Как решать все задания егэ по математике профильный уровень

Сдай ЕГЭ! Бесплатные материалы для
подготовки каждую неделю!

null

Нажимая на кнопку, вы даете согласие на обработку своих персональных
данных согласно 152-ФЗ. Подробнее

Материалы для подготовки к ЕГЭ по математике базового и профильного уровня

Оглавление:

  • Поиск по материалам:

  • Полный курс для подготовки к ЕГЭ по математике

  • Профильный ЕГЭ по математике. Все задачи

  • Варианты Статград

  • Задачи из сборника И. В. Ященко, 2021 год

  • Задачи из сборника И. В. Ященко, 2020 год

  • Новые варианты для подготовки к ЕГЭ и ОГЭ с ответами и решениями:

  • Выберите раздел:

  • Необходимый минимум

  • Планиметрия

  • Алгебра

  • Тригонометрия

  • Стереометрия

  • Часть 2 (задачи 13 — 19) на ЕГЭ по математике.

  • Советы и рекомендации по подготовке к экзамену

  • Об этом сайте:

Полный спектр материалов для подготовки к ЕГЭ по математике + решение задач по всем темам ЕГЭ. В каждой теме и каждой задаче есть свои секреты. О них вам может рассказать только очень хороший учитель или репетитор. Такой, как мы. Читайте, изучайте, скачивайте то, чего не найдёте в учебниках! Вы можете скачать весь курс бесплатно сразу или найти то, что ищете, на этой странице.

Справочник для подготовки к ЕГЭ Анны Малковой
Актуальные видео по математике

к оглавлению ▴

Полный курс для подготовки к ЕГЭ по математике

  • New

    ЕГЭ-2022, математика. Все задачи с решениями

  • New

    Задачи с параметрами на ЕГЭ-2022: модули, окружности, квадратные уравнения

  • New

    Тренировочная работа от 28.09.2021, Статград. Задача №18 (Числа и их свойства)

  • New

    Новые задачи по теории вероятностей из Открытого Банка заданий ЕГЭ, 2021-2022 год

  • New

    Комплексные числа на ЕГЭ по математике

  • New

    ЕГЭ-2021, Математика. Все задачи

  • New

    Тренировочная работа № 3. Задачи 13-19

  • New

    Задача с секретом о пиратах и дукатах из сборника И. В. Ященко

  • Стрим 20 августа 2020 года. Лучшие задачи ЕГЭ-2020
  • ЕГЭ-2020 по математике. Сложные задачи, неравноценные варианты и одно неравенство для всей страны
  • Тренировочная работа 18 декабря 2019 года. Задача 19
  • Учителю и репетитору: Методика, программы подготовки к ЕГЭ, поурочные планы
  • Тесты и варианты ЕГЭ с решениями и ответами
  • Алгебра – основные понятия и формулы
  • Теория вероятностей
  • Текстовые задачи
  • Решение уравнений
  • Решение неравенств
  • Тригонометрия
  • Планиметрия
  • Стереометрия
  • Функции и графики. Производная и первообразная
  • «Экономические» задачи на ЕГЭ по математике
  • Задачи с параметрами
  • Нестандартные задачи на числа и их свойства
  • Советы и рекомендации для подготовки к ЕГЭ по математике

к оглавлению ▴

Профильный ЕГЭ по математике. Все задачи

  • Задание 1. Планиметрия
  • Задание 2. Стереометрия
  • Задание 3. Теория вероятностей. Основные понятия
  • Задание 4. Теория вероятностей, повышенный уровень сложности
  • Задание 5. Простейшие уравнения
  • Задание 6. Вычисления и преобразования
  • Задание 7. Производная и первообразная
  • Задание 8. Задачи с прикладным содержанием
  • Задание 9. Текстовые задачи
  • Задание 10. Функции и графики
  • Задание 11. Исследование функций
  • Задание 12. Уравнения на ЕГЭ по математике
  • Задание 13. Стереометрия на ЕГЭ по математике
  • Задание 14. Неравенства на ЕГЭ по математике
  • Задание 15. «Экономические» задачи на ЕГЭ по математике
  • Задание 16. Планиметрия на ЕГЭ по математике
  • Задание 17. Задачи с параметрами на ЕГЭ по математике
  • Задание 18. Задачи на числа и их свойства на ЕГЭ по математике Нестандартные задачи
  • Таблица перевода баллов ЕГЭ, Профильный уровень

Как решалась задача №17 на ЕГЭ-2018?

к оглавлению ▴

Варианты Статград

New

Тренировочная работа № 3. Задачи 13-19

Тренировочная работа 29.01.20. Вариант Восток

Тренировочная работа 29.01.20. Вариант Запад

Тренировочная работа 25.09.19. Вариант Запад

Тренировочная работа 25.09.19. Вариант Восток

Тренировочная работа 24.01.19. Вариант Запад

Тренировочная работа 24.01.19. Вариант Восток

Тренировочная работа 18.12.19 Вариант Запад

Тренировочная работа 30.09.20

Диагностическая работа 16.12.20

Досрочный ЕГЭ 2020 года, Профильная математика

Новая задача 18 Профильного ЕГЭ по математике (числа и их свойства), январь, восток

Новая задача 18 Профильного ЕГЭ по математике, Параметры, 24 января 2019, запад

Новая задача 16 Профильного ЕГЭ по математике, Геометрия, январь, запад

к оглавлению ▴

Задачи из сборника И. В. Ященко, 2021 год

  • Вариант 1, Задача 13
  • Вариант 6, Задача 13
  • Вариант 11, Задача 13
  • Вариант 17, Задача 13
  • Вариант 22, Задача 13
  • Вариант 28, Задача 13
  • Вариант 1, Задача 15
  • Вариант 3, Задача 15
  • Вариант 5, Задача 15
  • Вариант 12, Задача 15
  • Вариант 17, Задача 15
  • Вариант 24, Задача 15
  • Задача 18. Пираты и дукаты

к оглавлению ▴

Задачи из сборника И. В. Ященко, 2020 год

  • Вариант 6, задача 14
  • Вариант 8, задача 15
  • Вариант 32, задача 15
  • Вариант 36, задача 15
  • Вариант 2, задача 16
  • Вариант 4, задача 16
  • Вариант 6, задача 16
  • Вариант 8, задача 16
  • Вариант 12, задача 16
  • Вариант 1, задача 17
  • Вариант 5, задача 17
  • Вариант 11, задача 17
  • Вариант 26, задача 17
  • Вариант 36, задача 17
  • Вариант 27, задача 19

к оглавлению ▴

Новые варианты для подготовки к ЕГЭ и ОГЭ с ответами и решениями:

  • ЕГЭ-2018, профильный уровень. Разбор задач 13-19
  • ЕГЭ, профильный уровень. Тренировочный вариант 1
  • ЕГЭ, профильный уровень. Тренировочный вариант 2
  • ЕГЭ, профильный уровень. Тренировочный вариант 3
  • ЕГЭ, профильный уровень. Тренировочный вариант 4
  • ЕГЭ, профильный уровень. Тренировочный вариант 5
  • ОГЭ. Тренировочный вариант 1
  • ОГЭ. Тренировочный вариант 2

к оглавлению ▴

Выберите раздел:

  • Методика подготовки к ЕГЭ по математике Анны Малковой
  • Пройди необычный тест ЕГЭ и узнай будущее!
  • Программа подготовки к ЕГЭ по математике
  • Учителям и репетиторам: программа подготовки к ЕГЭ для 10-го класса
  • Как распределить время на ЕГЭ по математике
  • Необходимый минимум
  • Тригонометрия
  • Планиметрия
  • Стереометрия
  • Алгебра
  • Задачи 13-19

к оглавлению ▴

Необходимый минимум

    • Задача 1. Решается всегда!
    • Задача 2. Чтение графика функции
  • Теория вероятностей. Основные понятия.
  • Видео бесплатно!

    Теория вероятностей на ЕГЭ по математике. Полный курс.

  • Текстовые задачи. Движение и работа
  • Текстовые задачи. Проценты, сплавы, растворы…
  • ЕГЭ без ошибок. Вычисляем без калькулятора

к оглавлению ▴

Планиметрия

  • Геометрия. Формулы площадей фигур.
  • Программа по геометрии. Список необходимых фактов и теорем.
  • Синус, косинус и тангенс острого угла прямоугольного треугольника
  • Тригонометрический круг: вся тригонометрия на одном рисунке
  • Внешний угол треугольника. Синус и косинус внешнего угла
  • Высота в прямоугольном треугольнике
  • Сумма углов треугольника
  • Углы при параллельных прямых и секущей
  • Высоты, медианы, биссектрисы треугольника
  • Четырёхугольники
  • Параллелограмм
  • Прямоугольник
  • Ромб
  • Квадрат
  • Трапеция
  • Окружность. Центральный и вписанный угол
  • Касательная к окружности
  • Вписанные и описанные треугольники. Теорема синусов
  • Вписанные и описанные четырёхугольники
  • Правильный треугольник
  • Правильный шестиугольник
  • Векторы и операции над ними
  • Геометрия в школе: засада для абитуриента
  • Геометрический парадокс: Прямой угол равен тупому
  • Геометрический парадокс: Катет равен гипотенузе

к оглавлению ▴

Алгебра

  • Числовые множества
  • Степени и корни.
  • Что такое функция?
  • Чтение графика функции
  • Парабола и квадратные неравенства.
  • Степенная функция
  • Показательная функция
  • Показательные уравнения
  • Логарифмы
  • Логарифмическая функция
  • Элементарные функции и их графики
  • Показательные и логарифмические неравенства. 1
  • Показательные и логарифмические неравенства. 2
  • Число e
  • Видео бесплатно!

    Производная функции. Геометрический смысл производной

  • Таблица производных и правила дифференцирования
  • Модуль числа
  • Уравнения и неравенства с модулем
  • Метод интервалов

к оглавлению ▴

Тригонометрия

  • Тригонометрический круг: вся тригонометрия на одном рисунке
  • Тригонометрические формулы. Необходимый минимум
  • Видео бесплатно!

    Формулы приведения

  • Тригонометрические формулы. Сводка для части 1
  • Тригонометрические формулы. Сводка для части 2
  • Тригонометрические функции
  • Простейшие тригонометрические уравнения, 1
  • Простейшие тригонометрические уравнения, 2
  • Тригонометрические уравнения

к оглавлению ▴

Стереометрия

  • Многогранники: формулы объема и площади поверхности
  • Тела вращения: формулы объема и площади поверхности
  • Задачи по стереометрии часть 1: Просто применяем формулы
  • Задачи по стереометрии часть 2: Приемы и секреты
  • Задача 14 (часть 2 ЕГЭ по математике). Программа по стереометрии
  • Плоскость в пространстве. Взаимное расположение плоскостей
  • Прямые в пространстве. Пересекающиеся, параллельные, скрещивающиеся прямые
  • Параллельность прямой и плоскости
  • Угол между прямой и плоскостью. Перпендикулярность прямой и плоскости
  • Параллельность плоскостей
  • Угол между плоскостями. Перпендикулярность плоскостей
  • Угол и расстояние между скрещивающимися прямыми. Расстояние от точки до плоскости
  • Теорема о трёх перпендикулярах
  • Параллельное проецирование
  • Как строить чертежи в задачах по стереометрии
  • Векторы и метод координат в задаче 14, часть 2 ЕГЭ по математике
  • В.М. Мамаева. «Перпендикулярность. Книга для учащихся»
  • В.М. Мамаева. «Перпендикулярность. Книга для учителя»
  • В.М. Мамаева. «Тела вращения. Книга для учащихся»
  • В.М. Мамаева. «Тела вращения. Книга для учителя»

к оглавлению ▴

Часть 2 (задачи 13 — 19) на ЕГЭ по математике.

Видео

Задача 13: Уравнения на ЕГЭ по математике. Полный курс.

Видео

Задача 14: Стереометрия на ЕГЭ по математике. Полный курс. Оба метода — классика и векторы. Более 3 часов видео.

Видео

Задача 15: Неравенства на ЕГЭ по математике. Полный курс в двух частях.

Видео

Задача 16: Геометрия на ЕГЭ по математике. Полный курс. Более 5 часов видео.

Видео

Задачи по математике с экономическим содержанием. Задача 17 на ЕГЭ по математике и задачи олимпиад по экономике.

Видео бесплатно!

Задача 18: Параметры на ЕГЭ по математике. Графический метод.

Видео

Задача 18: Параметры на ЕГЭ по математике. Полный курс. Более 5 часов видео.
Задача 19 на числа и их свойства на ЕГЭ по математике.

Задача 19 на ЕГЭ по математике 2016 года. Решение.
Задача 19 на ЕГЭ по математике 2017 года. Решение.

Видео

Впервые! Видеокурс «Ключ к С6». Нестандартные задачи на ЕГЭ по математике.

к оглавлению ▴

Советы и рекомендации по подготовке к экзамену

  • Справочники для подготовки к ЕГЭ по математике
  • Методика подготовки к ЕГЭ по математике Анны Малковой
  • ЕГЭ по математике – советы и рекомендации
  • Репетитор по математике
  • Подготовиться к ЕГЭ самостоятельно и бесплатно
  • Математика и жизнь. Из воспоминаний бывалого студента.
  • Книги и учебники для подготовки к ЕГЭ по Математике
  • Как подготовиться к ЕГЭ по математике?
  • Как распределить время на ЕГЭ по математике
  • Подготовка к ЕГЭ по Математике с нуля
  • Самостоятельная подготовка к ЕГЭ по математике

к оглавлению ▴

Об этом сайте:

  • Каждый год на этом сайте готовятся к ЕГЭ сотни тысяч учащихся. Нас рекомендуют учителя и репетиторы. Автор сайта, на котором вы находитесь, — репетитор-профессионал, ведущая курсов подготовки к ЕГЭ на высшие баллы, руководитель компании «ЕГЭ-Студия» Анна Георгиевна Малкова.
    Также вы можете выбрать базовый уровень подготовки к ЕГЭ по математике онлайн

Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Материалы для подготовки к ЕГЭ по математике базового и профильного уровня» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
09.03.2023

Мы используем файлы cookie, чтобы персонализировать контент, адаптировать и оценивать результативность рекламы, а также обеспечить безопасность. Перейдя на сайт, вы соглашаетесь с использованием файлов cookie.

ЕГЭ по математике

В данном разделе мы занимаемся подготовкой к ЕГЭ по математике как базового, профильного уровня — у нас представлены разборы задач, тесты, описание экзамена и полезные рекомендации. Пользуясь нашим ресурсом, вы как минимум разберетесь в решении задач и сможете успешно сдать ЕГЭ по математике в 2020 году. Начинаем!

ЕГЭ по математике является обязательным экзаменом любого школьника в 11 классе, поэтому информация, представленная в данном разделе актуальна для всех. Экзамен по математике делится на два вида — базовый и профильный. В данном разделе я приведен разбор каждого вида заданий с подробным объяснением для двух вариантов. Задания ЕГЭ строго тематические, поэтому для каждого номера можно дать точные рекомендации и привести теорию, необходимую именно для решения данного вида задания. Ниже вы найдете ссылки на задания, перейдя по которым можно изучить теорию и разобрать примеры. Примеры постоянно пополняются и актуализируются.


Структура базового уровня ЕГЭ по математике


Экзаменационная работа по математике базового уровня состоит из одной части, включающей 20 заданий с кратким ответом. Все задания направлены на проверку освоения базовых умений и практических навыков применения математических знаний в повседневных ситуациях.

Ответом к каждому из заданий 1–20 является целое числоконечная десятичная дробь, или последовательность цифр.

Задание с кратким ответом считается выполненным, если верный ответ записан в бланке ответов №1 в той форме, которая предусмотрена инструкцией по выполнению задания.


Разбор заданий ЕГЭ по математике (база)


ЕГЭ по математике профильного уровня — один из самых сложных экзаменов. Планируете сдавать его, но не знаете, с чего начать? Этот экзамен не покажется вам таким трудным, если вы узнаете про него побольше и грамотно подготовитесь. В этой статье обсудим, что нужно знать про ЕГЭ по математике 2023, из каких разделов он состоит и как к нему подготовиться.

егэ по математике 2023

Профильный ЕГЭ по математике: что нужно знать к 2023 году?

Какие темы важно знать для ЕГЭ по математике 2023?

В математике, как и в любом предмете, есть опорные темы. Если вы их выучите, будет легче справиться с экзаменом.

Формулы тригонометрии

Очень важно знать формулы тригонометрии и уметь применять их. Хорошая новость: в справочных материалах можно найти несколько тригонометрических формул.

егэ по математике 2021

Но формул гораздо больше. Я советую не зубрить их, а научиться выводить: приходить к формулам шаг за шагом, опираясь на тождества. Кстати, мы учим выводить формулы на курсах подготовки к ЕГЭ: это полезно, чтобы оказаться на экзамене во всеоружии и ничего не перепутать.

Квадратные уравнения

Эти уравнения мы учимся решать еще в 7 классе. Они встречаются в ЕГЭ по математике постоянно: и как самостоятельные задания, и внутри более сложных уравнений или неравенств. Квадратные уравнения могут встретиться в математических моделях № 9 и № 15, в задачах на геометрию и стереометрию, в задании № 17 с параметром.

Самое главное — хорошо знать универсальные методы решения. Первый — через формулу дискриминанта, второй — через теорему Виета, которая может сэкономить время на экзамене.

Треугольники

Эта замечательная тема, которую проходят в 7 классе — основа основ всей геометрии. Она нужна и для решения стереометрии, и для простейших планиметрических задач. Еще треугольники необходимы, чтобы освоить огромное количество теорем. Выучите все, что с ними связано! Особое внимание обратите на прямоугольные треугольники, которые встречаются чаще остальных — тогда геометрические задачи сразу станут проще.

Проценты

Самая нелюбимая тема моих учеников после тригонометрии, которую необходимо хорошо знать. Проценты нужны для реальной математики — это № 9 (с кратким ответом) и № 15 (с развернутым ответом). Понимание этой темы может принести вам 3 первичных балла.

План успешной подготовки к ЕГЭ по математике 2023

Если вы хотите получить больше 80 баллов на ЕГЭ, нужно идеально решать часть с кратким ответом, а также справляться с большинством заданий с развернутым ответом.

Чтобы постепенно прорабатывать материал, воспользуйтесь кодификатором. В нем обратите внимание на таблицу 2, а именно на блоки:

  • Алгебра
  • Уравнения и неравенства
  • Элементы комбинаторики, статистики и теории вероятностей
  • Функции
  • Начала математического анализа
  • Геометрия

Ориентируйтесь на указанную последовательность, но геометрию изучайте параллельно с остальными блоками — на нее нужно больше времени.

Самое главное — ни в коем случае не ограничивайтесь теорией. Ее у вас не спросят на экзамене, а вот задания решать придется. Поэтому тренируйте практические навыки: актуальные задания вы сможете найти в открытом банке заданий на сайте ФИПИ или в нашем тренажере «Решутест».

Как решать часть с кратким ответом

Ни в коем случае не пренебрегайте частью с кратким ответом! Иначе будет обидно: например, вы наберете за экономическую задачу № 15 полные 2 балла, но потеряете их в двух заданиях первой части. Это актуально для всех ЕГЭ: подробнее о том, как идеально справляться с первой частью экзамена, читайте здесь.

Еще одно заблуждение: «часть с кратким ответом простая, к ней можно не готовиться». Даже в первой части иногда встречаются такие задания, которые ученики даже не решают, потому что не готовились к ним.

Как я уже говорила, часть с кратким ответом содержит 11 заданий. Начинать подготовку необходимо именно с заданий базового уровня сложности, потому что это та основа, на которую потом накладывается более сложная теория.

Что касается задач повышенного уровня сложности, то среди каждого номера есть лайфхаки, например, в этой статье я уже рассказывала про № 11, в котором нужно работать с производной.

Задания с развернутым ответом: немного статистики

Многие думают, что эта часть ЕГЭ по математике очень сложная. Поэтому ребята, которые не рассчитывают на высокие баллы, даже не приступают к ней. И очень зря! С помощью этих заданий можно заработать дополнительные баллы и побороться за высокое место в рейтинге.

Сейчас будет немного статистики. В среднем около 35% учеников получают полные 2 балла за решение № 12, а вот неравенство № 14 дается хуже, только около 12% с ним справляются на полный балл. Геометрия даётся ещё хуже: стереометрию № 13 полностью решают 2% выпускников, планиметрию (№ 16) менее 5%. А вот с экономической задачей (№ 15) справляются около 20%, а это целых 2 балла! Что касается № 17 и 18, то они даются ещё хуже, но на то они и самые сложные, хотя 1 балл за № 18 по статистике получают около 25% сдающих — там нужно просто привести пример.

Особенности уровней ЕГЭ по математике

В 2015 году ЕГЭ по математике разделили на базовый и профильный уровни. Это упростило жизнь выпускникам, которые не планируют поступать на специальности, связанные с математикой. Если ЕГЭ по математике нужен только для получения аттестата, можно сдать его облегченную версию, оставив время и силы для профильных экзаменов.

Базовый уровень ЕГЭ по математике

Как устроен базовый ЕГЭ по математике? Экзамен идет 180 минут, он состоит из 21 задания, за каждое из которых можно получить 1 балл. Этот экзамен единственный, который переводится не в 100-бальную систему, а в оценки.

егэ по математике 2023

Шкала перевода оценок для базового уровня ЕГЭ по математике 2023, ФИПИ

В ЕГЭ по математике базового уровня 6 тематических блоков:

егэ по математике 2023

Тематические блоки, ЕГЭ по математике 2023, базовый уровень

Также обратите внимание, что базовый ЕГЭ по математике не поменялся с точки зрения наполнения, изменился лишь порядок заданий. Вот что пишут ФИПИ:

егэ по математике 2023

ФИПИ о ЕГЭ по математике 2023

Подробнее про базовый ЕГЭ по математике, включая разбор всех заданий, читайте здесь, а мы перейдём к профильному.

Профильный уровень ЕГЭ по математике

Данный экзамен, как и остальные ЕГЭ, переводится в 100-бальную систему:

егэ по математике 2023

Шкала переводов для профильного уровня ЕГЭ по математике 2023, ФИПИ

Экзамен состоит из двух частей: Часть 1 с кратким ответом, а Часть 2 — с развернутым. Длится он 235 минут. Всего есть 18 заданий, которые разделены на 3 блока: алгебра, геометрия и реальная математика. Максимальное количество первичных баллов — 31.

База, профиль — неважно, к какому именно уровню вы готовитесь. В любом случае надо не только правильно решить каждое задание, но и оформить его так, чтобы проверяющие ни к чему не придрались. Нарисовать и описать график, расписать решение уравнения или задачи… И это не все: нужно еще и внести ответы в бланк без ошибок. И все это — за ограниченный период времени! Так можно перенервничать и запороть даже самую простую задачку. А на ЕГЭ — каждый балл на счету.

Поэтому на своих занятиях я сразу показываю своим ученикам, как правильно оформлять каждое задание в ЕГЭ по математике. Мы разбираем все критерии и учимся правильно отвечать на вопросы. А еще я всегда помогаю ученикам закрыть пробелы в знаниях и объясняю сложные темы столько раз, сколько нужно. И куда же без лайфхаков? Всегда рассказываю лучший способ решения типичных заданий. Так что мои ученики приходят на экзамены подготовленными и не нервничают, когда видят задачу. Хотите также? Приходите ко мне на курсы подготовки к ЕГЭ по математике — научу!

Структура ЕГЭ по математике 2023

Часть 1:

  • Приносит 11 баллов, то есть 35% всего экзамена
  • 11 заданий с кратким ответом

Часть 2:

  • Приносит 20 баллов, то есть 65% всего экзамена
  • 7 заданий с развернутым ответом

Внимание! Вся нумерация заданий в статье соответствует ЕГЭ 2023 года.

В заданиях с кратким ответом нужно лишь записать верное число в бланк. Заданий с развернутым ответом 7, в них нужно подробно расписать решение, которое должно соответствовать критериям оценивания.

ЕГЭ — стандартизированный экзамен, поэтому каждое задание всегда соответствует определенной теме.

Темы заданий с кратким ответом, ЕГЭ по математике 2023, профиль

Обратите внимание, что по сравнению с 2022 годом, в части 1 изменился только порядок заданий. Сами сотрудники ФИПИ говорят следующее:

егэ по математике 2023

ФИПИ о ЕГЭ по математике 2023
егэ по математике 2023
Темы заданий с развернутым ответом, ЕГЭ по математике 2023, профиль

Задания с кратким ответом принесут вам до 11 первичных баллов (64 вторичных). Если не понимаете, что это за баллы и откуда они берутся, почитайте эту статью. Самая популярная цель на ЕГЭ по математике — набрать 80 баллов, для этого раньше было необходимо 19 первичных баллов. Ранее многие ученики пользовались рабочей стратегией — решить всю часть с кратким ответом, а также № 12, 14 и 15. Если хорошо разбирались в геометрии, выбирали № 13 и 16 — или использовали их как запасные задания. Сейчас стратегия должна быть другая, так как № 13 (стереометрия) стал стоить дороже — 3 балла вместо 2, а № 15 (экономическая задача) — подешевел с 3 баллов до 2. Изменилась также шкала перевода баллов, поэтому подумайте, какими заданиями вы сможете набрать необходимое количество первичных баллов.

Разделы ЕГЭ по математике

  • Алгебра и начала анализа — 8 заданий, 13 первичных баллов
  • Геометрия — 4 задания, 8 первичных баллов
  • Реальная математика — 6 заданий, 10 первичных баллов

Какие задания входят в ЕГЭ по математике?

Здесь вам на помощь приходят документы с официального сайта ФИПИ: кодификатор, демоверсия и спецификация.

  • Кодификатор — это краткий перечень всех блоков и тем, которые включены в экзамен.

    Сейчас кодификатор общий для обоих уровней экзамена, как базового, так и профильного. Он снова представляет собой единый документ, так что не запутаетесь.

  • Демоверсия — типовой вариант ЕГЭ. Он показывает уровень экзамена и ориентировочную сложность заданий.
  • Спецификация — это документ, описывающий структуру экзамена и разбалловку.

Что в итоге

Теперь вы знаете больше про ЕГЭ по математике 2023. Вы познакомились со структурой и поняли, на что стоит обращать внимание при подготовке. А еще узнали, что первую часть обязательно решать на максимум, а вторая не такая страшная, как кажется. Но наверняка у вас еще осталась куча вопросов: по оформлению и конкретному решению каких-то заданий точно.

Обо всем этом я подробно рассказываю своим ученикам во время подготовки к ЕГЭ по математике. Мы изучаем все непонятные темы, а потом прорешиваем много однотипных заданий — так легче запоминается формат. Еще мы всегда проводим пробные экзамены, чтобы выявить слабые места. Я анализирую ошибки каждого ученика и индивидуально разбираю их с ними. Благодаря этому мои выпускники гарантированно сдают ЕГЭ на 80+. Если вы хотите оказаться среди них — записывайтесь на курсы!

Экзаменационная работа профильного уровня длится 3 часа 55 минут (235 минут). 

Минимальный порог — 27 баллов.

Экзаменационная работа состоит из двух частей, которые различаются по содержанию, сложности и числу заданий. 

Определяющим признаком каждой части работы является форма заданий:

  • часть 1 содержит 8 заданий (задания 1-8) с кратким ответом в виде целого числа или конечной десятичной дроби;
  • часть 2 содержит 4 задания (задания 9-12) с кратким ответом в виде целого числа или конечной десятичной дроби и 7 заданий (задания 13–19) с развернутым ответом (полная запись решения с обоснованием выполненных действий).

Панова.pngПанова Светлана Анатольевна, учитель математики высшей категории школы, стаж работы 20 лет:  

«Для того чтобы получить школьный аттестат, выпускнику необходимо сдать два обязательных экзамена в форме ЕГЭ, один из которых математика. В соответствии с Концепцией развития математического образования в Российской Федерации ЕГЭ по математике разделен на два уровня: базовый и профильный. Сегодня мы рассмотрим варианты профильного уровня».


Задание № 1 — проверяет у участников ЕГЭ умение применять навыки, полученные в курсе 5 — 9 классов по элементарной математике, в практической деятельности. Участник должен владеть вычислительными навыками, уметь работать с рациональными числами, уметь округлять десятичные дроби, уметь переводить одни единицы измерения в другие.

Пример 1.

В квартире, где проживает Петр, установили прибор учета расхода холодной воды (счетчик). Первого мая счетчик показывал расход 172 куб. м воды, а первого июня — 177 куб. м. Какую сумму должен заплатить Петр за холодную воду за май, если цена 1 куб. м  холодной воды составляет 34 руб 17 коп? Ответ дайте в рублях.

Решение:

1)    Найдем количество потраченной воды за месяц:

177 — 172 = 5 (куб м)

2)    Найдем сколько денег заплатят за потраченную воду:

34,17 · 5 = 170,85 (руб)

Ответ: 170,85.



Задание № 2 —является одним из простейших заданий экзамена. С ней успешно справляется большинство выпускников, что свидетельствует о владении определением понятия функции. Тип задания № 2 по кодификатору требований — это задание на использования приобретённых знаний и умений в практической деятельности и повседневной жизни. Задание № 2 состоит из описания с помощью функций различных реальных зависимостей между величинами  и интерпретация их графиков. Задание № 2 проверяет умение извлекать информацию, представленную в таблицах, на диаграммах, графиках. Выпускникам нужно уметь определять значение функции по значению аргумента при различных способах задания функции и описывать поведение и свойства функции по её графику. Также необходимо уметь находить по графику функции наибольшее или наименьшее значение и строить графики изученных функций. Допускаемые ошибки носят случайный характер в чтении условия задачи, чтении диаграммы.

#ADVERTISING_INSERT#

Задание №  2 проверяет умение читать диаграммы.

Пример 2. На рисунке показано изменение биржевой стоимости одной акции добывающей компании в первой половине апреля 2017 года. 7 апреля бизнесмен приобрёл 1000 акций этой компании. 10 апреля он продал три четверти купленных акций, а 13 апреля продал все оставшиеся. Сколько потерял бизнесмен в результате этих операций?

Решение: 

1)    340 · 1000 = 340000 (руб) — бизнесмен потратил 7 апреля при покупке 1000 акций.

2)    1000 · 3/4 = 750 (акций) — составляют  3/4 от всех купленных акций.

3)    330 · 750 = 247500 (руб) — бизнесмен получил 10 апреля после продажи 750 акций.

4)    1000 – 750 = 250 (акций) — остались после продажи 750 акций 10 апреля.

5)    310 · 250 = 77500 (руб) — бизнесмен получил 13 апреля после продажи 250 акций.

6)    247500 + 77500 = 325000 (руб) — бизнесмен получил после продажи 1000 акций.

7)    340000 – 325000 = 15000 (руб) — потерял бизнесмен в результате всех операций.

Ответ: 15000.


Задание № 3 — является заданием базового уровня первой части, проверяет умения выполнять действия с геометрическими фигурами по содержанию курса «Планиметрия». В задании 3 проверяется умение вычислять площадь фигуры на клетчатой бумаге, умение вычислять градусные меры углов, вычислять периметры и т.п.

Пример 3. Найдите площадь прямоугольника, изображенного на клетчатой бумаге с размером клетки 1 см на 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.

Решение: Для вычисления площади данной фигуры можно воспользоваться формулой Пика:

 На рисунке справа B = 7 (красные точки), Г = 8 (зелёные точки), 

Для вычисления площади данного прямоугольника воспользуемся формулой Пика: 

где В = 10, Г = 6, поэтому

Ответ: 20.

 Рисунок  



Читайте также: ЕГЭ по физике: решение задач о колебаниях


Задание № 4 — задача курса «Теория вероятностей и статистика». Проверяется умение вычислять вероятность события в простейшей ситуации.

Пример 4. На окружности отмечены 5 красных и 1 синяя точка. Определите, каких многоугольников больше: тех, у которых все вершины красные, или тех, у которых одна из вершин синяя. В ответе укажите, на сколько одних больше, чем других.

Решение: 1) Воспользуемся формулой числа сочетаний из n элементов по k:

Cnk  = n!  . 
k!(nk)!

C35  = 5!  =   3! · 4 · 5  =  4 · 5  = 10 треугольников,
3!(5 – 3)! 3!2! 1 · 2

у которых все вершины красные.

2)

C45  = 5!  =  4! · 5  = 5 треугольников,
4!(5 – 4)! 4!1!

у которых все вершины красные.

3) Один пятиугольник, у которого все вершины красные.

4) 10 + 5 + 1 = 16 многоугольников, у которых все вершины красные.

5)

C63  = 6!  =  3! · 4 · 5 · 6  =  4 · 5 · 6  = 20 треугольников,
3!(6 – 3)! 3!3! 1 · 2 · 3

у которых вершины красные или с одной синей вершиной.

6)

C64  = 6!  =  4! · 5 · 6  =  5 · 6  = 15 четырёхуголников,
4!(6 – 4)! 4!2! 1 · 2

у которых вершины красные или с одной синей вершиной.

7)

C65  = 6!  =  5! · 6  = 6 пятиугольников,
5!(6 – 5)! 5!1!

у которых вершины красные или с одной синей вершиной.

8) Один шестиуголник, у которого вершины красные с одной синей вершиной.

9) 20 + 15 + 6 + 1 = 42 многоуголника, у которых все вершины красные или с одной синей вершиной.

10) 42 – 16 = 26 многоугольников, в которых используется синяя точка.

11) 26 – 16 = 10 многоугольников – на сколько многоугольников, у которых одна из вершин — синяя точка, больше, чем многоугольников, у которых все вершины только красные.

Ответ: 10.


Задание № 5 — базового уровня первой части проверяет умения решать простейшие уравнения (иррациональные, показательные, тригонометрические, логарифмические).

Пример 5. Решите уравнение 23 + x = 0,4 · 53 + x.

Решение. Разделим обе части данного уравнения на 53 + х ≠ 0, получим

23 + x  = 0,4 или Скобка 2 Скобка 3 + х  =  2  ,
53 + х 5   5

откуда следует, что 3 + x = 1, x = –2.

Ответ: –2.


Задание № 6 по планиметрии на нахождение геометрических величин (длин, углов, площадей), моделирование реальных ситуаций на языке геометрии. Исследование построенных моделей с использованием геометрических понятий и теорем. Источником трудностей является, как правило, незнание или неверное применение необходимых теорем планиметрии.

Пример 6. Площадь треугольника ABC равна 129. DE – средняя линия, параллельная стороне AB. Найдите площадь трапеции ABED.

Пример 6

Решение. Треугольник CDE подобен треугольнику CAB по двум углам, так как угол при вершине C общий, угол СDE равен углу CAB как соответственные углы при DE || AB секущей AC. Так как DE – средняя линия треугольника по условию, то по свойству средней линии | DE = (1/2)AB. Значит, коэффициент подобия равен 0,5. Площади подобных фигур относятся как квадрат коэффициента подобия, поэтому

SΔCDE  =  Скобка 2 Скобка 2 SΔCDE  =  1  · 129 = 32,25.
SΔCAB 5   4

Следовательно, SABED = SΔABC – SΔCDE = 129 – 32,25 = 96,75. 

Ответ: 96,75.


Смотреть вебинары по алгебре


Задание № 7 — проверяет применение производной к исследованию функции. Для успешного выполнения необходимо содержательное, не формальное владение понятием производной.

Пример 7. К графику функции y = f(x) в точке с абсциссой x0 проведена касательная, которая перпендикулярна прямой, проходящей через точки (4; 3) и (3; –1) этого графика. Найдите f′(x0).

Решение. 1) Воспользуемся уравнением прямой, проходящей через две заданные точки и найдём уравнение прямой, проходящей через точки (4; 3) и (3; –1).

(y – y1)(x2 – x1) = (x – x1)(y2 – y1)

(y – 3)(3 – 4) = (x – 4)(–1 – 3)

(y – 3)(–1) = (x – 4)(–4)

y + 3 = –4x + 16| · (–1)

y – 3 = 4x – 16

y = 4x – 13, где k1 = 4.

2) Найдём угловой коэффициент касательной k2, которая перпендикулярна прямой y = 4x – 13, где k1 = 4, по формуле:

k1 · k2 = –1, k2 =  –1  –0,25.
4

3) Угловой коэффициент касательной – производная функции в точке касания. Значит, f′(x0) = k2 = –0,25.

Ответ: –0,25.


Задание № 8 — проверяет у участников экзамена знания по элементарной стереометрии, умение применять формулы нахождения площадей поверхностей и объемов   фигур, двугранных углов, сравнивать объемы подобных фигур, уметь выполнять действия с геометрическими фигурами, координатами и векторами и т.п.

Пример 8. Объём куба, описанного около сферы, равен 216. Найдите радиус сферы.

Пример 8

Решение. 1) Vкуба = a3 (где а – длина ребра куба), поэтому

а3 = 216

а = 3√216

a = 6.

2) Так как сфера вписана в куб, значит, длина диаметра сферы равна длине ребра куба, поэтому d = a, d = 6, d = 2R, R = 6 : 2 = 3.

Ответ: 3.


Приемы подготовки к профильному ЕГЭ по математике


Задание № 9 — требует от выпускника навыков преобразования и упрощения алгебраических выражений. Задание № 9 повышенного уровня сложности с кратким ответом. Задания из раздела «Вычисления и преобразования» в ЕГЭ подразделяются на несколько видов:

  1. преобразования числовых рациональных выражений;

  2. преобразования алгебраических выражений и дробей;

  3. преобразования числовых/буквенных иррациональных выражений;

  4. действия со степенями;

  5. преобразование логарифмических выражений;

  6. преобразования числовых/буквенных тригонометрических выражений.

Пример 9. Вычислите tgα, если известно, что cos2α  = 0,6 и

Решение. 1) Воспользуемся формулой двойного аргумента: cos2α = 2 cos2α – 1 и найдём

 cos2α =  cos2α + 1  =  0,6 + 1  =  1,6  = 0,8.
2 2 2

2) Воспользуемся формулой тригонометрических функций одного угла:

и найдём

tg2α =  1  – 1 =  1  – 1 =  10  – 1 =  5  – 1 = 1  1  – 1 =  1   = 0,25.
cos2α 0,8 8 4 4 4

Значит, tg2α = ± 0,5.

3) По условию

значит, α – угол II четверти и tgα < 0, поэтому tgα = –0,5.

Ответ: –0,5.


#ADVERTISING_INSERT#


Задание № 10 — проверяет у учащихся умение использовать приобретенные раннее знания и умения в практической деятельности и повседневной жизни. Можно сказать, что это задачи по физике, а не по математике, но все необходимые формулы и величины даны в условии. Задачи сводятся к решению линейного или квадратного уравнения, либо линейного или квадратного неравенства. Поэтому необходимо уметь решать такие уравнения и неравенства, и определять ответ. Ответ должен получиться в виде целого числа или конечной десятичной дроби.

Пример 10. Два тела массой m = 2 кг каждое, движутся с одинаковой скоростью v = 10 м/с под углом 2α друг к другу. Энергия (в джоулях), выделяющаяся при их абсолютно неупругом соударении определяется выражением Q = mv2sin2α. Под каким наименьшим углом 2α (в градусах) должны двигаться тела, чтобы в результате соударения выделилось не менее 50 джоулей?
Решение. Для решения задачи нам необходимо решить неравенство Q ≥ 50,  на  интервале 2α ∈ (0°; 180°). 

mv2sin2α ≥ 50

2· 102sin2α ≥ 50

200 · sin2α ≥ 50

Решением данного неравенства являются два неравенства:

sinα ≥  1 и sinα ≤ – 1 .
2 2


Так как α ∈ (0°; 90°), то будем решать только


 Неравенство

 мы не рассматриваем, так как α для него будет более 180°. Итак:

Изобразим решение неравенства графически:

Пример 10

Так как по условию α ∈ (0°; 90°), значит 30° ≤ α < 90°. Получили, что наименьший угол α равен 30°, тогда наименьший угол 2α = 60°.

Ответ: 60.


Скачать бесплатно рабочие программы по алгебре


Задание № 11 — является типовым, но оказывается непростым для учащихся. Главным источником затруднений является построение математической модели (составление уравнения). Задание № 11 проверяет умение решать текстовые задачи.

Пример 11. На весенних каникулах 11-классник Вася должен был решить 560 тренировочных задач для подготовки к ЕГЭ. 18 марта в последний учебный день Вася решил 5 задач. Далее ежедневно он решал на одно и то же количество задач больше по сравнению с предыдущим днём. Определите, сколько задач Вася решил 2 апреля в последний день каникул.

Решение:

Обозначим a1 = 5 – количество задач, которые Вася решил 18 марта, d – ежедневное количество задач, решаемых Васей, n = 16 – количество дней с 18 марта по 2 апреля включительно, S16 = 560 – общее количество задач, a16 – количество задач, которые Вася решил 2 апреля. Зная, что ежедневно Вася решал на одно и то же количество задач больше по сравнению с предыдущим днём, то можно использовать формулы нахождения суммы арифметической прогрессии:

560 = (5 + a16) · 8,

5 + a16 = 560 : 8,

5 + a16 = 70,

a16 = 70 – 5

a16 = 65.

Значит, Вася решил 2 апреля 65 задач.

Ответ: 65.


Задание № 12 — проверяют у учащихся умение выполнять действия с функциями, уметь применять производную к исследованию функции.

Пример 12. Найти точку максимума функции y = 10ln(x + 9) – 10x + 1.

Решение: 1) Найдем область определения функции: x + 9 > 0, x > –9,  то есть x ∈ (–9; ∞).

2) Найдем производную функции:

3) Найдем нули производной:

y′= 0,   10  – 10 = 0, x = –8.
x + 9

4) Найденная точка принадлежит промежутку (–9; ∞). Определим знаки производной функции и изобразим на рисунке поведение функции:

Пример 12

Искомая точка максимума  x = –8.

Ответ: –8.


Скачать бесплатно рабочую программу по математике к УМК Мерзляка А.Г. 5-11 класс

Скачать бесплатно рабочую программу по математике к линии УМК Г.К. Муравина, К.С. Муравина, О.В. Муравиной 10-11



Скачать бесплатно методические пособия по алгебре


 
Задание № 13  повышенного уровня сложности с развернутым ответом, проверяющее умение решать уравнения, наиболее успешно решаемое среди заданий с развернутым ответом повышенного уровня сложности.

Пример 13. а) Решите уравнение  2log32(2cosx) – 5log3(2cosx) + 2 = 0

б) Найдите все корни этого уравнения, принадлежащие отрезку отрезок.

Решение: а) Пусть log3(2cosx) = t, тогда 2t2 – 5t + 2 = 0,

откуда  t = 2 или t =   1 .
2
Скобка квадратная log3(2cosx)  = 2     ⇔     Скобка квадратная 2cosx = 9             ⇔     Скобка квадратная cosx = 4,5     ⇔  т.к.  |cosx| ≤ 1,     
         
log3(2cosx)  = 1 2cosx = √3 cosx = √3
2 2
Скобка квадратная x  = π  + 2πk
6
     
x  = – π  + 2πk, kZ
6

б) Найдём корни, лежащие на отрезке отрезок.

Пример 13

Из рисунка видно, что заданному отрезку принадлежат корни

 Ответ: а)  π  + 2πk; –  π + 2πk, kZ; б)   11π 13π .
6 6 6 6


Задание № 14 
 повышенного уровня относится к заданиям второй части с развернутым ответом. Задание проверяет умения выполнять действия с геометрическими фигурами. Задание содержит два пункта. В первом пункте задание нужно доказать, а во втором пункте вычислить. 

Пример 14. Диаметр окружности основания цилиндра равен  20, образующая цилиндра равна  28. Плоскость пересекает его основания по хордам длины 12 и 16. Расстояние между хордами равно 2√197.

а) Докажите, что центры оснований цилиндра лежат по одну сторону от этой плоскости.

б) Найдите угол между этой плоскостью и плоскостью основания цилиндра.

Решение: а)  Хорда длиной 12 находится на расстоянии формула = 8  от центра окружности основания, а хорда длиной 16, аналогично, – на расстоянии 6. Поэтому расстояние между их проекциями на плоскость, параллельную основаниям цилиндров, составляет либо 8 + 6 = 14,  либо 8 − 6 = 2. 

Пример 14

Тогда расстояние между хордами составляет либо

формула = формула = √980 = формула = 2√245 

либо

формула = формула = √788 = формула = 2√197.

По условию реализовался второй случай, в нем проекции хорд лежат по одну сторону от оси цилиндра. Значит, ось не пересекает данную плоскость в пределах цилиндра, то есть основания лежат по одну сторону от нее. Что требовалось доказать.

б) Обозначим центры оснований  за О1 и О2. Проведем из центра основания с хордой длины 12 серединный перпендикуляр к этой хорде (он имеет длину 8, как уже отмечалось) и из центра другого основания — к другой хорде. Они лежат в одной плоскости β, перпендикулярной этим хордам. Назовем середину меньшей хорды B, большей  A и проекцию  A на второе основание — H (H ∈ β). Тогда  AB,AH ∈ β и значит, AB,AH перпендикулярны хорде, то есть прямой пересечения основания с данной плоскостью.

Значит, искомый угол равен

∠ABH = arctg   AH  = arctg  28  = arctg14. 
BH 8 – 6

Ответ: arctg 14.


Подготовка к ОГЭ и ЕГЭ для учителей по алгебре


Задание № 15 — повышенного уровня сложности с развернутым ответом, проверяет умение решать неравенства, наиболее успешно решаемое среди заданий с развернутым ответом повышенного уровня сложности.

Пример 15. Решите неравенство |x2 – 3x| · log2(x + 1) ≤ 3xx2.

Решение: Областью определения данного неравенства является интервал (–1; +∞). Рассмотри отдельно три случая:

1) Пусть x2 – 3x = 0, т.е. х = 0 или х = 3. В этом случае данное неравенство превращается в верное, следовательно, эти значения входят в решение.

2) Пусть теперь x2 – 3x > 0, т.е. x ∈ (–1; 0) ∪ (3; +∞). При этом данное неравенство можно переписать в виде (x2 – 3x) · log2(x + 1) ≤ 3xx2 и разделить на положительное выражение x2 – 3x. Получим log2(x + 1) ≤ –1, x + 1 ≤ 2–1, x ≤ 0,5 –1 или x ≤ –0,5. Учитывая область определения, имеем x ∈ (–1; –0,5].

3) Наконец, рассмотрим x2 – 3x < 0, при этом x ∈ (0; 3). При этом исходное неравенство перепишется в виде (3xx2) · log2(x + 1) ≤ 3xx2. После деления на положительное выражение 3xx2, получим log2(x + 1) ≤ 1, x + 1 ≤ 2, x ≤ 1. Учитывая область, имеем x ∈ (0; 1].

Объединяя полученные решения, получаем x ∈ (–1; –0.5] ∪ [0; 1] ∪ {3}.

Ответ: (–1; –0.5] ∪ [0; 1] ∪ {3}.


Задание № 16 — повышенного уровня относится к заданиям второй части с развернутым ответом. Задание проверяет умения выполнять действия с геометрическими фигурами, координатами и векторами. Задание содержит два пункта. В первом пункте задание нужно доказать, а во втором пункте вычислить. 

Пример 16. В равнобедренном треугольнике ABC с углом 120° при вершине A проведена биссектриса BD. В треугольник ABC вписан прямоугольник DEFH так, что сторона FH лежит на отрезке BC, а вершина E – на отрезке AB. а) Докажите, что FH = 2DH. б) Найдите площадь прямоугольника DEFH, если AB = 4.

Решение: а)

Пример 16

1) ΔBEF – прямоугольный, EF⊥BC, ∠B = (180° – 120°) : 2 = 30°, тогда EF = 1/2 BE по свойству катета, лежащего против угла 30°.

2) Пусть EF = DH = x, тогда BE = 2x, BF = x√3 по теореме Пифагора.

3) Так как ΔABC равнобедренный, значит, ∠B = ∠C = 30˚.

BD – биссектриса ∠B, значит   ∠ABD  =  ∠DBC = 15˚.

4) Рассмотрим ΔDBH – прямоугольный, т.к. DH⊥BC.

tg 15° = tg(45° – 30°) = 3 – √3  ,
3 + √3
3 – √3  , x
3 + √3 x√3 + FH

(x√3 + FH)(3 – √3) = x(3 + √3)

2√3x – 6x = √3FH – 3FH

2x(√3 – 3) = FH(√3 – 3)

FH = 2x

FH = 2DH

Что требовалось доказать.

б) 1) ΔAED ∼ ΔABC по двум углам, так как ∠B – общий, ∠AED = ∠ABC как соответственные при ED || BC секущей AB. Из подобия треугольников следует:

 √3 – 1 = 2 – x

x = 3 – √3

EF = 3 – √3

2) SDEFH = ED · EF = (3 – √3) · 2(3 – √3)

SDEFH = 24 – 12√3.

Ответ: 24 – 12√3.


Задание № 17 — задание с развернутым ответом, это задание проверяет применение знаний и умений в практической деятельности и повседневной жизни, умение строить и исследовать математические модели. Это задание — текстовая задача с экономическим содержанием.

Пример 17. Вклад в размере 20 млн  рублей планируется открыть на четыре года. В конце каждого года банк увеличивает вклад на 10%  по сравнению с его размером в начале года. Кроме того, в начале третьего и четвёртого годов вкладчик ежегодно пополняет вклад на х млн. рублей, где хцелое число. Найдите наибольшее значение  х, при котором банк за четыре года начислит на вклад меньше 17 млн рублей.

Решение: В конце первого года вклад составит 20 + 20 · 0,1 = 22 млн рублей, а в конце второго – 22 + 22 · 0,1 = 24,2 млн рублей. В начале третьего года вклад (в млн рублей) составит  (24,2 + х), а в конце — (24,2 + х) + (24,2 + х) · 0,1 = (26,62 + 1,1х). В начале четвёртого года вклад составит (26,62 + 2,1х),  а в конце — (26,62 + 2,1х) + (26,62 + 2,1х) · 0,1 = (29,282 + 2,31х). По условию, нужно найти наибольшее целое х, для которого выполнено неравенство 

(29,282 + 2,31x) – 20 – 2x < 17

29,282 + 2,31x – 20 – 2x < 17

0,31x < 17 + 20 – 29,282

0,31x < 7,718

Наибольшее целое решение этого неравенства — число 24. 

Ответ: 24.


Задание № 18 — задание повышенного уровня сложности с развернутым ответом. Это задание предназначено для конкурсного отбора в вузы с повышенными требованиями к математической подготовке абитуриентов. Задание высокого уровня сложности — это задание не на применение одного метода решения, а на комбинацию различных методов. Для успешного выполнения задания 18 необходим, кроме прочных математических знаний, также высокий уровень математической культуры.

Пример 18. При каких a система неравенств

Скобка фигурная  x2 + y2 ≤ 2aya2 + 1
 
y + a ≤ |x| – a

имеет ровно два решения?

Решение: Данную систему можно переписать в виде

Скобка фигурная  x2 + (y a)2 ≤ 1
 
y ≤ |x| – a

Если нарисовать на плоскости множество решений первого неравенства, получится внутренность круга (с границей) радиуса 1 с центром в точке (0, а). Множество решений второго неравенства – часть плоскости, лежащая под графиком функции y = |x| – a,причём последний есть график функции
y = |x|, сдвинутый вниз на а. Решение данной системы есть пересечение множеств решений каждого из неравенств.

Следовательно, два решения данная система будет иметь лишь в случае, изображённом на рис. 1.

Пример 18

Точки касания круга с прямыми и будут двумя решениями системы. Каждая из прямых наклонена к осям под углом 45°. Значит, треугольник PQR – прямоугольный равнобедренный. Точка Q имеет координаты (0, а), а точка R – координаты (0, –а). Кроме того, отрезки PR и PQ равны радиусу окружности, равному 1. Значит,


Алгебра, геометрия, математикаПерейти в каталог продукции по алгебре


Задание № 19 — задание повышенного уровня сложности с развернутым ответом. Это задание предназначено для конкурсного отбора в вузы с повышенными требованиями к математической подготовке абитуриентов. Задание высокого уровня сложности — это задание не на применение одного метода решения, а на комбинацию различных методов. Для успешного выполнения задания 19 необходимо уметь осуществлять поиск решения, выбирая различные подходы из числа известных, модифицируя изученные методы.

Пример 19. Пусть Sn сумма п членов арифметической прогрессии (ап). Известно, что Sn + 1 = 2n2 – 21n – 23.

а) Укажите формулу п-го члена этой прогрессии.

б) Найдите наименьшую по модулю сумму Sn.

в) Найдите наименьшее п, при котором Sn будет квадратом целого числа.

Решение: а) Очевидно, что an = SnSn – 1. Используя данную формулу, получаем:

Sn = S(n – 1) + 1 = 2(n – 1)2 – 21(n – 1) – 23 = 2n2 – 25n,

Sn – 1 = S(n – 2) + 1 = 2(n – 1)2 – 21(n – 2) – 23 = 2n2 – 25n + 27

значит, an = 2n2 – 25n – (2n2 – 29n + 27) = 4n – 27.

б) Так как Sn = 2n2 – 25n, то рассмотрим функцию S(x) = |2x2 – 25x|. Ее график можно увидеть на рисунке.

Пример 19

Очевидно, что наименьшее значение достигается в целочисленных точках, расположенных наиболее близко к нулям функции. Очевидно, что это точки х = 1, х = 12 и х = 13. Поскольку, S(1) = |S1| = |2 – 25| = 23, S(12) = |S12| = |2 · 144 – 25 · 12| = 12, S(13) = |S13| = |2 · 169 – 25 · 13| = 13, то наименьшее значение равно 12.

в) Из предыдущего пункта вытекает, что Sn положительно, начиная с n = 13. Так как Sn = 2n2 – 25n = n(2n – 25), то очевидный случай, когда данное выражение является полным квадратом, реализуется при n = 2n – 25, то есть при п = 25.

Осталось проверить значения с 13 до 25:

S13 = 13 · 1, S14 = 14 · 3, S15 = 15 · 5, S16 = 16 · 7, S17 = 17 · 9, S18 = 18 · 11, S19 = 19 · 13, S20 = 20 · 13, S21 = 21 · 17, S22 = 22 · 19, S23 = 23 · 21, S24 = 24 · 23.

Получается, что при меньших значениях п полный квадрат не достигается.

Ответ: а) an = 4n – 27; б) 12; в) 25.

Фото: nn.ucheba.ru

________________

*С мая 2017 года объединенная издательская группа «ДРОФА-ВЕНТАНА» входит в корпорацию «Российский учебник». В корпорацию также вошли издательство «Астрель» и цифровая образовательная платформа «LECTA». Генеральным директором назначен Александр Брычкин, выпускник Финансовой академии при Правительстве РФ, кандидат экономических наук, руководитель инновационных проектов издательства «ДРОФА» в сфере цифрового образования (электронные формы учебников, «Российская электронная школа», цифровая образовательная платформа LECTA). До прихода в издательство «ДРОФА» занимал позицию вице-президента по стратегическому развитию и инвестициям издательского холдинга «ЭКСМО-АСТ». Сегодня издательская корпорация «Российский учебник» обладает самым крупным портфелем учебников, включенных в Федеральный перечень — 485 наименований (примерно 40%, без учета учебников для коррекционной школы). Издательствам корпорации принадлежат наиболее востребованные российскими школами комплекты учебников по физике, черчению, биологии, химии, технологии, географии, астрономии — областям знаний, которые нужны для развития производственного потенциала страны. В портфель корпорации входят учебники и учебные пособия для начальной школы, удостоенные Премии Президента в области образования. Это учебники и пособия по предметным областям, которые необходимы для развития научно-технического и производственного потенциала России.

Геометрия

  • Треугольник
  • Четырехугольники
  • Окружность и круг
  • Призма
  • Пирамида
  • Усеченная пирамида
  • Цилиндр
  • Конус
  • Усеченный конус
  • Сфера и шар

1. Формулы сокращённого умножения

 левая круглая скобка a плюс b правая круглая скобка в квадрате =a в квадрате плюс 2ab плюс b в квадрате

 левая круглая скобка a минус b правая круглая скобка в квадрате =a в квадрате минус 2ab плюс b в квадрате

 левая круглая скобка a плюс b правая круглая скобка в кубе =a в кубе плюс 3a в квадрате b плюс 3ab в квадрате плюс b в кубе

 левая круглая скобка a минус b правая круглая скобка в кубе =a в кубе минус 3a в квадрате b плюс 3ab в квадрате минус b в кубе

a в квадрате минус b в квадрате = левая круглая скобка a минус b правая круглая скобка левая круглая скобка a плюс b правая круглая скобка

a в кубе плюс b в кубе = левая круглая скобка a плюс b правая круглая скобка левая круглая скобка a в квадрате минус ab плюс b в квадрате правая круглая скобка

a в кубе минус b в кубе = левая круглая скобка a минус b правая круглая скобка левая круглая скобка a в квадрате плюс ab плюс b в квадрате правая круглая скобка

Наверх

2. Модуль числа

Определение: left| a |= система выражений новая строка a,a больше или равно 0, новая строка минус a,a меньше 0. конец системы .

Основные свойства модуля:

|a| больше или равно 0;

|a|=| минус a|;

 система выражений новая строка |a| больше или равно a, новая строка |a| больше или равно минус a; конец системы .

|a|=a равносильно a больше или равно 0;

|a|= минус a равносильно a меньше или равно 0.

Наверх

3. Степень с действительным показателем

Свойства степени с действительным показателем

Пусть a больше 0,b больше 0,x принадлежит R ,y принадлежит R . Тогда верны следующие соотношения:

Наверх

4. Корень n-ой степени из числа

Корнем n-ой степени  левая круглая скобка n принадлежит N ,n больше или равно 2 правая круглая скобка из числа a называется число, n-ая степень которого равна a.
Арифметическим корнем четной степени n  левая круглая скобка n=2k,k принадлежит N правая круглая скобка из неотрицательного числа a называется неотрицательное число, n-ая степень которого равна a.

Основные свойства арифметического корня:

a больше или равно 0: левая круглая скобка корень n степени из левая круглая скобка a правая круглая скобка правая круглая скобка в степени левая круглая скобка n правая круглая скобка =a, корень n степени из левая круглая скобка a правая круглая скобка в степени левая круглая скобка n правая круглая скобка =a, корень n степени из левая круглая скобка a правая круглая скобка в степени левая круглая скобка m правая круглая скобка = левая круглая скобка корень n степени из левая круглая скобка a правая круглая скобка правая круглая скобка в степени левая круглая скобка m правая круглая скобка , корень m степени из левая круглая скобка корень n степени из левая круглая скобка a правая круглая скобка правая круглая скобка = корень mn степени из левая круглая скобка a правая круглая скобка ;

a принадлежит R : корень n степени из левая круглая скобка a правая круглая скобка в степени левая круглая скобка n правая круглая скобка = |a|;

a больше или равно 0,b больше или равно 0: корень n степени из левая круглая скобка ab правая круглая скобка = корень n степени из левая круглая скобка a правая круглая скобка умножить на корень n степени из левая круглая скобка b правая круглая скобка , корень n степени из левая круглая скобка дробь: числитель: a, знаменатель: b конец дроби правая круглая скобка = дробь: числитель: корень n степени из левая круглая скобка a правая круглая скобка , знаменатель: корень n степени из левая круглая скобка b правая круглая скобка конец дроби  левая круглая скобка b не равно 0 правая круглая скобка ;

a меньше 0,b меньше 0: корень n степени из левая круглая скобка ab правая круглая скобка = корень n степени из левая круглая скобка минус a правая круглая скобка умножить на корень n степени из левая круглая скобка минус b правая круглая скобка , корень n степени из левая круглая скобка дробь: числитель: a, знаменатель: b конец дроби правая круглая скобка = дробь: числитель: корень n степени из левая круглая скобка минус a правая круглая скобка , знаменатель: корень n степени из левая круглая скобка минус b правая круглая скобка конец дроби ;

a больше или равно 0,b больше или равно 0:a корень n степени из левая круглая скобка b правая круглая скобка = корень n степени из левая круглая скобка a правая круглая скобка в степени левая круглая скобка n правая круглая скобка b;

a меньше 0,b больше или равно 0:a корень n степени из левая круглая скобка b правая круглая скобка = минус корень n степени из левая круглая скобка a правая круглая скобка в степени левая круглая скобка n правая круглая скобка b.

Наверх

5. Логарифмы

Определение логарифма: log _ab=cunderseta больше 0,a не равно 1mathop равносильно a в степени левая круглая скобка c правая круглая скобка =b.

Основное логарифмическое тождество: a в степени левая круглая скобка log правая круглая скобка _ab=b.

Основные свойства логарифмов

Пусть a больше 0, a не равно 1, b больше 0, b не равно 1, x больше 0, y больше 0, p принадлежит R . Тогда верны следующие соотношения:

Наверх

6. Арифметическая прогрессия

Формула n-го члена арифметической прогрессии: a_n=a_1 плюс d левая круглая скобка n минус 1 правая круглая скобка .

Характеристическое свойство арифметической прогрессии: a_n= дробь: числитель: a_n минус 1 плюс a_n плюс 1, знаменатель: 2 конец дроби ,n больше или равно 2.

Сумма n первых членов арифметической прогрессии: S_n= дробь: числитель: a_1 плюс a, знаменатель: 2 конец дроби n.

При решении задач, связанных с арифметической прогрессией, могут оказаться полезными также следующие формулы:

S_n= дробь: числитель: 2a_1 плюс d левая круглая скобка n минус 1 правая круглая скобка , знаменатель: 2 конец дроби n;

S_n= дробь: числитель: 2a_n минус d левая круглая скобка n минус 1 правая круглая скобка , знаменатель: 2 конец дроби n;

a_n= дробь: числитель: a_n минус k плюс a_n плюс k, знаменатель: 2 конец дроби ,k меньше n;

a_k плюс a_n=a_k минус m плюс a_n плюс m,m меньше k;

d= дробь: числитель: a_n минус a_k, знаменатель: n минус k конец дроби .

Наверх

7. Геометрическая прогрессия

Формула n-го члена геометрической прогрессии: a_n=a_1q в степени левая круглая скобка n минус 1 правая круглая скобка .

Характеристическое свойство геометрической прогрессии: a_n в квадрате =a_n минус 1a_n плюс 1,n больше или равно 2.

Сумма n первых членов геометрической прогрессии: S_n= дробь: числитель: a_1 минус a_nq, знаменатель: 1 минус q конец дроби , q не равно 1.

При решении задач, связанных с геометрической прогрессией, могут оказаться полезными также следующие формулы:

S_n= дробь: числитель: a_1 левая круглая скобка 1 минус q в степени левая круглая скобка n правая круглая скобка правая круглая скобка , знаменатель: 1 минус q конец дроби ;

a_n в квадрате =a_n минус ka_n плюс k,k меньше n;

a_ka_n=a_k минус ma_n плюс m,m меньше k;

|q|= корень n минус k степени из левая круглая скобка дробь: числитель: a правая круглая скобка _n, знаменатель: a_k конец дроби .

Наверх

8. Бесконечно убывающая геометрическая прогрессия

Сумма бесконечно убывающей геометрической прогрессии: S= дробь: числитель: a_1, знаменатель: 1 минус q конец дроби .

Наверх

9. Основные формулы тригонометрии

Зависимость между тригонометрическими функциями одного аргумента:

 синус в квадрате альфа плюс косинус в квадрате альфа =1;

 тангенс альфа = дробь: числитель: синус альфа , знаменатель: косинус альфа конец дроби ;

ctg альфа = дробь: числитель: косинус альфа , знаменатель: синус альфа конец дроби ;

 тангенс альфа ctg альфа =1;

1 плюс тангенс в квадрате альфа = дробь: числитель: 1, знаменатель: косинус в квадрате альфа конец дроби ;

1 плюс ctg в квадрате альфа = дробь: числитель: 1, знаменатель: синус в квадрате альфа конец дроби .

Формулы сложения:

 косинус левая круглая скобка альфа плюс бета правая круглая скобка = косинус альфа косинус бета минус синус альфа синус бета ;

 косинус левая круглая скобка альфа минус бета правая круглая скобка = косинус альфа косинус бета плюс синус альфа синус бета ;

 синус левая круглая скобка альфа плюс бета правая круглая скобка = синус альфа косинус бета плюс косинус альфа синус бета ;

 синус левая круглая скобка альфа минус бета правая круглая скобка = синус альфа косинус бета минус косинус альфа синус бета ;

 тангенс левая круглая скобка альфа плюс бета правая круглая скобка = дробь: числитель: тангенс альфа плюс тангенс бета , знаменатель: 1 минус тангенс альфа тангенс бета конец дроби ;

 тангенс левая круглая скобка альфа минус бета правая круглая скобка = дробь: числитель: тангенс альфа минус тангенс бета , знаменатель: 1 плюс тангенс альфа тангенс бета конец дроби ;

ctg левая круглая скобка альфа плюс бета правая круглая скобка = дробь: числитель: ctg альфа ctg бета минус 1, знаменатель: ctg бета плюс ctg альфа конец дроби ;

ctg левая круглая скобка альфа минус бета правая круглая скобка = дробь: числитель: ctg альфа ctg бета плюс 1, знаменатель: ctg бета минус ctg альфа конец дроби .

Формулы тригонометрических функций двойного аргумента: синус 2 альфа =2 синус альфа косинус альфа ;

 синус 2 альфа = дробь: числитель: 2 тангенс альфа , знаменатель: 1 плюс тангенс в квадрате альфа конец дроби ;

 косинус 2 альфа = косинус в квадрате альфа минус синус в квадрате альфа ;

 косинус 2 альфа =2 косинус в квадрате альфа минус 1;

 косинус 2 альфа =1 минус 2 синус в квадрате альфа ;

 косинус 2 альфа = дробь: числитель: 1 минус тангенс в квадрате альфа , знаменатель: 1 плюс тангенс в квадрате альфа конец дроби ;

 тангенс 2 альфа = дробь: числитель: 2 тангенс альфа , знаменатель: 1 минус тангенс в квадрате альфа конец дроби ;

ctg2 альфа = дробь: числитель: ctg в квадрате альфа минус 1, знаменатель: 2ctg альфа конец дроби .

Формулы понижения степени:

 синус в квадрате альфа = дробь: числитель: 1 минус косинус 2 альфа , знаменатель: 2 конец дроби ;

 косинус в квадрате альфа = дробь: числитель: 1 плюс косинус 2 альфа , знаменатель: 2 конец дроби ;

 тангенс в квадрате альфа = дробь: числитель: 1 минус косинус 2 альфа , знаменатель: 1 плюс косинус 2 альфа конец дроби ;

ctg в квадрате альфа = дробь: числитель: 1 плюс косинус 2 альфа , знаменатель: 1 минус косинус 2 альфа конец дроби .

Формулы приведения

Все формулы приведения получаются из соответствующих формул сложения. Например:

 косинус левая круглая скобка дробь: числитель: Пи , знаменатель: 2 конец дроби плюс альфа правая круглая скобка = косинус дробь: числитель: Пи , знаменатель: 2 конец дроби косинус альфа минус синус дробь: числитель: Пи , знаменатель: 2 конец дроби синус альфа = минус синус альфа .

Применение формул приведения укладывается в следующую схему:

— определяется координатная четверть, в которой лежит аргумент приводимой функции, считая, что  альфа принадлежит левая круглая скобка 0; дробь: числитель: Пи , знаменатель: 2 конец дроби правая круглая скобка ;

— определяется знак приводимой функции;

— определяется название приведенной функции по следующему правилу: если аргумент приводимой функции имеет вид  левая круглая скобка дробь: числитель: Пи , знаменатель: 2 конец дроби pm альфа правая круглая скобка или  левая круглая скобка дробь: числитель: 3 Пи , знаменатель: 2 конец дроби pm альфа правая круглая скобка , то функция меняется на сходственную функцию, если аргумент приводимой функции имеет вид  левая круглая скобка Пи pm альфа правая круглая скобка , то функция названия не меняет.

Например, получим формулу  тангенс левая круглая скобка дробь: числитель: 3 Пи , знаменатель: 2 конец дроби плюс альфа правая круглая скобка :

 дробь: числитель: 3 Пи , знаменатель: 2 конец дроби плюс альфа принадлежит левая круглая скобка дробь: числитель: 3 Пи , знаменатель: 2 конец дроби ;2 Пи правая круглая скобка — IV четверть;

— в IV четверти тангенс отрицательный;

— аргумент приводимой функции имеет вид  дробь: числитель: 3 Пи , знаменатель: 2 конец дроби плюс альфа , следовательно, название функции меняется. Таким образом,  тангенс левая круглая скобка дробь: числитель: 3 Пи , знаменатель: 2 конец дроби плюс альфа правая круглая скобка = минус ctg альфа .

Формулы преобразования суммы тригонометрических функций в произведение:

 синус альфа плюс синус бета =2 синус дробь: числитель: альфа плюс бета , знаменатель: 2 конец дроби косинус дробь: числитель: альфа минус бета , знаменатель: 2 конец дроби ;

 синус альфа минус синус бета =2 синус дробь: числитель: альфа минус бета , знаменатель: 2 конец дроби косинус дробь: числитель: альфа плюс бета , знаменатель: 2 конец дроби ;

 косинус альфа плюс косинус бета =2 косинус дробь: числитель: альфа плюс бета , знаменатель: 2 конец дроби косинус дробь: числитель: альфа минус бета , знаменатель: 2 конец дроби ;

 косинус альфа минус косинус бета = минус 2 синус дробь: числитель: альфа плюс бета , знаменатель: 2 конец дроби синус дробь: числитель: альфа минус бета , знаменатель: 2 конец дроби ;

 тангенс альфа плюс тангенс бета = дробь: числитель: синус левая круглая скобка альфа плюс бета правая круглая скобка , знаменатель: косинус альфа косинус бета конец дроби ;

 тангенс альфа минус тангенс бета = дробь: числитель: синус левая круглая скобка альфа минус бета правая круглая скобка , знаменатель: косинус альфа косинус бета конец дроби ;

ctg альфа плюс ctg бета = дробь: числитель: синус левая круглая скобка альфа плюс бета правая круглая скобка , знаменатель: синус альфа синус бета конец дроби ;

ctg альфа минус ctg бета = дробь: числитель: синус левая круглая скобка бета минус альфа правая круглая скобка , знаменатель: синус альфа синус бета конец дроби .

Формулы преобразования произведения тригонометрических функций в сумму:

 косинус альфа косинус бета = дробь: числитель: 1, знаменатель: 2 конец дроби левая круглая скобка косинус левая круглая скобка альфа минус бета правая круглая скобка плюс косинус левая круглая скобка альфа плюс бета правая круглая скобка правая круглая скобка ;

 синус альфа синус бета = дробь: числитель: 1, знаменатель: 2 конец дроби левая круглая скобка косинус левая круглая скобка альфа минус бета правая круглая скобка минус косинус левая круглая скобка альфа плюс бета правая круглая скобка правая круглая скобка ;

 синус альфа косинус бета = дробь: числитель: 1, знаменатель: 2 конец дроби левая круглая скобка синус левая круглая скобка альфа плюс бета правая круглая скобка плюс синус левая круглая скобка альфа минус бета правая круглая скобка правая круглая скобка .

Наверх

10. Производная и интеграл

Таблица производных некоторых элементарных функций

Правила дифференцирования:

1.  левая круглая скобка f левая круглая скобка x правая круглая скобка плюс g левая круглая скобка x правая круглая скобка правая круглая скобка в степени левая круглая скобка prime правая круглая скобка =f' левая круглая скобка x правая круглая скобка плюс g' левая круглая скобка x правая круглая скобка ;

2.  левая круглая скобка cf левая круглая скобка x правая круглая скобка правая круглая скобка в степени левая круглая скобка prime правая круглая скобка =cf' левая круглая скобка x правая круглая скобка ;

3.  левая круглая скобка f левая круглая скобка x правая круглая скобка g левая круглая скобка x правая круглая скобка правая круглая скобка в степени левая круглая скобка prime правая круглая скобка =f' левая круглая скобка x правая круглая скобка g левая круглая скобка x правая круглая скобка плюс f левая круглая скобка x правая круглая скобка g' левая круглая скобка x правая круглая скобка ;

4.  левая круглая скобка дробь: числитель: f левая круглая скобка x правая круглая скобка , знаменатель: g левая круглая скобка x правая круглая скобка конец дроби правая круглая скобка в степени левая круглая скобка prime правая круглая скобка = дробь: числитель: f' левая круглая скобка x правая круглая скобка g левая круглая скобка x правая круглая скобка минус f левая круглая скобка x правая круглая скобка g' левая круглая скобка x правая круглая скобка , знаменатель: g в квадрате левая круглая скобка x правая круглая скобка конец дроби ;

5.  левая квадратная скобка f левая круглая скобка g левая круглая скобка x правая круглая скобка правая круглая скобка правая квадратная скобка в степени левая круглая скобка prime правая круглая скобка =f' левая круглая скобка g левая круглая скобка x правая круглая скобка правая круглая скобка g' левая круглая скобка x правая круглая скобка .

Уравнение касательной к графику функции y=f левая круглая скобка x правая круглая скобка в его точке  левая круглая скобка x_0;f левая круглая скобка x_0 правая круглая скобка правая круглая скобка :

y=f' левая круглая скобка x_0 правая круглая скобка левая круглая скобка x минус x_0 правая круглая скобка плюс f левая круглая скобка x_0 правая круглая скобка .

Таблица первообразных для некоторых элементарных функций

Правила нахождения первообразных

Пусть F левая круглая скобка x правая круглая скобка ,G левая круглая скобка x правая круглая скобка ― первообразные для функций f левая круглая скобка x правая круглая скобка и g левая круглая скобка x правая круглая скобка соответственно, a, b, k ― постоянные, k не равно 0. Тогда:

F левая круглая скобка x правая круглая скобка плюс G левая круглая скобка x правая круглая скобка ― первообразная для функции f левая круглая скобка x правая круглая скобка плюс g левая круглая скобка x правая круглая скобка ;

aF левая круглая скобка x правая круглая скобка ― первообразная для функции af левая круглая скобка x правая круглая скобка ;

 дробь: числитель: 1, знаменатель: k конец дроби F левая круглая скобка kx плюс b правая круглая скобка ― первообразная для функции f левая круглая скобка kx плюс b правая круглая скобка ;

— Формула Ньютона-Лейбница:  принадлежит t пределы: от a до b, f левая круглая скобка x правая круглая скобка dx=F левая круглая скобка b правая круглая скобка минус F левая круглая скобка a правая круглая скобка .

1. Треугольник

Пусть a,b,c ― длины сторон BC, AC, AB треугольника ABC соответственно; p= дробь: числитель: a плюс b плюс c, знаменатель: 2 конец дроби ― полупериметр треугольника ABC; A, B, C ― величины углов BAC, ABC, ACB треугольника ABC соответственно; h_a,h_b,h_c ― длины высот AA2, BB2, CC2 треугольника ABC соответственно; R ― радиус окружности, описанной около треугольника ABC; r — радиус окружности, вписанной в треугольник ABC; S_vartriangle ABC ― площадь треугольника ABC. Тогда имеют место следующие соотношения:

 дробь: числитель: a, знаменатель: синус A конец дроби = дробь: числитель: b, знаменатель: синус B конец дроби = дробь: числитель: c, знаменатель: синус C конец дроби =2R (теорема синусов);

c в квадрате =a в квадрате плюс b в квадрате минус 2ab косинус C (теорема косинусов);

S_vartriangle ABC= дробь: числитель: 1, знаменатель: 2 конец дроби ah_a;

S_vartriangle ABC= дробь: числитель: 1, знаменатель: 2 конец дроби ab синус C;

S_vartriangle ABC= дробь: числитель: abc, знаменатель: 4R конец дроби ;

S_vartriangle ABC=pr;

S_vartriangle ABC= корень из p левая круглая скобка p минус a правая круглая скобка левая круглая скобка p минус b правая круглая скобка левая круглая скобка p минус c правая круглая скобка .

Наверх
2. Четырёхугольники

Параллелограмм

Параллелограммом называется четырехугольник, противоположные стороны которого попарно параллельны.

Прямоугольником называется параллелограмм, у которого все углы прямые.

Ромбом называется параллелограмм, все стороны которого равны.

Квадратом называется прямоугольник, все стороны которого равны. Из определения следует, что квадрат является ромбом, следовательно, он обладает всеми свойствами прямоугольника и ромба.

Трапецией называется четырехугольник, две стороны которого параллельны, а две другие не параллельны.

Площадь четырехугольника

Площадь параллелограмма равна произведению его основания на высоту.

Площадь параллелограмма равна произведению двух его смежных сторон на синус угла между ними.

Площадь трапеции равна произведению полусуммы ее оснований на высоту.

Площадь четырехугольника равна половине произведения его диагоналей на синус угла между ними.

Наверх

3. Окружность и круг

Соотношения между элементами окружности и круга

Пусть r — радиус окружности, d — ее диаметр, C — длина окружности, S — площадь круга, l_n градусов  — длина дуги в n градусов, l_ альфа  — длина дуги в  альфа радиан, S_n градусов  — площадь сектора, ограниченного дугой в n градусов, S_ альфа  — площадь сектора, ограниченного дугой в  альфа радиан. Тогда имеют место следующие соотношения:

Вписанный угол

Вписанный угол измеряется половиной дуги, на которую он опирается.

Вписанные углы, опирающиеся на одну и ту же дугу, равны.

Вписанный угол, опирающийся на полуокружность, — прямой.

Вписанная окружность

Центр окружности, вписанной в многоугольник, есть точка равноудаленная от всех сторон этого многоугольника, ― точка пересечения биссектрис углов этого многоугольника. Таким образом, в многоугольник можно вписать окружность, и притом только одну, тогда и только тогда, когда биссектрисы его углов пересекаются в одной точке.

В четырехугольник можно вписать окружность тогда и только тогда, когда суммы его противоположных сторон равны.

Описанная окружность

Центр окружности, вписанной в многоугольник, есть точка равноудаленная от всех вершин этого многоугольника, ― точка пересечения серединных перпендикуляров к сторонам этого многоугольника. Таким образом, около многоугольника можно описать окружность, и притом только одну, тогда и только тогда, когда серединные перпендикуляры к сторонам этого многоугольника пересекаются в одной точке.

Около четырехугольника можно описать окружность тогда и только тогда, когда суммы его противоположных углов равны 180 градусов.

Наверх

4. Призма

Пусть H ― высота призмы, AA1 ― боковое ребро призмы, P_осн ― периметр основания призмы, S_осн ― площадь основания призмы, S_бок ― площадь боковой поверхности призмы, S_полн ― площадь полной поверхности призмы, V ― объем призмы, P_bot  ― периметр перпендикулярного сечения призмы, S_bot  ― площадь перпендикулярного сечения призмы. Тогда имеют место следующие соотношения:

S_бок=P_bot AA_1;

S_полн=2S_осн плюс S_бок;

V=S_bot AA_1;

V=S_оснH.

Свойства параллелепипеда:

— противоположные грани параллелепипеда равны и параллельны;

— диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам;

— квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.

Наверх

5. Пирамида

Пусть H ― высота пирамиды, P_осн ― периметр основания пирамиды, S_осн ― площадь основания пирамиды, S_бок ― площадь боковой поверхности пирамиды, S_полн ― площадь полной поверхности пирамиды, V ― объем пирамиды. Тогда имеют место следующие соотношения:

S_полн=S_осн плюс S_бок;

V= дробь: числитель: 1, знаменатель: 3 конец дроби S_оснH .


Замечание.
Если все двугранные углы при основании пирамиды равны  бета , а высоты всех боковых граней пирамиды, проведенные из вершины пирамиды, равны h_бок, то S_бок= дробь: числитель: 1, знаменатель: 2 конец дроби P_оснh_бок= дробь: числитель: S_осн, знаменатель: косинус бета конец дроби .

Наверх

6. Усечённая пирамида

Пусть H ― высота усеченной пирамиды, P_1 и P_2 ― периметры оснований усеченной пирамиды, S_1 и S_2 ― площади оснований усеченной пирамиды, S_бок ― площадь боковой поверхности усеченной пирамиды, S_полн ― площадь полной поверхности усеченной пирамиды, V ― объем усеченной пирамиды.

Тогда имеют место следующие соотношения:

S_полн=S_1 плюс S_2 плюс S_бок;

V= дробь: числитель: 1, знаменатель: 3 конец дроби H левая круглая скобка S_1 плюс S_2 плюс корень из S_1S_2 правая круглая скобка .

Замечание. Если все двугранные углы при основании пирамиды равны  бета , а высоты всех боковых граней пирамиды, проведенные из вершины пирамиды, равны h_бок, то: S_бок= дробь: числитель: 1, знаменатель: 2 конец дроби левая круглая скобка P_1 плюс P_2 правая круглая скобка h_бок= дробь: числитель: |S_1 минус S_2|, знаменатель: косинус бета конец дроби .

Наверх

7. Цилиндр

Пусть h ― высота цилиндра, r ― радиус цилиндра, S_бок ― площадь боковой поверхности цилиндра, S_полн ― площадь полной поверхности цилиндра, V ― объем цилиндра.

Тогда имеют место следующие соотношения:

S_бок=2 Пи rh;

S_полн=2 Пи r левая круглая скобка r плюс h правая круглая скобка ;

V= Пи r в квадрате h.

Наверх

8. Конус

Пусть h ― высота конуса, r ― радиус основания конуса, l ― образующая конуса, S_бок ― площадь боковой поверхности конуса, S_полн ― площадь полной поверхности конуса, V ― объем конуса.

Тогда имеют место следующие соотношения:

S_бок= Пи rl;

S_полн= Пи r левая круглая скобка r плюс l правая круглая скобка ;

V= дробь: числитель: 1, знаменатель: 3 конец дроби Пи r в квадрате h.

Наверх

9. Усечённый конус

Пусть h ― высота усеченного конуса, r и r_1 ― радиусы основания усеченного конуса, l ― образующая усеченного конуса, S_бок ― площадь боковой поверхности усеченного конуса, V ― объем усеченного конуса. Тогда имеют место следующие соотношения:

S_бок= Пи левая круглая скобка r плюс r_1 правая круглая скобка l;

V= дробь: числитель: 1, знаменатель: 3 конец дроби Пи h левая круглая скобка r в квадрате плюс rr_1 плюс r_1 в квадрате правая круглая скобка .

Наверх

10. Сфера и шар

Пусть R ― радиус шара, D ― его диаметр, S ― площадь ограничивающей шар сферы, S_h ― площадь сферической поверхности шарового сегмента (шарового слоя), высота которого равна h, V ― объем шара, V_сегм ― объем сегмента, высота которого равна h, V_сект ― объем сектора, ограниченного сегментом, высота которого равна h. Тогда имеют место следующие соотношения:

Наверх

Материалы, выдаваемые на экзамене, смотрите здесь

  • Полный краткий справочник
    • Формулы сокращенного умножения
    • Модуль числа, модуль выражения
    • Степень с действительным показателем
    • Корень n-ой степени из числа
    • Логарифмы
    • Арифметическая прогрессия
    • Геометрическая прогрессия
    • Бесконечно убывающая геометрическая прогрессия
    • Основные формулы тригонометрии
    • Производная и интеграл
    • Треугольник
    • Четырехугольники
    • Окружность и круг
    • Призма
    • Пирамида
    • Усеченная пирамида
    • Цилиндр
    • Конус
    • Усеченный конус
    • Сфера и шар
    • Векторы и координаты
  • Особенности экзаменационных заданий профильной математики
    • Задания 1: округление величин, проценты
      • Особенности экзаменационных заданий на округление
      • Округление величин с избытком и недостатком
      • Проценты
      • Особенности экзаменационных заданий на проценты
    • Задания 2: анализ графических зависимостей
      • Анализ графических зависимостей
      • Особенности экзаменационных заданий на чтение графиков и диаграмм
    • Задания 3 и 6: планиметрия
      • Треугольник
        • Равносторонний треугольник
        • Равнобедренный треугольник
        • Прямоугольный треугольник
        • Тригонометрические функции дополнительных углов
        • Основное тригонометрическое тождество и следствия из него
        • Смежные углы
        • Средняя линия треугольника
        • Медиана треугольника
        • Биссектриса треугольника
        • Высота треугольника
        • Серединный перпендикуляр
        • Теорема косинусов
      • Параллелограмм
        • Прямоугольник
        • Ромб
        • Параллелограмм Вариньона
        • Трапеция
      • Правильный шестиугольник
      • Теоремы о площадях многоугольников
      • Окружность
        • Вписанный угол
        • Хорда
        • Касательная к окружности
        • Секущая
        • Круг и его элементы
        • Соотношения между элементами окружности и круга
        • Вписанная окружность
        • Описанная окружность
      • Вектор
        • Сумма и разность векторов
        • Координаты вектора
        • Скалярное произведение векторов
        • Расстояния от точки до координатных осей
        • Расстояние между точками
    • Задания 4: вероятности событий
      • Определение вероятности
      • Теоремы о вероятностях событий
      • Особенности экзаменационных заданий на начала теории вероятности
    • Задания 5: простейшие уравнения
      • Простейшие уравнения
      • Линейные уравнения
      • Квадратные уравнения
      • Рациональные уравнения
      • Иррациональные уравнения
      • Показательные уравнения
      • Логарифмические уравнения
      • Особенности решения экзаменационных заданий на простейшие уравнения
    • Задания 7: производные, первообразные
      • Правила дифференцирования
      • Производная числа, линейной и степенной функции
      • Производная многочлена
      • Уравнение прямой
      • Уравнение касательной
      • Физический смысл производной
      • Монотонность и экстремумы функции
      • Первообразная
      • Криволинейная трапеция и ее площадь
    • Задания 8: стереометрия
      • Особенности экзаменационных заданий по стереометрии
      • Куб
      • Призма. Прямоугольный параллелепипед
        • Прямая призма
        • Прямоугольный параллелепипед и его свойства
        • Особенности правильной шестиугольной призмы
      • Пирамида
      • Сечения
      • Цилиндр и его соотношения
      • Конус и его соотношения
      • Сфера и шар
        • Комбинации круглых тел. Вписанные сферы
        • Комбинации круглых тел. Описанные сферы
        • Комбинации конуса и цилиндра
        • Комбинации многогранников и круглых тел. Описанные сферы
        • Комбинации многогранников и круглых тел. Вписанные сферы
        • Комбинации конуса, цилиндра и многогранников
    • Задания 9: тождественные преобразования выражений
      • Действия с дробями
      • Формулы сокращенного умножения
      • Степень и её свойства
        • Свойства степени
        • Степень с дробным показателем
      • Арифметический корень
        • Свойства арифметического корня
      • Определение логарифма и его свойства
      • Основные тригонометрические формулы
      • Правило для запоминания формул приведения
      • Свойства четности и нечетности функций
    • Задания 10: задачи с прикладным содержанием
      • Задачи с прикладным содержанием
    • Задания 11: текстовые задачи
      • Определение процента
      • Правило креста для решения задач на смеси
      • Движение по прямой
      • Движение по окружности
      • Алгоритм решения задач на совместную работу
    • Задания 12: исследование функций при помощи производной
      • Производная некоторых элементарных функций
      • Правила дифференцирования
      • Монотонность и экстремумы функции
      • Наибольшее и наименьшее значение функции

Здесь представлен бесплатный видеокурс по подготовке к ЕГЭ по математике профильного уровня.

Список заданий:

Задание 1. Прямоугольные, равнобедренные треугольники, треугольники общего вида, параллелограмм, трапеция, вписанные и центральные углы, вписанные и описанные окружности.

Задание 2. Стереометрия: куб, параллелепипед, призма, пирамида, цилиндр, конус,шар, комбинация тел, элементы, площади и объемы составных многогранников

Задание 3. Классическое определение вероятности.

Задание 4. Теоремы о вероятности событий.

Задание 5. Линейные, квадратичные, дробно-рациональные, степенные, иррациональные, тригонометрические, показательные и логарифмические уравнения

Задание 6. Рациональные, иррациональные, степенные, логарифмические, тригонометрические выражения.

Задание 7. Производная и первообразная: физический смысл производной, геометрический смысл производной и касательная, применение производной к исследованию функций, первообразная

Задание 8. Задачи с прикладным содержанием: линейные, квадратные, степенные, рациональные, иррациональные, показательные, логарифмические, тригонометрические и смешанные уравнения и неравенства.

Задание 9. Текстовые задачи на движение по прямой и окружности, на движение по воде, на проценты и сплавы, на совместную работу и прогрессии.

Разбор всех типов задания номер 1 из ЕГЭ (профильный уровень) по математике

Разбор всех типов задания номер 2 из ЕГЭ (профильный уровень) по математике

Разбор всех типов задания номер 3 из ЕГЭ (профильный уровень) по математике

Разбор всех типов задания номер 4 из ЕГЭ (профильный уровень) по математике

Разбор всех типов задания номер 5 из ЕГЭ (профильный уровень) по математике

Разбор всех типов задания номер 6 из ЕГЭ (профильный уровень) по математике

Разбор всех типов задания номер 7 из ЕГЭ (профильный уровень) по математике

Разбор всех типов задания номер 8 из ЕГЭ (профильный уровень) по математике

Разбор всех типов задания номер 9 из ЕГЭ (профильный уровень) по математике

Структура профильного уровня ЕГЭ по математике


 Экзаменационная работа состоит из двух частей, которые различаются по содержанию, сложности и числу заданий:

  • 8 заданий первой части (задания 1–8) с кратким ответом в виде целого числа или конечной десятичной дроби
  • 4 задания второй части (задания 9–12) с кратким ответом в виде целого числа или конечной десятичной дроби
  • 7 заданий второй части (задания 13–19) с развернутым ответом (полная запись решения с обоснованием выполненных действий)

Задания первой части направлены на проверку освоения базовых умений и практических навыков применения математических знаний в повседневных ситуациях.

Посредством заданий второй части осуществляется проверка освоения математики на профильном уровне, необходимом для применения математики в профессиональной деятельности и на творческом уровне.

По уровню сложности задания распределяются следующим образом:

  • задания 1–8 имеют базовый уровень
  • задания 9–17 – повышенный уровень
  • задания 18 и 19 относятся к высокому уровню сложности

При выполнении заданий с развернутым ответом части 2 экзаменационной работы в бланке ответов № 2 должны быть записаны полное обоснованное решение и ответ для каждой задачи.

Распределение заданий по частям экзаменационной работы

Части работы Количество заданий Максимальный первичный бал Тип заданий
1 часть 8 8 Краткий ответ
2 часть 11 24 Развернутый ответ
Итого 19 32

Разбор заданий ЕГЭ по математике (профиль)

Понравилась статья? Поделить с друзьями:
  • Как решать восьмое задание в егэ по русскому
  • Как решать варианты егэ на фипи
  • Как решать банковские задачи в егэ по математике профильный
  • Как решать базовую математику егэ 2022
  • Как решать аннуитетные платежи егэ