ребре $BB_1$ отмечена точка $K$ так, что $KB = 3$. Через точки $K$ и $C_1$ проведена плоскость $alpha$, параллельная прямой $BD_1$.
а) Докажите, что $A_1P: PB_1 = 2:1$, где $P$ — точка пересечения плоскости $alpha$ с ребром $A_1B_1$.
б) Найдите угол наклона плоскости $alpha$ к плоскости грани $BB_1C_1C$.
(ЕГЭ-2015, досрочная волна)