Сдай ЕГЭ! Бесплатные материалы для
подготовки каждую неделю!
null
Нажимая на кнопку, вы даете согласие на обработку своих персональных
данных согласно 152-ФЗ. Подробнее
Материалы для подготовки к ЕГЭ по математике базового и профильного уровня
Оглавление:
-
Поиск по материалам:
-
Полный курс для подготовки к ЕГЭ по математике
-
Профильный ЕГЭ по математике. Все задачи
-
Варианты Статград
-
Задачи из сборника И. В. Ященко, 2021 год
-
Задачи из сборника И. В. Ященко, 2020 год
-
Новые варианты для подготовки к ЕГЭ и ОГЭ с ответами и решениями:
-
Выберите раздел:
-
Необходимый минимум
-
Планиметрия
-
Алгебра
-
Тригонометрия
-
Стереометрия
-
Часть 2 (задачи 13 — 19) на ЕГЭ по математике.
-
Советы и рекомендации по подготовке к экзамену
-
Об этом сайте:
Полный спектр материалов для подготовки к ЕГЭ по математике + решение задач по всем темам ЕГЭ. В каждой теме и каждой задаче есть свои секреты. О них вам может рассказать только очень хороший учитель или репетитор. Такой, как мы. Читайте, изучайте, скачивайте то, чего не найдёте в учебниках! Вы можете скачать весь курс бесплатно сразу или найти то, что ищете, на этой странице.
Справочник для подготовки к ЕГЭ Анны Малковой
Актуальные видео по математике
к оглавлению ▴
Полный курс для подготовки к ЕГЭ по математике
-
New
ЕГЭ-2022, математика. Все задачи с решениями
-
New
Задачи с параметрами на ЕГЭ-2022: модули, окружности, квадратные уравнения
-
New
Тренировочная работа от 28.09.2021, Статград. Задача №18 (Числа и их свойства)
-
New
Новые задачи по теории вероятностей из Открытого Банка заданий ЕГЭ, 2021-2022 год
-
New
Комплексные числа на ЕГЭ по математике
-
New
ЕГЭ-2021, Математика. Все задачи
-
New
Тренировочная работа № 3. Задачи 13-19
-
New
Задача с секретом о пиратах и дукатах из сборника И. В. Ященко
- Стрим 20 августа 2020 года. Лучшие задачи ЕГЭ-2020
- ЕГЭ-2020 по математике. Сложные задачи, неравноценные варианты и одно неравенство для всей страны
- Тренировочная работа 18 декабря 2019 года. Задача 19
- Учителю и репетитору: Методика, программы подготовки к ЕГЭ, поурочные планы
- Тесты и варианты ЕГЭ с решениями и ответами
- Алгебра – основные понятия и формулы
- Теория вероятностей
- Текстовые задачи
- Решение уравнений
- Решение неравенств
- Тригонометрия
- Планиметрия
- Стереометрия
- Функции и графики. Производная и первообразная
- «Экономические» задачи на ЕГЭ по математике
- Задачи с параметрами
- Нестандартные задачи на числа и их свойства
- Советы и рекомендации для подготовки к ЕГЭ по математике
к оглавлению ▴
Профильный ЕГЭ по математике. Все задачи
- Задание 1. Планиметрия
- Задание 2. Стереометрия
- Задание 3. Теория вероятностей. Основные понятия
- Задание 4. Теория вероятностей, повышенный уровень сложности
- Задание 5. Простейшие уравнения
- Задание 6. Вычисления и преобразования
- Задание 7. Производная и первообразная
- Задание 8. Задачи с прикладным содержанием
- Задание 9. Текстовые задачи
- Задание 10. Функции и графики
- Задание 11. Исследование функций
- Задание 12. Уравнения на ЕГЭ по математике
- Задание 13. Стереометрия на ЕГЭ по математике
- Задание 14. Неравенства на ЕГЭ по математике
- Задание 15. «Экономические» задачи на ЕГЭ по математике
- Задание 16. Планиметрия на ЕГЭ по математике
- Задание 17. Задачи с параметрами на ЕГЭ по математике
- Задание 18. Задачи на числа и их свойства на ЕГЭ по математике Нестандартные задачи
- Таблица перевода баллов ЕГЭ, Профильный уровень
Как решалась задача №17 на ЕГЭ-2018?
к оглавлению ▴
Варианты Статград
New
Тренировочная работа № 3. Задачи 13-19
Тренировочная работа 29.01.20. Вариант Восток
Тренировочная работа 29.01.20. Вариант Запад
Тренировочная работа 25.09.19. Вариант Запад
Тренировочная работа 25.09.19. Вариант Восток
Тренировочная работа 24.01.19. Вариант Запад
Тренировочная работа 24.01.19. Вариант Восток
Тренировочная работа 18.12.19 Вариант Запад
Тренировочная работа 30.09.20
Диагностическая работа 16.12.20
Досрочный ЕГЭ 2020 года, Профильная математика
Новая задача 18 Профильного ЕГЭ по математике (числа и их свойства), январь, восток
Новая задача 18 Профильного ЕГЭ по математике, Параметры, 24 января 2019, запад
Новая задача 16 Профильного ЕГЭ по математике, Геометрия, январь, запад
к оглавлению ▴
Задачи из сборника И. В. Ященко, 2021 год
- Вариант 1, Задача 13
- Вариант 6, Задача 13
- Вариант 11, Задача 13
- Вариант 17, Задача 13
- Вариант 22, Задача 13
- Вариант 28, Задача 13
- Вариант 1, Задача 15
- Вариант 3, Задача 15
- Вариант 5, Задача 15
- Вариант 12, Задача 15
- Вариант 17, Задача 15
- Вариант 24, Задача 15
- Задача 18. Пираты и дукаты
к оглавлению ▴
Задачи из сборника И. В. Ященко, 2020 год
- Вариант 6, задача 14
- Вариант 8, задача 15
- Вариант 32, задача 15
- Вариант 36, задача 15
- Вариант 2, задача 16
- Вариант 4, задача 16
- Вариант 6, задача 16
- Вариант 8, задача 16
- Вариант 12, задача 16
- Вариант 1, задача 17
- Вариант 5, задача 17
- Вариант 11, задача 17
- Вариант 26, задача 17
- Вариант 36, задача 17
- Вариант 27, задача 19
к оглавлению ▴
Новые варианты для подготовки к ЕГЭ и ОГЭ с ответами и решениями:
- ЕГЭ-2018, профильный уровень. Разбор задач 13-19
- ЕГЭ, профильный уровень. Тренировочный вариант 1
- ЕГЭ, профильный уровень. Тренировочный вариант 2
- ЕГЭ, профильный уровень. Тренировочный вариант 3
- ЕГЭ, профильный уровень. Тренировочный вариант 4
- ЕГЭ, профильный уровень. Тренировочный вариант 5
- ОГЭ. Тренировочный вариант 1
- ОГЭ. Тренировочный вариант 2
к оглавлению ▴
Выберите раздел:
- Методика подготовки к ЕГЭ по математике Анны Малковой
- Пройди необычный тест ЕГЭ и узнай будущее!
- Программа подготовки к ЕГЭ по математике
- Учителям и репетиторам: программа подготовки к ЕГЭ для 10-го класса
- Как распределить время на ЕГЭ по математике
- Необходимый минимум
- Тригонометрия
- Планиметрия
- Стереометрия
- Алгебра
- Задачи 13-19
к оглавлению ▴
Необходимый минимум
-
- Задача 1. Решается всегда!
- Задача 2. Чтение графика функции
- Теория вероятностей. Основные понятия.
-
Видео бесплатно!
Теория вероятностей на ЕГЭ по математике. Полный курс.
- Текстовые задачи. Движение и работа
- Текстовые задачи. Проценты, сплавы, растворы…
- ЕГЭ без ошибок. Вычисляем без калькулятора
к оглавлению ▴
Планиметрия
- Геометрия. Формулы площадей фигур.
- Программа по геометрии. Список необходимых фактов и теорем.
- Синус, косинус и тангенс острого угла прямоугольного треугольника
- Тригонометрический круг: вся тригонометрия на одном рисунке
- Внешний угол треугольника. Синус и косинус внешнего угла
- Высота в прямоугольном треугольнике
- Сумма углов треугольника
- Углы при параллельных прямых и секущей
- Высоты, медианы, биссектрисы треугольника
- Четырёхугольники
- Параллелограмм
- Прямоугольник
- Ромб
- Квадрат
- Трапеция
- Окружность. Центральный и вписанный угол
- Касательная к окружности
- Вписанные и описанные треугольники. Теорема синусов
- Вписанные и описанные четырёхугольники
- Правильный треугольник
- Правильный шестиугольник
- Векторы и операции над ними
- Геометрия в школе: засада для абитуриента
- Геометрический парадокс: Прямой угол равен тупому
- Геометрический парадокс: Катет равен гипотенузе
к оглавлению ▴
Алгебра
- Числовые множества
- Степени и корни.
- Что такое функция?
- Чтение графика функции
- Парабола и квадратные неравенства.
- Степенная функция
- Показательная функция
- Показательные уравнения
- Логарифмы
- Логарифмическая функция
- Элементарные функции и их графики
- Показательные и логарифмические неравенства. 1
- Показательные и логарифмические неравенства. 2
- Число e
-
Видео бесплатно!
Производная функции. Геометрический смысл производной
- Таблица производных и правила дифференцирования
- Модуль числа
- Уравнения и неравенства с модулем
- Метод интервалов
к оглавлению ▴
Тригонометрия
- Тригонометрический круг: вся тригонометрия на одном рисунке
- Тригонометрические формулы. Необходимый минимум
-
Видео бесплатно!
Формулы приведения
- Тригонометрические формулы. Сводка для части 1
- Тригонометрические формулы. Сводка для части 2
- Тригонометрические функции
- Простейшие тригонометрические уравнения, 1
- Простейшие тригонометрические уравнения, 2
- Тригонометрические уравнения
к оглавлению ▴
Стереометрия
- Многогранники: формулы объема и площади поверхности
- Тела вращения: формулы объема и площади поверхности
- Задачи по стереометрии часть 1: Просто применяем формулы
- Задачи по стереометрии часть 2: Приемы и секреты
- Задача 14 (часть 2 ЕГЭ по математике). Программа по стереометрии
- Плоскость в пространстве. Взаимное расположение плоскостей
- Прямые в пространстве. Пересекающиеся, параллельные, скрещивающиеся прямые
- Параллельность прямой и плоскости
- Угол между прямой и плоскостью. Перпендикулярность прямой и плоскости
- Параллельность плоскостей
- Угол между плоскостями. Перпендикулярность плоскостей
- Угол и расстояние между скрещивающимися прямыми. Расстояние от точки до плоскости
- Теорема о трёх перпендикулярах
- Параллельное проецирование
- Как строить чертежи в задачах по стереометрии
- Векторы и метод координат в задаче 14, часть 2 ЕГЭ по математике
- В.М. Мамаева. «Перпендикулярность. Книга для учащихся»
- В.М. Мамаева. «Перпендикулярность. Книга для учителя»
- В.М. Мамаева. «Тела вращения. Книга для учащихся»
- В.М. Мамаева. «Тела вращения. Книга для учителя»
к оглавлению ▴
Часть 2 (задачи 13 — 19) на ЕГЭ по математике.
Видео
Задача 13: Уравнения на ЕГЭ по математике. Полный курс.
Видео
Задача 14: Стереометрия на ЕГЭ по математике. Полный курс. Оба метода — классика и векторы. Более 3 часов видео.
Видео
Задача 15: Неравенства на ЕГЭ по математике. Полный курс в двух частях.
Видео
Задача 16: Геометрия на ЕГЭ по математике. Полный курс. Более 5 часов видео.
Видео
Задачи по математике с экономическим содержанием. Задача 17 на ЕГЭ по математике и задачи олимпиад по экономике.
Видео бесплатно!
Задача 18: Параметры на ЕГЭ по математике. Графический метод.
Видео
Задача 18: Параметры на ЕГЭ по математике. Полный курс. Более 5 часов видео.
Задача 19 на числа и их свойства на ЕГЭ по математике.
Задача 19 на ЕГЭ по математике 2016 года. Решение.
Задача 19 на ЕГЭ по математике 2017 года. Решение.
Видео
Впервые! Видеокурс «Ключ к С6». Нестандартные задачи на ЕГЭ по математике.
к оглавлению ▴
Советы и рекомендации по подготовке к экзамену
- Справочники для подготовки к ЕГЭ по математике
- Методика подготовки к ЕГЭ по математике Анны Малковой
- ЕГЭ по математике – советы и рекомендации
- Репетитор по математике
- Подготовиться к ЕГЭ самостоятельно и бесплатно
- Математика и жизнь. Из воспоминаний бывалого студента.
- Книги и учебники для подготовки к ЕГЭ по Математике
- Как подготовиться к ЕГЭ по математике?
- Как распределить время на ЕГЭ по математике
- Подготовка к ЕГЭ по Математике с нуля
- Самостоятельная подготовка к ЕГЭ по математике
к оглавлению ▴
Об этом сайте:
- Каждый год на этом сайте готовятся к ЕГЭ сотни тысяч учащихся. Нас рекомендуют учителя и репетиторы. Автор сайта, на котором вы находитесь, — репетитор-профессионал, ведущая курсов подготовки к ЕГЭ на высшие баллы, руководитель компании «ЕГЭ-Студия» Анна Георгиевна Малкова.
Также вы можете выбрать базовый уровень подготовки к ЕГЭ по математике онлайн
Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Материалы для подготовки к ЕГЭ по математике базового и профильного уровня» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.
Публикация обновлена:
09.03.2023
Мы используем файлы cookie, чтобы персонализировать контент, адаптировать и оценивать результативность рекламы, а также обеспечить безопасность. Перейдя на сайт, вы соглашаетесь с использованием файлов cookie.
В данном разделе мы занимаемся подготовкой к ЕГЭ по математике как базового, профильного уровня — у нас представлены разборы задач, тесты, описание экзамена и полезные рекомендации. Пользуясь нашим ресурсом, вы как минимум разберетесь в решении задач и сможете успешно сдать ЕГЭ по математике в 2020 году. Начинаем!
ЕГЭ по математике является обязательным экзаменом любого школьника в 11 классе, поэтому информация, представленная в данном разделе актуальна для всех. Экзамен по математике делится на два вида — базовый и профильный. В данном разделе я приведен разбор каждого вида заданий с подробным объяснением для двух вариантов. Задания ЕГЭ строго тематические, поэтому для каждого номера можно дать точные рекомендации и привести теорию, необходимую именно для решения данного вида задания. Ниже вы найдете ссылки на задания, перейдя по которым можно изучить теорию и разобрать примеры. Примеры постоянно пополняются и актуализируются.
Структура базового уровня ЕГЭ по математике
Экзаменационная работа по математике базового уровня состоит из одной части, включающей 20 заданий с кратким ответом. Все задания направлены на проверку освоения базовых умений и практических навыков применения математических знаний в повседневных ситуациях.
Ответом к каждому из заданий 1–20 является целое число, конечная десятичная дробь, или последовательность цифр.
Задание с кратким ответом считается выполненным, если верный ответ записан в бланке ответов №1 в той форме, которая предусмотрена инструкцией по выполнению задания.
Разбор заданий ЕГЭ по математике (база)
ЕГЭ по математике профильного уровня — один из самых сложных экзаменов. Планируете сдавать его, но не знаете, с чего начать? Этот экзамен не покажется вам таким трудным, если вы узнаете про него побольше и грамотно подготовитесь. В этой статье обсудим, что нужно знать про ЕГЭ по математике 2023, из каких разделов он состоит и как к нему подготовиться.
Какие темы важно знать для ЕГЭ по математике 2023?
В математике, как и в любом предмете, есть опорные темы. Если вы их выучите, будет легче справиться с экзаменом.
Формулы тригонометрии
Очень важно знать формулы тригонометрии и уметь применять их. Хорошая новость: в справочных материалах можно найти несколько тригонометрических формул.
Но формул гораздо больше. Я советую не зубрить их, а научиться выводить: приходить к формулам шаг за шагом, опираясь на тождества. Кстати, мы учим выводить формулы на курсах подготовки к ЕГЭ: это полезно, чтобы оказаться на экзамене во всеоружии и ничего не перепутать.
Квадратные уравнения
Эти уравнения мы учимся решать еще в 7 классе. Они встречаются в ЕГЭ по математике постоянно: и как самостоятельные задания, и внутри более сложных уравнений или неравенств. Квадратные уравнения могут встретиться в математических моделях № 9 и № 15, в задачах на геометрию и стереометрию, в задании № 17 с параметром.
Самое главное — хорошо знать универсальные методы решения. Первый — через формулу дискриминанта, второй — через теорему Виета, которая может сэкономить время на экзамене.
Треугольники
Эта замечательная тема, которую проходят в 7 классе — основа основ всей геометрии. Она нужна и для решения стереометрии, и для простейших планиметрических задач. Еще треугольники необходимы, чтобы освоить огромное количество теорем. Выучите все, что с ними связано! Особое внимание обратите на прямоугольные треугольники, которые встречаются чаще остальных — тогда геометрические задачи сразу станут проще.
Проценты
Самая нелюбимая тема моих учеников после тригонометрии, которую необходимо хорошо знать. Проценты нужны для реальной математики — это № 9 (с кратким ответом) и № 15 (с развернутым ответом). Понимание этой темы может принести вам 3 первичных балла.
План успешной подготовки к ЕГЭ по математике 2023
Если вы хотите получить больше 80 баллов на ЕГЭ, нужно идеально решать часть с кратким ответом, а также справляться с большинством заданий с развернутым ответом.
Чтобы постепенно прорабатывать материал, воспользуйтесь кодификатором. В нем обратите внимание на таблицу 2, а именно на блоки:
- Алгебра
- Уравнения и неравенства
- Элементы комбинаторики, статистики и теории вероятностей
- Функции
- Начала математического анализа
- Геометрия
Ориентируйтесь на указанную последовательность, но геометрию изучайте параллельно с остальными блоками — на нее нужно больше времени.
Самое главное — ни в коем случае не ограничивайтесь теорией. Ее у вас не спросят на экзамене, а вот задания решать придется. Поэтому тренируйте практические навыки: актуальные задания вы сможете найти в открытом банке заданий на сайте ФИПИ или в нашем тренажере «Решутест».
Как решать часть с кратким ответом
Ни в коем случае не пренебрегайте частью с кратким ответом! Иначе будет обидно: например, вы наберете за экономическую задачу № 15 полные 2 балла, но потеряете их в двух заданиях первой части. Это актуально для всех ЕГЭ: подробнее о том, как идеально справляться с первой частью экзамена, читайте здесь.
Еще одно заблуждение: «часть с кратким ответом простая, к ней можно не готовиться». Даже в первой части иногда встречаются такие задания, которые ученики даже не решают, потому что не готовились к ним.
Как я уже говорила, часть с кратким ответом содержит 11 заданий. Начинать подготовку необходимо именно с заданий базового уровня сложности, потому что это та основа, на которую потом накладывается более сложная теория.
Что касается задач повышенного уровня сложности, то среди каждого номера есть лайфхаки, например, в этой статье я уже рассказывала про № 11, в котором нужно работать с производной.
Задания с развернутым ответом: немного статистики
Многие думают, что эта часть ЕГЭ по математике очень сложная. Поэтому ребята, которые не рассчитывают на высокие баллы, даже не приступают к ней. И очень зря! С помощью этих заданий можно заработать дополнительные баллы и побороться за высокое место в рейтинге.
Сейчас будет немного статистики. В среднем около 35% учеников получают полные 2 балла за решение № 12, а вот неравенство № 14 дается хуже, только около 12% с ним справляются на полный балл. Геометрия даётся ещё хуже: стереометрию № 13 полностью решают 2% выпускников, планиметрию (№ 16) менее 5%. А вот с экономической задачей (№ 15) справляются около 20%, а это целых 2 балла! Что касается № 17 и 18, то они даются ещё хуже, но на то они и самые сложные, хотя 1 балл за № 18 по статистике получают около 25% сдающих — там нужно просто привести пример.
Особенности уровней ЕГЭ по математике
В 2015 году ЕГЭ по математике разделили на базовый и профильный уровни. Это упростило жизнь выпускникам, которые не планируют поступать на специальности, связанные с математикой. Если ЕГЭ по математике нужен только для получения аттестата, можно сдать его облегченную версию, оставив время и силы для профильных экзаменов.
Базовый уровень ЕГЭ по математике
Как устроен базовый ЕГЭ по математике? Экзамен идет 180 минут, он состоит из 21 задания, за каждое из которых можно получить 1 балл. Этот экзамен единственный, который переводится не в 100-бальную систему, а в оценки.
В ЕГЭ по математике базового уровня 6 тематических блоков:
Также обратите внимание, что базовый ЕГЭ по математике не поменялся с точки зрения наполнения, изменился лишь порядок заданий. Вот что пишут ФИПИ:
Подробнее про базовый ЕГЭ по математике, включая разбор всех заданий, читайте здесь, а мы перейдём к профильному.
Профильный уровень ЕГЭ по математике
Данный экзамен, как и остальные ЕГЭ, переводится в 100-бальную систему:
Экзамен состоит из двух частей: Часть 1 с кратким ответом, а Часть 2 — с развернутым. Длится он 235 минут. Всего есть 18 заданий, которые разделены на 3 блока: алгебра, геометрия и реальная математика. Максимальное количество первичных баллов — 31.
База, профиль — неважно, к какому именно уровню вы готовитесь. В любом случае надо не только правильно решить каждое задание, но и оформить его так, чтобы проверяющие ни к чему не придрались. Нарисовать и описать график, расписать решение уравнения или задачи… И это не все: нужно еще и внести ответы в бланк без ошибок. И все это — за ограниченный период времени! Так можно перенервничать и запороть даже самую простую задачку. А на ЕГЭ — каждый балл на счету.
Поэтому на своих занятиях я сразу показываю своим ученикам, как правильно оформлять каждое задание в ЕГЭ по математике. Мы разбираем все критерии и учимся правильно отвечать на вопросы. А еще я всегда помогаю ученикам закрыть пробелы в знаниях и объясняю сложные темы столько раз, сколько нужно. И куда же без лайфхаков? Всегда рассказываю лучший способ решения типичных заданий. Так что мои ученики приходят на экзамены подготовленными и не нервничают, когда видят задачу. Хотите также? Приходите ко мне на курсы подготовки к ЕГЭ по математике — научу!
Структура ЕГЭ по математике 2023
Часть 1:
- Приносит 11 баллов, то есть 35% всего экзамена
- 11 заданий с кратким ответом
Часть 2:
- Приносит 20 баллов, то есть 65% всего экзамена
- 7 заданий с развернутым ответом
Внимание! Вся нумерация заданий в статье соответствует ЕГЭ 2023 года.
В заданиях с кратким ответом нужно лишь записать верное число в бланк. Заданий с развернутым ответом 7, в них нужно подробно расписать решение, которое должно соответствовать критериям оценивания.
ЕГЭ — стандартизированный экзамен, поэтому каждое задание всегда соответствует определенной теме.
Обратите внимание, что по сравнению с 2022 годом, в части 1 изменился только порядок заданий. Сами сотрудники ФИПИ говорят следующее:
Задания с кратким ответом принесут вам до 11 первичных баллов (64 вторичных). Если не понимаете, что это за баллы и откуда они берутся, почитайте эту статью. Самая популярная цель на ЕГЭ по математике — набрать 80 баллов, для этого раньше было необходимо 19 первичных баллов. Ранее многие ученики пользовались рабочей стратегией — решить всю часть с кратким ответом, а также № 12, 14 и 15. Если хорошо разбирались в геометрии, выбирали № 13 и 16 — или использовали их как запасные задания. Сейчас стратегия должна быть другая, так как № 13 (стереометрия) стал стоить дороже — 3 балла вместо 2, а № 15 (экономическая задача) — подешевел с 3 баллов до 2. Изменилась также шкала перевода баллов, поэтому подумайте, какими заданиями вы сможете набрать необходимое количество первичных баллов.
Разделы ЕГЭ по математике
- Алгебра и начала анализа — 8 заданий, 13 первичных баллов
- Геометрия — 4 задания, 8 первичных баллов
- Реальная математика — 6 заданий, 10 первичных баллов
Какие задания входят в ЕГЭ по математике?
Здесь вам на помощь приходят документы с официального сайта ФИПИ: кодификатор, демоверсия и спецификация.
- Кодификатор — это краткий перечень всех блоков и тем, которые включены в экзамен.
Сейчас кодификатор общий для обоих уровней экзамена, как базового, так и профильного. Он снова представляет собой единый документ, так что не запутаетесь.
- Демоверсия — типовой вариант ЕГЭ. Он показывает уровень экзамена и ориентировочную сложность заданий.
- Спецификация — это документ, описывающий структуру экзамена и разбалловку.
Что в итоге
Теперь вы знаете больше про ЕГЭ по математике 2023. Вы познакомились со структурой и поняли, на что стоит обращать внимание при подготовке. А еще узнали, что первую часть обязательно решать на максимум, а вторая не такая страшная, как кажется. Но наверняка у вас еще осталась куча вопросов: по оформлению и конкретному решению каких-то заданий точно.
Обо всем этом я подробно рассказываю своим ученикам во время подготовки к ЕГЭ по математике. Мы изучаем все непонятные темы, а потом прорешиваем много однотипных заданий — так легче запоминается формат. Еще мы всегда проводим пробные экзамены, чтобы выявить слабые места. Я анализирую ошибки каждого ученика и индивидуально разбираю их с ними. Благодаря этому мои выпускники гарантированно сдают ЕГЭ на 80+. Если вы хотите оказаться среди них — записывайтесь на курсы!
Экзаменационная работа профильного уровня длится 3 часа 55 минут (235 минут).
Минимальный порог — 27 баллов.
Экзаменационная работа состоит из двух частей, которые различаются по содержанию, сложности и числу заданий.
Определяющим признаком каждой части работы является форма заданий:
- часть 1 содержит 8 заданий (задания 1-8) с кратким ответом в виде целого числа или конечной десятичной дроби;
- часть 2 содержит 4 задания (задания 9-12) с кратким ответом в виде целого числа или конечной десятичной дроби и 7 заданий (задания 13–19) с развернутым ответом (полная запись решения с обоснованием выполненных действий).
Панова Светлана Анатольевна, учитель математики высшей категории школы, стаж работы 20 лет:
«Для того чтобы получить школьный аттестат, выпускнику необходимо сдать два обязательных экзамена в форме ЕГЭ, один из которых математика. В соответствии с Концепцией развития математического образования в Российской Федерации ЕГЭ по математике разделен на два уровня: базовый и профильный. Сегодня мы рассмотрим варианты профильного уровня».
Задание № 1 — проверяет у участников ЕГЭ умение применять навыки, полученные в курсе 5 — 9 классов по элементарной математике, в практической деятельности. Участник должен владеть вычислительными навыками, уметь работать с рациональными числами, уметь округлять десятичные дроби, уметь переводить одни единицы измерения в другие.
Пример 1.
В квартире, где проживает Петр, установили прибор учета расхода холодной воды (счетчик). Первого мая счетчик показывал расход 172 куб. м воды, а первого июня — 177 куб. м. Какую сумму должен заплатить Петр за холодную воду за май, если цена 1 куб. м холодной воды составляет 34 руб 17 коп? Ответ дайте в рублях.
Решение:
1) Найдем количество потраченной воды за месяц:
177 — 172 = 5 (куб м)
2) Найдем сколько денег заплатят за потраченную воду:
34,17 · 5 = 170,85 (руб)
Ответ: 170,85.
Задание № 2 —является одним из простейших заданий экзамена. С ней успешно справляется большинство выпускников, что свидетельствует о владении определением понятия функции. Тип задания № 2 по кодификатору требований — это задание на использования приобретённых знаний и умений в практической деятельности и повседневной жизни. Задание № 2 состоит из описания с помощью функций различных реальных зависимостей между величинами и интерпретация их графиков. Задание № 2 проверяет умение извлекать информацию, представленную в таблицах, на диаграммах, графиках. Выпускникам нужно уметь определять значение функции по значению аргумента при различных способах задания функции и описывать поведение и свойства функции по её графику. Также необходимо уметь находить по графику функции наибольшее или наименьшее значение и строить графики изученных функций. Допускаемые ошибки носят случайный характер в чтении условия задачи, чтении диаграммы.
#ADVERTISING_INSERT#
Задание № 2 проверяет умение читать диаграммы.
Пример 2. На рисунке показано изменение биржевой стоимости одной акции добывающей компании в первой половине апреля 2017 года. 7 апреля бизнесмен приобрёл 1000 акций этой компании. 10 апреля он продал три четверти купленных акций, а 13 апреля продал все оставшиеся. Сколько потерял бизнесмен в результате этих операций?
Решение:
1) 340 · 1000 = 340000 (руб) — бизнесмен потратил 7 апреля при покупке 1000 акций.
2) 1000 · 3/4 = 750 (акций) — составляют 3/4 от всех купленных акций.
3) 330 · 750 = 247500 (руб) — бизнесмен получил 10 апреля после продажи 750 акций.
4) 1000 – 750 = 250 (акций) — остались после продажи 750 акций 10 апреля.
5) 310 · 250 = 77500 (руб) — бизнесмен получил 13 апреля после продажи 250 акций.
6) 247500 + 77500 = 325000 (руб) — бизнесмен получил после продажи 1000 акций.
7) 340000 – 325000 = 15000 (руб) — потерял бизнесмен в результате всех операций.
Ответ: 15000.
Задание № 3 — является заданием базового уровня первой части, проверяет умения выполнять действия с геометрическими фигурами по содержанию курса «Планиметрия». В задании 3 проверяется умение вычислять площадь фигуры на клетчатой бумаге, умение вычислять градусные меры углов, вычислять периметры и т.п.
Пример 3. Найдите площадь прямоугольника, изображенного на клетчатой бумаге с размером клетки 1 см на 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.
Решение: Для вычисления площади данной фигуры можно воспользоваться формулой Пика:
На рисунке справа B = 7 (красные точки), Г = 8 (зелёные точки),
Для вычисления площади данного прямоугольника воспользуемся формулой Пика: где В = 10, Г = 6, поэтому Ответ: 20. |
Читайте также: ЕГЭ по физике: решение задач о колебаниях
Задание № 4 — задача курса «Теория вероятностей и статистика». Проверяется умение вычислять вероятность события в простейшей ситуации.
Пример 4. На окружности отмечены 5 красных и 1 синяя точка. Определите, каких многоугольников больше: тех, у которых все вершины красные, или тех, у которых одна из вершин синяя. В ответе укажите, на сколько одних больше, чем других.
Решение: 1) Воспользуемся формулой числа сочетаний из n элементов по k:
= | n! | . |
k!(n – k)! |
= | 5! | = | 3! · 4 · 5 | = | 4 · 5 | = 10 треугольников, |
3!(5 – 3)! | 3!2! | 1 · 2 |
у которых все вершины красные.
2)
= | 5! | = | 4! · 5 | = 5 треугольников, |
4!(5 – 4)! | 4!1! |
у которых все вершины красные.
3) Один пятиугольник, у которого все вершины красные.
4) 10 + 5 + 1 = 16 многоугольников, у которых все вершины красные.
5)
= | 6! | = | 3! · 4 · 5 · 6 | = | 4 · 5 · 6 | = 20 треугольников, |
3!(6 – 3)! | 3!3! | 1 · 2 · 3 |
у которых вершины красные или с одной синей вершиной.
6)
= | 6! | = | 4! · 5 · 6 | = | 5 · 6 | = 15 четырёхуголников, |
4!(6 – 4)! | 4!2! | 1 · 2 |
у которых вершины красные или с одной синей вершиной.
7)
= | 6! | = | 5! · 6 | = 6 пятиугольников, |
5!(6 – 5)! | 5!1! |
у которых вершины красные или с одной синей вершиной.
Один шестиуголник, у которого вершины красные с одной синей вершиной.
9) 20 + 15 + 6 + 1 = 42 многоуголника, у которых все вершины красные или с одной синей вершиной.
10) 42 – 16 = 26 многоугольников, в которых используется синяя точка.
11) 26 – 16 = 10 многоугольников – на сколько многоугольников, у которых одна из вершин — синяя точка, больше, чем многоугольников, у которых все вершины только красные.
Ответ: 10.
Задание № 5 — базового уровня первой части проверяет умения решать простейшие уравнения (иррациональные, показательные, тригонометрические, логарифмические).
Пример 5. Решите уравнение 23 + x = 0,4 · 53 + x.
Решение. Разделим обе части данного уравнения на 53 + х ≠ 0, получим
23 + x | = 0,4 или | 2 | 3 + х | = | 2 | , | ||
53 + х | 5 | 5 |
откуда следует, что 3 + x = 1, x = –2.
Ответ: –2.
Задание № 6 по планиметрии на нахождение геометрических величин (длин, углов, площадей), моделирование реальных ситуаций на языке геометрии. Исследование построенных моделей с использованием геометрических понятий и теорем. Источником трудностей является, как правило, незнание или неверное применение необходимых теорем планиметрии.
Пример 6. Площадь треугольника ABC равна 129. DE – средняя линия, параллельная стороне AB. Найдите площадь трапеции ABED.
Решение. Треугольник CDE подобен треугольнику CAB по двум углам, так как угол при вершине C общий, угол СDE равен углу CAB как соответственные углы при DE || AB секущей AC. Так как DE – средняя линия треугольника по условию, то по свойству средней линии | DE = (1/2)AB. Значит, коэффициент подобия равен 0,5. Площади подобных фигур относятся как квадрат коэффициента подобия, поэтому
SΔCDE | = | 2 | 2 | ; SΔCDE = | 1 | · 129 = 32,25. | ||
SΔCAB | 5 | 4 |
Следовательно, SABED = SΔABC – SΔCDE = 129 – 32,25 = 96,75.
Ответ: 96,75.
Смотреть вебинары по алгебре
Задание № 7 — проверяет применение производной к исследованию функции. Для успешного выполнения необходимо содержательное, не формальное владение понятием производной.
Пример 7. К графику функции y = f(x) в точке с абсциссой x0 проведена касательная, которая перпендикулярна прямой, проходящей через точки (4; 3) и (3; –1) этого графика. Найдите f′(x0).
Решение. 1) Воспользуемся уравнением прямой, проходящей через две заданные точки и найдём уравнение прямой, проходящей через точки (4; 3) и (3; –1).
(y – y1)(x2 – x1) = (x – x1)(y2 – y1)
(y – 3)(3 – 4) = (x – 4)(–1 – 3)
(y – 3)(–1) = (x – 4)(–4)
–y + 3 = –4x + 16| · (–1)
y – 3 = 4x – 16
y = 4x – 13, где k1 = 4.
2) Найдём угловой коэффициент касательной k2, которая перпендикулярна прямой y = 4x – 13, где k1 = 4, по формуле:
k1 · k2 = –1, k2 = | –1 | –0,25. |
4 |
3) Угловой коэффициент касательной – производная функции в точке касания. Значит, f′(x0) = k2 = –0,25.
Ответ: –0,25.
Задание № 8 — проверяет у участников экзамена знания по элементарной стереометрии, умение применять формулы нахождения площадей поверхностей и объемов фигур, двугранных углов, сравнивать объемы подобных фигур, уметь выполнять действия с геометрическими фигурами, координатами и векторами и т.п.
Пример 8. Объём куба, описанного около сферы, равен 216. Найдите радиус сферы.
Решение. 1) Vкуба = a3 (где а – длина ребра куба), поэтому
а3 = 216
а = 3√216
a = 6.
2) Так как сфера вписана в куб, значит, длина диаметра сферы равна длине ребра куба, поэтому d = a, d = 6, d = 2R, R = 6 : 2 = 3.
Ответ: 3.
Приемы подготовки к профильному ЕГЭ по математике
Задание № 9 — требует от выпускника навыков преобразования и упрощения алгебраических выражений. Задание № 9 повышенного уровня сложности с кратким ответом. Задания из раздела «Вычисления и преобразования» в ЕГЭ подразделяются на несколько видов:
-
преобразования числовых рациональных выражений;
-
преобразования алгебраических выражений и дробей;
-
преобразования числовых/буквенных иррациональных выражений;
-
действия со степенями;
-
преобразование логарифмических выражений;
- преобразования числовых/буквенных тригонометрических выражений.
Пример 9. Вычислите tgα, если известно, что cos2α = 0,6 и
Решение. 1) Воспользуемся формулой двойного аргумента: cos2α = 2 cos2α – 1 и найдём
cos2α = | cos2α + 1 | = | 0,6 + 1 | = | 1,6 | = 0,8. |
2 | 2 | 2 |
2) Воспользуемся формулой тригонометрических функций одного угла:
и найдём
tg2α = | 1 | – 1 = | 1 | – 1 = | 10 | – 1 = | 5 | – 1 = 1 | 1 | – 1 = | 1 | = 0,25. |
cos2α | 0,8 | 8 | 4 | 4 | 4 |
Значит, tg2α = ± 0,5.
3) По условию
значит, α – угол II четверти и tgα < 0, поэтому tgα = –0,5.
Ответ: –0,5.
#ADVERTISING_INSERT#
Задание № 10 — проверяет у учащихся умение использовать приобретенные раннее знания и умения в практической деятельности и повседневной жизни. Можно сказать, что это задачи по физике, а не по математике, но все необходимые формулы и величины даны в условии. Задачи сводятся к решению линейного или квадратного уравнения, либо линейного или квадратного неравенства. Поэтому необходимо уметь решать такие уравнения и неравенства, и определять ответ. Ответ должен получиться в виде целого числа или конечной десятичной дроби.
Пример 10. Два тела массой m = 2 кг каждое, движутся с одинаковой скоростью v = 10 м/с под углом 2α друг к другу. Энергия (в джоулях), выделяющаяся при их абсолютно неупругом соударении определяется выражением Q = mv2sin2α. Под каким наименьшим углом 2α (в градусах) должны двигаться тела, чтобы в результате соударения выделилось не менее 50 джоулей?
Решение. Для решения задачи нам необходимо решить неравенство Q ≥ 50, на интервале 2α ∈ (0°; 180°).
mv2sin2α ≥ 50
2· 102sin2α ≥ 50
200 · sin2α ≥ 50
Решением данного неравенства являются два неравенства:
sinα ≥ | 1 | и sinα ≤ – | 1 | . |
2 | 2 |
Так как α ∈ (0°; 90°), то будем решать только
Неравенство
мы не рассматриваем, так как α для него будет более 180°. Итак:
Изобразим решение неравенства графически:
Так как по условию α ∈ (0°; 90°), значит 30° ≤ α < 90°. Получили, что наименьший угол α равен 30°, тогда наименьший угол 2α = 60°.
Ответ: 60.
Скачать бесплатно рабочие программы по алгебре
Задание № 11 — является типовым, но оказывается непростым для учащихся. Главным источником затруднений является построение математической модели (составление уравнения). Задание № 11 проверяет умение решать текстовые задачи.
Пример 11. На весенних каникулах 11-классник Вася должен был решить 560 тренировочных задач для подготовки к ЕГЭ. 18 марта в последний учебный день Вася решил 5 задач. Далее ежедневно он решал на одно и то же количество задач больше по сравнению с предыдущим днём. Определите, сколько задач Вася решил 2 апреля в последний день каникул.
Решение:
Обозначим a1 = 5 – количество задач, которые Вася решил 18 марта, d – ежедневное количество задач, решаемых Васей, n = 16 – количество дней с 18 марта по 2 апреля включительно, S16 = 560 – общее количество задач, a16 – количество задач, которые Вася решил 2 апреля. Зная, что ежедневно Вася решал на одно и то же количество задач больше по сравнению с предыдущим днём, то можно использовать формулы нахождения суммы арифметической прогрессии:
560 = (5 + a16) · 8,
5 + a16 = 560 : 8,
5 + a16 = 70,
a16 = 70 – 5
a16 = 65.
Значит, Вася решил 2 апреля 65 задач.
Ответ: 65.
Задание № 12 — проверяют у учащихся умение выполнять действия с функциями, уметь применять производную к исследованию функции.
Пример 12. Найти точку максимума функции y = 10ln(x + 9) – 10x + 1.
Решение: 1) Найдем область определения функции: x + 9 > 0, x > –9, то есть x ∈ (–9; ∞).
2) Найдем производную функции:
3) Найдем нули производной:
y′= 0, | 10 | – 10 = 0, x = –8. |
x + 9 |
4) Найденная точка принадлежит промежутку (–9; ∞). Определим знаки производной функции и изобразим на рисунке поведение функции:
Искомая точка максимума x = –8.
Ответ: –8.
Скачать бесплатно рабочую программу по математике к УМК Мерзляка А.Г. 5-11 класс
Скачать бесплатно рабочую программу по математике к линии УМК Г.К. Муравина, К.С. Муравина, О.В. Муравиной 10-11
Скачать бесплатно методические пособия по алгебре
Задание № 13 — повышенного уровня сложности с развернутым ответом, проверяющее умение решать уравнения, наиболее успешно решаемое среди заданий с развернутым ответом повышенного уровня сложности.
Пример 13. а) Решите уравнение 2log32(2cosx) – 5log3(2cosx) + 2 = 0
б) Найдите все корни этого уравнения, принадлежащие отрезку .
Решение: а) Пусть log3(2cosx) = t, тогда 2t2 – 5t + 2 = 0,
откуда t = 2 или t = | 1 | . |
2 |
log3(2cosx) = | 2 | ⇔ | 2cosx = 9 | ⇔ | cosx = | 4,5 | ⇔ т.к. |cosx| ≤ 1, | |||
log3(2cosx) = | 1 | 2cosx = √3 | cosx = | √3 | ||||||
2 | 2 |
x = | π | + 2πk | |
6 | |||
x = – | π | + 2πk, k ∈ Z | |
6 |
б) Найдём корни, лежащие на отрезке .
Из рисунка видно, что заданному отрезку принадлежат корни
Ответ: а) | π | + 2πk; – | π | + 2πk, k ∈ Z; б) | 11π | ; | 13π | . |
6 | 6 | 6 | 6 |
Задание № 14 — повышенного уровня относится к заданиям второй части с развернутым ответом. Задание проверяет умения выполнять действия с геометрическими фигурами. Задание содержит два пункта. В первом пункте задание нужно доказать, а во втором пункте вычислить.
Пример 14. Диаметр окружности основания цилиндра равен 20, образующая цилиндра равна 28. Плоскость пересекает его основания по хордам длины 12 и 16. Расстояние между хордами равно 2√197.
а) Докажите, что центры оснований цилиндра лежат по одну сторону от этой плоскости.
б) Найдите угол между этой плоскостью и плоскостью основания цилиндра.
Решение: а) Хорда длиной 12 находится на расстоянии = 8 от центра окружности основания, а хорда длиной 16, аналогично, – на расстоянии 6. Поэтому расстояние между их проекциями на плоскость, параллельную основаниям цилиндров, составляет либо 8 + 6 = 14, либо 8 − 6 = 2.
Тогда расстояние между хордами составляет либо
= = √980 = = 2√245
либо
= = √788 = = 2√197.
По условию реализовался второй случай, в нем проекции хорд лежат по одну сторону от оси цилиндра. Значит, ось не пересекает данную плоскость в пределах цилиндра, то есть основания лежат по одну сторону от нее. Что требовалось доказать.
б) Обозначим центры оснований за О1 и О2. Проведем из центра основания с хордой длины 12 серединный перпендикуляр к этой хорде (он имеет длину 8, как уже отмечалось) и из центра другого основания — к другой хорде. Они лежат в одной плоскости β, перпендикулярной этим хордам. Назовем середину меньшей хорды B, большей A и проекцию A на второе основание — H (H ∈ β). Тогда AB,AH ∈ β и значит, AB,AH перпендикулярны хорде, то есть прямой пересечения основания с данной плоскостью.
Значит, искомый угол равен
∠ABH = arctg | AH | = arctg | 28 | = arctg14. |
BH | 8 – 6 |
Ответ: arctg 14.
Подготовка к ОГЭ и ЕГЭ для учителей по алгебре
Задание № 15 — повышенного уровня сложности с развернутым ответом, проверяет умение решать неравенства, наиболее успешно решаемое среди заданий с развернутым ответом повышенного уровня сложности.
Пример 15. Решите неравенство |x2 – 3x| · log2(x + 1) ≤ 3x – x2.
Решение: Областью определения данного неравенства является интервал (–1; +∞). Рассмотри отдельно три случая:
1) Пусть x2 – 3x = 0, т.е. х = 0 или х = 3. В этом случае данное неравенство превращается в верное, следовательно, эти значения входят в решение.
2) Пусть теперь x2 – 3x > 0, т.е. x ∈ (–1; 0) ∪ (3; +∞). При этом данное неравенство можно переписать в виде (x2 – 3x) · log2(x + 1) ≤ 3x – x2 и разделить на положительное выражение x2 – 3x. Получим log2(x + 1) ≤ –1, x + 1 ≤ 2–1, x ≤ 0,5 –1 или x ≤ –0,5. Учитывая область определения, имеем x ∈ (–1; –0,5].
3) Наконец, рассмотрим x2 – 3x < 0, при этом x ∈ (0; 3). При этом исходное неравенство перепишется в виде (3x – x2) · log2(x + 1) ≤ 3x – x2. После деления на положительное выражение 3x – x2, получим log2(x + 1) ≤ 1, x + 1 ≤ 2, x ≤ 1. Учитывая область, имеем x ∈ (0; 1].
Объединяя полученные решения, получаем x ∈ (–1; –0.5] ∪ [0; 1] ∪ {3}.
Ответ: (–1; –0.5] ∪ [0; 1] ∪ {3}.
Задание № 16 — повышенного уровня относится к заданиям второй части с развернутым ответом. Задание проверяет умения выполнять действия с геометрическими фигурами, координатами и векторами. Задание содержит два пункта. В первом пункте задание нужно доказать, а во втором пункте вычислить.
Пример 16. В равнобедренном треугольнике ABC с углом 120° при вершине A проведена биссектриса BD. В треугольник ABC вписан прямоугольник DEFH так, что сторона FH лежит на отрезке BC, а вершина E – на отрезке AB. а) Докажите, что FH = 2DH. б) Найдите площадь прямоугольника DEFH, если AB = 4.
Решение: а)
1) ΔBEF – прямоугольный, EF⊥BC, ∠B = (180° – 120°) : 2 = 30°, тогда EF = BE по свойству катета, лежащего против угла 30°.
2) Пусть EF = DH = x, тогда BE = 2x, BF = x√3 по теореме Пифагора.
3) Так как ΔABC равнобедренный, значит, ∠B = ∠C = 30˚.
BD – биссектриса ∠B, значит ∠ABD = ∠DBC = 15˚.
4) Рассмотрим ΔDBH – прямоугольный, т.к. DH⊥BC.
tg 15° = tg(45° – 30°) = | 3 – √3 | , |
3 + √3 |
3 – √3 | , | x |
3 + √3 | x√3 + FH |
(x√3 + FH)(3 – √3) = x(3 + √3)
2√3x – 6x = √3FH – 3FH
2x(√3 – 3) = FH(√3 – 3)
FH = 2x
FH = 2DH
Что требовалось доказать.
б) 1) ΔAED ∼ ΔABC по двум углам, так как ∠B – общий, ∠AED = ∠ABC как соответственные при ED || BC секущей AB. Из подобия треугольников следует:
√3 – 1 = 2 – x
x = 3 – √3
EF = 3 – √3
2) SDEFH = ED · EF = (3 – √3) · 2(3 – √3)
SDEFH = 24 – 12√3.
Ответ: 24 – 12√3.
Задание № 17 — задание с развернутым ответом, это задание проверяет применение знаний и умений в практической деятельности и повседневной жизни, умение строить и исследовать математические модели. Это задание — текстовая задача с экономическим содержанием.
Пример 17. Вклад в размере 20 млн рублей планируется открыть на четыре года. В конце каждого года банк увеличивает вклад на 10% по сравнению с его размером в начале года. Кроме того, в начале третьего и четвёртого годов вкладчик ежегодно пополняет вклад на х млн. рублей, где х — целое число. Найдите наибольшее значение х, при котором банк за четыре года начислит на вклад меньше 17 млн рублей.
Решение: В конце первого года вклад составит 20 + 20 · 0,1 = 22 млн рублей, а в конце второго – 22 + 22 · 0,1 = 24,2 млн рублей. В начале третьего года вклад (в млн рублей) составит (24,2 + х), а в конце — (24,2 + х) + (24,2 + х) · 0,1 = (26,62 + 1,1х). В начале четвёртого года вклад составит (26,62 + 2,1х), а в конце — (26,62 + 2,1х) + (26,62 + 2,1х) · 0,1 = (29,282 + 2,31х). По условию, нужно найти наибольшее целое х, для которого выполнено неравенство
(29,282 + 2,31x) – 20 – 2x < 17
29,282 + 2,31x – 20 – 2x < 17
0,31x < 17 + 20 – 29,282
0,31x < 7,718
Наибольшее целое решение этого неравенства — число 24.
Ответ: 24.
Задание № 18 — задание повышенного уровня сложности с развернутым ответом. Это задание предназначено для конкурсного отбора в вузы с повышенными требованиями к математической подготовке абитуриентов. Задание высокого уровня сложности — это задание не на применение одного метода решения, а на комбинацию различных методов. Для успешного выполнения задания 18 необходим, кроме прочных математических знаний, также высокий уровень математической культуры.
Пример 18. При каких a система неравенств
x2 + y2 ≤ 2ay – a2 + 1 | |
y + a ≤ |x| – a |
имеет ровно два решения?
Решение: Данную систему можно переписать в виде
x2 + (y – a)2 ≤ 1 | |
y ≤ |x| – a |
Если нарисовать на плоскости множество решений первого неравенства, получится внутренность круга (с границей) радиуса 1 с центром в точке (0, а). Множество решений второго неравенства – часть плоскости, лежащая под графиком функции y = |x| – a,причём последний есть график функции
y = |x|, сдвинутый вниз на а. Решение данной системы есть пересечение множеств решений каждого из неравенств.
Следовательно, два решения данная система будет иметь лишь в случае, изображённом на рис. 1.
Точки касания круга с прямыми и будут двумя решениями системы. Каждая из прямых наклонена к осям под углом 45°. Значит, треугольник PQR – прямоугольный равнобедренный. Точка Q имеет координаты (0, а), а точка R – координаты (0, –а). Кроме того, отрезки PR и PQ равны радиусу окружности, равному 1. Значит,
Перейти в каталог продукции по алгебре
Задание № 19 — задание повышенного уровня сложности с развернутым ответом. Это задание предназначено для конкурсного отбора в вузы с повышенными требованиями к математической подготовке абитуриентов. Задание высокого уровня сложности — это задание не на применение одного метода решения, а на комбинацию различных методов. Для успешного выполнения задания 19 необходимо уметь осуществлять поиск решения, выбирая различные подходы из числа известных, модифицируя изученные методы.
Пример 19. Пусть Sn сумма п членов арифметической прогрессии (ап). Известно, что Sn + 1 = 2n2 – 21n – 23.
а) Укажите формулу п-го члена этой прогрессии.
б) Найдите наименьшую по модулю сумму Sn.
в) Найдите наименьшее п, при котором Sn будет квадратом целого числа.
Решение: а) Очевидно, что an = Sn – Sn – 1. Используя данную формулу, получаем:
Sn = S(n – 1) + 1 = 2(n – 1)2 – 21(n – 1) – 23 = 2n2 – 25n,
Sn – 1 = S(n – 2) + 1 = 2(n – 1)2 – 21(n – 2) – 23 = 2n2 – 25n + 27
значит, an = 2n2 – 25n – (2n2 – 29n + 27) = 4n – 27.
б) Так как Sn = 2n2 – 25n, то рассмотрим функцию S(x) = |2x2 – 25x|. Ее график можно увидеть на рисунке.
Очевидно, что наименьшее значение достигается в целочисленных точках, расположенных наиболее близко к нулям функции. Очевидно, что это точки х = 1, х = 12 и х = 13. Поскольку, S(1) = |S1| = |2 – 25| = 23, S(12) = |S12| = |2 · 144 – 25 · 12| = 12, S(13) = |S13| = |2 · 169 – 25 · 13| = 13, то наименьшее значение равно 12.
в) Из предыдущего пункта вытекает, что Sn положительно, начиная с n = 13. Так как Sn = 2n2 – 25n = n(2n – 25), то очевидный случай, когда данное выражение является полным квадратом, реализуется при n = 2n – 25, то есть при п = 25.
Осталось проверить значения с 13 до 25:
S13 = 13 · 1, S14 = 14 · 3, S15 = 15 · 5, S16 = 16 · 7, S17 = 17 · 9, S18 = 18 · 11, S19 = 19 · 13, S20 = 20 · 13, S21 = 21 · 17, S22 = 22 · 19, S23 = 23 · 21, S24 = 24 · 23.
Получается, что при меньших значениях п полный квадрат не достигается.
Ответ: а) an = 4n – 27; б) 12; в) 25.
Фото: nn.ucheba.ru
________________
*С мая 2017 года объединенная издательская группа «ДРОФА-ВЕНТАНА» входит в корпорацию «Российский учебник». В корпорацию также вошли издательство «Астрель» и цифровая образовательная платформа «LECTA». Генеральным директором назначен Александр Брычкин, выпускник Финансовой академии при Правительстве РФ, кандидат экономических наук, руководитель инновационных проектов издательства «ДРОФА» в сфере цифрового образования (электронные формы учебников, «Российская электронная школа», цифровая образовательная платформа LECTA). До прихода в издательство «ДРОФА» занимал позицию вице-президента по стратегическому развитию и инвестициям издательского холдинга «ЭКСМО-АСТ». Сегодня издательская корпорация «Российский учебник» обладает самым крупным портфелем учебников, включенных в Федеральный перечень — 485 наименований (примерно 40%, без учета учебников для коррекционной школы). Издательствам корпорации принадлежат наиболее востребованные российскими школами комплекты учебников по физике, черчению, биологии, химии, технологии, географии, астрономии — областям знаний, которые нужны для развития производственного потенциала страны. В портфель корпорации входят учебники и учебные пособия для начальной школы, удостоенные Премии Президента в области образования. Это учебники и пособия по предметным областям, которые необходимы для развития научно-технического и производственного потенциала России.
- Треугольник
- Четырехугольники
- Окружность и круг
- Призма
- Пирамида
- Усеченная пирамида
- Цилиндр
- Конус
- Усеченный конус
- Сфера и шар
1. Формулы сокращённого умножения
Наверх
2. Модуль числа
Определение:
Основные свойства модуля:
Наверх
3. Степень с действительным показателем
Свойства степени с действительным показателем
Пусть Тогда верны следующие соотношения:
Наверх
4. Корень n-ой степени из числа
Корнем n-ой степени из числа a называется число, n-ая степень которого равна a.
Арифметическим корнем четной степени n из неотрицательного числа a называется неотрицательное число, n-ая степень которого равна a.
Основные свойства арифметического корня:
Наверх
5. Логарифмы
Определение логарифма:
Основное логарифмическое тождество:
Основные свойства логарифмов
Пусть Тогда верны следующие соотношения:
Наверх
6. Арифметическая прогрессия
Формула n-го члена арифметической прогрессии:
Характеристическое свойство арифметической прогрессии:
Сумма n первых членов арифметической прогрессии:
При решении задач, связанных с арифметической прогрессией, могут оказаться полезными также следующие формулы:
Наверх
7. Геометрическая прогрессия
Формула n-го члена геометрической прогрессии:
Характеристическое свойство геометрической прогрессии:
Сумма n первых членов геометрической прогрессии:
При решении задач, связанных с геометрической прогрессией, могут оказаться полезными также следующие формулы:
Наверх
8. Бесконечно убывающая геометрическая прогрессия
Сумма бесконечно убывающей геометрической прогрессии:
Наверх
9. Основные формулы тригонометрии
Зависимость между тригонометрическими функциями одного аргумента:
Формулы сложения:
Формулы тригонометрических функций двойного аргумента:
Формулы понижения степени:
Формулы приведения
Все формулы приведения получаются из соответствующих формул сложения. Например:
Применение формул приведения укладывается в следующую схему:
— определяется координатная четверть, в которой лежит аргумент приводимой функции, считая, что ;
— определяется знак приводимой функции;
— определяется название приведенной функции по следующему правилу: если аргумент приводимой функции имеет вид или , то функция меняется на сходственную функцию, если аргумент приводимой функции имеет вид , то функция названия не меняет.
Например, получим формулу :
— — IV четверть;
— в IV четверти тангенс отрицательный;
— аргумент приводимой функции имеет вид , следовательно, название функции меняется. Таким образом,
Формулы преобразования суммы тригонометрических функций в произведение:
Формулы преобразования произведения тригонометрических функций в сумму:
Наверх
10. Производная и интеграл
Таблица производных некоторых элементарных функций
Правила дифференцирования:
1.
2.
3.
4.
5.
Уравнение касательной к графику функции в его точке :
Таблица первообразных для некоторых элементарных функций
Правила нахождения первообразных
Пусть ― первообразные для функций и соответственно, a, b, k ― постоянные, Тогда:
— ― первообразная для функции
— ― первообразная для функции
— ― первообразная для функции
— Формула Ньютона-Лейбница:
1. Треугольник
Пусть ― длины сторон BC, AC, AB треугольника ABC соответственно; ― полупериметр треугольника ABC; A, B, C ― величины углов BAC, ABC, ACB треугольника ABC соответственно; ― длины высот AA2, BB2, CC2 треугольника ABC соответственно; R ― радиус окружности, описанной около треугольника ABC; r — радиус окружности, вписанной в треугольник ABC; ― площадь треугольника ABC. Тогда имеют место следующие соотношения:
(теорема синусов);
(теорема косинусов);
Наверх
2. Четырёхугольники
Параллелограмм
Параллелограммом называется четырехугольник, противоположные стороны которого попарно параллельны.
Прямоугольником называется параллелограмм, у которого все углы прямые.
Ромбом называется параллелограмм, все стороны которого равны.
Квадратом называется прямоугольник, все стороны которого равны. Из определения следует, что квадрат является ромбом, следовательно, он обладает всеми свойствами прямоугольника и ромба.
Трапецией называется четырехугольник, две стороны которого параллельны, а две другие не параллельны.
Площадь четырехугольника
Площадь параллелограмма равна произведению его основания на высоту.
Площадь параллелограмма равна произведению двух его смежных сторон на синус угла между ними.
Площадь трапеции равна произведению полусуммы ее оснований на высоту.
Площадь четырехугольника равна половине произведения его диагоналей на синус угла между ними.
Наверх
3. Окружность и круг
Соотношения между элементами окружности и круга
Пусть r — радиус окружности, d — ее диаметр, C — длина окружности, S — площадь круга, — длина дуги в градусов, — длина дуги в радиан, — площадь сектора, ограниченного дугой в n градусов, — площадь сектора, ограниченного дугой в радиан. Тогда имеют место следующие соотношения:
Вписанный угол
Вписанный угол измеряется половиной дуги, на которую он опирается.
Вписанные углы, опирающиеся на одну и ту же дугу, равны.
Вписанный угол, опирающийся на полуокружность, — прямой.
Вписанная окружность
Центр окружности, вписанной в многоугольник, есть точка равноудаленная от всех сторон этого многоугольника, ― точка пересечения биссектрис углов этого многоугольника. Таким образом, в многоугольник можно вписать окружность, и притом только одну, тогда и только тогда, когда биссектрисы его углов пересекаются в одной точке.
В четырехугольник можно вписать окружность тогда и только тогда, когда суммы его противоположных сторон равны.
Описанная окружность
Центр окружности, вписанной в многоугольник, есть точка равноудаленная от всех вершин этого многоугольника, ― точка пересечения серединных перпендикуляров к сторонам этого многоугольника. Таким образом, около многоугольника можно описать окружность, и притом только одну, тогда и только тогда, когда серединные перпендикуляры к сторонам этого многоугольника пересекаются в одной точке.
Около четырехугольника можно описать окружность тогда и только тогда, когда суммы его противоположных углов равны
Наверх
4. Призма
Пусть H ― высота призмы, AA1 ― боковое ребро призмы, ― периметр основания призмы, ― площадь основания призмы, ― площадь боковой поверхности призмы, ― площадь полной поверхности призмы, V ― объем призмы, ― периметр перпендикулярного сечения призмы, ― площадь перпендикулярного сечения призмы. Тогда имеют место следующие соотношения:
Свойства параллелепипеда:
— противоположные грани параллелепипеда равны и параллельны;
— диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам;
— квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.
Наверх
5. Пирамида
Пусть H ― высота пирамиды, ― периметр основания пирамиды, ― площадь основания пирамиды, ― площадь боковой поверхности пирамиды, ― площадь полной поверхности пирамиды, V ― объем пирамиды. Тогда имеют место следующие соотношения:
;
.
Замечание. Если все двугранные углы при основании пирамиды равны , а высоты всех боковых граней пирамиды, проведенные из вершины пирамиды, равны , то
Наверх
6. Усечённая пирамида
Пусть H ― высота усеченной пирамиды, и ― периметры оснований усеченной пирамиды, и ― площади оснований усеченной пирамиды, ― площадь боковой поверхности усеченной пирамиды, ― площадь полной поверхности усеченной пирамиды, V ― объем усеченной пирамиды.
Тогда имеют место следующие соотношения:
Замечание. Если все двугранные углы при основании пирамиды равны , а высоты всех боковых граней пирамиды, проведенные из вершины пирамиды, равны , то:
Наверх
7. Цилиндр
Пусть h ― высота цилиндра, r ― радиус цилиндра, ― площадь боковой поверхности цилиндра, ― площадь полной поверхности цилиндра, V ― объем цилиндра.
Тогда имеют место следующие соотношения:
Наверх
8. Конус
Пусть h ― высота конуса, r ― радиус основания конуса, l ― образующая конуса, ― площадь боковой поверхности конуса, ― площадь полной поверхности конуса, V ― объем конуса.
Тогда имеют место следующие соотношения:
Наверх
9. Усечённый конус
Пусть h ― высота усеченного конуса, r и ― радиусы основания усеченного конуса, l ― образующая усеченного конуса, ― площадь боковой поверхности усеченного конуса, V ― объем усеченного конуса. Тогда имеют место следующие соотношения:
Наверх
10. Сфера и шар
Пусть R ― радиус шара, D ― его диаметр, S ― площадь ограничивающей шар сферы, ― площадь сферической поверхности шарового сегмента (шарового слоя), высота которого равна h, V ― объем шара, ― объем сегмента, высота которого равна h, ― объем сектора, ограниченного сегментом, высота которого равна h. Тогда имеют место следующие соотношения:
Наверх
Материалы, выдаваемые на экзамене, смотрите здесь
- Полный краткий справочник
- Формулы сокращенного умножения
- Модуль числа, модуль выражения
- Степень с действительным показателем
- Корень n-ой степени из числа
- Логарифмы
- Арифметическая прогрессия
- Геометрическая прогрессия
- Бесконечно убывающая геометрическая прогрессия
- Основные формулы тригонометрии
- Производная и интеграл
- Треугольник
- Четырехугольники
- Окружность и круг
- Призма
- Пирамида
- Усеченная пирамида
- Цилиндр
- Конус
- Усеченный конус
- Сфера и шар
- Векторы и координаты
- Особенности экзаменационных заданий профильной математики
- Задания 1: округление величин, проценты
- Особенности экзаменационных заданий на округление
- Округление величин с избытком и недостатком
- Проценты
- Особенности экзаменационных заданий на проценты
- Задания 2: анализ графических зависимостей
- Анализ графических зависимостей
- Особенности экзаменационных заданий на чтение графиков и диаграмм
- Задания 3 и 6: планиметрия
- Треугольник
- Равносторонний треугольник
- Равнобедренный треугольник
- Прямоугольный треугольник
- Тригонометрические функции дополнительных углов
- Основное тригонометрическое тождество и следствия из него
- Смежные углы
- Средняя линия треугольника
- Медиана треугольника
- Биссектриса треугольника
- Высота треугольника
- Серединный перпендикуляр
- Теорема косинусов
- Параллелограмм
- Прямоугольник
- Ромб
- Параллелограмм Вариньона
- Трапеция
- Правильный шестиугольник
- Теоремы о площадях многоугольников
- Окружность
- Вписанный угол
- Хорда
- Касательная к окружности
- Секущая
- Круг и его элементы
- Соотношения между элементами окружности и круга
- Вписанная окружность
- Описанная окружность
- Вектор
- Сумма и разность векторов
- Координаты вектора
- Скалярное произведение векторов
- Расстояния от точки до координатных осей
- Расстояние между точками
- Треугольник
- Задания 4: вероятности событий
- Определение вероятности
- Теоремы о вероятностях событий
- Особенности экзаменационных заданий на начала теории вероятности
- Задания 5: простейшие уравнения
- Простейшие уравнения
- Линейные уравнения
- Квадратные уравнения
- Рациональные уравнения
- Иррациональные уравнения
- Показательные уравнения
- Логарифмические уравнения
- Особенности решения экзаменационных заданий на простейшие уравнения
- Задания 7: производные, первообразные
- Правила дифференцирования
- Производная числа, линейной и степенной функции
- Производная многочлена
- Уравнение прямой
- Уравнение касательной
- Физический смысл производной
- Монотонность и экстремумы функции
- Первообразная
- Криволинейная трапеция и ее площадь
- Задания 8: стереометрия
- Особенности экзаменационных заданий по стереометрии
- Куб
- Призма. Прямоугольный параллелепипед
- Прямая призма
- Прямоугольный параллелепипед и его свойства
- Особенности правильной шестиугольной призмы
- Пирамида
- Сечения
- Цилиндр и его соотношения
- Конус и его соотношения
- Сфера и шар
- Комбинации круглых тел. Вписанные сферы
- Комбинации круглых тел. Описанные сферы
- Комбинации конуса и цилиндра
- Комбинации многогранников и круглых тел. Описанные сферы
- Комбинации многогранников и круглых тел. Вписанные сферы
- Комбинации конуса, цилиндра и многогранников
- Задания 9: тождественные преобразования выражений
- Действия с дробями
- Формулы сокращенного умножения
- Степень и её свойства
- Свойства степени
- Степень с дробным показателем
- Арифметический корень
- Свойства арифметического корня
- Определение логарифма и его свойства
- Основные тригонометрические формулы
- Правило для запоминания формул приведения
- Свойства четности и нечетности функций
- Задания 10: задачи с прикладным содержанием
- Задачи с прикладным содержанием
- Задания 11: текстовые задачи
- Определение процента
- Правило креста для решения задач на смеси
- Движение по прямой
- Движение по окружности
- Алгоритм решения задач на совместную работу
- Задания 12: исследование функций при помощи производной
- Производная некоторых элементарных функций
- Правила дифференцирования
- Монотонность и экстремумы функции
- Наибольшее и наименьшее значение функции
- Задания 1: округление величин, проценты
Здесь представлен бесплатный видеокурс по подготовке к ЕГЭ по математике профильного уровня.
Список заданий:
Задание 1. Прямоугольные, равнобедренные треугольники, треугольники общего вида, параллелограмм, трапеция, вписанные и центральные углы, вписанные и описанные окружности.
Задание 2. Стереометрия: куб, параллелепипед, призма, пирамида, цилиндр, конус,шар, комбинация тел, элементы, площади и объемы составных многогранников
Задание 3. Классическое определение вероятности.
Задание 4. Теоремы о вероятности событий.
Задание 5. Линейные, квадратичные, дробно-рациональные, степенные, иррациональные, тригонометрические, показательные и логарифмические уравнения
Задание 6. Рациональные, иррациональные, степенные, логарифмические, тригонометрические выражения.
Задание 7. Производная и первообразная: физический смысл производной, геометрический смысл производной и касательная, применение производной к исследованию функций, первообразная
Задание 8. Задачи с прикладным содержанием: линейные, квадратные, степенные, рациональные, иррациональные, показательные, логарифмические, тригонометрические и смешанные уравнения и неравенства.
Задание 9. Текстовые задачи на движение по прямой и окружности, на движение по воде, на проценты и сплавы, на совместную работу и прогрессии.
Разбор всех типов задания номер 1 из ЕГЭ (профильный уровень) по математике
Разбор всех типов задания номер 2 из ЕГЭ (профильный уровень) по математике
Разбор всех типов задания номер 3 из ЕГЭ (профильный уровень) по математике
Разбор всех типов задания номер 4 из ЕГЭ (профильный уровень) по математике
Разбор всех типов задания номер 5 из ЕГЭ (профильный уровень) по математике
Разбор всех типов задания номер 6 из ЕГЭ (профильный уровень) по математике
Разбор всех типов задания номер 7 из ЕГЭ (профильный уровень) по математике
Разбор всех типов задания номер 8 из ЕГЭ (профильный уровень) по математике
Разбор всех типов задания номер 9 из ЕГЭ (профильный уровень) по математике
Структура профильного уровня ЕГЭ по математике
Экзаменационная работа состоит из двух частей, которые различаются по содержанию, сложности и числу заданий:
- 8 заданий первой части (задания 1–8) с кратким ответом в виде целого числа или конечной десятичной дроби
- 4 задания второй части (задания 9–12) с кратким ответом в виде целого числа или конечной десятичной дроби
- 7 заданий второй части (задания 13–19) с развернутым ответом (полная запись решения с обоснованием выполненных действий)
Задания первой части направлены на проверку освоения базовых умений и практических навыков применения математических знаний в повседневных ситуациях.
Посредством заданий второй части осуществляется проверка освоения математики на профильном уровне, необходимом для применения математики в профессиональной деятельности и на творческом уровне.
По уровню сложности задания распределяются следующим образом:
- задания 1–8 имеют базовый уровень
- задания 9–17 – повышенный уровень
- задания 18 и 19 относятся к высокому уровню сложности
При выполнении заданий с развернутым ответом части 2 экзаменационной работы в бланке ответов № 2 должны быть записаны полное обоснованное решение и ответ для каждой задачи.
Распределение заданий по частям экзаменационной работы
Части работы | Количество заданий | Максимальный первичный бал | Тип заданий |
1 часть | 8 | 8 | Краткий ответ |
2 часть | 11 | 24 | Развернутый ответ |
Итого | 19 | 32 |